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Abstract dataset. In other words, NN is forced to “remember” samples repeat-

edly in random order. On the other hand, human always learns the
easy concepts first and then the hard ones, as guided by curricula.
Given that NN is inspired by the human brain [69], curriculum learn-
ing (CL), which simulates human learning by ordering the training
data with difficulty scores and repeating the order across training
epochs, has been proposed [3]. With a “teacher” network, the dif-
ficult scores can be generated ahead of the samples and guide the
training process. Previous studies have shown that CL can achieve
both fast learning speed and high test accuracy [81, 89], and CL
has been adopted in many application domains like computer vi-
sion [3, 15, 70, 80], natural language processing [3, 25, 52, 82, 101],
and claiming prominent successes [89].

Despite the huge success of ML, the privacy issues of ML are

Training a machine learning model with data following a meaning-
ful order, i.e., from easy to hard, has been proven to be effective
in accelerating the training process and achieving better model
performance. The key enabling technique is curriculum learning
(CL), which has seen great success and has been deployed in areas
like image and text classification. Yet, how CL affects the privacy of
machine learning is unclear. Given that CL changes the way a model
memorizes the training data, its influence on data privacy needs to
be thoroughly evaluated. To fill this knowledge gap, we perform
the first study and leverage membership inference attack (MIA)
and attribute inference attack (AIA) as two vectors to quantify the
privacy leakage caused by CL.

Our evaluation of 9 real-world datasets with attack methods (NN-
based, metric-based, label-only MIA, and NN-based AIA) revealed becoming more and more concerning, given that the training data
new insights about CL. First, MIA becomes slightly more effective could contain a large amount of sensitive information. The two
when CL is applied, but the impact is much more prominent to most notable privacy attacks are the membership inference attack
a subset of training samples ranked as difficult. Second, a model (MIA) [38, 75] and the attribute inference attack (AIA) [78], where
trained under CL is less vulnerable under AIA, compared to MIA. MIA aims to infer whether a given data sample is used to train the
Third, the existing defense techniques like MemGuard and Mix- target model and AIA aims to infer the sensitive attribute of a data
upMMD are not effective under CL. Finally, based on our insights sample. Numerous attacks have emerged and have demonstrated
into CL, we propose a new MIA, termed Diff-Cali, which exploits that privacy threats are real (e.g., over 80% MIA accuracy against
the difficulty scores for result calibration and is demonstrated to be CIFAR100 [72]). Recent studies have also shown the data samples
effective against all CL methods and the normal training method. are not equally vulnerable under privacy attacks [94], and the attack
With this study, we hope to draw the community’s attention to the effectiveness could differ across target classes [38], target individu-
unintended privacy risks of emerging machine-learning techniques als [55], and subgroups [7]. Yet, all previous works assume standard,

and develop new attack benchmarks and defense solutions. stochastic training is employed by the target model. Hence, one
interesting and important research problem is how new training

Keywords techniques impact privacy for the overall population and individual
samples. In this work, we specifically study the privacy risks of
CL. We are particularly motivated because CL modifies the data
order and repeatedly feeds the same samples, which differs from
other learning techniques such as self-supervised learning [53]. In

Curriculum Learning, Membership Inference Attack

1 Introduction

Key to the success of machine learning (ML), especially deep learn- general, CL lets a model treat samples differently based on their
ing (DL), is the advancement of algorithms, software, and hardware difficulty levels!, and we are interested in whether CL introduces
in training models on large-scale datasets. The traditional way to disparate impact on privacy of subgroups, aggravating “privacy un-
train a neural network (NN) is by feeding the training pipeline fairness” [99]. Furthermore, Shumailov et al. [76] studied the connec-
with random mini-batches in a sequence sampled from the training tion between data ordering and backdoor attacks, which indicates

data ordering could have negative impacts. This further motivates
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Our Study. We take a quantitative approach to measure the pri-
vacy risks of CL. We selected two popular CL methods, bootstrap-
ping [27] and transfer learning [91], as the evaluation objects, and
constructed two other curriculum methods, named baseline curricu-
lum and anti-curriculum, to understand the impact of data ordering
and repeating, respectively. We selected 9 real-world, large-scale
datasets (6 are image datasets and 3 are tabular datasets), trained
target models with those CL methods and a normal method, and
attacked the models with representative MIA and ATA methods.

Regarding MIA, our evaluation shows that the target models
become slightly more vulnerable under CL. For example, the aver-
age attack accuracy (trained on ResNet-18 with transfer leaning)
on our selected image datasets ranges from 0.01% to 2.46%. More
importantly, we found CL has a much bigger impact on the sam-
ples within the difficult group compared to the easy group, with
the biggest gap of 4.23% in terms of attack accuracy for CIFAR100
(ResNet-18 is the architecture). This observation sustains both im-
age and non-image datasets. We found the reason is that the data
order influences the learning process in a way that makes the model
memorize difficult samples better, which is supported by measuring
the memorization scores. Regarding AIA, we found CL does not
increase the attack accuracy, which can be explained by the fact
that the sensitive attribute to be inferred is not influenced by data
ordering and repeating.

In addition to understanding the attacks, we also study existing
defenses under the CL settings, including MemGuard [38], Mixup-
MMD [48] and AdvReg [62]. The result shows that none of them
can mitigate the threats from MIA, especially when CL is used to
train the target models. Though DP-SGD [1] is another important
defense, we found it cannot be applied to the CL settings, as CL
breaks the DP guarantee due to data ordering and repeating.

Inspired by CL and a recent MIA that calibrates membership
scores to achieve better attack accuracy [90], we consider the diffi-
culty score as input for calibration and proposed a new MIA method,
named Diff-Cali (difficulty calibrated MIA). Our attack not only
brings the difficult samples to a more vulnerable stage but also
achieves a higher true-positive rate at low false-positive rate re-
gions. With this study, we hope to draw more attention to the
privacy risks introduced by the new learning techniques and moti-
vate the development of new protection mechanisms.
Contributions. The contributions of this work are summarized
as follows.

o We take the first step to understanding the privacy risks
introduced by CL.

e We conduct a comprehensive analysis to quantify the privacy
risks and our results show CL introduces disparate impacts
to samples separated by difficulty levels.

e We propose a new MIA that exploits the difficulty scores for
better attack performance.

2 Preliminary

2.1 Curriculum Learning

Curriculum learning (CL) [3] is designed to emulate the concept of
the human learning process. The general idea is to have a curriculum
that imposes a structure on the training data so the “student” ML
models can learn from the easier samples before the harder ones. As
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a result, training ML models under CL observes a shorter duration
of convergence and higher testing accuracy [3, 24, 27, 91]. For
example, Weinshall et al. proposed to use transfer learning to build
the curriculum and achieved 0.5% to 3.5% higher accuracy than a
model trained in the normal setting [91]. CL has gained significant
interest from the ML community, powering real-world applications
in many domains. Section 7 provides a more detailed survey.

Below, we formalize CL following the definition of Hacohen
etal. [27]. Let X = {Xi}fil = {(x, yi)}f\:’1 be the training dataset,
where N is the number of samples, x; is a data point, and y; is the
label of x;. T is the ML model to be trained. Assuming Stochastic
Gradient Descent (SGD) is used for optimization, and each training
iteration takes a mini-batch of X, and a sequence of M mini-batches
By, ..., Bum will be used for each epoch. The standard training
procedure will sample X uniformly to generate the mini-batches.
Instead, CL uses a difficulty measurer f(X,C) to generate difficult
scores for X, and a training scheduler sorts X by the difficult scores
in an ascending order ahead of training. C is the curriculum, and we
will elaborate on its common options in Section 4.1. A sequence of
subsets Xl’ . ¢ 1(,[ C X are extracted from X after sorting, and the
size of X’; is determined by a pacing function g(i). A mini-batch B;
is sampled uniformly from X;. Algorithm 1 summarizes the process.
Noticeably, slight changes can be applied (e.g., skip the step of mini-
batch sampling), but they should not affect the conclusions drawn
from this study.

Algorithm 1: Curriculum learning framework.

Input: Training dataset X = {X;}Y,, difficulty measurer
f(X, C), pacing function g(i), number of iterations M,
number of epochs E, target model T
1 X « f(X,0);
2 foreel,...,Edo
3 foriel,...,Mdo

. X X[L....g0)];
5 B; — sample(X]);
6 T « train (T, B;)

2.2 Privacy Risks in Machine Learning

Prior works have shown that the ML models could memorize sen-
sitive information from the training data, which can be inferred
by an adversary who keeps querying the model. Two major types
of attacks are MIA [62, 63, 72, 75] and AIA [59, 78], which have
been extensively studied. The detailed literature survey of privacy
attacks and other attacks is left to Section 7.

Membership Inference Attack (MIA). Given a target model T
and any adversary’s external knowledge K, the goal of MIA is to
determine whether a data sample x was used to train the model.
Formally, we have:

Apr :x, T, K+ 1or0 (1)

where T is the target model and K is the adversary’s external knowl-
edge, e.g., the distribution of the training data for T. 1 (0) denotes
the sample is a member (non-member).
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MIA can lead to serious privacy threats. For example, given a
model trained on clinical records of cancer patients to determine
the medicine dosage [38], the attacker can learn whether a person
has cancer by applying MIA to the model. We follow previous
work [11, 50, 72, 75, 79] and assume that the adversary only has
black-box access to T, which means that the adversary can only
query T with the data sample and obtain its corresponding output.
Then, Ay predicts membership with the output of T Section 4.2
elaborates the details.

Attribute Inference Attack (AIA). Different from MIA, the goal
of AIA is to infer attributes of a data sample that are not related to
the target model’s original classification task. A specific attack sce-
nario is when AIA is used to infer some hidden sensitive attributes.
For instance, a target model is trained to conduct gender classifi-
cation, while AIA aims to infer the political view of a data sample.
Such attribute is often hidden when training the target model. How-
ever, due to the intrinsic over-learning property of ML [78], a target
model may try to capture attributes not directly relevant to its task.
Note that AIA is different from property inference attack (PIA) [22]
which infers a property about the entire dataset rather than a sam-
ple: e.g., PIA can tell whether a training dataset is gender-balanced.

Instead of having direct access to the sample, we follow previous
work [59, 78] and consider the adversary only has its representation
(e.g., embedding) generated by a target model T. Formally, AIA can
be defined as:

Aarhos )
where h is a sample’s representation provided by T and s is the
sample’s sensitive attribute predicted by Aa;.

Compared to MIA, the connection between AIA and CL might
be less direct, but we are motivated to study this issue because CL
makes the samples trained in the later batches introduce a greater
impact on the trained model, and we suspect these samples are
more vulnerable under ATA. Moreover, a recent study [35] suggests
learning the underlying training distribution, which might not
always be public, can boost AIA. In Appendix E, we elaborate the
details of AIA.

3 Datasets and Target Models

In this work, we aim to quantify the privacy risks introduced by CL
through the lens of MIA and AIA. To this end, we select popular
datasets and models that are used for ML classification tasks. In our
study, a total of 9 unique datasets are used, with 8 datasets used
for MIAs and 3 datasets used for AIA. Among these datasets, 6 of
them are image datasets, while the remaining 3 datasets consist of
non-image data.

Datasets. Regarding MIA, we use the following 8 datasets, which
are also adopted by previous work [32, 51, 60, 75]. They are CI-

FAR100 [44], Tiny ImageNet [47], Place100, Place 60 [100], SVHN [64],

Purchase [75], Texas hospital stays [75] and Locations [95]. We fo-
cus on image datasets mainly (the first 5 datasets), but tabular
datasets are also evaluated. Due to page limits, we defer the de-
tailed description of the MIA datasets to Appendix A. Regarding
the AIA datasets, we use Place100, Place60 and another dataset
UTKFace [97]. We describe them in Appendix A as well.
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Target Models. We adopt three popular neural network architec-
tures of different learning capacities as the target models’ archi-
tectures for the image datasets. They are ResNet-18 [29], ResNet-
34 [29] and MobileNet [73]. We adopt cross-entropy as the loss
function and SGD as the optimizer. We train all models for 200
epochs with a batch size of 128 by default. The learning rate is
set to 0.12. For the non-image dataset Purchase and Location, we
choose a 3-layer MLP with the same number of epochs and batch
size. The number of neurons in the hidden layer is 256. For the Texas
dataset, we use a 5-layer MLP with 512 neurons in the hidden layer
because this dataset contains more features. To avoid fortuitous
outcomes, all experiments are repeated five times with different
random seeds, and the standard deviations are presented.

4 Methodology

In this section, we describe the curriculum designs experimented
with by our study, the implementation of the basic MIA, our pro-
posed MIA, and the defense techniques to be tested. The implemen-
tation of the basic AIA is described in Appendix E.

4.1 Curriculum Designs

We choose two popular curriculum learning (CL) methods, which
are highlighted in surveys like Wang et al. [89] and have open-
source implementations [26, 83], to train the target model. We
expect our major observations (described in Section 5) are also
applicable to other CL methods, like self-paced curriculum [40, 45],
and automated curriculum [24], because they share similar high-
level ideas (e.g., self-paced curriculum differs from bootstrapping
only in that self-paced curriculum does not let the curriculum
completely guide its learning process). Below we explain the two
CL methods.

e Bootstrapping [27]. The target model T is first trained
without CL, then it serves as a difficulty measurer (f in Al-
gorithm 1) to order the training samples by their loss.

o Transfer learning [91]. Different from bootstrapping, a
pre-trained model is used for the difficulty measurer. We
use inception-v3 [84]° as the pre-trained model to evaluate
the image datasets. The evaluation on tabular datasets with
transfer learning is skipped, as we did not find a widely used
pre-trained model in such a setting.

To better assess the improvement brought by the above two CL
methods and their vulnerabilities under attacks, we establish two
other methods for comparison.

e Baseline curriculum. It uses a random curriculum that is
irrelevant to the data samples’ difficulty. This curriculum is
then used across all training epochs. The normal training
process is different in that a random order is drawn for every
training epoch.

e Anti-curriculum. It shares the same difficulty measurer
with bootstrapping but arranges the samples from difficult
to easy, reversing the outcome of bootstrapping.

This learning rate is empirically chosen and has a very limited effect on attack
accuracy. For example, when using a learning rate of 0.001, the MIA accuracy is
affected by less than 0.2% when attacking a ResNet-18 model trained on CIFAR100.

31t is a widely-used image recognition model that achieves over 78.1% accuracy on the
ImageNet dataset [13].
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For the pacing function g, we choose varied exponential pac-
ing [27], exponentially increasing the fraction of data by steps (a
step denotes the iterations with the same output of g). According
to [27], different pacing functions perform similarly.

In summary, the four CL methods differ in the difficulty measurer
and each CL method feeds training data using the same curriculum
(or ordering) across all epochs. The baseline and anti-curriculum
methods help us understand the contribution of data ranking and
order fixing separately (e.g., anti-curriculum can be considered as
using a wrong curriculum but still repeating the order across epochs
as advised by CL).

As described in Section 2.1, CL can accelerate the training process
to reach higher accuracy. We first validate this claim by evaluating
the training performance and the testing accuracy and compar-
ing them to the normal training method, which does not use any
curriculum as guidance.

Table 1 validates the effectiveness of CL. At least one of the four
CL methods can outperform the normal training by 0.06% to 4.42%,
and the corresponding average training accuracy is given in Ap-
pendix B (Training Accuracy). The maximum standard deviation in
Table 1 is 0.0221 while 32 out of 37 results have a standard devia-
tion less than 0.01. This indicates the difference among various CL
methods is statistically significant. It is worth noticing that boot-
strapping and transfer learning always outperform normal training,
and anti-curriculum performs the worst consistently. Interestingly,
we observe that the baseline performs as well as the transfer learn-
ing curriculum for Place100 and Place60, which means the transfer
learning curriculum does not suit these two datasets well. Figure 1
validates the major motivation of adopting CL, i.e., reaching higher
accuracy while converging faster. Throughout most of the training,
bootstrapping and transfer learning reach higher accuracy faster
than all the other methods. At the same time, it takes the longest for
the anti-curriculum to reach the same training accuracy compared
to all other methods. This indicates that repeating a meaningful
data order improves training. This observation aligns with the dis-
covery from previous work [27, 93]. Finally, CL is expected to have
a disparate impact on classification accuracy across samples. Be-
sides the analysis in Section 5, we also use t-distributed stochastic
neighbor embedding (t-SNE) to visualize this impact. More details
including the visualization are in Appendix B (t-SNE Study).

4.2 Basic MIA

After providing a high-level overview of MIA in Section 2.2, we now
delve into the details, focusing on the three well-known attacks:
NN-based (Neural Network-based) [71, 75], metric-based [79], and
label-only attacks [11, 50].

NN-based attack assumes a vector of prediction posteriors (e.g.,
confidence scores or loss) of all class labels can be returned by the
target model T when querying T with a data sample x. It is also
assumed that the adversary has a shadow dataset (D) that has the
same distribution and format as T’s private training dataset. D is
used to train a set of shadow models S that behave similarly as T
(e.g., having the same architecture as T like previous work [72, 75,
79]). The attacker trains an attack model Ay using S. In particular,
the attacker queries every shadow model S with the samples from
its own training dataset and a disjoint testing dataset. The prediction
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posteriors of all samples and whether they are in training (denoted
member) or testing (denoted non-member) are used as input to
train Apy. Finally, the attacker queries T with a sample of interest
x and uses the prediction posteriors as the input to Ay to predict
the membership status.

Compared to the NN-based attack, the model Ay of metric-
based attacks does not need to be trained. Instead, A;; generates
a privacy risk score from the output of T and compares it to class-
specific thresholds.

For the label-only attack, it assumes only the prediction label
instead of the prediction posteriors are returned from T. Still, the
adversary can continuously add adversarial perturbations to the
input sample x until its prediction label has been changed. The key
insight is that the magnitude of the adversarial perturbation is larger
for the member sample as T gives a more confident prediction. D
and S can be used to select a threshold to separate the perturbation
magnitudes of members and non-members.

MIA Models. Following the original setting of the NN-based
attacks [75], we adopt a 3-layer MLP with 64 and 32 hidden neurons,
and 2 output neurons, as our attack model Ay;;. We use cross-
entropy as the loss function and Adam as the optimizer with a
learning rate of 0.01. Ay is trained for 100 epochs. For metric-
based attacks, we follow the implementation of Song et al. [79]
and consider 4 metrics, including correctness, confidence, entropy,
and modified entropy. The associated attack methods are named
metric-corr, metric-conf, metric-ent, and metric-ment. For label-
only attacks, we leverage the implementation from ART [86].
Related research has shown that NN-based attacks often achieve
better attack accuracy compared to metric-based and label-only
attacks [32, 72, 75]. Thus, we use NN-based attack (specifically
black-box-top3) for most of our evaluation in Section 5.

4.3 Our Proposed MIA

Given that CL orders training samples by difficulty, impacting the
model, we investigate the potential enhancement of MIA when the
target model is trained under CL. For this purpose, we propose
a novel MIA method called Diff-Cali specifically tailored for CL.
We first introduce calibrated MIA, which serves as inspiration for
designing Diff-Cali, followed by the details of Diff-Cali.
Calibrated MIA. Recently, Watson et al. [90] proposed to use a
calibrated membership score instead of the standard membership
score (e.g., loss) to determine whether a sample is a member. Assume
s(T, x) is the original membership score, where T is the target model,
and x is a sample. The calibrated membership score s.q (T, x) is
defined as follows:

®)

where S are shadow models? that behave similarly as T, D is the
shadow dataset, functions s(T, x) and s(S, x) output the member-
ship scores from target and shadow models, A randomly samples
subsets of D to train S, and E computes the expectation of s(S, x).
Finally, s¢q/(T, x) is compared to a fixed threshold 6, and a sample
is considered a member if s.4;(T, x) > 0.

scal(T, x) = (T, x) = Es (D) [s(S, x)]

48 are named as reference models in [90], which resemble shadow models [75] as
they are also trained on the same data distribution of T
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Anti-curriculum

Baseline

Transfer Learning

W Normal Bootstrapping

Dataset
Tiny ImageNet 0.3842 + 0.0027  0.4002 + 0.0043
CIFAR100 0.6081 = 0.0053  0.6232 + 0.0078
Place100 0.2992 = 0.0054  0.3159 + 0.0059
Place60 0.4756 + 0.0041  0.4903 + 0.0040
SVHN 0.9592 + 0.0004  0.9598 + 0.0006
Purchase 0.4931 £ 0.0055 0.5324 + 0.0037
Texas 0.4809 + 0.0072  0.4975 + 0.0066
Location 0.5861 = 0.0107  0.5914 + 0.0027

0.3776 £+ 0.0036
0.5991 + 0.0098
0.2967 + 0.0037
0.4815 + 0.0025
0.9566 + 0.0005
0.4760 + 0.0055
0.4606 + 0.0101
0.5563 £+ 0.0156

0.3798 £ 0.0035
0.6099 + 0.0045
0.3088 + 0.0060
0.4847 + 0.0071
0.9593 + 0.0006
0.5289 + 0.0043
0.4877 £ 0.0095
0.5838 + 0.0077

0.3803 + 0.0043
0.6127 + 0.0221
0.3007 + 0.0053
0.4707 + 0.0154
0.9599 + 0.0006

Table 1: Target model’s average test accuracy on different datasets. ResNet-18 is used for all image datasets, and MLP for
non-image datasets Purchase, Texas, and Location. Transfer learning CL does not apply to non-image datasets. The target
model accuracy is relatively low except for SVHN because we use a subset of the original training data.

100 —=—Normal
Bootstrapping
—— Anti-curriculum
—+—Baseline
—— Transfer Learning

80

60

40

Training Accuracy

20

0 20 40

60 80

Epoch

Figure 1: The training accuracy of different training methods with ResNet-18 on CIFAR100 along the increase of epochs (total
of 90 epochs). Bootstrapping, transfer learning, and baseline reach higher accuracy faster and converge to a better result.

Previous MIA methods could have a high false positive rate
(FPR) on non-members, often over-represented in the samples to be
tested by the attacker. Equation 3 addresses this issue by using the
difference between the target model and shadow models to derive
the membership signal: if x is non-member to S, it is also more
likely non-member to T, therefore s.4;(T, x) should be small. The
evaluation results in [90] show the area under ROC curve (AUC)
can be improved “by up to 0.10” (e.g., after calibrating the loss-based
membership score with Equation 3).

Difficulty Calibrated MIA (Diff-Cali). Calibrated MIA compares
scal(T, x) of all samples to a fixed threshold 6, and we argue that 0
can be calibrated as well. We observe that a CL curriculum re-orders
the samples by their difficulty before the target model is trained, and
such strategy changes how a sample is memorized and vulnerable
under MIA (see Section 5.1 and Section 5.2). More specifically, we
observe that CL makes the target model more vulnerable to MIA,
and this impact is even more pronounced for difficult samples
(Finding 1 in Section 5.1). Therefore, we can update 6 according
to the curriculum and make the attack model more accurate. We
assume the attacker can generate a curriculum similar as the one
used by the target model. For example, the attacker can use the
publicly released pre-trained model to generate the curriculum.

Alternatively, the attacker can train shadow models similar to the
target model and build a curriculum according to loss from them.
We implement this idea for NN-based MIA. When the attack
model Ay outputs the prediction posteriors for an input x, the
posterior of the label “member” is compared against 6, and x is
predicted as a member when the posterior is larger. When train-
ing Amr, we adjust 0 based on samples’ difficulty level to im-
prove the training accuracy, and the pseudo-code is shown in Al-
gorithm 2. Specifically, in each epoch, the calibrated membership
scores sqqi(T, D) are generated for Vx € D, and we use the loss to
compute s (Line 2). Next, we try to find the threshold 6, (ranging
from 0 to 0.1 based on our empirical study) that achieves the best
accuracy in separating members and non-members from D (Line
3). After that, Ay is updated by minimizing the training loss on
D (Line 4) by adjusting the threshold with the following function:

_ (D]-C(x)) (6o — 0.0001)
g(x) C’ 90) = |D|_l

+0.0001 ()

where C(x) indicates the rank of sample x given by curriculum C.
The rank for the easiest sample is 1, while the most difficult is |D].
g(x, C, 6) is to assign a threshold 6 from [0.0001, 65] (0.0001 is the
initial threshold suggested by [90]) to each x based on its difficulty
level (determined by a curriculum C), that is, calibrating threshold
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of each x based their difficulty level. The most difficult sample
compares to 0.0001, the easiest one compares to 6y, and others
compare to 0 that is ranged in [0.0001, 6 ]. The more difficult x has
a smaller threshold, meaning that we are lowering the bar for them
to be predicted as members compared to the easy samples. During
the testing phase, the threshold for a sample x is also adjusted with
g(x, C, bp).

Algorithm 2: Training the attack model and adjusting
threshold under Diff-Cali. “pred” is “prediction”.

Input: Target model T , reference model S, shadow dataset
D, labels of shadow dataset L, attack model Ay,
curriculum C, number of epochs E

1 foreel,...,Edo

2 Seal (T, D) =s(T,D) —s(S,D);

3 0y = argmax pred(Amr, L, sca1 (T, D));
0

4 Amr « train (Amr, sca (T, D), g (x,C, 6));

Diff-Cali follows the direction of addressing the issue caused
by over-represented non-members [5, 90]. On top of those works,
Diff-Cali is customized under CL to amplify the effects of MIA. To
demonstrate the benefit of Diff-Cali, we compare it with the score-
based membership attack after difficulty calibration with default
threshold in Cal [90].

Overall, Diff-Cali outperforms Cal by 4.0% to 9.9% of attack accu-
racy while maintaining the same AUC. Besides, Diff-Cali improves
MIA’s TPR at extremely low FPR, making the difficult sample more
vulnerable. This focus (on the low FPR regime) is the setting with
the most practical consequences, i.e., de-identifying even a few
users contained in a sensitive dataset is far more significant than
making an average-case statement like ‘most people are not in the
sensitive dataset’ [5]. Moreover, we conclude that the knowledge
of the actual curriculum being used is not required for the perfor-
mance boost from introducing Diff-Cali (See Figure 4). The detailed
evaluation of Diff-Cali across all metrics such as attack accuracy,
confidence score, and TPR at low FPR are presented in Section 5.3.

Some recent works suggest to use class-specific thresholds [79],
which are especially beneficial for unbalanced datasets. We did not
adjust the threshold by classes because our thresholds have been
fine-tuned with difficulty levels, and they are effective for both
balanced and unbalanced datasets.

4.4 Defense Methods

Some defense methods have been proposed to reduce the success
rate of privacy attacks, in particular, MIA. We are interested in
how they perform under curriculum learning and our proposed
attack. To this end, we select DP-SGD [1], MemGuard [38], Mixup-
MMD [48] and AdvReg [62]. DP-SGD and MemGuard represent two
directions in privacy protection, while MixupMMD and AdvReg
are two more recent defense methods. Below, we explain the four
defense methods.

DP-SGD. Differentially-Private Stochastic Gradient Descent (DP-
SGD) modifies the stochastic gradient descent (SGD) algorithm and
integrates (e, §)-DP [16] to provide provable privacy guarantee.
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DEerFINITION 1. ((€, 6)-DP) An algorithm M(-) satisfies (e, §)- dif-
ferential privacy ((e, 5)-DP), if and only if for any pair of datasets V
and V' that differs in only one element and for any possible output
set O

Pr{M(V) € O] < e®Pr[M(V’') € O] + 6. (5)

DP-SGD first randomly groups the samples by batches. Within
a batch, after a per-sample gradient is computed, DP-SGD clips it
to a maximum norm C and Gaussian noise is added to the gradi-
ent aggregated within the batch, with standard deviation §C. The
output of the trained model will satisfy (e, §)-DP.

Because DP-SGD relies on random sampling, the DP guarantees
in DP-SGD could be invalidated under CL, because the model will
be trained with the same or public curriculum. Thus, we only show
results of DP-SGD in normal training, and use it as a baseline to
compare with the other methods.

MemGuard. Different from DP-SGD, MemGuard does not change
the training process. At a high level, it obfuscates the predictions
of the target model by adding noises to its output. It is designed to
defend against MIA in particular, while DP-SGD deals with all sorts
of privacy risks. Assuming an attack model Ay has been trained
with shadow training [75], and A (T (x), y) outputs a confidence
score ranging in [0, 1], where T(x) is the prediction of the target
model and y is the label for x. A sample is considered a member if
the score is larger than 0.5 and a non-member if smaller than 0.5.
MemGuard has two phases. In Phase 1, it crafts adversarial noise
and adds it to T(x) to force Ap(T(x),y) to be 0.5 to confuse the
attacker, while the distance between the original prediction and
the noisy prediction is minimized. In phase II, the adversary adds
the noise to the original prediction with a certain probability of
trade-off the utility and privacy.

MixupMMD. Li et al. [48] found a model vulnerability under MIA
relates to the difference between the training and testing accuracy,
and they proposed MixupMMD to intentionally reduce the training
accuracy to validation accuracy. A new penalty, Maximum Mean
Discrepancy (MMD), is used by the regularizer.

AdvReg. Nasr et al. [62] proposed to mitigate MIA by formulating
the defense as a min-max optimization problem. Given a validation
set that serves as “non-members”, AdvReg introduces an adversar-
ial classifier to infer the membership status using the posteriors
generated from the target model. The optimization goal is to mini-
mize the original classification loss and maximize the loss of the
adversarial classifier.

5 Evaluation Results

In this section, we present the evaluation results of MIA when CL
is applied to train the target model. We also attempt to explain the
observations from the angle of data memorization and show the
impact of CL on the existing defenses. We highlight our insights
with text boxes. In Appendix E, we report the evaluation about AIA,
but in general, CL is less vulnerable under AIA compared to MIA.
Evaluation Setup. To evaluate MIA, we split each dataset de-
scribed in Section 3 into three disjoint parts: one for training the
target model, one for training a shadow model, and one for testing
both the target and shadow model.
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Anti-curriculum

Baseline

Transfer Learning

W Normal Bootstrapping

Dataset
Tiny ImageNet 0.9193 + 0.0000  0.9385 + 0.0000
CIFAR100 0.8577 £ 0.0011  0.8751 + 0.0001
Place100 0.9425 £+ 0.0000  0.9549 + 0.0001
Place60 0.8773 + 0.0022  0.8987 + 0.0001
SVHN 0.5570 = 0.0000  0.5605 + 0.0002
Purchase 0.9524 + 0.0016  0.9453 + 0.0024
Texas 0.6749 + 0.0092  0.7068 + 0.0139
Location 0.9153 £ 0.0066  0.9194 + 0.0048

0.9116 + 0.0001
0.8376 + 0.0001
0.9335 + 0.0001
0.8625 + 0.0001
0.5514 + 0.0001
0.9118 + 0.0122
0.5950 + 0.0161
0.8980 + 0.0038

0.9207 £ 0.0000
0.8582 + 0.0001
0.9416 + 0.0001
0.8827 + 0.0001
0.5599 + 0.0003
0.9458 + 0.0015
0.7039 + 0.0122
0.9169 + 0.0038

0.9439 + 0.0000
0.8718 + 0.0001
0.9617 + 0.0001
0.8902 + 0.0001
0.5580 + 0.0003

Table 2: Accuracy of NN-based MIA on models trained on 8 datasets. Transfer learning CL does not apply to non-image dataset

Purchase, Texas and Location.

To evaluate the defense methods, we split each dataset into five
parts as some advanced methods need reference datasets for train-
ing. More details about the defenses can be found in Section 5.4. All
experiments were repeated 5 times to minimize the fortuitous out-
comes, and the mean value and standard deviation were reported.

Evaluation Metrics. First, we compute the attack accuracy, mea-
sured by the correct predictions (member/non-member) versus
all predictions, to assess the effectiveness of MIA/AIA, and the
classification accuracy of the target model to assess the impact of
curriculum learning and defenses. Second, to better understand the
attack results, we retrieve the confidence scores of members and
non-members, respectively. Note that the confidence score indi-
cates the likelihood of a sample being classified as a member or
non-member. Third, we compute the true-positive rate (TPR) at the
false-positive rate (FPR) of the attacks. As noted by Carlini et al. [5],
attacks should emphasize the member guesses over non-member
guesses, so they should be evaluated by considering TPR at low FPR.
This cannot be precisely modeled by metrics like overall accuracy,
precision, or recall.

5.1 Evaluation of Basic MIA

We start with the experiments on the 5 image datasets (CIFAR100,
Tiny ImageNet, Place100, Place60, and SVHN), using ResNet-18 as
the target model architecture and later ResNet-34 and MobileNet
for comparison. The evaluation of the tabular datasets (Purchase,
Texas hospital stays, and Locations) is presented at the end. The
attack models are described in Section 4.2.

MIA Accuracy. We found that models trained using meaningful
CL methods (i.e., bootstrapping and transfer learning) are slightly
more vulnerable to MIA. Table 2 shows the accuracy of NN-based
black-box-top3 MIA [75] by datasets and CL methods. All experi-
ments are repeated five times with different random seeds and the
standard deviations are presented. Additionally, we run McNemar’s
test and verify that the difference among models trained with var-
ious curriculum methods are statistically significant (i.e., p-value
< 0.05). The biggest attack accuracy improvement observed for im-
age datasets is 2.46% (Tiny ImageNet with transfer learning) while
the biggest improvement for non-image datasets is 3.20% (Texas
with bootstrapping). Among different CL methods, bootstrapping
and transfer learning are the most vulnerable, with an average of
1.29% and 1.44% improvement in the attack accuracy against the

normal training, respectively. For baseline CL, the attack accuracy
decreases for Place100, whereas a slight increase is observed for
the attack accuracy on other datasets. For anti-curriculum CL, the
attack accuracy decreases for all datasets. This result indicates both
the data repeating (reflected by the results of baseline) and ordering
(reflected by the results of bootstrapping and anti-curriculum) of CL
(explained in Section 4.1) contribute to the vulnerability under MIA.
The consistent performance of bootstrapping and anti-curriculum
indicates that data ordering plays a bigger role.

Regarding the impact of datasets, we found more complex datasets
(e.g., with more classes of labels) tend to have higher attack accu-
racy in general. For example, the average MIA accuracy is 94.39%
for Tiny ImageNet (200 classes), 87.18% for CIFAR100 (100 classes),
96.17% for Place100 (100 classes), 89.02% for Place60 (60 classes),
and 55.80% for SVHN (10 classes), all under transfer learning. The
same effects have also been observed in other works [75].

Regarding the metric-based and label-only attacks, the result
is similar to the NN-based attack, as suggested by the evaluation
on CIFAR100, shown in Table 3. The only exception is metric-corr,
which performs worse than other attacks with bootstrapping. This
result can be explained by the assumption of metric-corr that the
target model is trained to predict correctly on its training data,
which may not generalize well on the test data. In the rest of the
evaluation, we fix the attack model to black-box-top3, and the
NN-based attack in the rest of the paper primarily refers to black-
box-top3, unless indicated otherwise.
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Figure 2: MIA accuracy on CIFAR-100, Tiny ImageNet.
ResNet-18 is used for target model training.



Proceedings on Privacy Enhancing Technologies 2025(1)

Joann Qiongna Chen, Xinlei He, Zheng Li, Yang Zhang, and Zhou Li

Method
Attack

Normal

Bootstrapping

Anti-curriculum

Baseline

Transfer Learning

NN-based [75]
Metric-corr [79]
Metric-conf [79]
Metric-ent [79]
Metric-ment [79]
Label-only [86]
Cali [90]
Diff-Cali

0.8577 + 0.0011
0.6920 £+ 0.0000
0.8600 + 0.0000
0.8490 + 0.0000
0.8620 + 0.0000
0.8200 + 0.0082
0.7889 + 0.0012
0.8519 + 0.0003

0.8751 + 0.0001
0.6820 + 0.0000
0.8810 + 0.0000
0.8750 + 0.0000
0.8820 + 0.0000
0.8263 + 0.0082
0.8272 + 0.0009
0.8670 = 0.0006

0.8376 £ 0.0002
0.6905 + 0.0000
0.8458 + 0.0000
0.8320 + 0.0000
0.8463 + 0.0000
0.7963 + 0.0117
0.7532 £ 0.0004
0.8382 + 0.0006

0.8582 + 0.0001
0.6930 + 0.0000
0.8553 + 0.0000
0.8435 + 0.0000
0.8568 + 0.0000
0.8050 + 0.0045
0.7781 £ 0.0025
0.8438 + 0.0008

0.8718 + 0.0001
0.6855 + 0.0000
0.8740 + 0.0000
0.8685 + 0.0000
0.8760 £+ 0.0000
0.8088 + 0.0074
0.8148 + 0.0013
0.8614 + 0.0006

Table 3: Average accuracy of NN-based, metric-based, label-only and Diff-Cali attacks on models trained on CIFAR100 with

ResNet-18.

Figure 2 shows the attack accuracy of samples from different
difficulty levels. More specifically, we construct the test dataset as
half member samples and half non-member samples. Member sam-
ples are divided into different difficulty levels while non-member
samples across each difficulty level are fixed. Figure 2 demonstrates
that using a meaningful curriculum (i.e., bootstrapping and transfer
learning) introduces a higher increase of attack accuracy on the
difficult samples compared to the simple samples (e.g., 7% vs. 2.5%
on CIFAR100). Hence, the impact of curriculum is more pronounced
on difficult samples than on simple samples.

Confidence Score. Since the key contribution of CL is to factor
in the samples’ difficulty levels during the training procedure, here
we evaluate how difficulty levels impact the samples’ vulnerability
individually. Intuitively, the difficult member samples should be
harder to attack than the easy member samples. As we can see from
Figure 3a, and Figure 3b, the confidence scores of difficult member
samples are closer to the score distribution of non-member samples.
On the other hand, difficult non-member samples could be easily
attacked, as they have significantly lower confidence scores. How-
ever, since CL forces the model to learn the samples in a repetitive
manner, we want to find out whether samples will be remembered
by the model differently. To assess and quantify the possible privacy
risk discrepancy caused by CL, we first arrange samples according
to their difficulty level. Then, we use the confidence score and at-
tack accuracy to analyze individual samples. Note that we train a
separate model and use the sample loss given by this model as a
guide to determine how difficult a sample is. This model is used
solely for getting the difficulty levels of all samples and is different
from the target model in our following evaluation.

Figure 3 depicts the attack model’s confidence score by samples’
difficulty levels, when CIFAR100 and Tiny ImageNet are tested.
Though the difficult samples are not more vulnerable than the easy
samples, the gap in confidence scores is much narrower (espe-
cially for the confidence score of members). Take the target model
in CIFAR100 as an example, our attack model can recognize the
most difficult member samples (scored as difficulty level 9) from
this model with over 7.83% (absolute growth from 72.19% to 80.02%)
more confidence, thanks to transfer learning (Figure 3a). Interest-
ingly, for the most difficult member samples, it is even possible
for anti-curriculum to have a higher confidence score compared
to the normal training (Figure 3c). This observation indicates that
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enforcing difficult samples to the training process first does not nec-
essarily make the model more likely to forget them. If we perceive
feeding difficult samples first to a model as negative, the repetition
of a curriculum can possibly compensate for such a negative effect,
i.e., making the target model memorize the difficult samples better
than a normal ML where these samples are presented at random
times throughout training. In Appendix C, we show the confidence
scores on the other image datasets, including SVHN (Figure 11),
Place100 (Figure 12) and Place60 (Figure 13). The trend is similar.
TPR at Low FPR. In addition to the attack accuracy, we mea-
sured the relationship between TPR and low FPR, as explained in
“Evaluation Metrics” (Section 5). Following Carlini et al. [5], we
present the ROC curve for the attacks with both linear scaling and
log scaling to emphasize the low-FPR regime. Figure 4a and Fig-
ure 4b demonstrate the ROC curve for NN-based attack. The results
show that using curriculum increases ROC. The TPR of transfer
learning and bootstrapping are generally higher than the others
except at extremely low FPR (< 10™%). This indicates CL introduces
disparate impact to members and non-members for most samples.
Moreover, the NN-based attack fails to achieve a TPR better than
random chance at any FPR below 0.045, indicating potential for
further improvement.

Loss Distribution. The previous evaluation presents a macro-
level understanding of CL’s impact on MIA. Here we present a
micro-level analysis by examining the loss distribution between
members and non-members in models trained with normal and CL
methods. Due to the space limitation, here we only show the results
of ResNet-18 trained on Tiny ImageNet in Figure 5 which shows a
clearer discrepancy in terms of the loss distributions compared to
other datasets. Note that the loss scores are normalized. As one can
see, there is a clear difference between their loss distributions, e.g.,
bootstrapping makes the overall members’ loss much lower and
the members’ loss distribution less overlapped with non-members’,
especially for those members with higher difficulty levels. In Sec-
tion 5.2, we also reason this observation from the perspective of
data memorization.

Target Model Architectures. To understand the impact of the
architecture of the target model, we launched MIA against ResNet-
34 and MobileNet and compared the results against ResNet-18.
Table 4 demonstrates the average attack accuracy of MIA when tar-
get models are trained with ResNet-18, ResNet-34, and MobileNet,
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Figure 3: Attack model’s confidence score for both member and non-member samples on CIFAR-100 and Tiny ImageNet. ResNet-
18 is used for target model training, and data samples are arranged according to their difficulty scores from bootstrapping.

Method Normal
Architecture

Bootstrapping

Anti-curriculum Baseline Transfer Learning

ResNet-18 0.8577 £ 0.0011  0.8751 + 0.0001
ResNet-34 0.8564 + 0.0001 0.8746 + 0.0003
MobileNet 0.7979 £ 0.0001  0.8308 £ 0.0000

0.8376 + 0.0002
0.8481 + 0.0002
0.7763 + 0.0002

0.8582 + 0.0001
0.8559 + 0.0002
0.8318 £ 0.0000

0.8718 + 0.0001
0.8715 + 0.0002
0.8430 + 0.0001

Table 4: The average accuracy of NN-based attacks on models trained on different network architectures with CIFAR100.
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Figure 4: TPR/FPR of NN_based MIA and Diff-Cali under dif-
ferent training method trained with ResNet-18 on CIFAR100.

respectively. It shows that they all share a similar trend of how
CL affects MIA. Though MobileNet turns out to be less vulnera-
ble (5.85% and 5.93% less attack accuracy compared to ResNet-34
and ResNet-18, respectively), bootstrapping, transfer learning, and
baseline all increase the overall attack accuracy compared to nor-
mal training. Figure 6 demonstrates the results by difficulty levels
on ResNet-34 and MobileNet when training with Tiny ImageNet,
which can be viewed together with Figure 2b about ResNet-18.
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Figure 5: Loss distribution for models trained on Tiny Ima-
geNet with ResNet-18.

MobileNet again turns out to be less vulnerable (4% less attack accu-
racy compared to ResNet-34 and ResNet-18), bootstrapping, transfer
learning, and baseline all increase the overall attack accuracy and
narrow down the gap between difficult and easy samples. As such,
the privacy concerns in CL cannot be addressed by changing the
target models’ architectures. This observation is consistent with
other works [32, 50] about MIA vs. architectures. On a different
note, we speculate that MobileNet is less vulnerable compared to
ResNet due to its more limited learning capacity, which results in
less over-fitting and memorization, making it more robust against
MIA. We discuss the overfitting issue further in Section 6.

Non-image Datasets. As shown in Table 2, most experiments
remain to have the same trend they are showing in image datasets.
For Purchase, however, attack accuracy on normal training is 0.71%
higher than bootstrapping for example. This shows that CL does not
always empower MIA more. In Figure 14 of Appendix C, we show
the confidence score of members and non-members on Purchase,
and the result is similar to the image datasets, where the impact of
CL is more prominent on difficult samples.
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In the meantime, we found the changes caused by different CL
methods are more drastic on the non-image datasets, compared to
the image datasets. For example, Texas has a more prominent attack
accuracy drop (8.0%) on anti-curriculum. The non-image datasets
are relatively simple, containing only binary features after pre-
processing, hence they are more likely to be impacted by CL. Table 1
also shows the target model accuracy varies more for the non-image
datasets under CL.

Finding 1: CL makes the target model more vulnerable to MIA,
and the impact of CL on difficult samples is more pronounced
than on simple samples.

Finding 2: Both data ordering and data repeating make a model
more vulnerable under MIA, while data ordering plays a bigger
role in influencing the vulnerability of a model under MIA.

5.2 Analysis with Data Memorization

The previous experiments show that the impact of CL on difficult
samples is more pronounced than on simple samples. Here, we
attempt to explain this observation with a more principled analysis.
Recent works [17, 18] suggest the effectiveness of MIA could be
tied to how well the target model memorizes individual data sample.
The notion of memorization is formally defined as [17]:

mem(A, D, 1) = Br [T () =yl = A}ZJ v [T (xi) = yi] (6)
where A denotes the training algorithm, D denotes the training
dataset, T is the trained model, (x;, y;) denotes one sample with
its ground-truth label, and D\ denotes D with i-th sample re-
moved. The model is likely to memorize the data sample if adding
(xi, y;) to training significantly changes the model’s prediction on
y;. Though Equation 6 models the memorization of a single data
sample, we can easily extend it to quantify the memorization of
multiple samples at once.

Specifically, we evaluate ResNet-18 trained with CIFAR100. We
first leave out 800 most difficult data samples (4% of all samples)
and train a model without these data via bootstrapping (“not seen”).
Then, we train the model under CL according to data memorization:
the curriculum makes the 800 data samples either be seen at the be-
ginning (“first seen”), end (“last seen”), or random places (“random”)
of each training epoch. Figure 7 depicts the prediction probability
of the true labels of the 4 scenarios. Data memorization under CL
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Figure 7: Memorization: violin plots of prediction probability
of 800 most difficult samples, according to bootstrapping CL.
The horizontal bars of each violin represent the minimum
and maximum of the prediction probability.
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can be assessed by comparing “first seen”, “last seen”, and “random”
to “not seen”, following the idea of Equation 6. We observe that
other than “not seen”, the other three scenarios memorize the diffi-
cult samples fairly well (higher prediction probability of the true
class). It turns out that data ordering has a strong impact on data
memorization, e.g., “last seen” provides the strongest memoriza-
tion compared to “first seen” and “random”. The impact on difficult
samples is more pronounced under CL because they are memorized
better after data ordering. Another concept often considered to be
connected to memorization is data valuation. In Appendix D, we
elaborate on the topic of data Shapley and study if our observation
in this section can be explained from the angle of data valuation.

Finding 3: CL forces the model to memorize the difficult samples
harder, which makes them more vulnerable.

5.3 Evaluation of Diff-Cali

In order to fully utilize the information of difficulty levels exposed
by CL, we propose Diff-Cali as described in Section 4.3. Overall, the
NN-based attack still has a slightly better attack accuracy compared
to Diff-Cali, but Diff-Cali has higher confidence scores for difficult
samples and has better TPR at the low FPR regime.
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Figure 8: Diff-Cali’s accuracy for models trained on CIFAR100
and Tiny ImageNet with ResNet-18.

Attack Accuracy. Table 3 presents the accuracy of Diff-Cali,
which is about 1% lower compared to NN-based attack on all CL
methods. Figure 8 depicts the attack accuracy on CIFAR100 and
Tiny ImageNet. Though Diff-Cali achieves slightly lower accuracy
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(a difference of less than 1.44%) compared to NN-based attack, with
adaptive calibration, we are able to make the difficult samples
more vulnerable: For example, the attack accuracy of difficulty
level at 9 and 0 are 86.47% and 86.32% for transfer learning under
CIFAR100. The most difficult samples now can be predicted 2.64%
and 2.35% more accurately for normal and anti-curriculum ML,
respectively. Overall, Diff-Cali is able to overcome the privacy risk
discrepancy of different samples through calibration and results
in better attack accuracy for difficult samples for normal ML and
anti-curriculum ML.

Confidence Score. Like the evaluation of basic MIA, we show the
confidence scores of samples according to their difficulty level in Fig-
ure 15 and Figure 16 of Appendix C. Overall, we are able to achieve
confidence scores greater than 0.7807 (normal) for CIFAR100 and
0.8678 (normal) for Tiny ImageNet for all member samples, whereas
the minimum member confidence score from NN-based is 0.6889
for CIFAR100 and 0.8333 for Tiny ImageNet (Figure 3). In short,
we are able to improve the normal training confidence score for
all members by 3.29% for CIFAR100 and 3.45% for Tiny ImageNet.
Similarly, we reduce the confidence score of non-members (note
that a lower confidence score means less chance to be misclassified
as non-members) by 0.0414 for CIFAR100 and 0.1751 for Tiny Ima-
geNet. Unlike previous NN-based attack, the accuracy of Diff-Cali
does not share a similar trend as the confidence score because the
final prediction of the membership status of Diff-Cali is not based
on the confidence score solely.

TPR at Low FPR. In Figure 4, we show that Diff-Cali can achieve
much higher TPR at low FPR (< 10™*). We present the ROC curve
for the attacks with both linear scaling and log scaling to emphasize
the low-FPR regime. Figure 4c and Figure 4d demonstrate the ROC
curve for Diff-Cali. The results show that using curriculum increases
ROC (Figure 4a, Figure 4c). We observe that our proposed Diff-Cali
performs better at low FPR. More specifically, Figure 4b shows that
NN-based attack fails to achieve a TPR better than random chance
at any FPR below 0.045 while Diff-Cali can be better than random
guessing at all times.

Finding 4: Diff-Cali improves MIA performance in terms of TPR at
low FPR, making the difficult samples not only more vulnerable
compared to other attacks but also more vulnerable than the
simple samples.

5.4 Evaluation of Defense

We evaluate how the defenses including DP-SGD, MemGuard, Mix-
upMMD, and AdvReg perform under the normal setting or CL.
Table 5 shows the attack accuracy on ResNet-18 which is trained
with CIFAR100. Because MixupMMD and AdvReg require reference
datasets for defense deployment, we equally divided CIFAR100 into
5 parts for fair comparison among all the defense techniques. More
specifically, all target models in Table 5 are trained with only 12, 000
data points, which also explains why the accuracies are lower.
Regarding DP-SGD, € and ¢ in our evaluation are 124,496 and
le — 5. We have a large € because we have 200 epochs of training
and ResNet-18 contains a large number of parameters. We did not
change these settings for a fair comparison with other defense
techniques. Previous studies have used large € for DP-SGD in order
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to achieve good model accuracy [34, 46]. Based on a recent work [4],
we are able to make € 10 times smaller after proper parameter tuning
while achieving similar target accuracy. The € can be brought down
even first with a large batch size. Pulling tricks of DP-SGD based on
the above recent work can further boost the tradeoff. Note that we
still use small batch size for DP-SGD evaluation though that results
in large €. This is because we want to keep parameters across all
target models the same for a fair MIA evaluation, and we have
limited computing resources for handling large batch numbers.

Because of the conflicting requirement of DP-SGD and CL, we
only present the result of DP-SGD under the normal setting. DP-
SGD is able to curb the MIA accuracy from 90.3% to 50.8%, which
is close to random guess (i.e., member or non-member), though at
the cost of a significant drop in the target model’s classification
accuracy (from 48.0% to 17.4%). This observation is consistent with
previous works [46, 48]. We also found DP-SGD is effective against
Diff-Cali (e.g., attack accuracy for normal is dropped to 53.67%).

For MemGuard, due to its design, NN-based MIA accuracy is
fixed to 50% when the defender knows what MIA method is per-
formed by the attacker, reaching the same level as DP-SGD. In the
meantime, the classification task of the target model is not impacted
by MemGuard. However, it is not effective against label-only at-
tacks, as it does not change the label. Our evaluation shows that
the label-only attack accuracy can still reach up to 84.5% even with
MemGuard deployed. MixupMMD decreases the MIA accuracy
(e.g., 91.4% to 83.1% for bootstrapping) but it is much higher than
DP-SGD. Interestingly, it increases the target model accuracy (e.g.,
from 51.4% to 54.4% for bootstrapping), which might be attributed
to its new regularizer. AdvReg can also increase target accuracy
(e.g., 51.4% to 54.2% for bootstrapping) but like MixupMMD it is not
effective in mitigating MIA (e.g., MIA accuracy is even increased
from 91.4% to 91.6% for bootstrapping). This observation concurs
with a previous work [79].

Overall, there is still room for improvement in defenses. Potential
future work can follow the direction of preserving certain properties
brought by an ML technique (e.g., fast convergence and higher final
performance by CL) and mitigating privacy risks generically.

Finding 5: Except DP-SGD, none of the studied defenses can
significantly drop the MIA accuracy. DP-SGD cannot deliver the
DP guarantee under CL.

6 Discussion

Limitations. 1) The research on ML privacy has been grow-
ing strong in recent years, and numerous attacks, variations, and
defenses have emerged. Admittedly, not all attack methods (e.g.,
adaptive attack [79] and LiRA [5]) and defense techniques (e.g.,
PATE [67]) have been examined. Though LiRA is more effective
than the basic MIA attacks we experimented, it requires multiple
shadow models while all other attacks on our paper need one. To
fairly compare with LiRA, the current datasets need to be divided
into much smaller subsets, which will lead to worse performance
of all target models and shadow models. Thus, we did not examine
LiRA in this work. However, we believe our key conclusions (e.g.,
the difficult samples become more vulnerable when trained with
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None DP-SGD MemGuard MixupMMD AdvReg
Target MIA Target MIA Target MIA Label-only Target MIA Target MIA
Normal 48.0 90.3 17.4 50.8_=+0.07 48.0 50.0 83.0 54.1 81.6_+0.02 51.2 89.2_+0.01
Bootstrapping 51.4 91.4_+0.03 - - 51.4 50.0 84.5 54.4 83.1_+0.02 54.2 91.6_+0.02
Transfer 48.9 91.3_+0.03 - - 48.9 50.0 84.5 55.7 76.1_=+0.03 50.4 92.8_+0.04
Baseline 50.0 91.5_+0.02 - - 50.0 50.0 84.0 55.0  84.4_+0.02 53.0 91.6_=+0.01
Anti-curriculum 49.3 89.5_+0.02 - - 49.3 50.0 81.3 52.6 79.1_+0.02 52.1 87.3

Table 5: The average accuracy of MIA (+ standard deviation) on target model trained on CIFAR100 with ResNet-18 and different
defense methods. All numbers are in percentage, entry without + STD means the STD is less than 0.01%.
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Figure 9: The training and test accuracy over 200 epochs for target model ResNet-18 on CIFAR-100.

Normal

Method
Epoch (Network)

Bootstrapping

Anti-curriculum Baseline Transfer Learning

100 (ResNet-18)
200 (ResNet-18)

0.8390 + 0.0001
0.8577 + 0.0011

0.8468 + 0.0001
0.8751 + 0.0001

0.8153 + 0.0002
0.8376 + 0.0002

0.8461 + 0.0000
0.8582 + 0.0001

0.8670 = 0.0000
0.8718 + 0.0001

100 (ResNet-34)
200 (ResNet-34)

0.8356 + 0.0001
0.8564 + 0.0001

0.8466 + 0.0001
0.8746 + 0.0003

0.8310 £ 0.0000
0.8481 + 0.0002

0.8502 £ 0.0000
0.8559 + 0.0002

0.8577 + 0.0001
0.8715 + 0.0002

100 (MobileNet)
200 (MobileNet)

0.6475 £ 0.0002
0.7979 £ 0.0001

0.6764 + 0.0002
0.8308 + 0.0000

0.6012 = 0.0002
0.7763 = 0.0002

0.6695 + 0.0002
0.8318 + 0.0000

0.6744 = 0.0002
0.8430 + 0.0001

Table 6: The average accuracy (+ standard deviation) of NN-based attacks on target models on CIFAR100 trained with different

epochs and network architectures.

CL) hold generically, due to the fundamental designs of the cur-
riculum. 2) Overfitting can impact a target model’s memorization
of the training data, which in turn affects membership leakage,
as discussed later in this section. Early stopping is a well-known
method to limit such memorization and may help mitigate mem-
bership leakage. We acknowledge that this technique is not utilized
in the paper. 3) We mainly evaluated the privacy attack on image
and tabular datasets, with widely used models like ResNet and
MLP. The two popular CL methods including bootstrapping and
transfer learning are tested. Admittedly, not all data types (e.g., text
and speech), models and CL methods are covered. Particularly, the
newer model structures, such as the transformer-based model (e.g.,
Vision Transformer [14]), could result in larger privacy leakage,
due to their better model capacity, and we leave the investigation
as a future work. 4) Not all ML privacy attacks are tested, such as
model inversion attacks [21, 96], as we suspect they are less likely
to be impacted by CL. In the end, we want to mention that our
motivation and efforts are comparable to other works that study
the privacy of special ML settings like contrastive learning [32]. 5)
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We provided a few ways to calculate the difficulty score, such as
bootstrapping and transfer learning, which rely on only one model.
However, there are more sophisticated methods to measure diffi-
culty scores that might give CL an even larger boost. For example,
using difficulty measurements from an ensemble of models, such
as MobileNet and ResNet. 6) Due to the conflicting requirements of
CL and DP-SGD, we did not test the original DP-SGD on models
trained under CL. We have not found a study that combines them
but we believe such a study would be interesting and necessary.

Evaluation Metrics. For privacy attacks like MIA, whether and
how it is effective is determined by the evaluation metrics. Attack
accuracy is the one adopted in the beginning and is still widely
used today, but recent studies have suggested metrics have to be
carefully selected to fully understand the results. Following Carlini
et al. [5], we adopt TPR at low FPR as another metric. We also view
the results under confidence scores to shed light on the divergent
impacts of CL into samples, which reveal new insights that are not
captured by other metrics. Other metrics like precision/recall [5]
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and disparate vulnerability [94] can be considered and we believe
this research direction still needs new input.

Overfitting. We acknowledge that overfitting can affect a target
model’s memorization of the training data, thereby making MIA
easier. To further study this topic and its impact, we use CIFAR100
as an example and train target models for both 100 and 200 epochs.
We then compared their overfitting levels (measured by the differ-
ence between training and test accuracy) and their corresponding
MIA accuracy. Figure 9 shows the training and test accuracy over
200 epochs, which demonstrate the overfitting levels over time
are comparable among different CL methods. Table 6 shows the
MIA accuracy for target models trained for 100 and 200 epochs
using different network architectures. This demonstrates that both
overfitting and CL strategies can increase a model’s vulnerability
to MIA. Building on this, we will investigate how these factors
contribute to model vulnerabilities in future work. Specifically, we
will examine the convergence process, focusing on techniques like
data augmentation and regularization to mitigate overfitting, while
evaluating the impact of CL strategies on model vulnerability. Fur-
thermore, early stopping can serve as a potential mitigation for
membership leakage, as indicated in previous research work [79].

7 Related Work

Curriculum Learning (CL). The idea of CL was first introduced
by Bengio et. al [3]. Researchers have then developed many new
designs such as predefined CL [41], self-paced CL [40], CL by trans-
fer learning [91] and other automated CL [24]. CL is proved to be
effective in the domain of reinforcement learning [19, 20, 58, 61],
computer vision [3, 15, 70, 80], natural language processing [3, 25,
52, 82, 101], speech [6, 56, 98], etc. Note that the concept of self-
paced[45] learning can often be confused with CL bootstrapping.
They share a similar idea of using an iterative procedure to assign
higher weights to training examples that have lower costs with
respect to their chosen hypothesis. Bootstrapping differs in that
the difficulty score is generated based on the model accuracy rather
than a hypothesis [27].

Membership Inference Attack (MIA). Section 4.2 has surveyed
some representative works about MIA. Here we describe other
notable works. On top of the original MIA [75], Salem et al. [72]
proposed three more powerful attacks by relaxing the assumptions
made by Shokri et al. [75]. Nasr et al. [63] investigated privacy risks
in centralized and federated learning scenarios under both black-
box and white-box settings. Recent works show that MIA can be
further enhanced by adopting flexible thresholds [36], calibrated dif-
ficulty level [90], and loss trajectory [54]. Besides the general ML set-
tings, recent works examined special settings like contrastive learn-
ing [32, 51], Generative Adversarial Networks (GAN) [8, 10, 33],
and Graph Neural Networks (GNN) [30, 31, 92]. However, none
of them investigated curriculum learning, and we aim to fill this
knowledge gap. To mitigate MIA, researchers have proposed a few
defensive mechanisms, like DP-SGD [1], MemGuard [38], Mixup-
MMD [48], and AdvReg [62], as described in Section 4.4. PATE [67]
uses teacher models to supervise the training of the student model
and adds Laplacian noise to the teacher models’ output. Salem et
al. [72] leverage model stacking and dropout to reduce overfitting.
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Attribute Inference Attack (ATA). AIA presents another notable
threat to ML privacy. Appendix E surveyed the key works under
AIA. In addition, He et al. [32] show that AIA is more vulnerable
to models trained by contrastive learning. Recently, Song et al. [77]
show that AIA is also effective against language models. Jayaraman
et al. propose a new white-box ATA method that achieves better
accuracy [35]. We focus on the black-box setting.

Other Attacks Against ML Models. MIA and AIA can be consid-
ered as attacks on the data privacy of ML. Model privacy, integrity,
and availability have also been investigated, resulting in numerous
studies. Model stealing aims to learn the parameters [42, 43, 66,
74, 85] or hyperparameters [65, 88] of a target model, and model
inversion, whose goal is to recover the training dataset [21, 96].
There also exists some works focus on protecting a model’s own-
ership [2, 9, 12, 37, 49, 57, 68, 87] to defend against model stealing
attacks and other attacks like network pruning and fine-tuning.

8 Conclusion

In this work, we perform the first quantitative study to understand
how curriculum learning (CL) , a widely used technique that accel-
erates model training, and affects the privacy of the trained model.
Specifically, we trained target models under 6 image datasets and
3 tabular datasets and performed membership inference attacks
(MIA) and attribute inference attacks (AIA) against them to assess
the privacy risk in CL. Our results show that the target model be-
comes slightly more vulnerable to MIA but not so under AIA. We
also found MIA has a significantly larger impact on samples with
high difficulty levels. By exploiting the leakage from difficulty lev-
els, we design a new MIA, termed Diff-Cali, which achieves similar
overall accuracy with much better TPR at low FPR and can infer
difficulty samples from normal ML more accurately. Finally, we
evaluate the existing defenses like MemGuard, MixupMMD, and
AdvReg in the CL setting, and our results show that none of them
are effective when the model is trained under CL. With this study,
we hope to draw attention to potential future work that preserves
certain properties introduced by advances ML techniques (e.g., fast
convergence and higher final performance by CL) while mitigating
privacy risks generically.
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MIA Datasets. We use the following 8 datasets for MIA evaluation,
which are also adopted by previous work [32, 51, 60, 75] to study
MIA. They are CIFAR100 [44], Tiny ImageNet [47], Place100, Place
60[100], SVHN [64], Purchase[75], Texas hospital stays[75] and
Locations [95]. We focus on image datasets mainly (the first 5
datasets), but tabular datasets are also evaluated. Below are the
detailed descriptions for the datasets.

e CIFAR100 [44]. This dataset consists of 60,000 colored
images in 100 classes, with 600 images per class. The size of
each image is 32 X 32.

e Tiny ImageNet [47]. This is a subset of the ImageNet
dataset[13]. It contains 100, 000 colored images of 200 classes
(500 for each class). The size of each image is 64 X 64.

e Place100. This dataset is a subset of Places365[100] dataset,
which is composed of more than 1.8 million images with
365 scene categories. Place100 is generated by randomly
selecting 100 scene categories with 600 random images per
category.

e Place60. This dataset is similar to Place100, except that it
has 60 classes containing 1,000 images each.

Datasets
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e SVHN [64]. The Street View House Numbers (SVHN)
dataset is a real-world image dataset containing over 600, 000
digit images. This dataset includes images of house numbers
taken from Google Street View images. The size of each
image is 32 X 32.

e Purchase. This is a tabular dataset about purchase styles.
Following Shokri et al. [75], we leverage the Purchase-100
dataset (abbreviated as Purchase) and use 10, 000 records for
training. The dataset itself contains 197, 324 records from
100 classes, where each record has 600 binary features.

e Texas hospital stays. This dataset contains information
about inpatient stays in several health facilities. Following
Shokri et al. [75], our task is to predict a patient’s main
procedure. After pre-processing, the resulting dataset has
67,330 records and 6, 170 binary features.

e Locations [95] . The original dataset was released by
Foursquare about its mobile users’ location “check-ins”, which
has 11,592 users and 1,136,481 check-in records. Our task is
to predict the user’s geo-social type (128 in total). Here we
use the version pre-processed by Shokri et al. [75], which
has 446 binary features.

AIA Datasets. Datasets with multiple attributes are required
for AIA. To this end, we adapt Place100 and Place60 used as MIA
datasets to AIA setting as they both contain multiple attribute labels.
More specifically, the model for Place100 outputs whether a sample
is an indoor scene, while the sensitive attribute is the category of
the scene, which contains 100 labels. Place60 has the total number of
categories as 60. In addition to Place100 and Place60, we introduce
UTKFace [97] specifically for AIA study.

e UTKFace [97]. This is a large-scale facial dataset, which
consists of over 20, 000 face images with annotations of age,
gender, and ethnicity. In our evaluation, we set gender clas-
sification as the the task for target model, and the sensitive
attribute to be inferred is ethnicity, which includes 5 classes.

B More Results of CL

Training Accuracy. Training accuracy corresponding to datasets
in Table 1 are listed in Table 7. All numbers are in percentage.

t-SNE Study. To investigate the disparate impact CL has on the
classification accuracy across samples. we use t-distributed stochas-
tic neighbor embedding (t-SNE) to visualize the classification tasks
carried out by bootstrapping and normal ML on the most difficult
batch of data of SVHN. Figure 10 shows all samples within the
difficult batch, and it turns out bootstrapping can separate samples
from group “1”, “2” and “3” better than normal training.

C More Confidence Scores of MIA

Here we present the confidence scores of different MIA evaluation
results to supplement Section 5. In particular, Figure 11, Figure 12,
and Figure 13 present the results about the three image datasets in-
cluding SVHN, Place100 and Place60. Figure 14 presents the results
about the tabular dataset Purchase. Figure 15 and Figure 16 present
the results of Diff-Cali on Tiny ImageNet and CIFAR100.
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M Tiny ImageNet CIFAR100 Place100 Place60 SVHN Purchase Texas Location
Normal 100.0 100.0 100.0 100.0 100.0 100.0 96.770 100.0
Bootstrapping 100.0 100.0 100.0 99.996 100.0 100.0 94.030 100.0
Transfer 100.0 99.997 100.0 99.972 100.0 / / /
Baseline 100.0 99.993 100.0 100.0 100.0 99.990 95.600 100.0
Anti-curriculum 99.963 100.0 100.0 99.918 100.0 100.0 97.410 100.0

Table 7: The average training accuracy of datasets in Table 1. Image datasets are trained on ResNet-18 while non-image datasets
are trained on MLP. Numbers are all in percentage. We observe that all training accuracies are nearly 100%. Note that for
non-image datasets, we skip the transfer method as there is no commonly used pre-trained model for the tabular dataset.
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Figure 14: Attack model’s confidence score for both member
and non-member samples on Purchase. MLP is used for target
model training, and data samples are arranged according to
their difficulty scores from bootstrapping.

D Difficulty Level vs. Shapley Value

In Section 5.2, we show there is a strong tie between data memo-
rization with difficulty level, which explains why the difficult sam-
ples are more vulnerable under CL. On the other hand, samples of
different difficulty levels could provide different values to the model,
so we are also interested in whether this observation Section 5.2
can be explained from the angle of data valuation. Specifically, we
choose Shapley value [23] as the metric, as it has the “strongest the-
oretical foundation” in data valuation research [28]. In essence, the
data with high Shapley values are ones that on average contribute
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significantly to a model’s prediction performance. We follow most
of the experiment steps in this section and only change how the
samples are selected for “not seen” (i.e., selected based on their
Shapley values rather than difficulty levels).
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Figure 17: Shapley: violin plots of prediction probability of
800 most valuable samples according to KNN-Shapley.

KNN-Shapley. Calculating Shapley values is intractable for a
DNN model that is trained on a large dataset, as it requires a model
to be retrained for 2" times, where n is the number of data points,
to assess the contribution of one data point versus all possible sub-
sets of the training set [28]. To address this scalability issue, Jia et
al. [39] proposed KNN-Shapley, which uses a lightweight KNN sur-
rogate model to reduce the overhead of model retraining. The time
complexity is reduced to O(nlogn) and still, a good approximation
of Shapley values can be obtained. As such, we use KNN-Shapley
to calculate the Data Shapley values.
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Figure 18: Reverse Shapley: violin plots of prediction prob-
ability of 800 least valuable samples according to KNN-
Shapley.

Figure 17 and Figure 18 show the prediction probability of true
label with 800 most and least valuable data samples according to
KNN-Shapley. From the results of "not seen", we observe that the
least valuable data have higher prediction accuracy on average
(51%), meaning that their absence in training has less impact com-
pared to the more valuable data as presented in Figure 17. Similarly,
feeding the least valuable data first or at last to the training does
not affect the prediction much.

Then, we compare the impact of difficulty level and Shapley
value on data memorization, from Figure 7 and Figure 17. Though
both show that the absence of the most difficult or valuable data
leads to poor prediction and seeing these data lastly benefits more
than seeing them first during training, these changes are much
more drastic for difficult samples (Figure 7) than the valuable sam-
ples (Figure 17). For example, the median prediction probability of
the “not seen” difficult samples and valuable samples are 39.19%
and 56.01%. As such, the data reordering of CL makes the difficult
samples more vulnerable, but not so for the valuable samples.

E AIA

In this section, we describe our setup of AIA and the evaluation
result.

Basic ATA method. Song et al. proposed an inference-time attack
and model-repurposing attack [78] for AIA, and here we focus on
the first attack and follow the same setting as this work. We consider
the model evaluation to be partitioned [78] or the model is trained
under federated learning [59]. The target model T is split into two
parts, i.e., an encoder and a classifier, and the adversary has black-
box access to the encoder E. The attacker has an auxiliary dataset
D containing pairs of (x, s) where s is the sensitive attribute. The
embeddings h can be generated by querying E, i.e., h = E(x),Vx € D.
All pairs of (h, s) will be used to train the attack model A, and
later used to predict the values of s in the target model T.

AJA Model. Our Ayy is a 3-layer MLP with 128 hidden neurons
in each hidden layer. We use cross-entropy as the loss function
and SGD as the optimizer with a learning rate of 0.01. The attack
model is trained for 100 epochs. The dimension of each sample’s
embedding (i.e., second to the last layer’s output) is 512 for ResNet-
18, 512 for ResNet-34, and 1024 for MobileNet. To train the target
model T, we use the label for the original classification (e.g., gender).
To train Ayy, we use the label from another field (e.g., race).
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Dataset
m ‘ Place100 Place60 UTKFace

Normal 0.107+0.003  0.173+0.002  0.528+0.005
Bootstrapping 0.092+0.003 0.168+0.004 0.515%0.006
Transfer Learning 0.104+£0.001  0.150+0.005  0.512+0.006
Baseline Curriculum | 0.079+£0.004  0.143+0.001  0.506 +0.008
Anti-Curriculum 0.033+0.001 0.128+0.005 0.517+0.007

Table 8: Average accuracy of AIA (+ standard deviation) on
model trained with different methods. ResNet-18 is the target
model architecture.
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Figure 19: Attribute inference attack accuracy on UTKFace

Evaluation of ATA. We split the AIA datasets in the same way
as the MIA evaluation as described in Section 5 (Evaluation Setup).
We evaluate the 4 CL methods and normal training under the AIA
setting as described above. Table 8 demonstrates the overall attack
accuracy. Generally, our results indicate that CL does not make
the target model more vulnerable. This somehow contradicts a
study [32] showing that a model is more vulnerable under AIA
when trained under special settings, i.e., contrastive learning. Inter-
estingly, the normal training yields the highest average attack ac-
curacy (e.g., 0.107 for Place100), even compared to anti-curriculum.
UTKFace has a much higher attack accuracy because the baseline
accuracy (random guessing based on majority class labels) of UTK-
Face is already quite high (42.1%). Our further investigation also
shows that the attack accuracy is about the same for samples in
different groups of difficulty levels (Figure 19). We speculate that
this is because the attributes of a sample themselves are already
very complex and hard to learn. Besides, the difficulty score (e.g.,
bootstrapping) is calculated based on the original ML task, which
emphasizes the specific attribute the original ML task tries to learn.
That means the data ranking is effective only for the attribute cho-
sen for the classification task but does not influence the sensitive
attribute that one intends to infer.

Finding 6: The model trained under CL is less vulnerable under
AIA compared to MIA.
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