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A R T I C L E I N F O A B S T R A C T 

Editor: B. Balantekin We point out that there is an upper bound on the speed of sound squared given by 𝐵2𝑍 ≤ 0.781 valid for all known 
systems described by relativistic transient hydrodynamics where calculations of certain ratios of hydrodynamic 
transport coefficients can be performed from first principles. Assuming this bound is valid for ultradense matter 
implies that the maximum mass of isolated (non-rotating) neutron stars cannot be larger than 2.7 solar masses.

1. Introduction

The measurements of neutron stars with masses ≳ 2 �푀⊙ (where 
�푀⊙ is the mass of the sun) [1–3] suggest that the cold neutron star 
equation of state (EoS) is stiff enough such that its speed of sound, 𝐵𝑍, 
surpasses its conformal limit, 𝐵𝑍 ≤ 1∕

√
3, at a given density [4]. This 

is also supported by the binary neutron-star merger gravitational-wave 
event GW170817 [5–7], which further constrained the masses and effec-
tive tidal deformability of the inspiraling neutron stars [8–16]. Further 
support to a supraconformal speed of sound may come from the ob-
servation of gravitational waves from the merger of a black hole with 
a compact object of mass 2.6 �푀⊙ [17], if the latter is a neutron star 
[18–23].

Due to asymptotic freedom [24,25], the speed of sound in QCD is ex-
pected to approach the conformal limit from below at sufficiently large 
densities [26,27]. This fact, combined with the knowledge about the nu-
clear physics equation of state at low densities [8,28–30] and the recent 
observation of large neutron star masses, implies that 𝐵𝑍 in QCD is not 
monotonic as this quantity must display at least one peak as a function 
of density (when taking into account the region of asymptotically large 
density). Assuming there is only a single peak, essential questions are: 
(i) How large is 𝐵𝑍 at the peak? (ii) At what density does 𝐵𝑍 peak? (iii) 
What is the correct effective theory of ultradense matter that explains 
the answers to (i) and (ii)? Ultimately, future observations [31–34] will 
constrain the answer to (i) and (ii) [35–41] and provide useful guidance 
towards answering (iii).

* Corresponding author.
E-mail address: hippert.mauricio@ce.uerj.br (M. Hippert).

Relativistic causality and covariant stability [42] impose that the 
speed of sound cannot surpass the speed of light, i.e., 𝐵𝑍 ≤ 1. At high 
temperatures and zero baryon chemical potential, lattice QCD calcula-
tions [43,44] and holographic models [45–48] find that the conformal 
limit for the speed of sound is respected, 𝐵𝑍 ≤ 1∕

√
3. At nonzero baryon 

density, however, discussions concerning the (subluminal) upper bound 
to the speed of sound go back several decades [49–52]. It is now known 
that the speed of sound can surpass the conformal result in a variety of 
systems such as QCD at large isospin density [53], two-color QCD [54], 
holographic models [55–59], resummed perturbation theory [60,61], 
quarkyonic matter [62–66], and other models at high density [67–82]. 
However, despite recent progress [83,84], very little is known about the 
transport properties of ultradense matter when the speed of sound nears 
the speed of light.

In this work, we point out that ultradense matter with nearly luminal 
speed of sound must have very unusual transport properties. We discuss 
a scenario where fundamental properties of thermodynamics and trans-
port in relativity can constrain the equation of state of ultradense matter. 
Assuming the validity of relativistic transient hydrodynamics in which 
dissipative stresses obey additional relaxation equations [85], we argue 
that causality and stability of matter imply that there is an upper bound 
on the speed of sound squared given by 𝐵2𝑍 ≤ 0.781 in all known sys-
tems1 where calculations of certain ratios of first-order hydrodynamic 

1 We only consider systems where the equilibrium state is unique and the 
correlation length is finite.
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transport coefficients and their corresponding relaxation times can be 
performed from first principles. In this case, a violation of the bound im-
plies that such systems either exhibit very unusual transport coefficients 
or cannot be consistently described by transient fluid dynamics,2 sig-
naling the presence of exotic transport behavior that simple relaxation 
dynamics cannot describe.3 Given current astrophysical constraints, we 
show that imposing this bound on 𝐵𝑍 implies that the maximum mass of 
an isolated neutron star is bound by �푀 < 2.7 �푀⊙, assuming chiral ef-
fective theory is valid up to two times saturation density. Therefore, the 
new transport bound provides further support to the claim that the 2.6 
�푀⊙ compact object observed to merge with a 23 �푀⊙ black hole causing 
the GW190814 event [17] can be a neutron star.

2. Speed of sound bound from transport

Fluid dynamics describes the long-time, long-wavelength dynamics 
of conserved quantities in many-body systems [91]. Ideal fluid dynamics 
describes the evolution of the energy density �휖, number density �푛, and 
flow velocity in the absence of dissipation, with the information about 
the system’s microscopic properties encoded in the equation of state, 
e.g., �푃 = �푃 (�휖,�푛), where �푃 is the pressure computed in thermodynamic 
equilibrium. In this limit, sound waves propagate with frequency �휔 =
±𝐵𝑍�푘, where 𝐵𝑍 =

√
�푑�푃∕�푑�휖 denotes the isentropic speed of sound in the 

fluid, and �푘 = |�퐤| is the wavenumber.
Small dissipative corrections can be taken into account by express-

ing the dissipative fluxes in a systematic derivative expansion of the 
hydrodynamic fields [91], which introduces the well-known transport 
coefficients: the shear viscosity ,, bulk viscosity �휁 , and charge conduc-
tivity ..

Constraining any transport coefficients in nuclear matter is challeng-
ing since it involves extracting near-equilibrium information at strong 
coupling from QCD. However, imposing causality can provide useful in-
formation about transport coefficients when the speed of sound nears 
the speed of light.

In causal and stable first-order theories [92–96], the long-wavelength 
behavior of the sound wave dispersion relation is given by4 �휔 =
±𝐵𝑍�푘− �푖Γ�푘2∕2 +(�푘3), where the damping coefficient is

Γ =
�휁 + 4

3 ,
�휖 + �푃

+ .
(�휖 + �푃 )𝐵2𝑍

( �휕�푃
�휕�푛 

)2

�휖
. (1)

Causality [97] and the stability of the equilibrium state [42] impose 
that dispersion relations must obey the fundamental inequality Im�휔 ≤
|Im�푘|, �휔,�푘 % ℂ. Since the second law of thermodynamics imposes that 
,, �휁 ,. are non-negative, Γ ≥ 0, one can show5 that Γ→ 0 when 𝐵𝑍 → 1
[42]. This statement was generalized in Ref. [98], where it was shown 
that the contribution from all the other terms also vanishes, making 
luminal sound waves exactly non-dispersive and described by the triv-
ial dispersion relation, �휔 = �푘. This implies that at densities where the 
speed of sound of ultradense matter approaches the speed of light, sound 
waves propagate without damping or dispersion.

In relativistic transient fluid dynamics [85], transport is further char-
acterized by relaxation time coefficients that determine when the dissi-
pative fluxes approach their first-order values. For instance, the shear 

2 This is not connected to the non-analytic behavior induced by the backreac-
tion of sound waves [86].
3 While unusual transport coefficients can be expected from superfluid phases, 

the onset of superfluidity leads to multiple sound modes [87], which makes 
causality and stability analyses considerably more convoluted [88]. Therefore, 
we leave the exploration of superfluid states to future work. However, we note 
that our bound holds even in the case of a pion condensate, where a global �푈 (1)
symmetry is spontaneously broken [53,89,90] (see Fig. 1).
4 The (�푘3) terms are determined by the UV regulators parameterizing the 

choice of hydrodynamic frame.
5 Take �푘 = �푖�훼 (with 0 < �훼 ≪ 1) and impose the inequality Im�휔 ≤ |Im�푘|.

relaxation time coefficient �휏�휋 has been calculated for many theories (see, 
e.g., Tab. 2.1 in Ref. [99]). In all of these systems, it was found to be 
tightly constrained as

�휏�휋 = �퐶�휋 ×
,

�휖 + �푃
, �퐶�휋 % [2(2− ln 2),6.1] , (2)

with the upper limit of �퐶�휋 originating from theories evaluated at weak 
coupling6 [101]. We, therefore, find the following bound

4,
3�휏�휋(�휖 + �푃 ) =

4 
3�퐶�휋

≥ 4 
3 × 6.1 , (3)

from relativistic transport in theories where calculations can be done 
from first principles.

By contrast, while the bulk relaxation time �휏Π has also been calcu-
lated in many theories, the corresponding bound on the ratio of �휁

�휏Π(�휖+�푃 )
, 

where �휁 is the bulk viscosity, is much less constrained,
�휁

�휏Π(�휖 + �푃 ) =
1 
�퐶Π

> 0 , (4)

because there are examples where �휁 = 0, �휏Π ≠ 0 [102]. Finally, not much 
is known from first principles about similar ratios involving the charge 
conductivity and the relaxation times, and thus, we shall not consider it 
further in this work.

Further general statements about transport can also be made in the 
context of transient fluid dynamics. By requiring that the entropy mea-
sured by all inertial observers is maximized in equilibrium in the pres-
ence of constraints (such as energy and/or particle number), one can de-
rive a number of thermodynamic inequalities that ensure that the stabil-
ity of the equilibrium state holds in all Lorentz reference frames [103]. 
These inequalities also imply causality in the linear regime around equi-
librium [104]. In transient fluid dynamics, one can obtain such thermo-
dynamic inequalities by computing the so-called information current 
�퐸�휇 [104], which must be a time-like future-directed 4-vector with non-
positive divergence, (�휇�퐸�휇 ≤ 0, to satisfy the covariant version of the 
second law of thermodynamics. In the case of Israel-Stewart theory with 
shear and bulk viscosity, this implies the following thermodynamic in-
equality [105,106]

𝐵2𝑍 ≤ 1− 4 
3�퐶�휋

− 1 
�퐶Π

, (5)

which constitutes an upper bound on the speed of sound7 from rela-
tivistic thermodynamic principles8 Furthermore, we see that matter in 
a state where the equilibrium speed of sound 𝐵𝑍 → 1 must have unusual 
transport behavior as not only , and �휁 but also their corresponding ra-
tios involving the relaxation times must vanish.

It should be stressed that the bound (5) relies on the assumption that 
transient fluid dynamics, where additional degrees of freedom (such as 
the shear and bulk stresses) are included as independent variables char-
acterizing an extended quasi-equilibrium thermodynamic state [109], 
faithfully represent the thermodynamic properties of nuclear matter. 
This nontrivial assumption implies that the near-equilibrium proper-
ties of ultradense matter display not only typical fluid behavior but 
also visco-elastic properties, which are commonly found in liquids 
[110–112].

Using the additional information (3, 4) on �퐶�휋 ,�퐶Π, one can make the 
bound (5) sharp:

𝐵2𝑍 ≤ 0.781 . (6)

6 A strict bound �퐶�휋 ≥ 5 has been proved in Ref. [100] for all weakly coupled 
theories, along with a pioneering calculation of �휏�휋 to NLO in perturbative QCD.
7 We only consider the equilibrium speed of sound; for a definition of a far-

from-equilibrium speed of sound, see [107].
8 We note that (5) also follows from applying the inequality Im�휔 ≤ |Im�푘|, 

or by simply computing the maximum propagation speeds in linearized Israel-
Stewart-like theories [108, Eq. (49)].
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Fig. 1. Speed of sound squared at �푇 = 0 in QCD as a function of isospin chemical 
potential �휇�퐼 . Shown are results from lattice QCD (LQCD) for �푁< = 2 + 1 from 
Refs. [114,115] with �푚�휋 ) 170 MeV; LQCD for �푁< = 2+1 from Refs. [116,117] 
with �푚�휋 ) 135 MeV; and chiral perturbation theory (>PT) results for �푁< = 2 to 
NLO with �푚�휋 ) 135MeV [118]. The transport bound (6) is indicated by the grey 
region marked as “forbidden by transport”.

If the bound above is violated, this indicates either that the shear viscous 
coefficients evade Eq. (3) somehow, or that transport cannot be stud-
ied using the framework of transient hydrodynamics without violating 
fundamental thermodynamic principles. This, per se, indicates the pres-
ence of nontrivial transport dynamics in ultradense matter that cannot 
be captured within well-known relativistic hydrodynamic formulations 
[113] where simple relaxation equations govern the evolution of the 
dissipative fluxes.

In the next section, we compare this bound to results in theories 
where 𝐵2𝑍 can be calculated (or estimated) from first principles.

3. Speed of sound in nuclear matter

Results for the speed of sound squared for cold nuclear matter are 
available from first-principles QCD calculations such as lattice QCD, ef-
fective field theory, and perturbative QCD. In particular, results for 𝐵2𝑍
are shown in Figs. 1, 2, 3 for QCD at finite isospin chemical potential, 
QCD at finite baryon chemical potential, and two-color QCD at finite 
chemical potential, respectively. In addition to the results shown, re-
sults on thermodynamics at finite-density for QCD in the strong coupling 
limit from Ref. [119] and various model calculation results for 𝐵2𝑍 are 
available [120,121].

Comparing the results for 𝐵2𝑍 from first principles calculations shown 
in Figs. 1, 2, and 3 to the transport bound (6), one finds that the transport 
bound on the speed of sound is obeyed in all cases.

It is worth noticing that the bound in Eq. (6) is respected even for 
low temperature where superfluidity occurs, [53,89,90,122], as can be 
seen in Figs. 1, 2.

4. Implications for the neutron star mass – radius relation

The speed of sound of ultradense matter plays a crucial role in the 
structure of neutron stars. A larger 𝐵2𝑍 allows for larger values of the 
stellar mass — as larger pressure gradients can counterbalance a larger 
gravitational force — but also gives rise to larger stars — as matter 
becomes harder to compress. Observations of “small” neutron star radii 
of �푅 ∼ 13 km [127–130], as well as tidal deformability constraints from 
GW170817 [5–7], require speeds of sound well below the conformal 
value of 𝐵2𝑍 ≤ 1∕3 at low densities, while very massive stars of �푀 ∼ 2 �푀⊙
[1–3] require much larger values of 𝐵2𝑍 at high density, most likely above 
𝐵2𝑍 = 1∕3 [4,8,131–134].

We thus investigate the implications of the transport bound 𝐵2𝑍 ≤
0.781 for the neutron star mass–radius relation. To find the most mas-
sive configurations allowed by this bound, we employ EoSs that saturate 

Fig. 2. Speed of sound squared at �푇 = 0 in QCD as a function of baryon chemical 
potential �휇�퐵 . Shown are results from perturbative QCD (pQCD) for �푁< = 3 to 
partial N3LO Refs. [123–125] and large �푁< ∕�휋 EFT results to LO from Ref. [122]. 
The transport bound (6) is indicated by the grey region marked as “forbidden 
by transport”.

Fig. 3. Speed of sound squared at �푇 ) 50 MeV in two-color QCD as a function 
of chemical potential �휇. Shown are results for 𝐵2𝑍 extracted from data provided 
in Ref. [126] with �푚�휋 ) 700 MeV. The transport bound (6) is indicated by the 
grey region marked as “forbidden by transport”.

this bound above a threshold �푛 > �푛stiff for the baryon density. At densi-
ties �푛 < �푛stiff below this threshold, we generate ∼ 200 low-density EoSs 
consistent with uncertainty bands from chiral effective theory (>EFT) 
results [8], combined with a GPPVA(TM1e) crust EoS [135–139] (we 
refer the reader to the supplementary material for details). Most recent 
constraints from multiple sources on the symmetry energy in Ref. [140] 
suggest that the >EFT uncertainty does not cover the full range of poste-
rior values reported in [140]. In particular, the authors of Ref. [140] find 
that considerably larger symmetry energy values are allowed, which 
would lead to higher neutron star masses than when considering >EFT. 
Reconciling the uncertainty bands between >EFT and Ref. [140] is be-
yond the scope of this work, so we choose to use the >EFT results in 
the following. We match each of these EoSs �휖(�푖)soft(�푃 ), where superscript �푖
specifies which EoS, to a high-density EoS �휖(�푖)stiff(�푃 ) with constant speed 
of sound 𝐵2𝑍 = 𝐵2𝑍 (bound) = 0.781, while keeping �휖 a continuous function 
of �푃 :

�휖(�푖)stiff(�푃 ) = �휖(�푖)soft(�푃stiff) +
�푃 − �푃stiff
𝐵2𝑍 (bound)

, (7)

where �푃stiff is the value of the pressure as �푛→ �푛−stiff from the left.
We then employ the Tolman-Oppenheimer-Volkoff (TOV) equation 

to obtain mass–radius relations for each of these piecewise equations of 
state. Similar procedures have been extensively employed in the liter-
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Fig. 4. Mass–radius relations for EoSs that are in agreement with >EFT results 
at baryon densities �푛 < �푛stiff and saturate the new bound 𝐵2𝑍 ≤ 0.781 at densities 
�푛 > �푛stiff. Different shaded bands represent results for switching densities �푛stiff of 
1 (pink), 1.5 (purple), and 2 (green) times the baryon density at nuclear satu-
ration, with the band thickness reflecting uncertainties in >EFT results. Dashed 
lines represent results in the case where 𝐵2𝑍 = 1 saturates the causal bound for 
�푛 > �푛stiff, with the same color scheme. The horizontal magenta band indicates 
the uncertainty in the mass of the compact object of unknown nature observed 
in GW190814 [17].

ature to investigate the evidence in favor of supraconformal speeds of 
sound [4,8,10,13,141]. The region in the mass–radius diagram obtained 
via this process is shown in Fig. 4 as shaded bands. We show results for 
different values of �푛stiff, of 1, 1.5 and 2 times the baryon density at nu-
clear saturation �푛0 + 0.16 fm−3.

Note that our constructed EoS are not meant to be realistic models of 
the nuclear EoS behavior, but instead are meant to check if >EFT plus 
transport bounds are relevant for astrophysics.

To gauge the significance of the new 𝐵2𝑍 bound, we compare the max-
imum allowed mass for 𝐵2𝑍 (bound) = 0.781 to the maximum mass when the 
less restrictive bound 𝐵2𝑍 ≤ 1— from relativistic causality [49] — is satu-
rated, which can be found by replacing 𝐵2𝑍 (bound) = 1 in Eq. (7). Contours 
for the obtained regions in the mass–radius diagram, for each different 
value of �푛stiff, are represented as dashed lines in Fig. 4.

We find that the transport bound 𝐵2𝑍 ≤ 0.781 decreases the maximum 
mass by ∼ 8% with respect to the maximum value allowed by the causal 
bound. This is the case for all the different soft EoSs, regardless of the 
density �푛stiff at which the EoS becomes stiff, with an uncertainty of 0.2%. 
The new bound also tends to decrease the radius of the maximally mas-
sive configuration by 3.6±0.3%. Effects of the same bound become small 
for lighter stellar masses, below ∼ 2 �푀⊙.

5. Discussion

Relativistic causality and covariant stability impose strong con-
straints on transport quantities and the speed of sound in relativistic 
fluids. Combining these constraints with bounds on transport coeffi-
cients observed in a wide range of systems, we have found that, for all 
of these systems, assuming the validity of transient relativistic fluid dy-
namics implies that the speed of sound squared is bounded from above 
by 𝐵2𝑍 ≤ 0.781. We investigated the applicability of this bound in first-
principles calculations of the speed of sound in QCD and two-color QCD. 
All of the known first-principles calculations obey the new bound. This 
bound can be sharpened by further constraining the ratios �퐶�휋 ,�퐶Π from 
shear and bulk viscosity (and performing a similar analysis including 
effects from charge conductivity), especially in systems at finite baryon 
density.

Not much is known about transport properties beyond first order 
at low temperature and finite density, the exception being calcula-
tions of so-called thermodynamic transport coefficients [122,142–144]. 
Nonetheless, in Sec. 3, we have checked that our new bound on the 
speed of sound is respected in first-principles results both for QCD at 
zero temperature and for two-color QCD at a temperature around 50
MeV. The results discussed in this work can lead to a renewed interest 
in calculating transport coefficients, particularly the shear and bulk re-
laxation times, in order to assess to what extent the bounds in Eq. (3)
and (4) apply in the cold and dense regime.

It would be interesting to extend our analysis to the case where super-
fluids may be present, which we leave for future work. While our analy-
sis is not directly applicable in this case, we have seen that our bound on 
𝐵2𝑍 is not violated in first-principles results for QCD at high isospin den-
sity, where a superfluid pion condensate is expected [53,89,90], and 
non-relativistic chiral QCD where the analogues of Cooper pairs form 
[122].9

We also investigated the consequences of this bound for the neutron 
star mass–radius relation. Our results show that, if >EFT is taken to be 
a good description of nuclear matter up to two times saturation den-
sity (�푛stiff = 2 �푛0), then a single neutron star mass above 2.7 �푀⊙ (and 
below ∼ 2.9 �푀⊙) would provide strong evidence for the breaking of the 
𝐵2𝑍 ≤ 0.781 bound, indicating that ultradense matter must exhibit exotic 
transport properties. On the other hand, our new bound is fully compat-
ible with the possibility that the ∼ 2.6 �푀⊙ compact object observed via 
gravitational wave event GW190814 could be a neutron star.

It is worth noting that our proposed bound to the speed of sound 
seems to be compatible with observation-driven analyses of the neutron-
star equations of state, e.g., [41,146–148], which suggest that values of 
𝐵2𝑍 ≳ 0.781 are statistically disfavored.

A potential follow-up direction to this work is provided by extending 
our modeling analysis for neutron stars in light of the constraints on the 
nuclear matter EoS up to three times �푛0 given in Ref. [140].

Future Bayesian analyses of neutron star and gravitational wave ob-
servations could be employed to more systematically assess the implica-
tions of our new bound on 𝐵2𝑍 for the cold and dense nuclear matter EoS 
and for the neutron star mass–radius relation. Such analyses could also 
estimate the probability that this new bound is violated inside neutron 
stars and, therefore, help establish how likely it is that the matter in the 
core of massive neutron stars displays unusual transport properties.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.physletb.2024.139184. 
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