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Altermagnets constitute a class of collinear compensated Néel ordered magnets that break time-reversal
symmetry and feature spin-split band structures. Based on versatile microscopic models able to capture the
altermagnetic sublattice degrees of freedom, we study characteristic local signatures of altermagnetism near
disorder sites. We give a complete list of two-dimensional models that exhibit altermagnetism classified by their
corresponding layer groups. Specifically, we calculate the local density of states in the vicinity of pointlike
nonmagnetic impurities and expose its spatial dependence for two minimal models showcasing d-wave and
g-wave altermagnetism. The momentum structure of the nodes (d-wave, g-wave, etc.) is directly imprinted on
the total local density of states, thus measurable by scanning tunneling conductance experiments. This signature
is present both in the spin-resolved as well as the spin-summed local density of states. We find a weaker
response in the nonmagnetic state from the anisotropic crystal environment and uncover the importance of the
sublattice degree of freedom to model altermagnets. We also study coexistence phases of altermagnetism and
superconductivity and provide predictions for the local impurity response of in-gap bound states. The response
of impurity bound states strongly enhances the distinct altermagnetic signature.
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I. INTRODUCTION

Altermagnets have been identified as a distinct class of
collinear compensated magnetic order in addition to stan-
dard antiferromagnetism [1,2]. As opposed to conventional
antiferromagnets, Néel ordered altermagnets lack inversion or
translation together with time reversal as a combined sym-
metry, but exhibit instead time reversal and a rotation (proper
or improper) as a combined symmetry of the magnetic state.
This distinction can originate from anisotropic local crystal
environments around the different sublattice sites. Thus the
Néel order of altermagnets exhibits the same unit cell as the
original normal state. The unique properties of altermagnets
have profound implications for their electronic properties,
most notably the existence of large momentum-dependent
spin-split electronic bands, even in the absence of relativistic
spin-orbit coupling. Spin splitting has recently been detected
by angular-resolved photoemission spectroscopy (ARPES) on
a number of altermagnetic candidate materials, for example,
CrSb [3,4], MnTe [5–7], and RuO2 [8]. The altermagnetic
spin-split bands that arise in a material with negligible net
magnetization and absence of harmful stray fields have led
to the proposal of several applications of altermagnetism
within spintronics [1,9]. However, a fundamental challenge
is the presence of domains that may limit their applicability
and complicate the experimental interpretation of the unique
signatures of altermagnets. The latter motivates studies of
local signatures of altermagnetic order. What should local
atomic-scale resolved probes detect as characteristic features
of altermagnetic order? From studies of the local impurity
response in unconventional superconductors, for example, it
is well known that impurities can provide useful information
on the fundamental properties of the host [10–15].

Here we address the question of local signatures of
altermagnetic order, starting from recently developed micro-
scopic minimal Hamiltonian models for altermagnets. The
framework developed in Ref. [16] provided 40 electronic
models for all centrosymmetric space groups with magnetic
atoms occupying inversion-symmetric Wyckoff positions of
multiplicity two. This includes monoclinic, orthorhombic,
tetragonal, rhombohedral, hexagonal, and cubic materials and
describes d-wave, g-wave, and i-wave altermagnetism [16].
Thus the minimal models are general, yet may also become
material specific through parameter constraints from density
functional theory (DFT) or experiments and respect all sym-
metries of the crystal in the normal state and the altermagnetic
state. Clearly, a significant advantage of having such minimal
models is the ability to perform analytical calculations and
derive general formulas that apply to broad classes of alter-
magnetic materials. Examples of this approach are found in
Refs. [16,17], where general expressions for the Berry curva-
ture are reported, allowing for calculations of the anomalous
Hall effect (AHE), resulting in the insight that altermag-
nets exhibit AHE linear in their spin-orbit coupling. Other
recent examples of the usefulness of microscopic minimal
models include derivations of connections between quantum
geometry and altermagnetic instabilities [18] and studies of
altermagnetic antichiral surface states and domain wall bound
states [19].

In this work, we apply microscopic minimal Hamilto-
nian models for altermagnetism to obtain the local Green’s
function near disorder sites. For concreteness and simplic-
ity, we focus on minimal models that can be obtained from
three-dimensional (3D) tight-binding models as presented in
Ref. [16] by removing the kz dependence. These models be-
long to space groups 11, 13, 14, 51, 55, 83, 123, and 127 and
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have either d-wave or g-wave spin-split bands. In Appendix B,
we give the corresponding 2D models as classified by the
corresponding 2D layer groups. As deduced from Table II,
the models considered in this work are relevant for layer
groups L17, L44, L63 and, in a special case, to L51. For
a high-throughput computational search of 2D altermagnetic
candidate materials, we refer to Ref. [20], which includes a
series of 2D candidates for which our models apply. We stress,
however, that the results of local signatures of altermagnetic
order obtained below may also apply to 3D altermagnets,
depending on their particular surface termination. In order to
address the impurity problem, we apply both a T -matrix for-
mulation and perform real-space self-consistent calculations
to determine the local density of states (LDOS) response near
pointlike impurities. We find that the altermagnetic character-
istics are directly imprinted on the total LDOS, allowing for
detection of local altermagnetism and its associated momen-
tum structure. Finally, we also discuss the impurity properties
of altermagnets coexisting with superconductivity. In this
case, in-gap impurity bound states are generated by both
magnetic and nonmagnetic pointlike impurities. The bound
state wave function features clear signatures of the underlying
altermagnetic order.

Some earlier work has addressed local markers for
altermagnetic order, including bound states near lattice dis-
locations [21], spin-polarized subgap states in altermagnetic
superconductors [22], and characteristics of impurity-induced
Friedel oscillations in altermagnetic metals [23–25]. Here,
we focus on the role of pointlike nonmagnetic impurities.
As shown below, our results are qualitatively different from
those presented in Refs. [22–25]. The important distinction
originates from the applied minimal model used to describe
altermagnetic materials. Whereas the results in Refs. [22–25]
were based on a one-band model with momentum-dependent
spin splitting, our minimal models for altermagnetism are
based on fundamental symmetries, i. e., the relationship be-
tween the site symmetry of magnetic atoms and the point
group symmetry of the space group [16]. As a consequence,
such minimal models incorporate the (lower) symmetry al-
ready in the nonmagnetic normal state. Indeed, in the minimal
models we consider here, the instability into the altermagnetic
state is driven by antiferromagnetism and the altermagnetic
spin spitting is an induced order parameter. In single band
models of Refs. [22–25], the altermagnetic spin splitting is
the primary order parameter. The main distinction between
the results of the impurity response of the two approaches is
whether local anisotropies exist in the total LDOS or only in
the spin-resolved LDOS. We find that the total LDOS exhibits
direct local signatures of the altermagnetic order, whereas the
one-band models feature such signatures only in the spin-
resolved impurity response.

The paper is organized as follows. In Sec. II we intro-
duce the basic methodology, including both the T -matrix
formalism of a single impurity and the self-consistent real-
space formulation of the problem. Section III presents
our main results for total and spin-resolved LDOS near
pointlike disorder sites in both d-wave and g-wave alter-
magnets. Altermagnetic symmetries are directly imprinted
onto the LDOS near impurities. In Secs. III C and III D
we contrast the results to those obtained within a single-

band model and in Sec. III E we discuss potential interplay
with superconductivity. Finally, Sec. IV contains our
conclusions.

II. METHODOLOGY

Throughout this study we begin with the minimal model
for altermagnets derived in Ref. [16]

HMM = ε0,kτ0 + tx,kτx + tz,kτz + τy�λk · �σ + τz �N · �σ , (1)

where σi and τi are the Pauli matrices for the spin and sublat-
tice degrees of freedom, respectively. The energy dispersion
ε0,k is independent of the sublattice and tx,k and tz,k denote
inter- and intrasublattice hoppings, respectively. The crystal
asymmetric hopping tz,k describes the local symmetry break-
ing already in the normal state, as it transforms as a nontrivial
irreducible representation of the point group. Neglecting spin-
orbit coupling given by the term �λk, the quantization axis of
the Néel order parameter N can be chosen along the z di-
rection. To make Fourier transformations simpler and restrict
k-space integrations to the first Brillouin zone (BZ) only, we
perform a gauge transformation of the B sublattice creation
and annihilation operators as cσB,k → cσB,keiφk . In the new
basis, tx,k → tx,keiφk such that the Hamiltonian exhibits the
full periodicity of the BZ for φk = − kx

2 − ky
2 . The minimal

model then reads

H = ε0,kτ0 + tz,kτz + Re[tx,k]τx − Im[tx,k]τy + Nτzσz. (2)

The explicit momentum dependence of all expressions and
tight-binding parameters are given in Appendix A. Note that
H is block diagonal in the spin index σ and each block
can be diagonalized as U †

σ,kHσUσ,k = diag(E+
σ,k,E

−
σ,k ) with

eigenvalues Eβ

σ,k = ε0,k + β
√|tx,k|2 + (tz,k + σN )2 and uni-

tary transformation

Uσ,k =

⎛
⎜⎜⎝

cos
θσ,k

2

tx
|tx| sin

θσ,k

2

− t∗x
|tx| sin

θσ,k

2
cos

θσ,k

2

⎞
⎟⎟⎠, (3)

where

cos
θσ,k

2
= 1√

2

√
1 + tz + σN√

|tx|2 + (tz + σN )2
, (4)

sin
θσ,k

2
= −1√

2

√
1 − tz + σN√

|tx|2 + (tz + σN )2
, (5)

and β ∈ {−1, 1} is a band index. Figure 1 shows an exemplary
d-wave altermagnet. The anisotropic crystal environments
and hoppings for the sublattices are shown in Fig. 1(a). The
spin-split Fermi surface and band structure can be seen in
Figs. 1(b)–1(f), also showing the sublattice mixing but pure
spin character of the bands.

A. T -matrix formalism

To study local signatures of altermagnetic order close
to impurities, we employ the T -matrix framework. We
consider scattering with strength Vimp on a nonmagnetic
on-site impurity potential in the elementary cell at the
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FIG. 1. (a) Sketch of the crystal lattice and the hopping parameters representing layer group 63 with lattice sites at Wyckoff position 2b.
The unit cell is indicated by the dashed box. The hopping term responsible for altermagnetism tz ∝ t4 has opposite signs for sublattices A and
B and breaks C4 symmetry [16]. The sublattices are related by translation combined with rotation by 90° due to the anisotropic nonmagnetic
environment indicated by gray ellipses. (b), (c) Fermi surface for μ = 1 eV and μ = 0.3 eV colored by spin polarization. (d), (e) Same as (b),
(c) but colored by sublattice weight. (f) Dispersion along high symmetry path colored by sublattice weight. (g) Density of states for the bands
shown in (f).

origin and at an A sublattice site with the Hamiltonian
Himp = ∑

i Vimp
1
2 (τ0 + τz )δi,0σ0 [26]. The full Green’s func-

tion in real space is given by

G(r, r′, ω) = G0(r − r′, ω) + G0(r, ω)T (ω)G0(−r′, ω),
(6)

where r denotes unit cell positions and all quantities are ma-
trices in spin- and sublattice space. The T matrix

T (ω) = [1 − HimpG0(0, ω)]−1Himp (7)

encompasses scatterings off the impurity. Both the bare
Green’s function G0

σ (r, ω) and the scattering potential Himp,
and hence also the T matrix, are diagonal in spin, so we
can treat the equations for σ = ↑,↓ independently. The bare
Green’s function in sublattice space for spin σ reads

(
G0

σ (k)
)
ab =

∑
β

(Uσ,k )aβ (U ∗
σ,k )bβ

ω + iη − Eβ

σ,k

. (8)

The real-space expressions are obtained by Fourier transform,
G0

σ (r, ω) = ∑
k e

−ik·rG0
σ (k). This approach is applied to tight-

binding models describing d-wave and g-wave altermagnets
on a square lattice. For the particular choice of tx used here,
this applies to the following space groups and Wyckoff posi-
tions: SG 14 (2a-2d), SG 55 (2a-2d), SG 83 (2e-2 f ), SG 123
(2e-2 f ), and SG 127 (2a-2d). The associated band structure,
Fermi surface (FS), and density of states (DOS) are summa-
rized for this concrete example in Fig. 1. Parameters for the
tight-binding model are given in Appendix A.

The spin-resolved LDOS at position r is obtained from
ρσ (r, ω) = − 1

π
ImGσ (r, r, ω) and the homogeneous DOS far

away from the impurity is given by ρ0
σ (ω) = − 1

π
ImG0

σ (0, ω)
[27]. We define the inhomogeneous part of the LDOS by sub-
tracting the DOS far away from the impurity as δρσ (r, ω) =
ρσ (r, ω) − ρ0

σ (ω).
To quantify the symmetry breaking in the LDOS, we fur-

ther define

δρσ,asym(r, ω) = δρσ (r, ω) − δρσ (Sr, ω), (9)

where S is a symmetry operation that relates the altermagnetic
hopping parameters of the two sublattices. For a d-wave alter-
magnet as shown in Fig. 1(a), this corresponds to aC4 rotation
or a mirror operation Mx or My along the lattice vectors. For a
planar g-wave altermagnet, S is a mirror operation Mx, My

or along the diagonals Md , Md ′ . The spin-summed LDOS
is ρ = ∑

σ ρσ and all derived spin-summed quantities are
calculated accordingly.

B. Self-consistent real-space formulation

A limitation of the T -matrix method is that it depends
on the bare Green’s function of the homogeneous lattice and
feedback effects due to the impurity potential close to the
disorder site are not taken into account. To include effects
from density modulations in the vicinity of the impurity at
the mean-field level, we additionally solve the impurity prob-
lem starting from a real-space Hamiltonian H defined on
an N × N grid with periodic boundary conditions using the
same hopping integrals and parameters as before. Instead of
fixing a global value for the order parameter N , we obtain
it self-consistently by adding an on-site interaction term to
the Hamiltonian H = H0 + Himp + Hint for each lattice site
individually [16]. The on-site Hubbard U is added to the
model and we perform a mean-field decoupling

Hint (ri ) = Uni↑ni↓

≈
∑

σ

U

2

(〈ni〉 − σNi
)
niσ −U 〈ni↓〉〈ni↑〉, (10)

where 〈ni〉 = 〈ni↑ + ni↓〉 denotes the local electron filling and
Ni = 〈ni↑ − ni↓〉 the order parameter at site i. We neglect the
constant term U 〈ni↓〉〈ni↑〉 and absorb the term U

2 〈n0〉 contain-
ing the average filling 〈n0〉 into the chemical potential and
keep 〈δni〉 = 〈ni〉 − 〈n0〉 for the self-consistency equation, so
the interacting part of the Hamiltonian becomes in mean-field
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approximation

HMF,int (ri ) =
∑

σ

U

2

(〈δni〉 − σNi
)
niσ . (11)

We solve the resulting Hamiltonian H = H0 + Himp +
HMF,int by numerical diagonalization, use the eigenvalues
and eigenvectors to calculate the mean fields 〈ni〉 and Ni as
thermal averages at temperature T = 0.01 eV at fixed filling,
i.e.,

∑
i〈δni〉 = 0, and iterate until convergence. Afterwards,

we use the eigenvalues and eigenvectors again to obtain the
spatially resolved Green’s function and the associated LDOS.

III. RESULTS

A. Signatures from altermagnetic minimal model

We first apply the T -matrix formalism described above to
a minimal model example featuring d-wave spin splitting tz =
4t4 sin kx sin ky. In Fig. 2(a) we show the calculated LDOS
at representative sites close to an impurity with repulsive
potential ofVimp = 1.8 eV. The nonmagnetic impurity induces
a symmetry breaking of the LDOS close to the disorder site as
seen by the splitting of the results on the sites of the same color
[inset of Fig. 2(a)], which are connected by a 90◦ rotation
(full line, dashed). This signature is present at all energies
and is not qualitatively affected by the choice of impurity
potential. Far away from the impurity, the DOS will converge
to the bulk DOS shown in Fig. 1(g). For further analysis and
presentation of LDOS maps, we choose a probe energy of
ω = 0.15 eV as there the symmetry breaking is rather large.
However, the symmetry statements are valid across all ener-
gies. Importantly, breaking ofC4 symmetry is not only present
in the spin-resolved LDOS evident from Figs. 2(d)–2(g), but
also in the total LDOS as seen from Figs. 2(b) and 2(c). As
seen from Figs. 2(c), 2(e) and 2(f) the symmetry and the nodal
lines of the d-wave altermagnet are directly imprinted in the
total LDOS where δρasym vanishes. In this respect, local non-
magnetic disorder acts as a local signature of the underlying
altermagnetic order. For disorder located on the B sublattice
sites, the resulting LDOS is identical to those presented in
Fig. 2 upon a C4 rotation and exchange of spin component. d-
wave altermagnets with tz = t4(cos kx − cos ky) spin splitting
can be obtained from models classified by layer groups L61
and a special case of L51 (see Table II), but are not further
discussed here. In this case, the imprinted nodal lines will
be 45° rotated compared to the d-wave case discussed above.
The resulting LDOS impurity effect is also calculated for a g-
wave altermagnet where the parameters from Table I are used
together with tz = t4 sin kx sin ky(cos kx − cos ky). Figure 3(a)
shows the DOS modulations in this g-wave altermagnet. From
δρasym as seen in Fig. 3(b) it is evident that there is no
effect along the horizontal, vertical, and diagonal directions
which imprints the nodal lines of the g-wave spin splitting.
The spin-up and spin-down DOS are not equally affected
by the impurity and their contributions to the total LDOS
can interfere constructively or destructively for different sites,
meaning the pattern of the δρσ is different, but they break
the same symmetry. For the particular choice of ω and Vimp,
the breaking of the LDOS is strongest for spin down [see
Figs. 2(g) and 3(f)].

FIG. 2. (a) LDOS as a function of energy in the vicinity of a
nonmagnetic impurity withVimp = 1.8 eV. The colored circles (stars)
in the inset indicate the site of the corresponding solid (dashed) line.
Same colored sites are related by 90° rotation around the impurity.
The homogeneous DOS far away from the impurity is shown in gray
and the line at ω = 0.15 eV indicates the energy chosen in panels
(b)–(g). (b), (d), (f) LDOS without homogeneous background in
real-space summed over both spins and for spin-up and spin-down
electrons, respectively. (c), (e), (g) Difference of the LDOS and 90°
rotated LDOS. Calculations are done with a grid size of 512 × 512 k
points at η = 5 meV.

In all cases, nonmagnetic impurities uncover not only the
presence of altermagnetism but also indicate the underlying
altermagnetic order itself. The LDOS pattern for an impurity
on a B or A sublattice is related by the same symmetry oper-
ation as the sublattices A and B themselves, i.e., an exchange
of the spins combined with a C4 rotation for the d-wave case
and a mirror symmetry for the g-wave case.

B. Altermagnet with vanishing order parameter

Is the impurity-induced symmetry breaking exclusive to
the magnetic state or can it also manifest in the absence of
magnetism? To examine this question, we study the case of
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FIG. 3. (a), (c), (e) LDOS without homogeneous background for
an altermagnet with g-wave splitting spin summed and spin resolved
for spin-up and spin-down, respectively. (b) Difference of the LDOS
and LDOS mirrored along one of the g-wave nodal lines of the left
column figures.

vanishing order parameter N = 0 and keep the tz term in
the tight-binding model since it is generated by the local
environments of the atoms of the sublattice. Note that the
eigenenergies will be spin degenerate in this case and there
are no spin split bands. Yet the LDOS in Fig. 4(a) shows again
breaking of C4 symmetry but δρasym is finite only on the sites
of the same sublattice as the impurity and zero on all sites
of the opposite sublattice sites, apparent in the checkerboard
pattern in Fig. 4(b).

We sketch an explanation as follows. Each scattering pro-
cess of an electron on a B sublattice site with the impurity on
the A sublattice must involve an odd number of intersublat-
tice hopping processes tA↔B, given by the tx term. Scattering
processes including tz can potentially be symmetry breaking.
While tz commutes with intrasublattice hoppings, we note
that they anticommute with intersublattice hoppings, meaning
tA↔Btz = −tztA↔B. When summing over all possible scattering
processes, this fact together with the odd number of sublattice
changes makes all terms containing tz cancel and hence the
LDOS on the B sublattice does not break any of the point
group symmetries. For scattering processes between the im-
purity and an A sublattice site there is an even number of
hopping processes that change the sublattice and we observe
symmetry breaking as shown in Fig. 4(b). This argument is
based on the fact that we assume hoppings to be homogeneous
regardless of the impurity site and the T -matrix formalism
considers the homogeneous, bare Green’s function. In reality,
the presence of an impurity strongly affects hopping processes
in its vicinity.

FIG. 4. (a) LDOS from a T -matrix calculation without homoge-
neous background for an altermagnet in the NS (i. e., N = 0) in real
space and (b) LDOS asymmetry with a signal only on the A sublat-
tice. (c) Deviation of electron density from self-consistent mean-field
calculation with 64 × 64 elementary cells and U = 0.9 eV and
(d) resulting asymmetric part of the LDOS. The color bar in (d) is
logarithmic to accentuate the small values on the B sublattice.

To take this into account and study its effect, we consider
the system in real space and calculate the order parameter
self-consistently. Treating the order parameter on a mean-
field level gives a magnetic transition at U ≈ 0.95 eV. For
U = 0.9 eV the system is in the nonmagnetic normal state
and the self-consistent order parameter is numerically zero,
yet the electron density shifts close to the impurity and breaks
C4 symmetry as shown in Fig. 4(c). Calculating the Green’s
function from this real space Hamiltonian via exact diago-
nalization now reveals symmetry breaking of the LDOS on
both sublattices, but the effect is still more than one order of
magnitude smaller on the B sublattice; see Fig. 4(d).

Consequently, a symmetry-broken LDOS close to an im-
purity site is not sufficient to indicate altermagnetism, as it
can also occur in the nonmagnetic state. Additionally, Néel
order must be shown by experimental techniques like neutron
scattering to have conclusive evidence of altermagnetism. In
addition, even in the absence of magnetism, symmetry break-
ing of the LDOS indicates the presence and strength of the
altermagnetic hopping tz which induces the spin splitting once
the material becomes magnetic at lower temperatures or by
doping.

In the normal state close to the transition, magnetic disor-
der can induce altermagnetic order locally. For some systems,
it is well known that nonmagnetic impurities can also pin local
regions of the low-temperature ordered phase [28–35]. For
the present model for altermagnetism, however, we have not
found evidence for this effect.

C. Impurity response from one-band model

A frequently used model for altermagnetic metals in the
literature reduces complexity by applying a one-band model
formulated in band space. Instead of exhibiting a sublattice
degree of freedom, it is assumed that only a single band
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FIG. 5. (a) Spin-summed and (b),(c) spin-resolved LDOS for a
nonmagnetic impurity in the one-band model, Eq. (12). The sym-
metry breaking occurs in each of the spin channels separately, but
cancels in the total spin-summed LDOS in contrast to models built
on the sublattice degrees of freedom; see Figs. 2 and 3.

crosses the Fermi level and that it exhibits a momentum-
dependent spin splitting as recently classified and expressed
in an effective momentum-dependent magnetic field [36]. In
this case the Hamiltonian is of the form

H1SL = ε0,kσ0 + Ntz,kσz. (12)

The specific terms and tight-binding parameters are listed in
Appendix A. In this subsection we study the local impurity-
induced signatures obtained within such a one-band model
and compare them to the results obtained within the minimal
models based on sublattice site symmetries. Due to the lack
of sublattice degree of freedom, the form of the potential
scatterer for this model is Himp = ∑

i Vimpδi,0σ0. The main
distinction between the two models can be inferred from
Fig. 5. For an example case of d-wave spin splitting, it is
observed that the symmetry is broken only in the separate
spin channels, as seen from Figs. 5(b) and 5(c), and that they
cancel in the spin-summed LDOS as evident from Fig. 5(a).
This highlights a fundamental difference compared to results
obtained from models based on the underlying sublattice de-
gree of freedom. In addition, in the normal state, i.e., without
Néel order and spin-split bands, there cannot be a symmetry
breaking from the impurity within the one-band model, in
contrast to the results of Fig. 4.

D. Quasiparticle interference

The same arguments hold for quasiparticle interference
(QPI) in altermagnets: while one-band models produce
anisotropy only in the spin-split LDOS response [24,25],
models that are based on the sublattice degrees of freedom
will feature spatial anisotropy already in the total LDOS.
Intuitively, this can be seen directly from Figs. 1(d) and 1(e)
highlighting the sublattice character of the states at the Fermi
level.

To sustain this argument, we calculate the QPI spectra
by Fourier transforming the LDOS and omit the translation
invariant term in Eq. (6), as it only contributes to a Bragg peak
at q = 0. The density modulations in momentum space read

δρ(q, ω) = − 1

π

∑
r

e−iq·rIm[G0(r, ω)T (ω)G0(−r, ω)].

(13)

FIG. 6. (a) Spin-summed QPI spectrum for an impurity in a
two-band d-wave altermagnet. (b) Power spectrum of panel (a) as
measured in experiments. (c),(d) Spin-resolved QPI spectra of panel
(a). (e) Spin-summed QPI spectrum in the single-band model and
(f) spin-resolved QPI spectum showing only the spin up contribution
in panel (e). We use 301 × 301 unit cells for the calculation of the
spectra.

We present the QPI spectra at ω = 0 of a d-wave altermag-
net for the model including a sublattice degree of freedom
[Eq. (2)] and the single-band model [Eq. (12)] in Fig. 6.
Again, a symmetry breaking can be observed already in the
spin-summed spectrum for the two-band model as seen in
Figs. 6(a)–6(d), whereas for the single-band model the sym-
metry is broken only in the spin-resolved spectrum as shown
in Figs. 6(e) and 6(f), since the spectra for the spin up and
down channels are related by a 90° rotation. For better com-
parability to scanning tunneling conductance experiments, we
also show the calculated power spectrum as the amplitude
squared of the QPI signal in Fig. 6(b) for the two-band model.
Furthermore, the spectra for impurities on opposite sublattices
are symmetry related [here a C4 rotation of Figs. 6(a) and
6(b)]. We point out that symmetry breaking effects average out
for large scanning areas for similar distribution of impurities
on the sublattices. To detect the symmetry breaking, it might
be needed to examine small fields of view with imbalanced
number of impurities on the two sublattices or experimentally
assign the impurities to the sublattices and selectively perform
the Fourier transformation as presented in Ref. [37].

E. Interplay with superconductivity

The effect of impurities in gapped systems can lead to very
sharp impurity bound states as exemplified by sharp impurity
resonances at low energies in superconductors, which can
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be used to amplify signatures of underlying ordered states
[37–39]. We therefore incorporate superconductivity from an
altermagnetic metallic phase [40], e.g., by proximity effect
or intrinsic Cooper pairing instability by use of the Nambu
formalism. We aim to include only spin-singlet superconduc-
tivity, allowing us to decompose the Bogoliubov–de Gennes
(BdG) Hamiltonian with sublattice, spin, and Nambu degrees
of freedom into two 4 × 4 blocks

HBdG =
(
H↑,k �k

�
†
k −HT

↓,−k

)
, (14)

in the Nambu spinor basis �
†
k = (cA†

↑k, c
B†
↑k, c

A
↓−k, c

B
↓−k ). Here,

we write the BdG Hamiltonian for spin up electrons and
spin down holes. The second, equivalent block of the BdG
Hamiltonian is obtained by reversing the spins. For the SC
gap, we consider a simple constant order parameter in band
space �b = �1. Using the unitary transformation Eq. (3)
of the normal state, we back transform �b and obtain the
corresponding order parameter �k in sublattice space

�k = U↑,k�bU
T
↓,−k, (15)

which becomes momentum dependent and can be used for
input to Eq. (14). The band gap edge and the coherence
peak shift approximately linear with the maximum of tz at
the Fermi level. When the altermagnetic order parameter
becomes large, the gap eventually closes and the supercon-
ducting state features a Bogoliubov Fermi surface [41] as
generically expected in superconductors with broken time-
reversal symmetry [42,43]. Using the expression Eq. (15)
within the T -matrix approach, in-gap bound states are found
where the real part of the T -matrix in Eq. (7) exhibits poles.
The nonmagnetic impurity potential in the Nambu spinor
basis is Himp = Vimp

1
2 (τ0 + τz )σz [44]. We solve for the real

roots of the T -matrix to calculate the bound state energy
ωbs for a range of impurity potentials at a chemical potential
μ = 0.3 eV. Examining the result in Fig. 7(a), one sees that the
altermagnetic order allows for the existence of in-gap bound
states despite the nonmagnetic nature of the impurities [22].
The corresponding LDOS as calculated from the T -matrix
approach exhibits pairs of sharp peaks at ±ωbs in the gapped
region; see Fig. 7(b). We note, however, that the in-gap bound
states are not guaranteed by symmetry and depend on the
dispersion and chemical potential. In the nonmagnetic state,
the transformation in Eq. (15) becomes trivial with �k = �b

and no bound states are observed. At the bound state ener-
gies, the disorder-induced symmetry breaking of the LDOS is
strongly enhanced as evident from Figs. 7(c) and 7(d), making
proximity-induced superconductivity in altermagnets an inter-
esting platform to detect local signatures of altermagnetism.

IV. CONCLUSIONS

We have used microscopic models for altermagnetic ma-
terials based on the relationship between the site symmetry
of magnetic atoms and the point group symmetry of the
associated space group, in order to study their real-space
fingerprints in terms of the modified local density of states
near impurity sites. We found the momentum structure of the
spin-dependent band splitting to be directly imprinted on the

FIG. 7. (a) Bound state energy as function of impurity poten-
tial; the vertical and horizontal line indicate the impurity potential
and corresponding bound state energy used for the other panels.
(b) LDOS at lattice sites close to the impurity; the same colored
sites are related by 90° rotation with the same color code as in
2(a). The inset shows magnification near the bound state energy
ωbs = 16.6 meV atVimp = −1 eV, both indicated by lines in panel (a).
(c), (d) LDOS and asymmetric part of the LDOS at ωbs, respectively.
Calculations are done with a grid size of 1024 × 1024 k points at
η = 1 meV.

total LDOS around the impurity site. This finding suggests
that scanning tunneling conductance experiments can be used
to detect altermagnets, a property that may be particularly
useful in materials where domains average out the generic
properties of altermagnets. Furthermore, we demonstrate that
the lower site symmetry is imprinted on impurity states al-
ready without magnetic order, whereas screening from the
itinerant electrons makes this signal very weak. Gapping of
the electronic structure allows for sharp impurity bound states
such that already conventional superconductivity can easily
induce low-energy bound states from potential scatterers.
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TABLE I. Hopping parameters for the minimal model [see
Eq. (2)] in eV.

t1 t2 t3 t4 μ N

0.425 0.05 −0.025 −0.075 0.3 0.2

research project. The data are available from the authors upon
reasonable request.

APPENDIX A: TIGHT-BINDING PARAMETERS

The terms in the tight-binding Hamiltonian (2) are given
by

ε0 = −2t2(cos kx + cos ky) − 4t3 cos kx cos ky − μ, (A1)

tx = −t1(1 + e−ikx + e−iky + e−i(kx+ky ) )

= −4t1e
−i( kx

2 + ky
2 ) cos

kx
2

cos
ky
2

, (A2)

tz = 4t4 sin kx sin ky, (A3)

as illustrated in Fig. 1. The values of the hopping parameters
are given in Table I and chosen the same as in the 2D model
from Ref. [16].

For the single band Hamiltonian in Eq. (12), the terms are
given by

ε0 = −2t1(cos kx + cos ky) − 4t2 cos kx cos ky

− 2t3(cos 2kx + cos 2ky) − μ, (A4)

Ntz = 4t4 sin kx sin ky, (A5)

with parameters specified in Table I. Note that the BZ is
different from the one of Eq. (2) since there is only one site
per unit cell.

TABLE II. Tight-binding coefficients for 2D layer groups and
Wyckoff positions with two atoms per unit cell at the inversion center.
Abbreviation ci ≡ cos ki, si ≡ sin ki, ci/2 ≡ cos ki

2 , and si/2 ≡ sin ki
2

applies. Altermagnets with d-wave spin-splitting can be found in
L15, L16, L17, L40, L44, L51, L61, and L63, while g-wave alter-
magnets can be found in L63. Coefficients are omitted for simplicity.
We have included entries which are 0 in the τz column. These entries
have magnetic ground states that can be classified as altermagnetic,
but exhibit no spin-splitting.

2D layer Wyckoff
groups positions τx τz

L7 (p112/a) 2a-2b cx/2 0
L15 (p21/m11) 2a-2b cx/2 sxsy
L16 (p2/b11) 2a-2b cy/2 sxsy
L17 (p21/b11) 2a-2b cx/2cy/2 sxsy
L38 (pmaa) 2a-2b cx/2 0
L40 (pmam) 2a-2b cx/2 sxsy
L41 (pmma) 2a-2b cx/2 0
L42 (pman) 2a-2b cx/2cy/2 0
L44 (pbam) 2a-2b cx/2cy/2 sxsy
L51 (p4/m) 2c cx/2cy/2 tz1(cx − cy ) + tz2sxsy
L61 (p4/mmm) 2c cx/2cy/2 cx − cy
L63 (p4/mbm) 2a cx/2cy/2 sxsy(cx − cy )
L63 (p4/mbm) 2b cx/2cy/2 sxsy

APPENDIX B: TWO-DIMENSIONAL LAYER GROUPS

For numerical calculations, 2D minimal models are useful.
Using our earlier approach for developing minimal models
[16], we have developed 2D layer group-based minimal mod-
els. These models are written in Table II for all 2D layer
groups that have a primitive lattice and also have Wyckoff
positions of order 2 that contain inversion in the Wyckoff site
symmetry group.
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