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Quasisymmetry-Constrained Spin Ferromagnetism in Altermagnets
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Altermagnets break time-reversal symmetry, and their spin-orbit coupling (SOC) allows for an
anomalous Hall effect (AHE) that depends on the direction of the Néel ordering vector. The AHE and
the ferromagnetic spin moment share the same symmetry and hence are usually proportional. However,
density functional theory (DFT) calculations find that the AHE exists with negligible ferromagnetic spin
moment for some compounds, whereas it reaches sizable values for other altermagnets. By examining
realistic minimal models for altermagnetism in which the DFT phenomenology is captured, we uncover a
general SOC-enabled quasisymmetry, the uniaxial spin space group, that provides a natural explanation for
the amplitude of the ferromagnetic spin moment across the vast range of different altermagnetic materials.
Additionally, we derive analytic expressions for the magnetic anisotropy energy, providing a simple means
of identifying the preferred Néel vector orientation for altermagnets.
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Introduction—The Hall effect has been a frontier theme
in condensed matter physics for more than half a century.
Fundamental understanding of the quantized Hall conduct-
ance and the anomalous Hall effect (AHE) has helped pave
the way for topological classifications of quantum matter
and the importance of Berry curvature in transport proper-
ties [1-7]. The discovery of altermagnetism (AM) and its
associated large antiferromagnetic AHE is yet another
testimony to this development [8—17], which may open
new opportunities for devices utilizing dissipationless trans-
port and spintronics technologies [5,18-22].

The AHE in AM, which we describe here as an intraunit
cell Néel order, is only nonzero for certain directions of the
Néel vector and in the presence of relativistic spin-orbit
coupling (SOC). This, in addition, induces weak ferromag-
netism (FM), which satisfies the same symmetry properties
as the AHE [23,24]. This implies that, in principle, FM and
AHE share the same dependence on the orientation of the
Néel vector [21,25,26]. However, from density functional
theory (DFT) it is found that the relative amplitude of the
AHE transport coefficient and the FM spin moment depend
strongly on the particular AM material under investigation.
For example, for RuO, and MnTe, DFT finds a large AHE
of 40 S/cm and 300 S/cm, respectively, while RuO, has a
nearly zero FM moment (that we estimate is of the order
10~7 pg) and Mn in MnTe has 107 ug [17,18,27]. In the
case of MnTe and RuO,, weak FM was also reported
experimentally [16,28], though the AM ground state of the
latter material is still debated [29,30]. A weak FM spin
moment has also been identified by DFT in CrSb [31]. By
contrast, in other AM, such as FeSb,, DFT finds a large
AHE of 143 S/cm [32,33], and our calculations estimate a
moderate FM moment of 0.03 up. Similarly, the material
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RuF, has also been predicted by DFT to exhibit a large FM
spin moment of 0.22 upg on the Ru sites [34]. These results
suggest that, while the AHE is generically large when
allowed by symmetry, the corresponding FM moment is
strongly dependent on the AM state, and this is poorly
understood.

To gain deeper insight into the interplay between the
AHE, the FM moment, and the AM state, it is crucial to
analyze the role of SOC using realistic models. Here, by
examining realistic microscopic models for AM in which
the DFT phenomenology is captured [35], we identify
which AM states have a large SOC induced AHE but a
small FM spin moment and find good agreement with DFT
results. In addition, we find that our model-based results
are more generally valid. Specifically, they apply to all
microscopic theories in which AM appears as a conse-
quence of the exchange interaction. To show this, we
identify a general SOC-enabled quasisymmetry [36,37], a
uniaxial spin space group, that establishes for which AM
symmetries the symmetry-allowed FM is large or vanish-
ingly small. Finally, the presence of SOC in AM breaks the
spin-space degeneracy and leads to a preferred direction
for the Néel vector. For example, DFT calculations have
revealed that the moments are orthogonal to the a-b plane
in RuO, [15], while in MnTe, FeSb,, Nb,FeB,, and
Ta,FeB, the moments are predicted to be in-plane
[27,32,38]. By examining analytic expressions for the
Landau coefficients derived from realistic microscopic
models, we elucidate how the structure of SOC allows
the AM anisotropy energy to be understood.

Interplay between magnetization and AM Néel order—

Introducing N as the intraunit cell Néel order and M as the
magnetization, the general form of the free energy density

© 2025 American Physical Society


https://orcid.org/0000-0002-5281-9750
https://orcid.org/0000-0002-9446-9971
https://orcid.org/0009-0003-8296-5382
https://orcid.org/0000-0003-3028-377X
https://orcid.org/0000-0002-9786-7553
https://orcid.org/0000-0003-0178-1374
https://ror.org/035b05819
https://ror.org/035b05819
https://ror.org/031q21x57
https://crossmark.crossref.org/dialog/?doi=10.1103/839n-rckn&domain=pdf&date_stamp=2025-07-01
https://doi.org/10.1103/839n-rckn
https://doi.org/10.1103/839n-rckn

PHYSICAL REVIEW LETTERS 135, 016703 (2025)

in the presence of SOC can be written as

by
F=SNp? M?—h-M
2 +4N+2

+¢;;M;N;+s;(N;—N3) + 5 (N3 +N; —2Nz2), (1)

where ay, by, ay, and c;; are temperature-dependent

Landau coefficients, 7 is an applied field, and s; and s,
are the coefficients determining the magnetic anisotropy
energy due to SOC. Note that the bilinear coupling between
the two orders M; and N is only allowed in the presence of
SOC [23]. Without SOC, the spin space group rotations,
[Rs||Rg], with spin space (Rg) and real space group
operations (Rg) are uncoupled, which forces the bilinear
coupling to vanish since N is nontrivial under pure Rg;
operations. In the magnetic space group, the rotations act
simultaneously on both spaces, and therefore Ry and the
rotation portion of R; must be the same, allowing this
bilinear coupling to be nonzero. Equation (1) describes
orthorhombic or higher-symmetry point groups; for mono-
clinic groups see Supplemental Material (SM) [39].

The lowest order invariant coupling M; and N; can be

determined from symmetry analysis. The magnetization M
belongs to the axial vector irreducible representation (IR)

I'y; see SM [39]. In contrast, N belongstothe IRT'y @ I'y,
with I'y of the IR denoting the symmetry of the AM spin
splitting. Hence, a coupling of M; and N; exists if the direct
productI'y ® I'y ® I'y contains the IR transforming trivi-
ally under all point group operations or, equivalently, there
is a free energy invariant if I'y ® I'y contains I'y [23]. In
Table I we provide the form of the free energy invariants
considering the relevant point groups and symmetries for
the spin splitting identified in Ref. [35]. Note that, for Cg,
O,, and certain IRs I'y of Dy, a bilinear coupling is not
allowed, and therefore the coupling is of higher order.
Following a similar procedure, the lowest order coupling
between the magnetization and the Néel vector can also be
identified [39,40] and is included in Table L.

Microscopic models—To investigate the dependence of
the induced FM spin moment on the SOC strength, we
initially consider the general form of the minimal model for
AM from Ref. [35] and carry out a model-independent
quasisymmetry-based analysis later. Thus, we start from the
normal state Hamiltonian

HO :So’k +tx,ka+tz,sz+Tylk '3, (2)

where 7; represent sublattice and o; is the spin degrees of
freedom. The specific form of the parameters entering the
model depends on the space group, the point group, and the
Wyckoff site symmetry. Here, ¢, is an intersublattice
hopping term, ¢ is the sublattice independent dispersion,

and 7Ik is the SOC. The crystal asymmetric hopping term
t, x exhibits a k dependence that transforms as the nontrivial

TABLE I. Lowest order free energy invariant between M; and
N j in the presence of SOC for different point groups P and IRs of
the spin splitting T'y, with the function fr (k) transforming as
I'y. The last column indicates if the M; generated from the AM
order parameter is linear order in the SOC, denoted by a check
mark, or higher order in SOC, denoted by a cross.

M;
Lowest order linear
P 'y fr, (k) invariant in SOC
C2h Bg akxkz + ﬂkykz a]NXMZ, azNyMz v
a3NZMy, a4NZMx
D2h Blg kxky (lexNy =+ azMny /
DZh BZg kxkz (l]MyNZ + azMzNy \/
D2h B3g kykz alMZNX + (szXNZ \/
C4h Bg a(k?c —k%) MxNy +Mny’ X
+ﬂkxky MN,—M,N,
Dy Ay kxky(ki - k%) M Ny —MyN, v
Dy, By, kﬁ - k(% MN,—MN, X
Dy, By, kk, MN, + M,N, X
D3y A2g kxkz(ki - 3k§) MxNy - MyNX v
Con B,  ak.(k2=3Kk) aM.N,(3N>-N2) X
+pkek (ki =  +PM.N.(3N5 - N3)
32)
De; Ay koky(k3 —3k3) M.N,—M,N, v/
x (k3 3k2)

D¢, By, kyk, (3k2 k3) M_N,(3N; - N3) X
Dg, By, k. (K2 — 3k2) M_N,(N? —3N?) X
On Ay ket (k3 = k2) M N (N7 = N?) X

R (k2 = k)
k2 (k3 = k)

+MyN_v(N§ - N)zc)
+M_N (N2 - N?)

IR I'y since it describes the local symmetry breaking from
multipole moments [35,41,42].

Initially, we analyze the AHE. For the Néel order along
an arbitrary direction /, N;, the only contribution to the
Berry curvature that is linear in SOC originates from the
SOC component parallel to /, that is 4;, and is given by
[35,39]

wy _ 1
Qa,ﬂl,ij 2E3 Z

a.p mn=i,j

+ Sgn([z,k )ﬁtx,kam tz,k anj'l,k

+ sgn(z k)Pl x amtx,kantz,k:| . (3)

Emn |:(Nl + ﬁ|tz.k|)amlll,kantx,k

where the dispersion is E,_. s_; = a(le + A e+

1/2
2+ 28N 1))
zero. Thus, when allowed by symmetry, the AHE is

. This expression is generically non-

016703-2



PHYSICAL REVIEW LETTERS 135, 016703 (2025)

expected to be large and linear in SOC for all point groups
and AM symmetries. In SM [39], we carry out calculations
of the AHE that support this conclusion.

To study now the interplay of the Néel order N and the
induced M, we consider the perturbation

H =1tN-6+M-5 (4)

to the normal state Hamiltonian. We calculate the correc-
tions to the normal state free energy close to the critical
temperature as the magnetic order sets in by evaluating the
loop expansion of the free energy. To the second order it
reads as

1
F® = 2 ;Tr[GOH’GOH’]. (5)

Here, the bare Green’s function projected to the band basis

is given by
lwn) - ZGa

where G(()i)(k, iw,) = {1/]iw, — (e0x + Ex)]} denotes
the Green’s function in the band basis, with the twofold
degenerate eigenenergies Ef = gk L Ey with

Ex =/ + 12+ Jx. The projection operator Py =

|ug)(ui| in Eq. (6) transforms from the sublattice basis
onto band a at wave vector k [39,43].

ciw, ) |ug) (ug |, (6)

To examine the bilinear coupling between N and M, we
derive an expression for the coefficient ¢;; in Eq. (1). The
analytic expressions for the other coefficients in Eq. (1) can
be found in SM [39]. At the one-loop level, the quadratic
free energy contribution in Eq. (5) coupling M and N is
given by

Jiw,)G" (k

Tr| > G(k

a,b.io,
(7)

Calculating the trace and performing the Matsubara
frequency sum, we obtain

2 Iy, Y ) N
Fiow =2 2X LK)k - (M x N), (8)
- Ex
with the function

df(e)

df (e)
de *

—Ft de
e=E_

_2lf(E) = £ (B

— + 9
e=E, Ek_Ek

L(k)=

©)

incorporating the density of states and Lindhard term. The

combination (M x N) in Eq. (8) reveals that a nonzero
invariant exists only if the antisymmetric direct product of

Jiw,)t,N-GP{M-GPY |.

the two axial IRs [’y ® I'4]_ contains I'y. In Table I we list
whether the invariant can be generated to linear order of
SOC; the antisymmetric product for the different point
groups is detailed in SM [39]. The SOC is expected to be a
weak effect in AM [19], and therefore the induced
magnetization will be vanishingly small when it is not
generated to linear order. As seen from Table I, for the point
group Dy, the SOC-linear invariant is only generated for
[’y = A,,. Focusing on crystals with a rutile structure, i.e.,
space group (SG) 136 and Wyckoff position 2a for the
magnetic atoms as in RuO,, MnF,, NiF,, and CoF,, we
have I'y = B,,. Consequently, the induced M is at least
quadratic in SOC, as opposed to the material candidates
Nb,FeB, and Ta,FeB,, which have T'y = A,,. Notably,
Table I also shows that the FM moment induced in
orthorhombic materials (D,;,) is generally expected to be
larger.

To further verify these points, in Fig. 1 we show the

calculated M = > oak (uﬁ|§|uﬁ>f(Eﬁ) relevant  for
(a) rutile structure (Dyy,, I'y = B, ) and (b) FeSb, structure

(Day, Ty = Byy). As seen, the SOC-induced M indeed
scales quadratically (linearly) with the SOC strength for
SG 136 (FeSb,) and is significantly smaller for the band
relevant for rutile AM compared to FeSb,. For the case of

FeSb, we additionally compare the induced M for the Néel

vector along the x axis and the y axis in Fig. 1(d) to see if M
follows the predicted microscopic (M N, — M N, ) result
for the invariant. Indeed, even though M, and M, are not
symmetry related in this orthorhombic system, they are of
opposite sign and nearly identical in magnitude for this
material. In summary, these results explicitly demonstrate
the properties summarized in Table I, which can be applied
to gain similar insight for many classes of AM materials.

Finally, we note that, in order to understand the quadratic
dependence of M on SOC from exact diagonalization,

when M is not allowed to linear order, requires the
inclusion of secondary order parameters [23], equivalent
to two-loop calculations [39]. Specifically, when AM order
sets in, secondary order parameters are also induced by
symmetry, and they can give rise to a finite coupling

between the two orders M and N. Such secondary order
parameters include other spin textures as well as a current
loop order; see SM [39]. The free energy for a secondary

order parameter O can be written as
> 2 3
:y(])02+71('j)Ni0j+y§j)Mi0j7 (10)
which couples bilinearly to M and N. Thus, N can also

induce a magnetization M through the secondary order

parameter 5 and our minimal models reveal that in this
case the FM spin moment is at least quadratic in SOC, as
discussed in SM [39].
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Rutile structure (SG 136, P = Dy, I'y = Byg)

(a) —— Spin up
1 = Spin down

0.5 1.0 15 2.0
Qsoc

FeSby structure (SG 58, P = Dy, I'y = By)

(c) 06
0.4
Eﬂxo.? \
o

7 r S R y/
(d)
0.044 — —M, from N,
‘o === M, from N,
=
§0.02
0.00 1 . . . .
0.0 0.5 1.0 1.5 2.0
Asoc
FIG. 1. Minimal model band structures and induced magneti-

zation as a function of SOC strength for RuO, (a),(b) vs FeSb,
(©),(d). We take 4 = a.ho, with 4y = (0.05,0.05,0.17) eV and
N, = 0.2 for RuO,, and ZO = (2.7,6.6,75) meV and N, = 0.05
for FeSb,, both estimated from DFT results (see SM [39]). In
agreement with Table I, M is induced along the y axis for N, and
scales quadratically (linearly) with the SOC strength for RuO,

(FeSb,). In (d) we show also the case with the Néel vector along
the y axis Ny, inducing M, ~—M,,.

Quasisymmetry protection of negligible FM—OQOur min-
imal models are in agreement with the DFT results, which
suggests a more general explanation beyond specific loop
expansions or microscopic models. Indeed, it is possible to
understand the above results using the recently introduced
concept of quasisymmetry [36,37], describing emergent
approximate symmetries when certain terms in the
Hamiltonian become negligible. Here we use SOC to
generate our quasisymmetry. Specifically, we consider the
quasisymmetry that emerges when two of the SOC com-
ponents (4, 4,, or 4;) vanish, as illustrated in Fig. 2 for a
tetragonal system. The resulting symmetry group, which we
denote the uniaxial spin space group due to its spin
rotational invariance around the SOC direction, has higher
symmetry than the magnetic space group but lower sym-
metry than the spin space group. This is relevant for

)‘YI,k
SNQ

C;sill
(M., M,)

@== SOC component
SOC-enabled

= quasi-symmetry

(c) A/\z.k

Spin
oy

— Magnetization (A1)
or Néel vector (V)

__ M or Nunder
> quasl-symimetry

[(Mx, My) ~ (o2, %))]

(Nn Ny) ~ TZ(U.T7 Oy

FIG. 2. SOC-enabled quasisymmetry in a tetragonal system
when only a single SOC component (a) 4, x, (b) 4, x, or (¢) 4 i is
present. The quasisymmetry acts only in spin space, transforming
the magnetization M and the spin components of the Néel vector

-

N in the same way.

determining which Landau coefficients are linear in one
of 4., .. For example, for 4. #0 with 1, =4, =0, the
normal state Hamiltonian gains additional symmetries, i.e.,
quasisymmetries. Importantly, whether the 4.-linear con-
tribution to the Landau coefficient is permitted depends not
only on the intrinsic symmetries of the crystal but also on
these emergent quasisymmetries [36,37].

Here, we apply this to the Landau coefficients of M, N,
and M,N,. When only 4, (4,) SOC is present, the normal
state Hamiltonian acquires an additional twofold spin-
rotational symmetry [Cy||E] ([C,,||E]), see Fig. 2(a)
[Fig. 2(b)], which prohibits the 4,- [or 4,-] linear con-
tribution to these two Landau coefficients since M, [N,] is
odd under this quasisymmetry while N, [M,] is even.
When only 4, is present, a relevant quasisymmetry in the
uniaxial spin point group is the fourfold spin-rotational
symmetry [C,.||E]. As seen from Fig. 2(c), under this
symmetry the SOC-linear contribution to M N, and M N,
coefficients must have opposite signs. This behavior is
universal and applies to any space group, regardless of
whether it has intrinsic fourfold rotational symmetry, as
demonstrated in Fig. 1(d) for FeSb,. In structures with SG
136, however, its intrinsic tetragonal crystal symmetries
force these two coefficients to be identical at all orders of
SOC. Consequently, the SOC-linear contribution must
vanish, as shown in Fig. 1(b). The complete discussion
on other space groups can be found in SM [39]. This also
implies that for MnTe and CrSb, which have point group
Dg), and I'y = B, the FM moment will be cubic in SOC
(see End Matter), independent of the nonlinear coupling
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terms in Table I, in agreement with Refs. [27,31]. Hence,
the SOC enabled quasisymmetry demonstrates that the
results of the microscopic model are very general
and naturally explains when the FM spin moment is large
or small depending on the AM symmetry. The only
assumption on the microscopic Hamiltonian that underlies
this analysis is that AM is an instability purely in the spin
channel, that is, it is driven only by exchange interactions
without any orbital angular momentum contribution.

The relationship between the SOC direction and non-
vanishing AHE in Eq. (3) can also be understood using
SOC-based quasisymmetry arguments like those given
above, which do not depend on the form of the microscopic
model. Specifically, the AHE measures current and voltage
response and hence is even under spin-rotational sym-
metries. For the Néel order along %, when only the 4, (4,)
SOC is kept, the Néel order is odd under the resulting
quasi-spin-rotational symmetry [C,[|E] ([Cy,||E]). This
prevents a 4, (4,)-linear SOC contribution to the AHE.
When only the 4, SOC is kept, the Néel order is even under
the resulting [C,,||E] symmetry, and therefore the A,-linear
contribution to AHE is allowed by the quasisymmetry. It
naturally follows that the AHE is given by the SOC
component that is parallel to the Néel vector.

Magnetic anisotropy energy—The presence of SOC
leads to a preferred direction for the Néel vector. As seen
from the free energy in Eq. (1), this is captured by the s; and
s, Landau coefficients. Thus, deriving analytic expressions
for these coefficients from the microscopic models is useful
to providing insight into the easy axis direction. Using the
general microscopic model in Eq. (2) and focusing on the
quadratic free energy correction due to SOC [see Eq. (5)],
the coefficients can be written as

S V1
24 R

L(k), (11)

62 E

L(k), (12)

Sy =

with the function L (k) defined in Eq. (9). The sign of these
coefficients fixes the easy axis for a specific AM material.
For instance, focusing on SG 136, 4, can be ignored as it
is smaller than A, and 4, [35]. Hence, in general we
expect that s, > 0, and as a consequence, the easy axis is
out of plane. However, Eqgs. (11) and (12) also reveal that
the moment direction may switch depending on the Fermi
energy. In particular, when the Lindhard function [inter-
band term in L(k)] dominates over the density of states
(intraband term), L(k) can change sign leading to s, < 0
and in-plane moment orientation. The switch of the AM
moments as a function of the Fermi energy from the ¢ axis
to the in-plane direction has been reported in Ref. [15] for
RuO,. As shown in SM, calculations of s; and s, for a

minimal model of RuO, indeed yield s; =0, s, > 0. In
addition, application to FeSb, reveal that s; > 0, s, < 0,
i.e., moments aligned along the in-plane y axis, in agree-
ment with DFT studies [32]. A systematic application of
the magnetic anisotropy energy based on Egs. (11) and
(12) to other AM is beyond the scope of this Letter and
constitutes an interesting future project.

Conclusions—In summary, we have applied recently
developed realistic microscopic models for AM to derive
relevant Landau coefficients of the free energy, focusing on
the coupling between magnetization and Néel order, and
magnetic anisotropy energies. The results explain the
generic large AHE and the observed strong material
dependence of the SOC-induced weak FM. We stress that
the weak FM described in this Letter refers to the spin
moment. For materials where this moment is forbidden to
linear order, e.g., the rutiles, secondary orders become
relevant, and the orbital magnetic moment may also yield
contributions to the small but finite net magnetization
[18,44]. Finally, we discovered a general quasisymmetry
enabled by the SOC that is model independent and allows
for determining for which AM symmetries the induced FM
spin moment is large or vanishingly small.

Acknowledgments—M. R. acknowledges  support
from the Novo Nordisk Foundation under Grant
No. NNF200C0060019. A.K. acknowledges support by
the Danish National Committee for Research Infrastructure
(NUFI) through the ESS-Lighthouse Q-MAT. D. F. A. and
Y. Y. were supported by the National Science Foundation
under Grant No. DMREF 2323857. Work at UWM was
also supported by the Simons Foundation under Grant
No. SFI-MPS-NFS-00006741-02 (D.F. A and M. R.).

Data availability—The data are not publicly available.
The data are available from the authors upon reasonable
request.

[1] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A.H.
MacDonald, and N.P. Ong, Anomalous Hall effect, Rev.
Mod. Phys. 82, 1539 (2010).

[2] Inti Sodemann and Liang Fu, Quantum nonlinear Hall effect
induced by Berry curvature dipole in time-reversal invariant
materials, Phys. Rev. Lett. 115, 216806 (2015).

[3] Anyuan Gao, Yu-Fei Liu, Jian-Xiang Qiu, Barun Ghosh,

Thais V. Trevisan, Yugo Onishi, Chaowei Hu, Tiema Qian,

Hung-Ju Tien, Shao-Wen Chen, Mengqi Huang, Damien

Bérubé, Houchen Li, Christian Tzschaschel, Thao Dinh

et al., Quantum metric nonlinear Hall effect in a topological

antiferromagnetic heterostructure, Science 381, 181 (2023).

Daniel Kaplan, Tobias Holder, and Binghai Yan, Unification

of nonlinear anomalous Hall effect and nonreciprocal

magnetoresistance in metals by the quantum geometry,

Phys. Rev. Lett. 132, 026301 (2024).

[4

—_

016703-5


https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1126/science.adf1506
https://doi.org/10.1103/PhysRevLett.132.026301

PHYSICAL REVIEW LETTERS 135, 016703 (2025)

[5] Yuan Fang, Jennifer Cano, and Sayed Ali Akbar Ghorashi,
Quantum geometry induced nonlinear transport in alter-
magnets, Phys. Rev. Lett. 133, 106701 (2024).

[6] Z.Z. Du, Hai-Zhou Lu, and X.C. Xie, Nonlinear Hall
effects, Nat. Rev. Phys. 3, 744 (2021).

[7] Naizhou Wang, Daniel Kaplan, Zhaowei Zhang, Tobias
Holder, Ning Cao, Aifeng Wang, Xiaoyuan Zhou, Feifei
Zhou, Zhengzhi Jiang, Chusheng Zhang, Shihao Ru,
Hongbing Cai, Kenji Watanabe, Takashi Taniguchi,
Binghai Yan, and Weibo Gao, Quantum-metric-induced
nonlinear transport in a topological antiferromagnet, Nature
(London) 621, 487 (2023).

[8] Suyoung Lee, Sangjae Lee, Saegyeol Jung, Jiwon Jung,
Donghan Kim, Yeonjae Lee, Byeongjun Seok, Jaeyoung
Kim, Byeong Gyu Park, Libor §mejkal, Chang-Jong Kang,
and Changyoung Kim, Broken Kramers degeneracy in
altermagnetic MnTe, Phys. Rev. Lett. 132, 036702 (2024).

[9] J. Krempasky et al., Altermagnetic lifting of Kramers spin
degeneracy, Nature (London) 626, 517 (2024).

[10] T. Osumi, S. Souma, T. Aoyama, K. Yamauchi, A. Honma,
K. Nakayama, T. Takahashi, K. Ohgushi, and T. Sato,
Observation of a giant band splitting in altermagnetic MnTe,
Phys. Rev. B 109, 115102 (2024).

[11] Cong Li, Mengli Hu, Zhilin Li, Yang Wang, Wanyu Chen,
Balasubramanian Thiagarajan, Mats Leandersson, Craig
Polley, Timur Kim, Hui Liu, Cosma Fulga, Maia G.
Vergniory, Oleg Janson, Oscar Tjernberg, and Jeroen van
den Brink, Topological Weyl altermagnetism in CrSb,
arXiv:2405.14777.

[12] Guowei Yang et al., Three-dimensional mapping of the
altermagnetic spin splitting in CrSb, Nat. Commun. 16,
1442 (2025).

[13] Sonka Reimers, Lukas Odenbreit, Libor gmejkal, Vladimir
N. Strocov, Procopios Constantinou, Anna B. Hellenes,
Rodrigo Jaeschke Ubiergo, Warlley H. Campos, Venkata K.
Bharadwaj, Atasi Chakraborty, Thibaud Denneulin, Wen
Shi, Rafal E. Dunin-Borkowski, Suvadip Das, Mathias
Kl4ui, Jairo Sinova, and Martin Jourdan, Direct observation
of altermagnetic band splitting in CrSb thin films, Nat.
Commun. 15, 1 (2024).

[14] Jianyang Ding et al., Large band splitting in g-wave
altermagnet CrSb, Phys. Rev. Lett. 133, 206401 (2024).

[15] Zexin Feng, Xiaorong Zhou, Libor §mejkal, Lei Wu,
Zengwei Zhu, Huixin Guo, Rafael Gonzilez-Hernandez,
Xiaoning Wang, Han Yan, Peixin Qin, Xin Zhang, Haojiang
Wu, Hongyu Chen, Ziang Meng, Li Liu, Zhengcai Xia, Jairo
Sinova, Tomas Jungwirth, and Zhiqgi Liu, An anomalous
Hall effect in altermagnetic ruthenium dioxide, Nat. Elec-
tron. Rev. 5, 735 (2022).

[16] K.P. Kluczyk, K. Gas, M.J. Grzybowski, P. Skupifski,
M. A. Borysiewicz, T. Fas, J. Suffczynski, J. Z. Domagala,
K. Grasza, A. Mycielski, M. Baj, K. H. Ahn, K. Vyborny,
M. Sawicki, and M. Gryglas-Borysiewicz, Coexistence of
anomalous Hall effect and weak magnetization in a nomi-
nally collinear antiferromagnet MnTe, Phys. Rev. B 110,
155201 (2024).

[17] R.D. Gonzalez Betancourt, J. Zuba¢, R. Gonzalez-
Hernandez, K. Geishendorf, Z. Sobaf, G. Springholz, K.
Olejnik, L. gmejkal, J. Sinova, T. Jungwirth, S.T.B.
Goennenwein, A. Thomas, H. Reichlova, J. Zelezn}’/, and

D. Kriegner, Spontaneous anomalous Hall effect arising
from an unconventional compensated magnetic phase in a
semiconductor, Phys. Rev. Lett. 130, 036702 (2023).

[18] Libor §mejkal, Rafael Gonzdlez-Hernandez, T. Jungwirth,
and J. Sinova, Crystal time-reversal symmetry breaking
and spontaneous Hall effect in collinear antiferromagnets,
Sci. Adv. 6, eaaz8809 (2020).

[19] Libor §mejkal, Jairo Sinova, and Tomas Jungwirth, Beyond
conventional ferromagnetism and antiferromagnetism: A
phase with nonrelativistic spin and crystal rotation sym-
metry, Phys. Rev. X 12, 031042 (2022).

[20] Libor Smejkal, Jairo Sinova, and Tomas Jungwirth, Emerg-
ing research landscape of altermagnetism, Phys. Rev. X 12,
040501 (2022).

[21] Libor §mejka1, Allan H. MacDonald, Jairo Sinova, Satoru
Nakatsuji, and Tomas Jungwirth, Anomalous Hall antifer-
romagnets, Nat. Rev. Mater. 7, 482 (2022).

[22] Hai-Yang Ma, Mengli Hu, Nana Li, Jianpeng Liu, Wang
Yao, Jin-Feng Jia, and Junwei Liu, Multifunctional anti-
ferromagnetic materials with giant piezomagnetism and
noncollinear spin current, Nat. Commun. 12, 1 (2021).

[23] Paul A. McClarty and Jeffrey G. Rau, Landau theory of
altermagnetism, Phys. Rev. Lett. 132, 176702 (2024).

[24] Rui-Chun Xiao, Hui Li, Hui Han, Wei Gan, Mengmeng
Yang, Ding-Fu Shao, Shu-Hui Zhang, Yang Gao, Mingliang
Tian, and Jianhui Zhou, Anomalous-Hall Neel textures in
altermagnetic materials, arXiv:2411.10147.

[25] Rafael M. Fernandes, Vanuildo S. de Carvalho, Turan Birol,
and Rodrigo G. Pereira, Topological transition from nodal to
nodeless Zeeman splitting in altermagnets, Phys. Rev. B
109, 024404 (2024).

[26] Sang-Wook Cheong and Fei-Ting Huang, Altermagnetism
with non-collinear spins, npj Quantum Mater. 9, 1 (2024).

[27] I. 1. Mazin and K. D. Belashchenko, Origin of the gossamer
ferromagnetism in MnTe, Phys. Rev. B 110, 214436 (2024).

[28] T. Berlijn, P.C. Snijders, O. Delaire, H.-D. Zhou, T. A.
Maier, H.-B. Cao, S.-X. Chi, M. Matsuda, Y. Wang, M. R.
Koehler, P.R. C. Kent, and H. H. Weitering, Itinerant anti-
ferromagnetism in RuO,, Phys. Rev. Lett. 118, 077201
(2017).

[29] M. Hiraishi, H. Okabe, A. Koda, R. Kadono, T. Muroi, D.
Hirai, and Z. Hiroi, Nonmagnetic ground state in RuO,
revealed by muon spin rotation, Phys. Rev. Lett. 132,
166702 (2024).

[30] Philipp KeBler, Laura Garcia-Gassull, Andreas Suter,
Thomas Prokscha, Zaher Salman, Dmitry Khalyavin,
Pascal Manuel, Fabio Orlandi, Igor I. Mazin, Roser
Valenti, and Simon Moser, Absence of magnetic order in
RuO,: Insights from uSR spectroscopy and neutron dif-
fraction, npj Spintronics 2, 50 (2024).

[31] Carmine Autieri, Raghottam M. Sattigeri, Giuseppe Cuono,
and Amar Fakhredine, Staggered Dzyaloshinskii-Moriya
interaction inducing weak ferromagnetism in centrosym-
metric altermagnets and weak ferrimagnetism in noncen-
trosymmetric altermagnets, Phys. Rev. B 111, 054442
(2025).

[32] Igor 1. Mazin, Klaus Koepernik, Michelle D. Johannes,
Rafael Gonzalez-Hernandez, and Libor §mejka], Prediction
of unconventional magnetism in doped FeSb,, Proc. Natl.
Acad. Sci. U.S.A. 118, €2108924118 (2021).

016703-6


https://doi.org/10.1103/PhysRevLett.133.106701
https://doi.org/10.1038/s42254-021-00359-6
https://doi.org/10.1038/s41586-023-06363-3
https://doi.org/10.1038/s41586-023-06363-3
https://doi.org/10.1103/PhysRevLett.132.036702
https://doi.org/10.1038/s41586-023-06907-7
https://doi.org/10.1103/PhysRevB.109.115102
https://arXiv.org/abs/2405.14777
https://doi.org/10.1038/s41467-025-56647-7
https://doi.org/10.1038/s41467-025-56647-7
https://doi.org/10.1038/s41467-024-46476-5
https://doi.org/10.1038/s41467-024-46476-5
https://doi.org/10.1103/PhysRevLett.133.206401
https://doi.org/10.1038/s41928-022-00866-z
https://doi.org/10.1038/s41928-022-00866-z
https://doi.org/10.1103/PhysRevB.110.155201
https://doi.org/10.1103/PhysRevB.110.155201
https://doi.org/10.1103/PhysRevLett.130.036702
https://doi.org/10.1126/sciadv.aaz8809
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1038/s41578-022-00430-3
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/PhysRevLett.132.176702
https://arXiv.org/abs/2411.10147
https://doi.org/10.1103/PhysRevB.109.024404
https://doi.org/10.1103/PhysRevB.109.024404
https://doi.org/10.1038/s41535-023-00614-2
https://doi.org/10.1103/PhysRevB.110.214436
https://doi.org/10.1103/PhysRevLett.118.077201
https://doi.org/10.1103/PhysRevLett.118.077201
https://doi.org/10.1103/PhysRevLett.132.166702
https://doi.org/10.1103/PhysRevLett.132.166702
https://doi.org/10.1038/s44306-024-00055-y
https://doi.org/10.1103/PhysRevB.111.054442
https://doi.org/10.1103/PhysRevB.111.054442
https://doi.org/10.1073/pnas.2108924118
https://doi.org/10.1073/pnas.2108924118

PHYSICAL REVIEW LETTERS 135, 016703 (2025)

[33] Lotan Attias, Alex Levchenko, and Maxim Khodas, In-
trinsic anomalous Hall effect in altermagnets, Phys. Rev. B
110, 094425 (2024).

[34] Marko Milivojevi¢, Marko Orozovié, Silvia Picozzi, Martin
Gmitra, and Srdan Stavri¢, Interplay of altermagnetism and
weak ferromagnetism in two-dimensional RuF,, 2D Mater.
11, 035025 (2024).

[35] Merce Roig, Andreas Kreisel, Yue Yu, Brian M. Andersen,
and Daniel F. Agterberg, Minimal models for altermagnet-
ism, Phys. Rev. B 110, 144412 (2024).

[36] Jiayu Li, Ao Zhang, Yuntian Liu, and Qihang Liu, Group
theory on quasisymmetry and protected near degeneracy,
Phys. Rev. Lett. 133, 026402 (2024).

[37] Chunyu Guo, Lunhui Hu, Carsten Putzke, Jonas Diaz,
Xiangwei Huang, Kaustuv Manna, Feng-Ren Fan,
Chandra Shekhar, Yan Sun, Claudia Felser, Chaoxing
Liu, B. Andrei Bernevig, and Philip J. W. Moll, Quasi-
symmetry-protected topology in a semi-metal, Nat. Phys.
18, 813 (2022).

[38] Xiao-Yao Hou, Huan-Cheng Yang, Zheng-Xin Liu, Peng-
Jie Guo, and Zhong-Yi Lu, Large intrinsic anomalous Hall
effect in both Nb,FeB, and Ta,FeB, with collinear anti-
ferromagnetism, Phys. Rev. B 107, L161109 (2023).

[39] See  Supplemental Material at  http:/link.aps.org/
supplemental/10.1103/839n-rckn for quasisymmetry con-
strained spin ferromagnetism in altermagnets.

[40] Matthias Hecker, Anant Rastogi, Daniel F. Agterberg, and
Rafael M. Fernandes, Classification of electronic nematicity
in three-dimensional crystals and quasicrystals, Phys. Rev.
B 109, 235148 (2024).

[41] Satoru Hayami, Megumi Yatsushiro, Yuki Yanagi, and
Kusunose Hiroaki, Classification of atomic-scale multipoles
under crystallographic point groups and application to linear
response tensors, Phys. Rev. B 98, 165110 (2018).

[42] Sayantika Bhowal and Nicola A. Spaldin, Ferroically
ordered magnetic octupoles in d-wave altermagnets, Phys.
Rev. X 14, 011019 (2024).

[43] Ansgar Graf and Frédéric Piéchon, Berry curvature and
quantum metric in N-band systems: An eigenprojector
approach, Phys. Rev. B 104, 085114 (2021).

[44] Daegeun Jo, Dongwook Go, Yuriy Mokrousov, Peter M.
Oppeneer, Sang-Wook Cheong, and Hyun-Woo Lee, Weak
ferromagnetism in altermagnets from alternating g-tensor
anisotropy, Phys. Rev. Lett. 134, 196703 (2025).

End Matter

Appendix A: General SOC-enabled quasisymmetry—
As introduced in the main text, the quasisymmetry
generated by SOC when two of the SOC components
vanish allows wus to determine which Landau
coefficients are linear in one of A, .. As illustrated in
Fig. 3, the resulting symmetry group, denoted here
as the uniaxial spin space group, has lower symmetry
than the spin space group but higher symmetry than
the magnetic space group. Here, we develop a more
general quasisymmetry criterion that addresses the
following question: can a Landau coefficient or
response function host a contribution from /I,"C'*/I’;%Z‘", for
given integers (n,,n,,n;) > 0?

We would like to consider a general Hamiltonian that can
extend beyond the minimal models discussed in this Letter.
SOC terms can always be grouped into terms proportional
to spin operators oy, o, and ¢,. Terms in each group can
carry different momentum and orbital dependence, with
overall SOC strengths 4,, /Iy, and /,:

Hgoc = Ay(arxAy + ap Az + -+ +)oy
+ )“y(blﬁkg\] + bz,kéz + oy

+ 24 (c1xCy 4 2k Co + -+ +)o, (A1)

with momentum-dependent coefficients of a;,b;,c; =
O(1) and A,, B;, C, being some operators acting on
sublattice and/or orbital space. The quasisymmetry argu-
ment is based on the analyticity of the response functions. If
the DOS is not concentrated at singular regions such as
band crossings, response functions should be an analytical
function of 4, , .. Cross terms like /4,4, are not allowed.
For the minimal model, this property is explicitly shown in
the normal state Green’s function [Eq. (6)], where the
projection operator is a linear combination of the three
SOC terms.

We now interpret the three groups of SOC terms as
distinct symmetry breaking order parameters in a SOC-free
system (spin space group). The spin space group hosts

Reducing symmetries

No SOC: 29 e 23
I I I I

A Large SOC 1
| |

v '
Spin space group: decoupled Magnetic space group:

orbital crystal symmetry &
full spin rotational symmetry

FIG. 3.

Quasi-symmetries

Combined (orbital +
spin) crystal symmetry

Classification scheme of the spin space group and magnetic space group in terms of the strength and powers of SOC,

illustrating when the quasisymmetries emerge. In particular, when two of the SOC components vanish, the resulting symmetry group
(which we denote as the uniaxial spin space group) has spin rotational invariance around the SOC direction.
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decoupled orbital crystal symmetries and full spin-
rotational symmetries. General order parameters are
denoted by 5R‘,~, where R is the IR under orbital rotations
and the index i = 1,2, ... reflects its dimensionality. The
vector notation indicates that each O . also transforms as a
spin vector under spin rotations.

Each group of SOC terms corresponds to a different
symmetry breaking in this high-symmetry system. For
example, consider the 4, SOC term in an tetragonal system.
It breaks spin-rotational symmetry as the spin vector ¢, and
it breaks orbital symmetry according to the 1D IR
Ay~ xy(x® = y?). Tt is then Oy, = (0.0.A,). For A,
SOC terms, they break spin-rotational symmetry as the spin
vector o, ,, and they break orbital symmetry according to
the 2D IR E, ~ {xz,yz}. They are then 55!],1 = (A4, 0,0)
and O, = (0, A,,.0).

If the coefficient of a Landau term or response function X
hosts a contribution from /IZ'%Z’/IQ“, then the term
A;Z’*A;l"A?ZX must be allowed in the Landau theory for
the SOC-free system. We note that for the tetragonal
system, the contributions from ﬂfﬂ?’ enable the term
A;Z;’AZZX in the Landau theory for the SOC-free system
(since 1, = 4, in this case). In the SOC-free system, a valid
Landau term should be a spin scalar and belong to the
trivial IR under orbital rotations. This provides a general
quasisymmetry criterion.

Appendix B: Examples—In the SOC-free tetragonal
Dy, systems, the SOC order parameters are 5Eg,, =
(Ay.0.0), Op »=(0.A,.0), and O, =(0.0.A,).
Ferromagnetic order is M Ar and altermagnetic order is
N p, with altermagnetic symmetry [’y = P. To have a
SOC-linear coupling between an altermagnet and a
ferromagnet, 5(1\7[ XKI) must be allowed. The
altermagnetic symmetry thus has to be A,, or E,. For
two atoms per nonmagnetic unit cell, only I'y =
Ayg, Byy, By, are allowed [35]. (1) For I'y = A,,, the

Landau term 5A2_[, : (MAM X ﬁAzg) = A, (M\N,—MN,)

is allowed. Hence the A, -linear contribution to M,N, —
MN, is nonzero. (2) For I'y = B,, and Landau term
M.Ny+ M,N,, SOC-linear terms are forbidden. Since
E,® E, ® B, contains the trivial IR, the quadratic A,
contribution is allowed. An example Landau term is
(5Ey,l x M) - (N x 5@,2) + (6Ey.2 x M) - (N x 6@.1) =
A3 (MN, + MN,). 3) For I'y = By, and Landau term
MN, — M Ny, SOC-linear terms are forbidden. Since
Eg ® Eg ® Blg contains the trivial IR, the quadratic /l)zfy
contribution is allowed. An example Landau term is
(5Eg.1 X Aj[) : (ﬁ X 6Ey,l) - (5Eg,2 X 1‘71) : (]_\7 X 5@,,2) =
A2 (M,N,—MN,).

In the SOC-free hexagonal Dg, systems, the SOC order
parameters are 5519,1 = (A4, 0,0), 5510,2 = (0,A,,0),
and 5A2_[, =(0,0,A,). To have a SOC-linear coupling

between altermagnet and ferromagnet, 0- (]\2 x N ) must
be allowed. Thus, I'y = A,, or E;, For two atoms per
nonmagnetic unit cell, only A,,, B;,, and B,, are allowed
[35]. (1) The discussion for I'y = A, is the same as A,, in
tetragonal systems. (2) For 'y =B, (similar for
Iy = Byy), MN? coupling has no SOC-linear contribution
since By, ® By, ® By, ® {E;,.Ay,} has no trivial IR.
Similarly, SOC-quadratic contribution is also forbidden
since By, ® By, ® B;, ® {E ;. Ay} ® {E) ;. Ay} has no
trivial IR. SOC-cubic contribution is allowed as B]g ®
B,®B1,QE;®E,®E), has trivial IR. The SOC
dependence is cubic in 4.

In the SOC-free cubic O, systems, the SOC order
parameters are 5T1g‘1 = (A,0,0), 5T1g,2 = (0,A,0), and
5%,3 =(0,0,A). For I'y = Ay,, MN? coupling has no
SOC-linear contribution since A, ® A, ® Ay, ® T, has
no trivial IR. Similarly, a SOC-quadratic contribution is
also forbidden since Ay, ® Ay, ® Ay, ® T, ® T, has no
trivial IR. Hence, the leading contribution is cubic in
SOC, as Ay, ® Ay, ® Ay, ® T, ® T, ® T, contains
the trivial IR.
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