
XTSFormer: Cross-Temporal-Scale Transformer for Irregular-Time
Event Prediction in Clinical Applications

Tingsong Xiao1, Zelin Xu1, Wenchong He1, Zhengkun Xiao1, Yupu Zhang1, Zibo Liu1,
Shigang Chen1, My T. Thai1, Jiang Bian2, 3, Parisa Rashidi4, Zhe Jiang1*

1Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
2Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA

3Regenstrief Institute, Indianapolis, IN, USA
4J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
{xiaotingsong, zelin.xu, whe2, xiaoz, y.zhang1, ziboliu, sgchen, mythai, parisa.rashidi, zhe.jiang}@ufl.edu,

bianji@iu.edu

Abstract

Adverse clinical events related to unsafe care are among the
top ten causes of death in the U.S. Accurate modeling and
prediction of clinical events from electronic health records
(EHRs) play a crucial role in patient safety enhancement. An
example is modeling de facto care pathways that character-
ize common step-by-step plans for treatment or care. How-
ever, clinical event data pose several unique challenges, in-
cluding the irregularity of time intervals between consecutive
events, the existence of cycles, periodicity, multi-scale event
interactions, and the high computational costs associated with
long event sequences. Existing neural temporal point pro-
cesses (TPPs) methods do not effectively capture the multi-
scale nature of event interactions, which is common in many
real-world clinical applications. To address these issues, we
propose the cross-temporal-scale transformer (XTSFormer),
specifically designed for irregularly timed event data. Our
model consists of two vital components: a novel Feature-
based Cycle-aware Time Positional Encoding (FCPE) that
adeptly captures the cyclical nature of time, and a hierarchi-
cal multi-scale temporal attention mechanism, where differ-
ent temporal scales are determined by a bottom-up cluster-
ing approach. Extensive experiments on several real-world
EHR datasets show that our XTSFormer outperforms mul-
tiple baseline methods.

Code—
https://github.com/spatialdatasciencegroup/XTSFormer

Extended version— https://arxiv.org/abs/2402.02258

Introduction
Adverse events related to unsafe care are among the top ten
causes of death in the US (Dingley et al. 2008; Weinger
et al. 2003). The large volume of electronic health record
(EHR) data being collected in hospitals, along with recent
advancements in machine learning and artificial intelligence,
provides unique opportunities for data-driven and evidence-
based clinical decision-making systems (Sutton et al. 2020).
One specific example is the learning of de facto clinical care
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pathways, which are detailed step-by-step plans for the treat-
ment or care of surgical patients. For instance, in multimodal
post-surgery pain management, clinical event sequences in-
volving different types of analgesic and anesthetic medica-
tions from perioperative EHR data reveal the practical treat-
ment plans adopted in a hospital. Encoding such sequential
patterns (care pathways) plays a crucial role in evidence-
based interventions and management, improving the quality
of care, reducing variability in practice, and optimizing pain
management outcomes.

Traditionally, analyzing care pathways has been done
manually based on clinicians’ knowledge and experience.
In recent years, data-driven methods have been developed
to automatically extract de facto care pathways from EHR
data, including process mining, machine learning, stochas-
tic models, and simulations (Manktelow et al. 2022; Asp-
land, Gartner, and Harper 2021). Unfortunately, these meth-
ods typically focus only on relatively simple care pathways.
This paper focuses on learning complex temporal patterns
from noisy clinical event data.

The problem presents several technical challenges. First,
the irregularity of time intervals between events makes com-
mon time series prediction methods insufficient (e.g., stan-
dard transformer models (Vaswani et al. 2017)). Second,
event sequence patterns often exhibit cycles, periodicity, and
multi-scale effects. For example, clinical operational events
such as medication administration in operating rooms occur
on a fine scale, typically within minutes. Conversely, events
that occur pre- or post-operation are on a coarser scale, of-
ten spanning hours or days. Figure 1 presents an illustra-
tive example where the event sequence represents a patient’s
medication administration sequence. In this sequence, med-
ication type A is taken nearly every 12 hours, while medi-
cation type B is taken approximately every two days. This
scenario exhibits the multi-scale and cyclic patterns com-
monly observed in healthcare event data. Accurately model-
ing these complex patterns, especially within extended event
sequences, can incur high computational costs.

Existing methods are generally based on the temporal
point processes (TPPs), a common framework for modeling
asynchronous event sequences in continuous time (Cox and
Isham 1980; Schoenberg, Brillinger, and Guttorp 2002). Tra-
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Med A
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Figure 1: A clinical example of a medication administration
sequence for a patient in EHRs.

ditional statistical TPP models (Daley and Vere-Jones 2008)
characterize the stochastic nature of event timing but can
only capture simple patterns in event occurrences, such as
self-excitation (Hawkes 1971a). More recently, deep learn-
ing methods, also known as neural TPPs, have gained pop-
ularity due to their ability to model complex event depen-
dencies in the intensity function (Eom, Lee, and Choi 2022;
Li et al. 2020; Lin et al. 2022; Bae et al. 2022; Zhang, Li-
pani, and Yilmaz 2021; Wang et al. 2023; Zhou et al. 2023).
One category of neural TPPs is based on recurrent neural
networks (RNNs), such as the Recurrent Marked Tempo-
ral Point Process (RMTPP) (Du et al. 2016), continuous-
time LSTM (CT-LSTM) (Mei and Eisner 2017), and inten-
sity Function-based models (Xiao et al. 2017; Omi, Aihara
et al. 2019). While LSTM-based approaches address chal-
lenges like vanishing gradients, they still face issues such
as unresolved long-range dependencies. Transformers-based
TPPs, such as Transformer Hawkes Process (THP) (Zuo
et al. 2020), Self-Attentive Hawkes Process (SAHP) (Zhang
et al. 2020), and (Yang, Mei, and Eisner 2022), can capture
the long-range dependency by allowing direct interactions
between all events in a sequence. However, these methods
do not capture the critical multi-scale patterns within event
sequences. While some work has been done on multi-scale
transformers, e.g., Scaleformer (Shabani et al. 2023) and
Pyraformer (Liu et al. 2022), as well as efficient transform-
ers, e.g., LogTrans (Li et al. 2019), efficient ViT (Dehghani
et al. 2023), and Informer (Zhou et al. 2021), and (Hu et al.
2022; Dai et al. 2022) for time series data, these methods as-
sume regular time intervals and are therefore not suitable for
predicting irregular time events. Neural ODE-based models
can handle irregular time series (Chen et al. 2018; Kidger
et al. 2020; Rubanova, Chen, and Duvenaud 2019; Weer-
akody et al. 2021), but they typically capture random vari-
ables as continuous-time functions (e.g., temperature over
a time interval) and thus cannot be directly applied to dis-
crete event sequences, where events do not occur at every
time point in continuous time. A few works (Jia and Benson
2019; Chen, Amos, and Nickel 2020) have modified neural
ODE models for discrete event sequences. However, these
methods assume that the event dynamics follow an unknown
mathematical system, which may not hold true in real-world
applications.

To address these challenges, we propose a novel cross-
temporal-scale transformer (XTSFormer) for irregular time
event prediction. Our XTSFormer integrates Feature-based
Cycle-aware Time Positional Encoding (FCPE) and cross-
scale attention within a multi-scale time hierarchy. Specif-
ically, we define the time scale on irregular time event se-
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Figure 2: The flowchart of the proposed XTSFormer.

quences through bottom-up clustering, where events with
shorter intervals (at smaller scales) are merged earlier. We
designed a cross-scale attention mechanism by selecting a
key set as nodes within the same scale level. In summary,
this paper makes the following contributions: 1) We intro-
duce XTSFormer, a neural Temporal Point Process model
that incorporates multi-scale temporal interactions of event
features, crucial for practical applications in clinical event
analysis. 2) The model introduces two novel components: a
feature-based cycle-aware time positional encoding, which
captures complex temporal patterns by incorporating both
feature and cyclical information, and a cross-temporal-scale
attention mechanism, which improves time efficiency com-
pared to standard all-pair attention. 3) Extensive experi-
ments on two actual EHR datasets demonstrate that our pro-
posed model outperforms several benchmarks.

Methodology
Problem definition
Consider a temporal sequence Q of events denoted as
→e1, ..., ei, ..., eL〉, where L represents the length of the se-
quence. Each event, ei, can be characterized by a pair
(ti, ki): ti signifies the event time, and ki ∈ {1, 2, ...,K}
indicates the event type, with K denoting the total number
of type classes. The objective of the event prediction prob-
lem is to predict the subsequent event eL+1 = (tL+1, kL+1).
It is important to note that the time of each event, ti, is irreg-
ular, which means that events do not occur at fixed intervals.
These event times can exhibit patterns across various tempo-
ral scales. For instance, clinical operational events like med-
ication administration may be recorded at minute intervals
within an operation room but may be recorded every few
hours during the pre-operation or post-operation phases.

Overall model architecture
This section introduces our proposed cross-temporal-scale
transformer (XTSFormer) model. As illustrated in Figure 2,
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the model consists of two parts: (a) the construction of a
hierarchical tree, feature-based cycle-aware time positional
encoding, and cross-temporal-scale module (encoder); and
(b) event time and type prediction (decoder). Our main
idea is to establish a multi-scale time hierarchy and per-
form cross-scale attention with selective key sets at each
scale. Latent features are processed using pooling operations
across multiple scale levels. Specifically, starting from the
irregular time event sequence, we first conduct a bottom-up
clustering to define the multi-scale hierarchy of event points.
This is done during the preprocessing phase. Within the
framework of our model, the procedure begins with embed-
ding operations, incorporating both our FCPE and seman-
tic feature embedding. The model then progresses through
the cross-temporal-scale module, moving from the smallest
scale to the largest. At each scale, the model performs hi-
erarchical pooling according to the tree hierarchy, applies
cross-scale attention, and concatenates the pooled clusters
with those at the subsequent scale. These iterations con-
tinue until they reach the root node. This process allows the
model to learn complex multi-scale representations within
a multi-level hierarchy without sacrificing granularity or
specificity. Additionally, this approach enhances computa-
tional efficiency by reducing the size of the key set in cross-
attention operations, as shown in Figure 2(a).

Feature-based Cycle-aware Time Positional
Encoding
Positional encoding is crucial in transformer-based models
to capture the relative temporal order of events in TPPs. Ex-
isting methods can be classified into fixed (Vaswani et al.
2017) and learned encoding (Kazemi et al. 2019; Xu et al.
2020; Zhang et al. 2020; Xu et al. 2019; Li et al. 2021;
Dikeoulias, Amin, and Neumann 2022; Shaw, Uszkoreit,
and Vaswani 2018; Raffel et al. 2020), but they fail to learn
event cycles based on event features. Research highlights the
importance of incorporating semantic features to accurately
represent periodic patterns in real-world phenomena (Ke,
He, and Liu 2021; Zhang, Lee, and Lee 2019). To effectively
capture complex cyclic patterns in irregular time sequences,
we introduce a novel Feature-based Cycle-aware Time Po-
sitional Encoding (FCPE), which integrates these essential
semantic aspects into the encoding of time intervals between
events.

Formally, time positional encoding can be described as a
function P : T → Rd×1, mapping the time domain T ⊂ R
to a d-dimensional vector space. In attention mechanisms,
it is the dot product of time positional encodings that carries
significance(Xu et al. 2019). Therefore, the relative timespan
|ta − tb| between events a and b implies crucial temporal
information, where ta and tb represent the occurrence times
of events a and b, respectively. Considering events a and b,
we define a temporal kernel K : T × T → R, such that

K (ta, tb) = P (ta) · P (tb) = F (ta − tb) , (1)

where F is a location invariant function of the timespan.
The kernel K defined above satisfies the assumptions of

Bochner’s Theorem (Veech 1967). Given this, the kernel K

can be represented as in Eq. (2):

K (ta, tb) = F (ta − tb) =

∫ ∞

−∞
eiw(ta−tb)p (w) dw. (2)

Different from (Xu et al. 2020), which uses the Monte
Carlo integral (Rahimi and Recht 2007) to approximate the
expectation of F , we sample the probability density p(wk)
at several frequencieswk and learn p(wk) based on the event
feature, where k = 0, ..., d

2 − 1 (with d as an even integer).
The frequencies wk are learnable parameters, initialized as
2πk
d
2

, corresponding to the Discrete Fourier Transform (DFT)
of the spectral density function as follows:

F (ta − tb) ≈
d
2∑

k=1

µ (k) eiw(ta−tb)

=

d
2∑

k=1

µk cos (wk (ta − tb)) , (3)

where µ(k) (representing p(wk)) is the non-negative
power spectrum at frequency index k and d

2 denotes the
number of frequencies. Since wk is learnable, µk is the
learned probability density, also referred to as ‘intensity’
corresponding to frequency wk.

Thus, following the above conditions and to satisfy Eq.
(1) and Eq. (3), we propose the final FCPE function P(ti)
for time ti, as shown in Eq. (4),

P(ti) =





µ1
i cos (w1ti)

µ1
i sin (w1ti)

µ2
i cos (w2ti)

µ2
i sin (w2ti)

...
µ

d
2
i cos

(
w d

2
ti
)

µ
d
2
i sin

(
w d

2
ti
)





∈ Rd×1, (4)

where d is the encoding dimension, wk is the k-th sam-
pled frequency, and µk

i is the learned feature-based intensity
corresponding to wk. Specifically, µi = [µ1

i , µ
2
i , ..., µ

d
2
i ]

T

can be expressed as µi = Wµki, where Wµ ∈ R d
2×K is a

learnable parameter matrix, and ki ∈ RK×1 is the one-hot
encoding of event type ki.

The advantages of our FCPE are twofold. First, it is based
on the premise that any point in time can be represented as
a vector derived from a series of sine and cosine functions,
capturing the cyclical nature of time with varying intensi-
ties and frequencies. This approach is particularly suitable
for modeling irregular time intervals. Second, we propose
learning the intensities associated with each sampled fre-
quency based on the event’s semantic features (e.g., event
type) at a particular time. Ideally, event types that occur
more frequently will be reflected in higher density values
µk at higher frequencies wk. FCPE’s translation invariance
ensures stability, maintaining performance even when there
are shifts in the input features.
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Following the temporal positional encoding P(ti), we
merge it with a non-temporal feature representation, i.e.,
fi = W kki + P(ti), where fi is the entire embedding i-
th event, and W k ∈ Rd×K is a learnable parameter matrix
for non-temporal embedding.

Cross-temporal-scale Module on Irregular Event
Sequence
The cross-temporal-scale module comprises hierarchical
pooling and cross-scale attention, as shown in Figure 2(a). A
unique challenge in designing cross-scale attention for irreg-
ular time event sequences is the lack of a clear definition of
temporal scales. Unlike regular time series data, where tem-
poral scales can be easily defined based on original or down
sampled resolutions, irregular time sequences require a dif-
ferent approach. Intuitively, events occurring within short in-
tervals interact at a smaller time scale (e.g., medications ad-
ministered every few minutes in an operating room), while
events with longer intervals operate at a larger time scale
(e.g., medication given every few days post-operation). To
establish the concept of temporal scales in irregular time se-
quences, we employ hierarchical clustering.

Hierarchical pooling layer. We define temporal scales
for irregular time points using a bottom-up hierarchical
clustering approach, such as agglomerative clustering (Day
and Edelsbrunner 1984) with the Ward linkage method and
Euclidean distance. The agglomerative algorithm starts by
treating each time point as an individual cluster, then re-
cursively merges the two closest clusters (measured by
minimum, maximum, or centroid distance) until all clus-
ters merge into one. The algorithm’s greedy criterion en-
sures that time points closer together (on smaller scales) are
merged earlier. Thus, the temporal scale can be determined
based on the cluster merging order within the multi-level hi-
erarchy. Figure 3 illustrates this process with nine events, e1
to e9. Figure 3(a) shows the bottom-up clustering, with one
merging operation at a time. The levels of the vertical bars
indicate the merging order of intermediate clusters. In this
example, e1 and e2 merge first, followed by e3 and e4, then
e5 and e6. The leftmost clusters merge next, and the process
continues until all clusters merge into a root node. The merg-
ing order shows that e7 and e8 are at a larger time scale than
e1 and e2, which aligns with our intuition based on the point
distribution.

To quantify the time scales of event points, we can verti-
cally slice the merging order of all initial and intermediate
clusters into different intervals. Clusters that merge in the
s-th vertical interval from the bottom belong to scale s. For
example, in Figure 3(a), three thresholds split the merging
operations into four intervals. Within each interval, we ex-
amine the initial clusters before any merging and the final
clusters before the interval ends. For instance, e1 and e2 as
well as e3 and e4 are merged into two internal nodes (red
triangles) in the first (bottom) interval, placing them in scale
1. Similarly, e7, e8, and e9 are merged in the third interval,
placing them in scale 3. The cumulative merging process is
summarized in a hierarchical tree structure, as shown in Fig-
ure 3(b), where the temporal scale of a tree node is defined

(a) Agglomerative clustering of irregular time points.

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

(b) Scale hierarchy based on merging order.

Figure 3: An illustration of multi-scale hierarchy on irregu-
lar time points by bottom-up clustering.

by its level.
A key consideration is how to choose the slicing thresh-

olds, as they control the granularity of the multiple scales.
For finer-grained multi-scale levels, more thresholds (inter-
vals or tree levels) are needed. In the extreme, the num-
ber of levels could equal the number of event points. For
instance, the temporal scale for medication events in the
operating room (intra-operation) might be on the order of
minutes, while pre-operation and post-operation events span
several hours or days. Using such domain knowledge, we
can set slicing thresholds like 5 minutes, 30 minutes, 1 hour,
8 hours, and 24 hours. This approach helps create a multi-
scale temporal hierarchy with varying levels of granularity.

In practice, choosing scales based solely on time intervals
may be inefficient. To better control the number of points
(leaf or internal) at each scale level, slicing thresholds can
be configured based on the number of merging operations.
For example, the multi-scale hierarchy in Figure 3(b) can be
configured with 2, 2, 3, and 1 merging operations at each
respective level. This approach helps manage the number of
intermediate clusters at each scale.

We denote the latent representations at different tree
nodes in each scale level s asHs = [hs

1, h
s
2, . . . , h

s
ns
], where

hs
j is the j-th node in scale s, and ns is the number of nodes

in scale s. Initially, for a leaf node ej , hs
j = fj (the raw em-

bedding). In Figure 3(b), there are four node representations
at the 1st scale, four at the 2nd scale, and so on.

To aggregate features across different scale levels, we
conduct an average pooling operation based on the tree hier-
archy, followed by concatenation of the pooled clusters with
the clusters in the next scale.

Cross-scale attention layer. We now introduce our atten-
tion operation in the multi-scale time hierarchy. In the com-
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mon all-pair attention, each time point (query) computes at-
tention weights for all other points (keys). In our cross-scale
temporal attention, for each tree node (query), we only do
temporal attention on a selective key set, i.e., nodes in the
same scale level. The cross-attention operation is expressed
in Eq. (5), where h̃s

j is the representation of hs
j after cross-

attention, qs
j is the query vector for jth node at scale s, k

s
l is

the key vector for the l-th node, vl is the value vector,N s
j is

the selective key set of hs
j , and DK is the dimension of key

and query vectors as a normalizing term. Consider the ex-
ample in Figure 3(b). The key set for e6 (h2

4) has four nodes
(h2

1, h2
2, h2

3, and h2
4), including itself. This reduces the total

number of keys from 9 to 4.

h̃s
j =

∑

l∈N s
j

exp(qs
jk

sT
l /

√
DK)vl

∑
l∈N s

j
exp(qs

jk
sT
l /

√
DK)

. (5)

Time cost analysis: Assume the number of input tempo-
ral points is L̂, batch size isB, number of heads is ĥ, and hid-
den dimension is d̂. In our attention computation, the query
matrix dimensions are represented by Q ∈ RB×ĥ×L̂×d̂. For
each query pointQi (where 1 ≤ i ≤ L̂), its selective key set
size is M (depending on the threshold in each level). Thus
the key matrix results from concatenating key sets of all
query points, yielding a dimension of RB×ĥ×L̂×M×d̂. Con-
sequently, the Flops of the attention computation with our
approach is B · ĥ · L̂ ·M · d̂, with the key set sizeM scaling
O(logL̂). This results in significantly more efficient atten-
tion computation Flops, specificallyB · ĥ · L̂ · log L̂ · d̂, com-
pared to the vanilla transformer computation ofB · ĥ · L̂2 · d̂.

Decoder and Loss Function
Our decoder comprises two parts: predicting event type and
event time, as shown in Figure 2(b). First, we apply cross-
scale attention at the topmost (largest) scale, using the last
element as the query and the others as keys to capture the
temporal and sequential nature of the upcoming event. Fol-
lowing this, we obtain HL, the comprehensive latent rep-
resentation of the entire past event sequence, by applying a
dense layer toHs. SinceHs incorporates features frommul-
tiple scales, it effectively identifies the temporal patterns of
the forthcoming event.

Event type prediction The prediction of the next event
type, based on the latent embedding HL of past events, is
achieved through a dense transformation layer followed by
a softmax function. This process generates the predicted
probability distribution of the event type. We calculate the
cross-entropy loss Lp using the true event type labels yi
and the predicted probability distribution of event type Pi

, i.e., Lp = −
∑

i yi log(Pi), thus optimizing the model for
accurate event type prediction.

Event time prediction For predicting event time, we add
another dense layer on top ofHL to learn the distribution pa-
rameters of the temporal point process, specifically the scale
parameter λ and shape parameter γ. The proposed frame-
work can use the Weibull distribution (Rinne 2008) to model

the intensity function. The exponential distribution, a spe-
cific case of the Weibull distribution with γ = 1, has a con-
stant intensity function suggesting events occur with a uni-
form likelihood, irrespective of past occurrences. This char-
acteristic makes it less suitable for scenarios where historical
events are influential. Conversely, the Weibull distribution,
with its variable hazard function that can be increasing, de-
creasing, or constant, offers a flexible approach to modeling
how past events impact future probabilities. The compara-
tive effectiveness of these two distributions as intensity func-
tions is explored in the experimental section of our study.

We use the negative log-likelihood (NLL) of event time
as the loss function for event time prediction:

Lt = − logP (t′;λ, γ) = − log

(
γ

λ

(
t′

λ

)γ−1

e
−
(

t′
λ

)γ
)
,

(6)
where t′ is the label time. The final loss is L = (1−α)Lt +
αLp, where α is a hyperparameter for trade-off.

Experimental Evaluation
Goals: The goal of the evaluation section is to compare
our proposed XTSFormer with baseline models in neural
TPPs in prediction performance for both event time and
event type. Additionally, we conducted an ablation study,
computational experiments, sensitivity analysis, and an in-
terpretable case study.

Evaluation metrics: For the event type prediction task,
we utilized the accuracy and the macro F1-score as eval-
uation metrics. Meanwhile, for the event time prediction
task, the root mean square error (RMSE) and negative log-
likelihood (NLL) were chosen as the performance metrics.

Datasets: In the experiments, we used two EHR
datasets—Medications and Providers—from our university
hospital. TheMedications dataset includes 5,080 patient en-
counters, each treated as a sequence detailing medication
events across 86 distinct classes, with a total of 355,490
records. The Providers dataset, structured similarly to the
Medications dataset, includes 56,262 patient encounters,
each representing a sequence of interactions with 48 distinct
provider classes, totaling 704,496 records. These timelines
cover pre-operative, intra-operative, and post-operative pe-
riods. More dataset details and evaluation results are in the
arXiv version.

Baselines: Our baseline methods include traditional TPP
model called Hawkes Processes (HP) (Hawkes 1971b), two
RNN-based neural TPP models (RMTPP (Du et al. 2016)
and CT-LSTM (Mei and Eisner 2017)), two neural ODE-
based models (NJSDE (Jia and Benson 2019) and ODETPP
(Chen, Amos, and Nickel 2020)), and five Transformer-
based algorithms (SAHP (Zhang et al. 2020), THP (Zuo
et al. 2020), and A-NHP (Yang, Mei, and Eisner 2022).

Comparison on Prediction Performance
Table 1 summarizes the accuracy, F1-score, RMSE, and
NLL of all evaluated methods on all datasets. It is observed
that the traditional HP model exhibits the lowest accuracy
in predicting event types. The RNN-based models perform
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Methods Medications Providers
Accuracy (%) F1-score (%) RMSE NLL Accuracy (%) F1-score (%) RMSE NLL

HP 21.9±1.1 18.1±2.1 2.78±0.33 3.54±0.38 32.1±2.5 31.9±2.6 5.17±1.30 2.19±0.13

RMTPP 23.4±0.6 20.1±1.8 1.87±0.77 3.10±0.18 35.7±2.1 33.2±2.7 4.11±1.40 2.23±0.11

CTLSTM 22.5±0.6 19.2±1.7 1.61±0.41 3.23±0.18 34.5±1.4 32.5±1.9 3.12±1.50 1.93±0.08

NJSDE 29.5±0.4 25.2±0.9 1.40±0.22 2.33±0.19 37.9±1.2 34.1±1.1 2.95±1.17 1.89±0.07

ODETPP 24.6±0.5 23.1±0.9 1.99±0.20 2.60±0.21 33.4±1.5 29.0±0.8 3.81±1.21 2.33±0.08

SAHP 28.4±0.9 25.5±2.1 1.81±0.30 2.44±0.21 38.0±1.9 37.2±2.1 3.55±1.93 2.10±0.09

THP 27.1±0.7 26.1±1.3 1.41±0.33 2.49±0.19 37.5±2.2 33.8±1.9 2.84±1.48 1.82±0.09

A-NHP 30.2±0.5 25.5±0.8 1.57±0.29 2.54±0.22 38.9±1.5 34.9±1.5 2.89±1.54 1.83±0.11

XTSFormer 33.5±0.8 29.4±1.1 1.12±0.24 2.23±0.20 43.9±1.3 37.2±1.5 2.33±1.74 1.75±0.10

Table 1: Results (average ± std) of all methods on Medications and Providers dataset, with the best results in bold.

slightly better than HP in overall accuracy and F1-score. The
Transformer-based models are generally more accurate than
the RNN-based models. Their overall accuracy is around 4%
to 5% higher than RNN-based models. Among transformer
models, XTSFormer performs the best, whose overall accu-
racy is 3% to 5% higher than other transformers. This could
be explained by the fact that our model captures the multi-
scale temporal interactions among events. For event time
prediction, we observe similar trends, except that the RMSE
of event time prediction for SAHP is somehow worse than
other transformers (close to the RNN-based models). The
reason could be that the event sequences in our real-world
datasets do not contain self-exciting patterns as assumed in
the Hawkes process.

Ablation Study
To evaluate the effectiveness of our proposed model compo-
nents, we conducted an ablation study on various datasets.
The study investigates the impact of FCPE, multi-scale tem-
poral attention, and choice of event time distribution (Ex-
ponential or Weibull). Specifically, we compare two kinds
of positional encoding (PE), i.e., traditional positional en-
coding (written as ‘base’) (Zuo et al. 2020) and our FCPE.
Moreover, we compare our model with (w/) and without
(w/o) multi-scale parts. Meanwhile, we compare two kinds
of distribution, i.e., exponential distribution andWeibull dis-
tribution. Table 2 shows the accuracy results of the ab-
lation study. Introducing multi-scale attention further en-
hances predictive accuracy. The model with multi-scale at-
tention consistently outperforms its counterpart without it.
This demonstrates the significance of modeling interactions
at different temporal scales, which is crucial for capturing
complex event dependencies.

Computational Time Costs
To evaluate our method’s efficiency on long event se-
quences, we conducted computational experiments using a
synthetic dataset of 64 sequences, each with 100,000 events.
Each event, consisting of a type ({0, 1, . . . , 9}) and occur-
rence time, was generated using Poisson distributions, with
higher event types having lower frequencies (e.g., type 0 oc-
curs every 2 hours, type 9 every 10 days). Time intervals

PE MS Dist Medications Providers
base w/o Exponential 25.2±0.3 36.7±1.3

FCPE w/o Exponential 27.8±0.2 38.9±0.9

base w/ Exponential 28.3±0.5 37.9±1.0

FCPE w/ Exponential 30.9±0.6 38.1±0.8

base w/o Weibull 26.8±0.6 37.1±0.8

FCPE w/o Weibull 28.9±0.3 39.6±0.6

base w/ Weibull 29.3±0.6 40.2±1.3

FCPE w/ Weibull 33.5±0.8 43.9±1.3

Table 2: Accuracy results (average ± std) in percentages.
PE: positional encoding, MS: Multi-scale, Dist: Distribu-
tion.

were sampled from exponential distributions and perturbed
with Gaussian noise (σ = 0.1× mean interval) to simu-
late real-world irregularities. We set the batch size to 1 and
the hidden dimension to 32, progressively increasing the se-
quence length and recording time costs (in minutes). Fig-
ure 4(a) shows that XTSFormer becomes increasingly effi-
cient compared to Vanilla Transformer as sequences grow
longer, while Figure 4(b) demonstrates that XTSFormer
maintains lower time costs across embedding dimensions,
highlighting its scalability for large-scale data with limited
computational resources.

Sensitivity Analysis
We investigated parameter sensitivity by varying the largest
scale S ∈ {1, 3, 5, 7, 9} and report the accuracy results on
two datasets in Figure 4(c). Notably, our method displays
sensitivity to the largest scale S, which determines the multi-
scale intensity. For instance, when S = 1, the absence of
multiple scales leads to suboptimal performance.

Interpretable Case Study
To visualize the captured event cycles, we conducted an in-
terpretable case study focusing on the learned cyclical in-
tensities µj in Eq. (4), which indicates the importance of
the frequency wj for event j. We selected an anonymized
patient who underwent cardiac surgery and displayed their
medication administration sequence across three days, from
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Figure 4: (a) is the time cost on different lengths of sequence (OOM indicates ‘out of memory’). (b) is the time cost of different
dimensions of embeddings. (c) is the comparison of accuracy on various S scales. (d) is the F1-score of different sliding steps
on Medications.

4/4/2012 to 4/6/2012, as shown in Figure 5(a). For clarity,
we focused on three specific medication classes: ‘ANAL-
GESICS’, ‘ANTI-INFECTIVE’, and ‘NUTRITIONAL’, ex-
cluding other classes from the analysis. We can observe
that ‘ANALGESICS’ were administered approximately ev-
ery 6 hours, ‘NUTRITIONAL’ every 11 hours, and ‘ANTI-
INFECTIVE’ every 24 hours. These observed administra-
tion cycles align well with the theoretical cycles depicted
in Figure 5(b). Specifically, the theoretical cycle for ‘ANTI-
INFECTIVE’ is shown as the inverse of its peak frequency,
approximately 23 hours, closely matching the 24-hour ad-
ministration pattern. For ‘ANALGESICS’, the theoretical
cycle is around 5.3 hours, which is slightly shorter than the
observed 6-hour interval but still within a reasonable range
given potential variations in clinical practice. The ‘NUTRI-
TIONAL’ medications exhibited two theoretical cycles at
2.5 hours and 5.5 hours. These shorter cycles may suggest
overlapping administration patterns in practice, resulting in
the observed 11-hour interval, likely due to the combined ef-
fect of multiple dosing schedules or nutritional assessments.

The results show that our feature-based time cycle-aware
position encodings learn real-world cyclic patterns in clini-
cal events. In contrast, existing cycle-based position encod-
ings do not learn the varying intensity of different cycle fre-
quencies.

Limitations

Our model currently predicts one event at a time, which
can be inefficient for consecutive event prediction. Predict-
ing multiple consecutive events requires repeating the hier-
archical multi-scale clustering steps, adding significant pre-
processing time. One strategy to mitigate this overhead is
to delay the reconstruction of the hierarchical tree, updat-
ing the multi-scale hierarchy incrementally by inserting and
deleting event nodes as needed. Preliminary results in Figure
4(d) suggest that this approach somehow impacts prediction
accuracy. Further research is needed to develop an end-to-
end module that can learn the multi-scale hierarchy without
preprocessing.

4/4/2012

4/5/2012

4/6/2012

ANALGESICS NUTRITIONALANTI-INFECTIVE

(a) Medication administration sequence for a specific patient
over three days.

peak

(b) Learned intensities across frequencies for three medica-
tions.

Figure 5: A case study illustrating the learned intensities
across frequencies in medication administration sequences.

Conclusion and Future Work
The paper proposed XTSFormer, a neural TPP model with
feature-based cycle-aware time positional encoding and
cross-scale temporal attention. Time scales are derived from
a bottom-up clustering, prioritizing shorter interval events at
smaller scales and the cross-scale attention mechanism as-
signs the key set as nodes at the same scale levels. Extensive
experiments on two real-world EHRs validated the model’s
effectiveness. In future works, we will continue to focus on
model interpretability and its generalization to consecutive
event prediction.
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Ethical Statement
The proposed model has the potential for implementation
as a clinical decision-support tool to enhance patient safety.
For instance, in post-surgery pain management, the tool can
analyze de-facto clinical care pathways within pain medi-
cation sequences from electronic health record data. These
learned pathways can assist clinicians in identifying anoma-
lous events, preventing errors, and designing treatment plans
that better align with patient needs to optimize outcomes. By
offering insights into real-world care patterns and supporting
standardized, evidence-based practices, this tool contributes
to improving healthcare quality and operational efficiency in
hospitals.

This research was approved by the Institutional Review
Board (IRB) of the authors’ institution. Data collection ad-
hered to ethical standards, with all data de-identified to en-
sure participant confidentiality. To mitigate risks, we imple-
mented a comprehensive data security and privacy protec-
tion framework, which includes data anonymization and ex-
ecution of models and codes on a security-verified comput-
ing platform.
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