
DOI: 10.1111/jiec.70087

R E S E A RCH ART I C L E

Modelingmaterial flow dynamics in coupled natural-industrial

ecosystems for resilience to climate change

A case study on a soybean-based industrial ecosystem

William Farlessyost1 Shweta Singh1,2,3

1Agricultural and Biological Engineering,

Purdue University,West Lafayette, Indiana,

USA

2Environmental and Ecological Engineering,

Purdue University,West Lafayette, Indiana,

USA

3Davidson School of Chemical Engineering (By

Courtesy), Purdue University,West Lafayette,

Indiana, USA

Correspondence

Shweta Singh, Agricultural and Biological

Engineering, Purdue University,West

Lafayette, Indiana, USA.

Email: singh294@purdue.edu

EditorManaging Review: Stefan Pauliuk

Funding information

Division of Chemical, Bioengineering,

Environmental, and Transport Systems,

Grant/Award Number: FMRG ECO2229250;

National Science Foundation Graduate

Research Fellowship Program, Grant/Award

Number: DGE-1842166; USNational Science

Foundation throughNSFGRFP, Grant/Award

Numbers: DGE-1842166, NSF FMRGEco

2229250

Abstract

Industrial ecosystems are coupled with natural systems, which causes the material

flow dynamics in the network to be affected by the mechanistic dynamics of each

node. However, current material flow dynamics studies do not capture these mecha-

nistic and nonlinear dynamics to evaluate material flows in networks, thus missing its

role in designing resilient industrial ecosystems. In this work, we present a method-

ology to overcome this limitation and model material flow dynamics in a coupled

natural-industrial network by accounting for underlying nonlinear dynamics at each

node. We propose a three-step methodology: first, creating accurate surrogate mod-

els using liquid time-constant (LTC) neural networks to capture node-specific behavior;

second, coupling these individual node models to simulate material flow dynamics

in the network; and third, evaluating resilience by measuring the system’s ability to

maintain production levels under climate stress. Applied to a soybean-based biodiesel

production network in Champaign County, Illinois (2006–2096), our analysis reveals

significant vulnerability differences between climate scenarios, with the RCP 8.5 sce-

nario triggering production failures approximately 10 years earlier than RCP 4.5

(2016 vs. 2026), exhibiting higher failure frequency and requiring longer recovery

periods. Smaller farms (450 ha) demonstrated substantially higher import depen-

dency, while medium farms (500 ha) reached a critical bifurcation point around 2050

under RCP 8.5, indicating a systemic tipping point. These findings provide insights

for policymakers and industrial managers to implement targeted interventions, supply

chain diversification, and adaptive management strategies, thereby enhancing system

resilience while offering industrial ecology practitioners a methodology for modeling

material flow dynamics in a coupled natural-industrial network.
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2 FARLESSYOST and SINGH

1 INTRODUCTION

Climate changeposes significant challenges to global food security and sustainable energyproduction, necessitating adeeper understandingof cou-

pled natural–industrial systems’ resilience (Dijkema et al., 2015; Meerow et al., 2015). The increasing frequency and severity of extreme weather

events, shifts in precipitation patterns, and rising temperatures are altering the fundamental dynamics of agricultural ecosystems (Anjum et al.,

2019; Bekele et al., 2021; Huang et al., 2020; José et al., 2016; Kim et al., 2013; Nasonova et al., 2018; Nilawar &Waikar, 2019; Wang et al., 2020;

Zhang et al., 2016). These changes have far-reaching implications for crop yields, water availability, and the overall stability of food production

systems. As climate variability intensifies, it becomes crucial to develop robustmethodologies for assessing and predicting the impacts on intercon-

nected natural and industrial ecosystems onmaterial flows anddemands, particularly in the context of agricultural value chains and their associated

energy production systems.

Industrial ecosystems, particularly those centered around agricultural production and processing, are inextricably linked with natural systems

through complex feedback and dependencies for rawmaterials (Costa et al., 2019;Meerow et al., 2015). These coupled natural–industrial systems

exhibit highly intricate and nonlinear dynamics driven by diverse interacting factors ranging from resource constraints to market forces (Dijkema

et al., 2015;Meerow et al., 2015). For instance, in the case of biofuel production, the industrial ecosystem encompasses not only themanufacturing

processes but also the agricultural systems that supply the raw materials. This coupling manifests through various pathways, including land use

changes, water consumption, nutrient cycling, and energy flows. The interdependencies between crop growth, harvesting, processing, and end-

product distribution create a network of interactions that span multiple spatial and temporal scales, making these systems particularly vulnerable

to climate-induced perturbations.

The cascading effects of climate change–induced disruptions in natural systems can significantly impact the stability and efficiency of industrial

ecosystems. As climate variability alters crop growth patterns, yield potentials, and water availability, these changes propagate through the entire

value chain, affecting industrial processes, resource allocation, and ultimately, product output (Beck et al., 2018; Rogelj et al., 2012). For example,

shifts in temperature and precipitation regimes can lead to changes in crop phenology and productivity, which in turn influence the timing and

availability of volumeof rawmaterial inputs toprocessing facilities (Costa et al., 2019; Padhiary&Kumar, 2024; Padhiary et al., 2025). This can result

in supply chain disruptions, necessitating adaptive measures in industrial operations. Moreover, extreme weather events can cause acute shocks

to the system, potentially leading to crop failures or infrastructure damage that ripple through the interconnected network of agricultural and

industrial processes. Understanding these cascade effects onmaterial flows is crucial for developing resilient and sustainable industrial ecosystems

in the face of ongoing climate change.

Material flow analysis (MFA) has beenwidely used to quantify the environmental impacts and resource flowswithin these systems (Cioni, 2002;

Graedel, 2019; Pauliuk et al., 2015; Sendra et al., 2007). These approaches provide valuable insights into the overall sustainability and efficiency of

industrial processes, including their interactionswithnatural ecosystems. For instance,MFAallows for trackingmaterial andenergy flowsacross the

industrial ecosystem, revealing potential inefficiencies and connections with environmental systems.While the staticMFA offers a comprehensive

snapshot of system performance for resource utilization, it often struggles to fully capture the dynamic nature of climate-induced disruptions and

the resulting cascade effects on coupled natural-industrial systems (Harirchi et al., 2020; Rivera, 1996; Rivera et al., 2003). Dynamic material flow

analysis (DMFA) offers insights into temporal changes in material stocks and flows, but can be limited in capturing complex feedback mechanisms

and non-linear behaviors in coupled systems (Cao et al., 2018; Espinoza et al., 2014; Müller et al., 2004; Xu et al., 2024) unless mechanistic details

of processes are included in the projection. As most DMFAmodels are either input-driven or output-driven with a simple relationship between the

stock and flows, these do not necessarily capture the complex interactions within coupled natural-industrial systems that can account for intricate

multiscale dynamics (Streeck et al., 2023). These systems exhibit behaviors that span various temporal and spatial scales, from rapid biochemical

reactions in crop growth to biophysical reactions driven by industrial dynamics. Capturing these multiscale dynamics is crucial for understanding

system resilience and predicting responses to climate change. For example, short-term weather fluctuations can impact daily crop water require-

ments, while long-term climate shifts may alter entire growing seasons and crop suitability in a region. Similarly, industrial processes may have

immediate responses to input variations, as well as long-term adaptations to persistent changes in raw material quality or quantity. Integrating

these diverse scales of interaction is essential for a comprehensive understanding of system behavior under different climate change scenarios

(Davis et al., 2009;Meinrenken et al., 2014).

To address this critical gap andovercome the lack of inclusion ofmechanisms impactingmultiscale dynamics ofmaterial flows, our study presents

a broad framework formodeling these coupledmaterial flow dynamics using a system identification–based approach (Figure 1). This novelmethod-

ology aims to capture complex, nonlinear dynamics across entire industrial ecosystems, offering a more comprehensive understanding of material

flow dynamics driven by mechanisms at each node. The proposed approach utilizes a system identification approach of key system components

to build surrogate models, which are then used to model the network interactions, facilitating a more accurate representation of the coupled

natural-industrial ecosystems dynamics.

To implement this system identification-based approach, we leverage surrogate modeling techniques, specifically using data-driven liquid time

constant (LTC) neural networks (Hasani et al., 2021). Surrogate models provide computationally efficient approximations of complex underlying
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FARLESSYOST and SINGH 3

F IGURE 1 Methodology for modeling, coupling, and simulatingmaterial flow dynamics under the effects of exogenous drivers (economics,

climate, etc.).

processes, allowing for rapid scenario analysis and system-wide simulations that would be impractical with full mechanistic models. LTC neural net-

works offer unique advantages in capturing temporal dynamics and nonlinear behaviors inherent in coupled natural-industrial ecosystems (Hasani

et al., 2020; Lechner et al., 2020). These networks employ “liquid” neurons with dynamic time constants, enabling the capture of complex temporal

contexts and nonlinear dynamics without the computational burden of full mechanistic simulations. By training these LTCmodels on synthetic data

generated from high-fidelity simulations, we combine the detail of mechanistic models with the efficiency of more abstract representations (Bidol-

lahkhani et al., 2023). This novel combination provides crucial supervision and regularization, allowing themodel to converge onmeaningful causal

relationships while avoiding the parameter uncertainties and computational limitations often encountered in fully mechanistic approaches (Hasani

et al., 2022; Lechner et al., 2020). These models can then be used to study material flow dynamics in the network under various climate change

scenarios for evaluating the resilience of the network to climate change. In this context, we define resilience as the system’s ability to maintain

industrial production above a critical threshold given an exogenous climate shock. We assess resilience dynamics using failure frequency, system

recovery time, and ID of tipping points. The key questions addressed in this paper are:

1. How well do LTC-based surrogate models approximate the material flow dynamics of agricultural-industrial nodes compared to mechanistic

simulations of these systems?

2. How to account for dynamics and external influence onmaterial stock accumulation in the network and subsequent node production?

3. How canwe utilize simulation of material flow dynamics in the coupled natural–industrial ecosystem for analysis of resilience?

To demonstrate the proposed methodology and address our questions, we present a case study focusing on a soybean-based biodiesel indus-

trial ecosystem in Champaign County, Illinois. This coupled natural–industrial ecosystem encompasses the value chain, from soybean agriculture to

biodiesel production. The IE in this case consists of manufacturing nodes representing soybean oil extraction and biodiesel production processes.

We apply the LTC modeling approach to create surrogate models that efficiently simulate the growth patterns of soybean crops, soybean oil pro-

duction, and conversion to soybean biodiesel. These surrogatemodels are driven by statistically downscaled climate projections from2006 to 2096

under two scenarios: Representative Concentration Pathway (RCP) 4.5 and 8.5 (Riahi et al., 2011). This setup enables us to analyze potential future

climate impacts on crop yields and subsequent cascading effects on stocks & flows throughout the integrated systemwith a level of computational

efficiency that allows for extensive exploration of scenarios and sensitivities.

The remainder of this paper is structured in the following way. Section 2 describes our methodology in detail, outlining the steps for system

boundary definition, component system identification, data collection and preprocessing, model architecture and training, and the coupling of

dynamics across the natural-industrial ecosystem. We also discuss the training and implementation of LTC inverse models as algorithmic plant

controllers and the generation of exogenous climate and economic demand signals. Section 3 presents the case study setup, detailing the specific

components of the soybean biodiesel industrial ecosystem in Champaign County, Illinois, and provides a comprehensive analysis of our results, dis-

cussing the simulation outputs that assess production rates, waste generation, stock levels, and required imports under RCP 4.5 and 8.5 scenarios

 1
5
3
0
9
2
9
0
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/jiec.7

0
0
8
7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

1
/0

9
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



4 FARLESSYOST and SINGH

for varying farm sizes.We evaluate the system’s resilience and sustainability under different climate projections and discuss the implications of our

findings. Finally, Section 4 summarizes the key insights, addresses limitations, and suggests directions for future research formodelingmaterial flow

dynamics in coupled natural-industrial ecosystems.

2 METHODS

Toaddress the three researchquestions, ourproposedapproachhas three specific parts: (1) surrogatemodeling for estimatingmaterial flowdynam-

ics of nodes; (2)material flowdynamics in coupled natural-industrial network system, and (3) evaluating resilience dynamics tomaintain production

in coupled natural—industrial network system, as shown in Figure 1.

2.1 Surrogate models for estimating material flow dynamics of nodes

We first develop an approach to generate surrogate models that can estimate the material flow dynamics of nodes, capturing the underlying

mechanisms of the node.

2.1.1 System boundary

We start by defining a system boundary to demarcate the spatial regions of interest, ensuring that all industrial operations and natural ecosystem

dynamic processes and interactions of interest are encapsulated while extraneous influences are excluded. Throughout, the spatial boundary is

the Champaign County line; any flow that crosses this line is logged as an import (positive) or export (negative). Industrial operations usually entail

various productionprocesses, and thus, the systemboundary shoulddelineate the specific life cycle stages.Natural ecosystems reflect thedynamics

of relevant crops with plant growth or other environmental processes, considering environmental variables that influence growth patterns and

serve as the principal dynamic drivers. Dynamic processes and interactions from either natural or industrial systems for which data do not exist to

build state-accurate models should be excluded from the system boundary; however, their impact can be considered as an exogenous perturbation

to the system. Care is taken to ensure the system boundary remains realistic over whatever time intervals are considered as the period of analysis

(Nabavi et al., 2018).

2.1.2 Component identification

Identifying and understanding the individual components within the system boundary is paramount for a thorough analysis. This involves breaking

down the system into discrete nodes or units, each representing a specific process or entity with clearly defined inputs and outputs, either from or

to another node, or from or to an exogenous source/sink. For instance, in an industrial setting, nodes represent distinct production stages or units

with feedstock and material flow rates, while in a natural ecosystem, nodes signify the growth of species or natural material availability over time,

given changes in environmental conditions exogenous to the system or anthropomorphic waste flows.

2.1.3 Data collection and preprocessing

Further, understanding the characteristics of each node allows us to choose the appropriate data on which to train individual node models. The

emphasis throughout this process is to ensure that the data are both representative of the real-world dynamics of the node and are structured

in a way that is conducive to effective modeling. Proper preprocessing not only enhances the accuracy of the models but also contributes to their

generalizability across different scenarios or conditions. Data can be sourced from a combination of experimental datasets, historical records, and

synthetic data generated frommechanisticmodels. Depending on the specific node in question, this will involve time-series data capturing dynamic

changes, cross-sectional data detailing model parameterization in specific instances, or even qualitative data that are subsequently quantified for

modeling purposes to scale the data/model. In our approach, wemainly rely onmechanistic simulationmodels to generate synthetic data to capture

material flow dynamics based on underlying governing principles at each node.

Given the diverse sources of data and the potential variations in scales, units, or magnitudes, standardizing or normalizing the data prior to

use in training becomes imperative. This ensures that no feature or variable disproportionately influences the model. Techniques like z-score
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FARLESSYOST and SINGH 5

normalization or min–max scaling are employed based on the data distribution. Additionally, in datasets with high noise, smoothing techniques,

such as rolling averages, might be applied where appropriate to focus on underlying trends or patterns.

2.1.4 Model architecture and training

Building an accuratemodel for nodedynamics necessitates a careful selection ofmodel architecture and a structured training process thatmay vary

from node to node. The following outlines the general approach tomodel architecture and training.

Suitable model architecture should be chosen depending on the nature and characteristics of the node system. The primary criterion for model

selection is its ability to capture the underlying patterns and dynamics of the node in question and predict the dynamics of the modeled outputs

given a set of input dynamics; second is the interpretability/auditability of themodel structure and parameterization.

Available datasets for each node are partitioned into training, validation, and testing subsets, following standardmachine learningmethods. The

training set is used to adjust themodel’s parameters, the validation set aids in hyperparameter tuning and to prevent overfitting during training, and

the testing set provides an unbiased performance evaluation. Training is iterative, where the model is exposed to the data multiple times (epochs),

refining its weights and biases tominimize the discrepancy between its predictions and actual values.We usemean average error (MAE) as the loss

function defined as for a dataset with n observations, where y)) represents the actual value and ŷ)) represents the predicted value, as:

MAE = (1∕n) × Σ ||y(i) − ŷ(i)
|| for i = 1to n. (1)

2.1.5 Model evaluation

The evaluation process not only gauges the model’s performance on unseen data but also informs potential refinements or improvements so that

the developed model is robust, accurate, and generalizable. Each node model is integrated or computed over time, and the output is compared

against the ground truth data trajectory (test data).

We employ a summary quantitative metric of root mean square error (RMSE) in Equation (1). RMSE is defined for a dataset with n observations,

where y)) represents the actual value and ŷ)) represents the predicted value, as:

RMSE =

√
(

(1∕n) ×
∑(

y(i) − ŷ(i)
)2
)

for i = 1 to n. (2)

This metric provides a measure of the model’s ability to make accurate predictions that can be easily compared. However, beyond quantitative

metrics, visual inspections play a crucial role in understanding themodel’s performance. By plotting actual versus predicted values, inconsistencies,

outliers, or patterns of discrepancies is visually identified. These plots offer an intuitive understanding of where the model excels and where it may

falter and should be improved. This is especially useful in scenarios where quantitative metrics might not capture nuanced discrepancies or where

the nature of errors is as important as their magnitude.

2.2 Material flow dynamics in a coupled natural–industrial network system

Next, we address the question of accounting for the dynamics of coupled natural–industrial networks on material flows and accumulation. To

answer this, we use the coupling of nodes to simulate coupled dynamics, similar to the system dynamics approach. However, we additionally design

controllers to adjust the flow between nodes as per the driving factor change.

2.2.1 Node coupling

It is crucial that all interactions between the industrial and natural components identified as nodes within the system boundary are appropriately

characterized throughnode-to-node coupling of dynamics. Each node’s output is identified andmapped to serve as the direct input for a subsequent

node or nodes, or an exogenous sink outside the system boundary. Likewise, each node input is either mapped as the output of another node or an

exogenous source. Consequently, it is vital that all node models and exogenous data sources are on the same timescale. To this end, retiming or

interpolation of either amodel or datamay be necessary to achieve this.
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6 FARLESSYOST and SINGH

While not a significant factor in our specific case study, it is necessary to mention there are scenarios where the transmission of an output from

node A to the input of node B might be heavily delayed or have significant consequences in the overall system dynamics. Such delayed responses

can be accounted for, ensuring that the system’s dynamics capture these temporal lags. Methods range from adding a simple time-delayed lag into

a signal’s time-series feed to building an additional dynamic model to approximate this lag from known data.

2.2.2 Algorithmic controllers in node integration

Within the context of the simulated system,we suggest that inversemodel “controllers” be employed as algorithmic constructs that ensure the right

balance between demand and the necessary feedstock for industrial nodes. By adjusting inputs based on real-time simulated demand, the system

can emulate the adaptive nature of real-world industrial processes seeking to produce enough to hit that changing demand.

Therefore, the controllers should continuously monitor the simulated economic production demand and, based on the current demand and set-

point values, the algorithmic controllers fine-tune the feedstock quantities. This ensures that the simulated industries operate in line with their

demand profiles, even in scenarios where there are fluctuations or changes in the demand. Outputs from industrial nodes, regulated by these

algorithmic controllers, serve as inputs to subsequent nodes or systems in the simulation. By embedding these algorithmic controllers within the

simulation, the methodology ensures that each node or industrial process is responsive and adaptive, reflecting the dynamic interplay between

demand and supply in a realistic manner for thematerial flows in coupled network systems.

2.3 Evaluating network production resilience with dynamics

2.3.1 Simulation of exogenous disruptors and economic demand scenarios

Understanding how the coupled natural–industrial ecosystems respond to external scenarios, especially those that vary depending upon the place-

ment and drawing of the system boundary spatially, is necessary for gauging their resilience and overall sustainability. To this end, we suggest

supplying two types of exogenous time-series inputs to the system: disruptive signals and economic demand signals. “Disruptive signals” propagate

the dynamics of a process or event that might have disruptive consequences on a system node (e.g., drought, flooding, infrastructure damage, etc.)

through the system via the information as node input. “Economic demand signals” function as the production goal of the network over time. These

signals are passed to the algorithmic controllers, which translate them into feedstock requirements for each of the industrial node models to meet

demand. Depending on the node or component, these external forces might directly influence production rates, resource availability, or even oper-

ational feasibility. Depending on the focus of the study, the simulationmay be run over varying time horizons. Short-term simulationsmight capture

immediate system responses, while long-term simulations can provide insights into cumulative effects and potential tipping points.

2.3.2 Evaluating system resilience

We assess the system’s resilience, here defined as its ability to maintain production matching the economic demand signal given the exogenous

disruptor signal, using the generalized approach given in Figure 2. The metrics used are potential weaknesses, tipping point, and failure recovery

time. Here, potential_weaknesses are periods when stock levels approach depletion thresholds given in Equation (1) as:

Wp = Smin∕Scu (1)

where�min is the critical minimum stock level, and�� is the current stock level.

A tipping_point (Equation 2) marks the point when stock levels supplying feedstock to the plant dip below the minimum threshold and never

recover:

ttip = min{t : S(t) < Smin∀ t ≥ ttip (2)

The duration required for production to recover to its baseline level after a failure event is given in Equation (3) and referred to as the

failure_recovery_time:

Tr = trecover − tfail (3)
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FARLESSYOST and SINGH 7

F IGURE 2 System resilience assessment methods.

where ����� is the timestepwhen production falls below a critical threshold (failure event), and �	
��

	 is the timestepwhen production returns to the

baseline level.

3 Results

Weapply our proposedmethodology to evaluate the resilience of a coupled natural–industrial ecosystem shown in Figure 3. In this network, indus-

trial systemsof soybeanoil and soybeanbiodiesel are coupledwith thenatural systemof soybean farming, thus forming a couplednatural–industrial

ecosystem. Further, we test the resilience of this network to climate change disruptions under RCP 4.5 and 8.6 formeeting the simulated economic
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8 FARLESSYOST and SINGH

F IGURE 3 All flows are shown in kg h−1. Hypothetical soybean network in Champaign, Illinois, subject to anticipated exogenous economic

demand (information) and changes in climate (physical) over time. The system boundary is drawn to include nodes of soybean growth and oil and

diesel production shown in the inner box(gray ring).

demand scenarios (Figure 4). We show the system boundary, results on training a surrogate model for node dynamics and coupled dynamics under

climate change impact here. The details of data generation, preprocessing, and economic and climate forecasts are provided in the first and second

sections of Supporting Information S1.

3.1 Surrogate models for soybean diesel production network node dynamics

3.1.1 System boundary and component identification

Spatially, our system boundary is drawn to encapsulate the area directly surrounding Champaign, Illinois, in the United States. The system bound-

ary includes soybean agricultural production as well as derivative products of oil and diesel. The soybean production network works to meet the

external economic demand for diesel, while also being impacted by the exogenous disruption of changing climate conditions, affecting the growth

of soybeans.

At theheart of thenetwork lie threedynamic nodes, as shown inFigure3. Thesenodes represent distinct life cycle stages in the soybeanbiodiesel

production.

Soybean growth: This nodemodels the seasonal growthof soybeans,withdynamics heavily influencedby climate variables of temperature, precip-

itation, and solar radiation. The culmination of this stage is the harvest, with the yield being transferred to an inventory stock.Our analysis considers

soybean farms of 450, 500, and 550 hectares in size to determine their relative effects on network production resilience.

Soybean oil plant: The node dynamics here consist of solvent extraction using hexane to convert soybeans from the inventory into crude soybean

oil. An important by-product of this stage is soybeanmeal, which is tracked but not considered further in our analysis.

Soybean diesel plant: The culmination of the value chain, this node takes the crude soybean oil and, in conjunction with water, processes it

into diesel fuel via trans-esterification. This diesel is passed to some exogenous demand sink outside of the system boundary, consistent with the

anticipated economic demand signal passed to the network.

A soybean stock is employed as the difference between yearly soybean harvest added and soybean feedstock utilized for oil over time,making it a

dynamic entity coupling the soybean agricultural growthwith the industrial oil and diesel production. It also acts as a buffer, whose level determines

whether the soybean oil production node has a consistent supply, ultimately leading to a steady production of soybean diesel. However, stock that

accumulates and is not used within a 3-year period is removed and sent towaste.

Several assumptions are made about network operation to simplify the analysis. First, soybean growth is assumed to be homogenous across the

farm, and the harvest time does not change year to year. All harvested soybeans are accumulated in the soybean stock, and the soybean plant is

the only recipient of this stock. Further, all soybean oil is used in the production of soybean diesel, and all soybean diesel produced goes to satisfy
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FARLESSYOST and SINGH 9

F IGURE 4 Soybean network with algorithmic controllers in place to control oil and diesel production. Green streams are exogenous inputs to

the industrial network (climate change and increasing economic demand). Blue streams arematerial flows out of nodes with dynamics modeled

with LTC-NNs. Red streams arematerial flows predicted as feedstock requirements for oil and diesel production nodes by the inversemodel (LTC)

controllers based on anticipated economic demand for soybean diesel. All flows are shown in kg h−1.

exogenous economic demand. Other necessary feedstocks that vary dynamically over time (i.e., water and hexane) are considered as exogenous

sources, whose utilization is not tracked as part of this analysis.

3.1.2 Data collection and node model architecture

Our modeling approach for the industrial and natural dynamic nodes utilizes LTC neural networks. Three different types of neurons make up each

model. Input neurons in an LTC network are designed to interface with the environment, receiving external time-varying signals. Unlike traditional

artificial neurons, LTC input neurons can handle continuous-time inputs, which allows them to process information that changes over time, such as

the varying rates of soybean and hexane input in a soybean oil plant. Hidden neurons in LTC networks each use a liquid time-constant based on the

current input and state of the network, allowing the neuron to adapt its response over time. Output neurons, or motor neurons, in an LTC network

generate the final output signals that control actions or make predictions based on the processed inputs and the learned temporal dynamics (Davis

et al., 2009). In the context of the soybean oil and biodiesel plantmodels, motor neuron output signals correspond to the production rates, whereas

in the agricultural model, themotor neuron is the soybean accumulatedmass.

Industrial system node models

For the soybean oil plant, the input nodes consist of soybean and hexane (Figure 3). In the case of the biodiesel plant, the inputs are water and

soybean oil. The hidden nodes, which serve as the intermediary layer in both models, are determined through an iterative process. The number of

hidden neurons is increased until the integrated model no longer approximates a horizontal line. Finally, the motor neurons are selected based on

their value-added significance and the necessity for a propermodel fit. For the soybean oil plant, the outputs are soybean oil and soymeal, while for

the biodiesel plant, the outputs are diesel and an oil recycling stream internal to the plant.

Natural system node model

For the modeling of soybean growth, the LTC neural network is configured with an emphasis on key environmental variables. The inputs to this

model are time, precipitation, and temperature. These sensory neurons were selected through an iterative process seeking to reduce the number

of model inputs without wrecking model performance, while holding the number of hidden neurons constant (31 hidden neurons with 1 motor
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10 FARLESSYOST and SINGH

neuron).With inputs determined, the hidden layer, composed of 20 neurons, was determined through an iterative approach akin to that utilized for

industrial plant modeling. At the output layer, a single motor neuron corresponds to the overall soybeanmass over time.

3.1.3 Model training

The four LTC models are trained on the synthetic data discussed previously with an 80–20 training-to-testing split. The soybean oil and diesel

production plant models were thus each trained across 8000 h of data, while the soybean growth, with different models for each RCP 4.5 and 8.5,

was trained across 72 growing seasons (also at hourly resolution).

The training loss for the soybean oil LTCmodel, shown in Figure 4 of Supporting Information S1, exhibited a rapid decline during the initial stages.

Convergence of the loss (Equation 1)was indicated as the loss plateaued around125 epochs. Tomitigate the risk of overfitting due to inherent noise

within the training data, training was curtailed at this juncture.

Akin to the soybean oil production model, the biodiesel production LTC model’s training loss saw a swift reduction, stabilizing around the 125-

epochmark. Training was subsequently terminated to avert potential overfitting.

Distinctively, the soybean growth LTCmodel’s training loss experienced a sharp decrease post the inaugural pass through themulti-year seasonal

dataset. The loss consistently remained below a 0.01mean squared error in the ensuing cycles, displaying a discernible repetition around the 400th

step. Given the overarching goal to thwart potential overfitting, training was concluded at 200 steps.

3.1.4 Model evaluation

The LTC nodemodels were rigorously evaluated against 20% of the soybean growth synthetic data (18 growing seasons) to gauge their proficiency

in capturing the complex dynamics of the soybean production system. The models are integrated over time and compared against this test data in

Figure 5 of Supporting Information S1.

The soybean dieselmodel shows a good fit with anRMSEof 0.11 on the test data. Noteworthywas its capability to accurately pinpoint key inflec-

tion points and shifts within the diesel production time series. However, achieving the absolute correct value of local extrema throughout the time

series remained elusive.With a test RMSE of 0.194, the soybean oil LTCmodel’s performance was congruent with the diesel model, demonstrating

adeptness at capturing trend reversals.

The soybean growthmodel rendered an RMSE of 0.105 on the test set, shown in Figure 5 of Supporting Information S1. Themodel’s predictions

of soybean accumulated mass did exhibit sporadic oscillations, particularly before the onset of full germination and during intervals characterized

by swift growth. Nonetheless, its predictions closely aligned with the long-term mass trajectory, effectively identifying pivotal moments of crop

maturity and peak harvest mass. Full training residual plots are shown in Figure 4 of Supporting Information S1.

3.2 Material flow dynamics in soybean diesel production network

3.2.1 Node coupling and algorithmic controller for node integration

In the framework presented, algorithmic controllers serve as integrators that balance material flows in the network in response to fluctuating

demand. This allows for capturing the impact of fluctuation on the material flows within the network by capturing cascading mechanisms. In the

network, we implement two such controllers as LTC inverse models to ensure that production meets demand. The oil plant controller regulates

soybean and hexane feedstock inputs based on predicted oil demand, while the biodiesel plant controller adjusts soybean oil and water inputs to

maintain stable biodiesel production levels.

The algorithmic controller LTC models are trained on top of the frozen weights of the LTC industrial plant models in the following manner (see

Figure5). First, thedemand-requiredplantoutput time series is provided to theLTCcontroller as input-trainingdata (“desired” input inFigure5), and

the prediction is then passed through the industrial models. Next, the MAE difference between the production output and the desired production

(training data output) is taken as the loss function here, and the LTC controller model parameter weights are updated via back-propagation, while

the LTC plant model weights are frozen and remain unchanged. The number of hidden neurons for each LTC controller is chosen iteratively in the

same fashion as the LTC node models. This results in 8 hidden neurons in the oil plant controller and 12 in the diesel plant controller, likely the

result of the greater complexity in the diesel plant processes. The motor variables chosen for each controller LTC model correspond to the plant

feedstocks (soybean and hexane for the oil plant controller and oil andwater for the diesel plant controller).

Both controllers have an additional input (Figure 5), soymeal desired and oil recycled desired for the oil and diesel plants, respectively, in addition

to the main production signals that they are controlling for that is not included in the MSE loss calculation. The algorithmic controllers are trained
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FARLESSYOST and SINGH 11

F IGURE 5 Soybean oil and diesel plant controllers (LTCmodels) trained on top of existing soybean oil and diesel plant LTCmodels. Note: LTC

model controller weights are updated via back-propagation, while industrial plant LTCmodel weights are frozen (unchanged).

F IGURE 6 Network production during RCP 4.5 and 8.5 climate scenarios with 450, 500, and 550 ha soybean farms. Failure occurs when

production drops to 0 kg h−1. Failure recovery time is determined by how long production stays at 0 kg h−1. The underlying data for this figure are

available in Supporting Information S2.

over the same ASPEN Plus Dynamics synthetic data as the LTC plant models, following a similar 80–20 training-to-testing split using Python’s

timeseries split library. The LTC architecture for each algorithmic controller is shown in Figure 6 of Supporting Information S1.

Both the LTCmodels trained as oil and diesel algorithmic controllers were evaluated over the 2000 h corresponding to their industrial process.

The soybean oil algorithmic controller model achieved an RMSE of 0.13 on the test reference trajectory (Figure 7 of Supporting Information

S1). Although it occasionally registered undershoots on outlier setpoints, it demonstrates swift reversion to optimal control values. Likewise, with

an RMSE of 0.19 on the test set, the diesel algorithmic controller model echoed the robust performance observed in its counterpart, adeptly

maintaining desired trajectories (Figure 7 of Supporting Information S1).

3.3 Evaluation of soybean diesel network production resilience

Using the previously defined exogenous inputs to the system and coupled models, we evaluate the resilience of the integrated soybean produc-

tion system and the dynamics across the entire life cycle stages, spanning from soybean growth to biodiesel production, under varying climate

projections.

First, we focus on the network’s material flow dynamics rate over the integrated time horizon of 2006–1996. As shown in Figure 6, several

differences appear between the RCP 4.5 and RCP 8.5 scenarios as well as between the 450-, 500-, and 550-ha farms. At the same farm size, we see

an increased failure frequency, indicated by dips to zero, an increase in required recovery time between RCP 4.5 and 8.5, as well as an earlier initial

failure occurring around 2016 versus 2026. Further, only the 450-ha farm-supplied network exhibits failures during the RCP 4.5 scenario, whereas
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12 FARLESSYOST and SINGH

F IGURE 7 Network soybeanwaste (top plots in kg) and stock accumulation (bottom plots inMg) during RCP 4.5 and 8.5 climate scenarios

with 450, 500, and 550 ha soybean farms. The stock tipping point is denoted with a black arrow. The underlying data for this figure are available in

Supporting Information S2.

F IGURE 8 Network required import such that production would continue tomeet hypothetical demand during RCP 4.5 and 8.5 climate

scenarios with 450, 500, and 550 ha soybean farms. The underlying data for this figure are available in Supporting Information S2.

for RCP 8.5, both the 450- and 500-ha farm-supplied networks exhibit failure, with the 500-ha farm-supplied network beginning to fail much later,

around 2076.

Similarities do exist between the RCP 4.5 and 8.5 dynamic scenarios shown in Figure 6, with the rate of production failures increasing over time

in both. Significant periodswith high frequency of failure begin in both scenarios around 2030 and 2060,with denser failure rates shown in the RCP

8.5 scenario.

The cumulative waste generated by each RCP scenario also shows some similarities. In both cases, the 450-ha farm-driven network produces no

waste, with the 500 and 550 each producingmore, respectively, as shown in Figure 7. However, in both the 500- and 550-ha farm-driven networks,

the waste generation in the RCP 4.5 scenario is nearly double that of the RCP 8.5 by the end of the century. Additionally, the waste accumulation

plateaus earlier (around 2020) for the 500-ha farm-driven RCP 8.5 scenario than the RCP 4.5 equivalent (around 2030). In the RCP 4.5 scenarios,

the 500-ha farm-driven network’s waste never begins to plateau but continues linearly throughout the century, whereas in the RCP 8.5 scenario,

thewaste accumulation follows a logistic slowdown to begin a plateau around 2065. Higherwaste accumulation is expected in the RCP4.5 scenario

as crops are less stressed by climate variability and stock accumulation is higher, whereas in the RCP 8.5 scenario, this waste is instead used during

periods of lower crop production. This indicates that any capacity expansion during RCP 4.5 to use additional stockmay be underutilized if RCP 8.5

scenarios materialize faster, locking in capital investments.

The stock accumulation over time, shown in Figure 7, also reveals somekey differences between scenario outcomes.While in bothRCP scenarios

the450-ha farm-supplied network stock is the lowest, oscillating around2000metric tons (Mg), in theRCP4.5 scenarios, the 500- and550-ha farm-

supplied stocks follow the same trajectory between 2006 and 2096; in the RCP 8.5 scenarios, a tipping point in stock trajectory occurs around the

year 2050. After this point, the 500-ha farm-supplied stock moves to follow the trajectory of the 450-ha farm-supplied stock. The tipping point

is followed by a period where the longer-term trajectory of the 550 farm-supplied network stock is also trending toward zero, before rising and

following its previous pattern. A similar sharp dipping trend toward zero occurs in the RCP 8.5 scenario for the 500- and 550-ha scenarios around

the year 2025, yet no tipping point occurs before or directly after.

The cumulative soybean import required over time required for the network to remain operational (Figure 8) shows further differences between

RCP scenarios. While in both scenarios the 550-ha farm-supplied network requires no exogenous import to remain operational throughout the

duration of the century, the import required in the 450-ha farm-driven network scenario for RCP 8.5 is nearly double that of RCP 4.5. Furthermore,
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FARLESSYOST and SINGH 13

while the net import required is linear in the RCP 4.5 scenario, we see a nonlinear increase over time in the RCP 8.5 import. The RCP 8.5 scenario

with a 500-ha farm supply also begins to require imports around 2070 (reflecting the failure trend shown in Figure 6).

4 CONCLUSIONS AND DISCUSSIONS

This work proposes a novel approach to model material flow dynamics in coupled natural–industrial ecosystems using a liquid-time constant

machine learning approach for surrogatemodelingofmaterial flowdynamics at eachnode,whichare further coupled toevaluatenetworkdynamics.

The results reveal several key insights regarding the resilience and sustainability of the coupled soybean production network in Champaign, Illi-

nois, when subject to different climate change scenarios and farm sizes. Overall, the more extreme RCP 8.5 climate scenario led to an earlier and

higher failure frequency across all farm sizes compared to RCP 4.5. This aligns with expectations, as the hotter temperatures and altered precipita-

tion patterns associated with RCP 8.5 are further from the soybean growth optimum. However, the specific timing and frequency of failures varied

non-linearly across scenarios and farm sizes, highlighting complex interdependencies. For instance, while the 450-ha farm exhibited no production

failures under RCP 4.5, both the 450- and 500-ha farms failed under RCP 8.5. Yet the 500-ha farm did not fail until much later, around 2076. This

suggests potential tipping points in the network’s dynamics, where smaller farms that were previously resilient begin to fail once climate extremes

pass certain thresholds. Larger farms appear to withstand these shifts better initially, but eventually succumb.

The trends in waste accumulation and stock levels reinforce these non-linear behaviors. Under RCP 4.5, waste from the 500- and 550-ha farms

increased steadily throughout the century. However, for RCP8.5, waste for these farms plateaued earlier, around 2020 and2065, respectively, indi-

cating slowedproduction. Similarly, the 550-ha farm stock exhibited a precipitous drop around2050underRCP8.5 before recovering, representing

a potential tipping point. This alignment between changes in waste, stock, and production failures underscores the value of holistic assessment

across the full coupled system.

Notably, the import dependency to sustain production within the network was substantially higher under RCP 8.5 compared to RCP 4.5 for

smaller farms. For the 450-ha farm, RCP 8.5 imports were double those for RCP 4.5. This reliance on external inputs to compensate for climate-

induced growth constraints reveals vulnerabilities in network resilience. Larger farm-supplied networks were less dependent on imports, but still

faced the risk that couldmanifest in unexpected tipping points.

The LTC algorithmic (inverse model) controllers tuned for the soybean oil and diesel production plants demonstrated proficient tracking of

specified production trajectories in response to the dynamic economic demand signal. While not conferring resilience themselves, the controllers

enabled continuous operation of the simulated network, linking natural growth variability with industrial processing requirements. Their integra-

tion provided a vitalmechanism for propagating disruptions across the coupled system to assess impacts on overall production goals. The controller

models thus served an important role as open-loop algorithmic constructs facilitating the analysis of resilience and sustainability under different

climate scenarios.

One limitation of the soybean growth LTC models for the RCP 4.5 and 8.5 scenarios presented in this work is that these provide insights into

potential future growth patterns but do not make definitive predictions. As discussed in the methodology, these models were trained on statisti-

cally downscaled climate projections to capture seasonal crop dynamics under hypothetical futurewarming scenarios. Themodels exhibited skill in

mimicking complex growth patterns and key inflection points. Analysis ofmodel outputs indicates earlier attainment of peak biomass underRCP8.5

compared to 4.5, suggesting a need to adapt crop timelines. However, the growthmodels do not account for adaptivemeasures like shifting sowing

dates, alternate crop varieties, or improved agronomic practices. Consequently, their projections should be interpreted as indicative of directional

risks, not precise forecasts. Additional integratedmodeling is needed to guide specific adaptivemanagement strategies.

Additionally, the current system boundary focuses narrowly on soybean growth, oil production, and biodiesel output in the Champaign, Illinois

area. This localized scopeenables a tight-coupledphysicalmodelingof the coreproduction chain.However, it likely overlooks important interactions

and vulnerabilities that could be included if the scope were to be increased spatially or dimensionally, which is done in other industrial ecology

models, such as multi-regional input–output models. Expanding spatially to encompass the broader supply chain for agricultural inputs like seeds,

fertilizers, and equipment could reveal single points of failure. If a few key distributors are disrupted, farms across the region could be severely

impacted. Transportation networks distributing finished biodiesel are also excluded, masking bottlenecks.

Incorporating crop rotation cycleswoulduncoverpotential soil nutrientdepletion, pestbuildup, andyielddeclinesover successive soybeanplant-

ings. Demographic shifts driving urban expansion in the region may also increase pressure on croplands, and competition for water resources with

other farms and industries is excluded. This could become critical as climate change alters precipitation and temperature patterns, whose regularity

may have historically been taken for granted. Biodiversity impacts on pollinators and natural pest control services are also omitted. Their degrada-

tion could dramatically affect yields and require added pesticide inputs. Wider ecosystem impacts of agricultural runoff are similarly overlooked,

which can be included by expanding themodeling of ecological systems. Despite these limitations, the proposed approach provides a robust frame-

work to include mechanistic dynamics at nodes to model overall material flow dynamics in a coupled natural–industrial ecosystem, thus advancing

thematerial flow dynamics science in the industrial ecology domain. Future applications include expanding the application for spatial material flow

dynamics and identification of climate resilience to the spatially explicit impact of climate change scenarios.
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