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Altermagnets break time-reversal symmetry, and their spin-orbit coupling (SOC) allows for an
anomalous Hall effect (AHE) that depends on the direction of the Néel ordering vector. The AHE and
the ferromagnetic spin moment share the same symmetry and hence are usually proportional. However,
density functional theory (DFT) calculations find that the AHE exists with negligible ferromagnetic spin
moment for some compounds, whereas it reaches sizable values for other altermagnets. By examining
realistic minimal models for altermagnetism in which the DFT phenomenology is captured, we uncover a
general SOC-enabled quasisymmetry, the uniaxial spin space group, that provides a natural explanation for
the amplitude of the ferromagnetic spin moment across the vast range of different altermagnetic materials.
Additionally, we derive analytic expressions for the magnetic anisotropy energy, providing a simple means
of identifying the preferred Néel vector orientation for altermagnets.
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Introduction—The Hall effect has been a frontier theme
in condensed matter physics for more than half a century.
Fundamental understanding of the quantized Hall conduct-
ance and the anomalous Hall effect (AHE) has helped pave
the way for topological classifications of quantum matter
and the importance of Berry curvature in transport proper-
ties [1–7]. The discovery of altermagnetism (AM) and its
associated large antiferromagnetic AHE is yet another
testimony to this development [8–17], which may open
new opportunities for devices utilizing dissipationless trans-
port and spintronics technologies [5,18–22].
The AHE in AM, which we describe here as an intraunit

cell Néel order, is only nonzero for certain directions of the
Néel vector and in the presence of relativistic spin-orbit
coupling (SOC). This, in addition, induces weak ferromag-
netism (FM), which satisfies the same symmetry properties
as the AHE [23,24]. This implies that, in principle, FM and
AHE share the same dependence on the orientation of the
Néel vector [21,25,26]. However, from density functional
theory (DFT) it is found that the relative amplitude of the
AHE transport coefficient and the FM spin moment depend
strongly on the particular AM material under investigation.
For example, for RuO2 and MnTe, DFT finds a large AHE
of 40 S=cm and 300 S=cm, respectively, while RuO2 has a
nearly zero FM moment (that we estimate is of the order
10−7 μB) and Mn in MnTe has 10−4 μB [17,18,27]. In the
case of MnTe and RuO2, weak FM was also reported
experimentally [16,28], though the AM ground state of the
latter material is still debated [29,30]. A weak FM spin
moment has also been identified by DFT in CrSb [31]. By
contrast, in other AM, such as FeSb2, DFT finds a large
AHE of 143 S=cm [32,33], and our calculations estimate a
moderate FM moment of 0.03 μB. Similarly, the material

RuF4 has also been predicted by DFT to exhibit a large FM
spin moment of 0.22 μB on the Ru sites [34]. These results
suggest that, while the AHE is generically large when
allowed by symmetry, the corresponding FM moment is
strongly dependent on the AM state, and this is poorly
understood.
To gain deeper insight into the interplay between the

AHE, the FM moment, and the AM state, it is crucial to
analyze the role of SOC using realistic models. Here, by
examining realistic microscopic models for AM in which
the DFT phenomenology is captured [35], we identify
which AM states have a large SOC induced AHE but a
small FM spin moment and find good agreement with DFT
results. In addition, we find that our model-based results
are more generally valid. Specifically, they apply to all
microscopic theories in which AM appears as a conse-
quence of the exchange interaction. To show this, we
identify a general SOC-enabled quasisymmetry [36,37], a
uniaxial spin space group, that establishes for which AM
symmetries the symmetry-allowed FM is large or vanish-
ingly small. Finally, the presence of SOC in AM breaks the
spin-space degeneracy and leads to a preferred direction
for the Néel vector. For example, DFT calculations have
revealed that the moments are orthogonal to the a-b plane
in RuO2 [15], while in MnTe, FeSb2, Nb2FeB2, and
Ta2FeB2 the moments are predicted to be in-plane
[27,32,38]. By examining analytic expressions for the
Landau coefficients derived from realistic microscopic
models, we elucidate how the structure of SOC allows
the AM anisotropy energy to be understood.
Interplay between magnetization and AM Néel order—

Introducing  N as the intraunit cell Néel order and  M as the
magnetization, the general form of the free energy density
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in the presence of SOC can be written as

F¼ aN
2

 N2þbN
4

 N4þaM
2

 M2 −  h ·  M

þ cijMiNjþ s1ðN2
x −N2

yÞþ s2ðN2
xþN2

y − 2N2
zÞ; ð1Þ

where aN , bN , aM, and cij are temperature-dependent

Landau coefficients,  h is an applied field, and s1 and s2
are the coefficients determining the magnetic anisotropy
energy due to SOC. Note that the bilinear coupling between
the two ordersMi and Nj is only allowed in the presence of
SOC [23]. Without SOC, the spin space group rotations,
½RSkRG�, with spin space (RS) and real space group
operations (RG) are uncoupled, which forces the bilinear
coupling to vanish since  N is nontrivial under pure RG
operations. In the magnetic space group, the rotations act
simultaneously on both spaces, and therefore RS and the
rotation portion of RG must be the same, allowing this
bilinear coupling to be nonzero. Equation (1) describes
orthorhombic or higher-symmetry point groups; for mono-
clinic groups see Supplemental Material (SM) [39].
The lowest order invariant coupling Mi and Nj can be

determined from symmetry analysis. The magnetization  M
belongs to the axial vector irreducible representation (IR)
ΓA; see SM [39]. In contrast,  N belongs to the IR ΓA ⊗ ΓN ,
with ΓN of the IR denoting the symmetry of the AM spin
splitting. Hence, a coupling ofMi and Nj exists if the direct
product ΓA ⊗ ΓA ⊗ ΓN contains the IR transforming trivi-
ally under all point group operations or, equivalently, there
is a free energy invariant if ΓA ⊗ ΓA contains ΓN [23]. In
Table I we provide the form of the free energy invariants
considering the relevant point groups and symmetries for
the spin splitting identified in Ref. [35]. Note that, for C6h,
Oh and certain IRs ΓN of D6h, a bilinear coupling is not
allowed, and therefore the coupling is of higher order.
Following a similar procedure, the lowest order coupling
between the magnetization and the Néel vector can also be
identified [39,40] and is included in Table I.

Microscopic models—To investigate the dependence of
the induced FM spin moment on the SOC strength, we
initially consider the general form of the minimal model for
AM from Ref. [35] and carry out a model-independent
quasisymmetry-based analysis later. Thus, we start from the
normal state Hamiltonian

H0 ¼ ε0;k þ tx;kτx þ tz;kτz þ τy  λk ·  σ; ð2Þ

where τi represent sublattice and σi is the spin degrees of
freedom. The specific form of the parameters entering the
model depends on the space group, the point group, and the
Wyckoff site symmetry. Here, tx;k is an intersublattice
hopping term, ε0;k is the sublattice independent dispersion,

and  λk is the SOC. The crystal asymmetric hopping term
tz;k exhibits a k dependence that transforms as the nontrivial

IR ΓN since it describes the local symmetry breaking from
multipole moments [35,41,42].
Initially, we analyze the AHE. For the Néel order along

an arbitrary direction l, Nl, the only contribution to the
Berry curvature that is linear in SOC originates from the
SOC component parallel to l, that is λl, and is given by
[35,39]

ΩðNlÞ
α;β;ij ¼

1

2E3
α;β

X
m;n¼i;j

εmn

�
ðNl þ βjtz;kjÞ∂mλl;k∂ntx;k

þ sgnðtz;kÞβtx;k∂mtz;k∂nλl;k
þ sgnðtz;kÞβλl;k∂mtx;k∂ntz;k

�
; ð3Þ

where the dispersion is Eα¼�;β¼� ¼ α
�
N2

l þ λ2l;k þ t2x;k þ
t2z;k þ 2βjNljjtz;kj

�
1=2

. This expression is generically non-

zero. Thus, when allowed by symmetry, the AHE is

TABLE I. Lowest order free energy invariant between Mi and
Nj in the presence of SOC for different point groups P and IRs of
the spin splitting ΓN , with the function fΓN

ðkÞ transforming as
ΓN . The last column indicates if the Mi generated from the AM
order parameter is linear order in the SOC, denoted by a check
mark, or higher order in SOC, denoted by a cross.

P ΓN fΓN
ðkÞ

Lowest order
invariant

Mi
linear
in SOC

C2h Bg αkxkz þ βkykz α1NxMz, α2NyMz

α3NzMy, α4NzMx

✓

D2h B1g kxky α1MxNy þ α2MyNx ✓

D2h B2g kxkz α1MyNz þ α2MzNy ✓

D2h B3g kykz α1MzNx þ α2MxNz ✓

C4h Bg αðk2x − k2yÞ
þβkxky

MxNy þMyNx,
MxNx −MyNy

✗

D4h A2g kxkyðk2x − k2yÞ MxNy −MyNx ✓

D4h B1g k2x − k2y MxNx −MyNy ✗

D4h B2g kxky MxNy þMyNx ✗

D3d A2g kxkzðk2x − 3k2yÞ MxNy −MyNx ✓

C6h Bg αkykzðk2y − 3k2xÞ
þβkxkzðk2x −

3k2yÞ

αMzNyð3N2
x − N2

yÞ
þβMzNxð3N2

y − N2
xÞ

✗

D6h A2g kxkyðk2x − 3k2yÞ
×ðk2y − 3k2xÞ

MxNy −MyNx ✓

D6h B1g kykzð3k2x − k2yÞ MzNyð3N2
x − N2

yÞ ✗

D6h B2g kxkzðk2x − 3k2yÞ MzNxðN2
x − 3N2

yÞ ✗

Oh A2g k4xðk2y − k2zÞ
þk4yðk2z − k2xÞ
þk4zðk2x − k2yÞ

MxNxðN2
y − N2

zÞ
þMyNyðN2

z − N2
xÞ

þMzNzðN2
x − N2

yÞ

✗
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expected to be large and linear in SOC for all point groups
and AM symmetries. In SM [39], we carry out calculations
of the AHE that support this conclusion.
To study now the interplay of the Néel order  N and the

induced  M, we consider the perturbation

H0 ¼ τz  N ·  σ þ  M ·  σ ð4Þ
to the normal state Hamiltonian. We calculate the correc-
tions to the normal state free energy close to the critical
temperature as the magnetic order sets in by evaluating the
loop expansion of the free energy. To the second order it
reads as

Fð2Þ ¼ 1

2β

X
iωn

Tr½G0H0G0H0�: ð5Þ

Here, the bare Green’s function projected to the band basis
is given by

G0ðk; iωnÞ ¼
X
a¼�

Ga
0ðk; iωnÞjuakihuakj; ð6Þ

where Gð�Þ
0 ðk; iωnÞ ¼ f1=½iωn − ðε0;k � ẼkÞ�g denotes

the Green’s function in the band basis, with the twofold
degenerate eigenenergies E�

k ¼ ε0;k � Ẽk with

Ẽk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2x;k þ t2z;k þ  λ2k

q
. The projection operator Pa

k ¼
juakihuakj in Eq. (6) transforms from the sublattice basis
onto band a at wave vector k [39,43].
To examine the bilinear coupling between  N and  M, we

derive an expression for the coefficient cij in Eq. (1). The
analytic expressions for the other coefficients in Eq. (1) can
be found in SM [39]. At the one-loop level, the quadratic
free energy contribution in Eq. (5) coupling  M and  N is
given by

Fð2Þ
NM ¼ 1

β
Tr

" X
a;b;iωn

Gaðk; iωnÞGbðk; iωnÞτz  N ·  σPa
k
 M ·  σPb

k

#
:

ð7Þ
Calculating the trace and performing the Matsubara
frequency sum, we obtain

Fð2Þ
NM ¼ 2

X
k

tx;k
Ẽ2
k

LðkÞ  λk · ð  M ×  NÞ; ð8Þ

with the function

LðkÞ¼dfðεÞ
dε

����
ε¼Eþ

k

þdfðεÞ
dε

����
ε¼E−

k

−
2½fðE−

kÞ−fðEþ
k Þ�

E−
k−Eþ

k
; ð9Þ

incorporating the density of states and Lindhard term. The
combination ð  M ×  NÞ in Eq. (8) reveals that a nonzero
invariant exists only if the antisymmetric direct product of

the two axial IRs ½ΓA ⊗ ΓA�− contains ΓN . In Table I we list
whether the invariant can be generated to linear order of
SOC; the antisymmetric product for the different point
groups is detailed in SM [39]. The SOC is expected to be a
weak effect in AM [19], and therefore the induced
magnetization will be vanishingly small when it is not
generated to linear order. As seen from Table I, for the point
group D4h the SOC-linear invariant is only generated for
ΓN ¼ A2g. Focusing on crystals with a rutile structure, i.e.,
space group (SG) 136 and Wyckoff position 2a for the
magnetic atoms as in RuO2, MnF2, NiF2, and CoF2, we
have ΓN ¼ B2g. Consequently, the induced  M is at least
quadratic in SOC, as opposed to the material candidates
Nb2FeB2 and Ta2FeB2, which have ΓN ¼ A2g. Notably,
Table I also shows that the FM moment induced in
orthorhombic materials (D2h) is generally expected to be
larger.
To further verify these points, in Fig. 1 we show the

calculated  M ¼ μB
P

a;khuakj  SjuakifðEa
kÞ relevant for

(a) rutile structure (D4h, ΓN ¼ B2g) and (b) FeSb2 structure

(D2h, ΓN ¼ B1g). As seen, the SOC-induced  M indeed
scales quadratically (linearly) with the SOC strength for
SG 136 (FeSb2) and is significantly smaller for the band
relevant for rutile AM compared to FeSb2. For the case of
FeSb2 we additionally compare the induced  M for the Néel
vector along the x axis and the y axis in Fig. 1(d) to see if  M
follows the predicted microscopic ðMxNy −MyNxÞ result
for the invariant. Indeed, even though Mx and My are not
symmetry related in this orthorhombic system, they are of
opposite sign and nearly identical in magnitude for this
material. In summary, these results explicitly demonstrate
the properties summarized in Table I, which can be applied
to gain similar insight for many classes of AM materials.
Finally, we note that, in order to understand the quadratic

dependence of  M on SOC from exact diagonalization,
when  M is not allowed to linear order, requires the
inclusion of secondary order parameters [23], equivalent
to two-loop calculations [39]. Specifically, when AM order
sets in, secondary order parameters are also induced by
symmetry, and they can give rise to a finite coupling
between the two orders  M and  N. Such secondary order
parameters include other spin textures as well as a current
loop order; see SM [39]. The free energy for a secondary
order parameter  O can be written as

F ¼ γð1Þ  O2 þ γð2Þij NiOj þ γð3Þij MiOj; ð10Þ

which couples bilinearly to  M and  N. Thus,  N can also
induce a magnetization  M through the secondary order
parameter  O, and our minimal models reveal that in this
case the FM spin moment is at least quadratic in SOC, as
discussed in SM [39].
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Quasisymmetry protection of negligible FM—Our min-
imal models are in agreement with the DFT results, which
suggests a more general explanation beyond specific loop
expansions or microscopic models. Indeed, it is possible to
understand the above results using the recently introduced
concept of quasisymmetry [36,37], describing emergent
approximate symmetries when certain terms in the
Hamiltonian become negligible. Here we use SOC to
generate our quasisymmetry. Specifically, we consider the
quasisymmetry that emerges when two of the SOC com-
ponents (λx, λy, or λz) vanish, as illustrated in Fig. 2 for a
tetragonal system. The resulting symmetry group, which we
denote the uniaxial spin space group due to its spin
rotational invariance around the SOC direction, has higher
symmetry than the magnetic space group but lower sym-
metry than the spin space group. This is relevant for

determining which Landau coefficients are linear in one
of λx;y;z. For example, for λz ≠ 0 with λx ¼ λy ¼ 0, the
normal state Hamiltonian gains additional symmetries, i.e.,
quasisymmetries. Importantly, whether the λz-linear con-
tribution to the Landau coefficient is permitted depends not
only on the intrinsic symmetries of the crystal but also on
these emergent quasisymmetries [36,37].
Here, we apply this to the Landau coefficients of MxNy

and MyNx. When only λx (λy) SOC is present, the normal
state Hamiltonian acquires an additional twofold spin-
rotational symmetry ½C2xkE� (½C2ykE�), see Fig. 2(a)
[Fig. 2(b)], which prohibits the λx- [or λy-] linear con-
tribution to these two Landau coefficients sinceMx [Nx] is
odd under this quasisymmetry while Ny [My] is even.
When only λz is present, a relevant quasisymmetry in the
uniaxial spin point group is the fourfold spin-rotational
symmetry ½C4zkE�. As seen from Fig. 2(c), under this
symmetry the SOC-linear contribution toMxNy andMyNx

coefficients must have opposite signs. This behavior is
universal and applies to any space group, regardless of
whether it has intrinsic fourfold rotational symmetry, as
demonstrated in Fig. 1(d) for FeSb2. In structures with SG
136, however, its intrinsic tetragonal crystal symmetries
force these two coefficients to be identical at all orders of
SOC. Consequently, the SOC-linear contribution must
vanish, as shown in Fig. 1(b). The complete discussion
on other space groups can be found in SM [39]. This also
implies that for MnTe and CrSb, which have point group
D6h and ΓN ¼ B1g, the FM moment will be cubic in SOC
(see End Matter), independent of the nonlinear coupling

FIG. 2. SOC-enabled quasisymmetry in a tetragonal system
when only a single SOC component (a) λx;k, (b) λy;k, or (c) λz;k is
present. The quasisymmetry acts only in spin space, transforming
the magnetization  M and the spin components of the Néel vector
 N in the same way.

FIG. 1. Minimal model band structures and induced magneti-
zation as a function of SOC strength for RuO2 (a),(b) vs FeSb2
(c),(d). We take  λ ¼ αsoc  λ0, with  λ0 ¼ ð0.05; 0.05; 0.17Þ eV and
Nx ¼ 0.2 for RuO2, and  λ0 ¼ ð2.7; 6.6; 75Þ meV and Nx ¼ 0.05
for FeSb2, both estimated from DFT results (see SM [39]). In
agreement with Table I,  M is induced along the y axis for Nx, and
scales quadratically (linearly) with the SOC strength for RuO2

(FeSb2). In (d) we show also the case with the Néel vector along
the y axis Ny, inducing Mx ≃ −My.
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terms in Table I, in agreement with Refs. [27,31]. Hence,
the SOC enabled quasisymmetry demonstrates that the
results of the microscopic model are very general
and naturally explains when the FM spin moment is large
or small depending on the AM symmetry. The only
assumption on the microscopic Hamiltonian that underlies
this analysis is that AM is an instability purely in the spin
channel, that is, it is driven only by exchange interactions
without any orbital angular momentum contribution.
The relationship between the SOC direction and non-

vanishing AHE in Eq. (3) can also be understood using
SOC-based quasisymmetry arguments like those given
above, which do not depend on the form of the microscopic
model. Specifically, the AHE measures current and voltage
response and hence is even under spin-rotational sym-
metries. For the Néel order along x̂, when only the λy (λz)
SOC is kept, the Néel order is odd under the resulting
quasi-spin-rotational symmetry ½C2ykE� (½C2zkE�). This
prevents a λy (λz)-linear SOC contribution to the AHE.
When only the λx SOC is kept, the Néel order is even under
the resulting ½C2xkE� symmetry, and therefore the λx-linear
contribution to AHE is allowed by the quasisymmetry. It
naturally follows that the AHE is given by the SOC
component that is parallel to the Néel vector.
Magnetic anisotropy energy—The presence of SOC

leads to a preferred direction for the Néel vector. As seen
from the free energy in Eq. (1), this is captured by the s1 and
s2 Landau coefficients. Thus, deriving analytic expressions
for these coefficients from the microscopic models is useful
to providing insight into the easy axis direction. Using the
general microscopic model in Eq. (2) and focusing on the
quadratic free energy correction due to SOC [see Eq. (5)],
the coefficients can be written as

s1 ¼ −
1

2

X
k

λ2x;k − λ2y;k
Ẽ2
k

LðkÞ; ð11Þ

s2 ¼ −
1

6

X
k

λ2x;k þ λ2y;k − 2λ2z;k
Ẽ2
k

LðkÞ; ð12Þ

with the function LðkÞ defined in Eq. (9). The sign of these
coefficients fixes the easy axis for a specific AM material.
For instance, focusing on SG 136, λz;k can be ignored as it
is smaller than λx;k and λy;k [35]. Hence, in general we
expect that s2 > 0, and as a consequence, the easy axis is
out of plane. However, Eqs. (11) and (12) also reveal that
the moment direction may switch depending on the Fermi
energy. In particular, when the Lindhard function [inter-
band term in LðkÞ] dominates over the density of states
(intraband term), LðkÞ can change sign leading to s2 < 0
and in-plane moment orientation. The switch of the AM
moments as a function of the Fermi energy from the c axis
to the in-plane direction has been reported in Ref. [15] for
RuO2. As shown in SM, calculations of s1 and s2 for a

minimal model of RuO2 indeed yield s1 ¼ 0, s2 > 0. In
addition, application to FeSb2 reveal that s1 > 0, s2 < 0,
i.e., moments aligned along the in-plane y axis, in agree-
ment with DFT studies [32]. A systematic application of
the magnetic anisotropy energy based on Eqs. (11) and
(12) to other AM is beyond the scope of this Letter and
constitutes an interesting future project.
Conclusions—In summary, we have applied recently

developed realistic microscopic models for AM to derive
relevant Landau coefficients of the free energy, focusing on
the coupling between magnetization and Néel order, and
magnetic anisotropy energies. The results explain the
generic large AHE and the observed strong material
dependence of the SOC-induced weak FM. We stress that
the weak FM described in this Letter refers to the spin
moment. For materials where this moment is forbidden to
linear order, e.g., the rutiles, secondary orders become
relevant, and the orbital magnetic moment may also yield
contributions to the small but finite net magnetization
[18,44]. Finally, we discovered a general quasisymmetry
enabled by the SOC that is model independent and allows
for determining for which AM symmetries the induced FM
spin moment is large or vanishingly small.
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End Matter

Appendix A: General SOC-enabled quasisymmetry—
As introduced in the main text, the quasisymmetry
generated by SOC when two of the SOC components
vanish allows us to determine which Landau
coefficients are linear in one of λx;y;z. As illustrated in
Fig. 3, the resulting symmetry group, denoted here
as the uniaxial spin space group, has lower symmetry
than the spin space group but higher symmetry than
the magnetic space group. Here, we develop a more
general quasisymmetry criterion that addresses the
following question: can a Landau coefficient or
response function host a contribution from λnxx λ

ny
y λnzz , for

given integers ðnx; ny; nzÞ ≥ 0?
Wewould like to consider a general Hamiltonian that can

extend beyond the minimal models discussed in this Letter.
SOC terms can always be grouped into terms proportional
to spin operators σx, σy, and σz. Terms in each group can
carry different momentum and orbital dependence, with
overall SOC strengths λx, λy, and λz:

HSOC ¼ λxða1;kcA1 þ a2;kcA2 þ � � �Þσx
þ λyðb1;kcB1 þ b2;kcB2 þ � � �Þσy
þ λzðc1;kcC1 þ c2;kcC2 þ � � �Þσz; ðA1Þ

with momentum-dependent coefficients of ai; bi; ci ¼
Oð1Þ and bAi, bBi, bCi being some operators acting on
sublattice and/or orbital space. The quasisymmetry argu-
ment is based on the analyticity of the response functions. If
the DOS is not concentrated at singular regions such as
band crossings, response functions should be an analytical
function of λx;y;z. Cross terms like

ffiffiffiffiffiffiffiffiffi
λxλy

p
are not allowed.

For the minimal model, this property is explicitly shown in
the normal state Green’s function [Eq. (6)], where the
projection operator is a linear combination of the three
SOC terms.
We now interpret the three groups of SOC terms as

distinct symmetry breaking order parameters in a SOC-free
system (spin space group). The spin space group hosts

FIG. 3. Classification scheme of the spin space group and magnetic space group in terms of the strength and powers of SOC,
illustrating when the quasisymmetries emerge. In particular, when two of the SOC components vanish, the resulting symmetry group
(which we denote as the uniaxial spin space group) has spin rotational invariance around the SOC direction.
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decoupled orbital crystal symmetries and full spin-
rotational symmetries. General order parameters are
denoted by  OR;i, where R is the IR under orbital rotations
and the index i ¼ 1; 2;… reflects its dimensionality. The
vector notation indicates that each  OR;i also transforms as a
spin vector under spin rotations.
Each group of SOC terms corresponds to a different

symmetry breaking in this high-symmetry system. For
example, consider the λz SOC term in an tetragonal system.
It breaks spin-rotational symmetry as the spin vector σz, and
it breaks orbital symmetry according to the 1D IR
A2g ∼ xyðx2 − y2Þ. It is then  OA2g

¼ ð0; 0;ΛzÞ. For λx;y
SOC terms, they break spin-rotational symmetry as the spin
vector σx;y, and they break orbital symmetry according to

the 2D IR Eg ∼ fxz; yzg. They are then  OEg;1 ¼ ðΛxy; 0; 0Þ
and  OEg;2 ¼ ð0;Λxy; 0Þ.
If the coefficient of a Landau term or response functionX

hosts a contribution from λnxx λ
ny
y λnzz , then the term

Λnx
x Λny

y Λnz
z X must be allowed in the Landau theory for

the SOC-free system. We note that for the tetragonal
system, the contributions from λ

nxy
x;yλ

nz
z enable the term

Λnxy
xy Λnz

z X in the Landau theory for the SOC-free system
(since λx ¼ λy in this case). In the SOC-free system, a valid
Landau term should be a spin scalar and belong to the
trivial IR under orbital rotations. This provides a general
quasisymmetry criterion.

Appendix B: Examples—In the SOC-free tetragonal
D4h systems, the SOC order parameters are  OEg;1 ¼
ðΛxy; 0; 0Þ,  OEg;2 ¼ ð0;Λxy; 0Þ, and  OA2g

¼ ð0; 0;ΛzÞ.
Ferromagnetic order is  MA1g

, and altermagnetic order is
 NP, with altermagnetic symmetry ΓN ¼ P. To have a
SOC-linear coupling between an altermagnet and a
ferromagnet,  O · ð  M ×  NÞ must be allowed. The
altermagnetic symmetry thus has to be A2g or Eg. For
two atoms per nonmagnetic unit cell, only ΓN ¼
A2g; B1g; B2g are allowed [35]. (1) For ΓN ¼ A2g, the

Landau term  OA2g
· ð  MA1g

×  NA2g
Þ ¼ ΛzðMxNy −MyNxÞ

is allowed. Hence the λz-linear contribution to MxNy −
MyNx is nonzero. (2) For ΓN ¼ B2g and Landau term
MxNy þMyNx, SOC-linear terms are forbidden. Since
Eg ⊗ Eg ⊗ B2g contains the trivial IR, the quadratic λ2xy
contribution is allowed. An example Landau term is

ð  OEg;1 ×  MÞ · ð  N ×  OEg;2Þ þ ð  OEg;2 ×  MÞ · ð  N ×  OEg;1Þ ¼
Λ2
xyðMxNy þMyNxÞ. (3) For ΓN ¼ B1g and Landau term

MxNx −MyNy, SOC-linear terms are forbidden. Since
Eg ⊗ Eg ⊗ B1g contains the trivial IR, the quadratic λ2xy
contribution is allowed. An example Landau term is

ð  OEg;1 ×  MÞ · ð  N ×  OEg;1Þ − ð  OEg;2 ×  MÞ · ð  N ×  OEg;2Þ ¼
Λ2
xyðMxNx −MyNyÞ.
In the SOC-free hexagonal D6h systems, the SOC order

parameters are  OE1g;1 ¼ ðΛxy; 0; 0Þ,  OE1g;2 ¼ ð0;Λxy; 0Þ,
and  OA2g

¼ ð0; 0;ΛzÞ. To have a SOC-linear coupling

between altermagnet and ferromagnet,  O · ð  M ×  NÞ must
be allowed. Thus, ΓN ¼ A2g or E1g. For two atoms per
nonmagnetic unit cell, only A2g, B1g, and B2g are allowed
[35]. (1) The discussion for ΓN ¼ A2g is the same as A2g in
tetragonal systems. (2) For ΓN ¼ B1g (similar for
ΓN ¼ B2g), MN3 coupling has no SOC-linear contribution
since B1g ⊗ B1g ⊗ B1g ⊗ fE1g; A2gg has no trivial IR.
Similarly, SOC-quadratic contribution is also forbidden
since B1g ⊗ B1g ⊗ B1g ⊗ fE1g; A2gg ⊗ fE1g; A2gg has no
trivial IR. SOC-cubic contribution is allowed as B1g ⊗
B1g ⊗ B1g ⊗ E1g ⊗ E1g ⊗ E1g has trivial IR. The SOC
dependence is cubic in λxy.
In the SOC-free cubic Oh systems, the SOC order

parameters are  OT1g;1 ¼ ðΛ; 0; 0Þ,  OT1g;2 ¼ ð0;Λ; 0Þ, and
 OT1g;3 ¼ ð0; 0;ΛÞ. For ΓN ¼ A2g, MN3 coupling has no
SOC-linear contribution since A2g ⊗ A2g ⊗ A2g ⊗ T1g has
no trivial IR. Similarly, a SOC-quadratic contribution is
also forbidden since A2g ⊗ A2g ⊗ A2g ⊗ T1g ⊗ T1g has no
trivial IR. Hence, the leading contribution is cubic in
SOC, as A2g ⊗ A2g ⊗ A2g ⊗ T1g ⊗ T1g ⊗ T1g contains
the trivial IR.
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