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A B S T R A C T

Machine learning (ML) models are alternatives to traditional hydrologic modeling for streamflow predictions in 
ungauged basins (PUB). The variability in watershed characteristics of ungauged basins; however, adds un
certainties to PUB frameworks based on ML models. These uncertainties arise from the inconsistency in the 
statistical distributions between the dataset used to train and test a ML model, known as covariate shifts, and the 
real-world (global) dataset on which the trained model is implemented. In real-world applications, covariate shift 
is a widespread issue for ML that has not been investigated in hydrological applications. This study evaluates the 
uncertainty in ML-based PUB method including Random Forest (RF) and Artificial Neural Network (ANN) under 
the influence of covariate shift. The Monte Carlo method is applied to aggregate simulations of RF and ANN 
according to various data splitting configurations as predictive distributions. The results indicate that ML per
formance is not robust under covariate shifts. ML performance is influenced by watershed characteristics dis
playing heterogeneity, such as drainage area, dam density, and urbanized area. 20–48% simulation results show 
a departure from the normal distribution under different covariate shift scenarios Furthermore, the efficiency and 
limitation of Random Forest models for PUB are highlighted by investigating their biased predictions in wa
tersheds with varying dam density, drainage area, and meteorological variables, such as annual snowfall and 
annual precipitation.

1. Introduction

Many hydrologic studies including flow prediction rely on moni
toring data from larger basins, and prediction in ungauged basins (PUB) 
provides an option to complement monitoring with information about 
smaller watersheds. Predicting streamflow at ungauged reaches is a 
challenging using conceptual or physically based hydrological models 
because of the heterogeneity of streamflow generation processes 
(Sivapalan et al. 2003; Hrachowitz et al 2013). In this context, Machine 
Learning (ML) is investigated as an alternative to conceptual or physi
cally based modelling. ML has emerged as a promising method for PUB, 
demonstrating robustness and accuracy in predicting streamflow 
(Mosavi et al., 2018; Petty and Dhingra, 2018; Worland et al., 2018; 
Kratzert et al., 2019; Xiang et al., 2020; Adnan et al., 2021). PUB has 
been widely addressed using physics-based distributed hydrologic 
models involving basin/site-specific parameters (AghaKouchak and 
Habib, 2010; Razavi and Coulibaly, 2013; Hrachowitz et al., 2013; 

Pechlivanidis and Arheimer, 2015; Petty and Dhingra, 2018; Saksena 
et al., 2019) or using conceptual models utilizing lumped or semi- 
distributed approach with fewer model parameters (Das et al., 2008; 
Chang et al., 2017; Seibert et al., 2019; Darbandsari and Coulibaly, 
2020). Physical-based approaches face challenges related to the unique 
physical interpretability of such models (Beven, 2006; Her and Chaubey, 
2015; Her et al., 2019), while ML data-driven approaches face chal
lenges associated with the preparation of data, ML algorithms, and their 
parameters (Schmidt et al., 2020; Underwood et al., 2023; Samadi et al., 
2024).

ML models built for PUB generally follow a random data splitting 
process (Reitermanova, 2010), which divides the selected stations into 
training data for building ML models and testing data for evaluating ML 
models. Random sampling process can be insufficient for PUB due to the 
heterogeneity in hydrological datasets and unique watershed charac
teristics (Sivapalan et al., 2003; Hrachowitz et al., 2013). In traditional 
PUB studies, data splitting processes of conventional statistical models 
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and conceptual models have been developed by dividing basins into sub- 
basins (Kuchment and Gelfan, 2009; Janjić and Tadić, 2023; Wang et al., 
2023). Using a random splitting process for heterogeneous datasets can 
lead to inconsistencies in the statistical distributions of input variables 
between training and testing data, known as covariate shift (Sugiyama 
et al., 2007; Reitermanova, 2010; Balogun and Attoh-Okine, 2021).

Although covariate shifts have been studied in applications related to 
image corruption, geometry detection, and credit card fraud, their im
pacts on hydrologic applications, particularly in the context of PUB, 
remain unexplored (Lucas et al., 2019; Schneider et al., 2020; Balogun 
and Attoh-Okine, 2021). For example, the distribution of drainage area 
and reservoir density in training data may be different from the testing 
data under covariate shift due to the random data splitting process. 
Under this scenario, ML models may underperform due to the mis
matched generalization in the learning process of ML (Sugiyama et al., 
2007; Balogun and Attoh-Okine, 2021). To investigate the influence of 
covariate shifts on ML’s performance, Monte Carlo method is applied to 
address the uncertainty of ML models by creating multiple modeling 
scenarios by repeating the random data splitting process (Breuer et al., 
2006; Moges et al., 2021). The results of the Monte Carlo method 
represent the distribution of ML model performance (Neal, 1992) and 
provide a better understanding of covariate shifts’ implications on ML 
models for PUB.

Additionally, PUB models, ML or conceptual, cannot perfectly learn 
all the streamflow generation processes, surface runoff routing, and 
reservoir impact for basin-scale simulations (Hrachowitz et al., 2013; 
Khandelwal et al., 2020; Adombi et al., 2021; Fleming et al., 2021a; 
Nearing et al., 2021). Quantifying the preference features range and 
limitations of PUB models informs users and researchers about the 
appropriate physical settings for applying a specific PUB model. Under a 
data-driven framework, a ML model mines the inherent pattern within 
the data, which includes a combination of possible physical processes 
and the corresponding noise in streamflow generation. How a ML model 
learns the streamflow generation process depends on the collective un
derstanding of the elements established by its algorithm (McGovern 
et al., 2019; Fleming et al., 2021b). The performance of ML models in 
streamflow prediction can be decoded by analyzing the mini
mum–maximum performance of ML models according to their input 
features.

Above discussion show that ML models have emerged as efficient 
approaches for large-scale applications in PUB, but their performance 
can be affected by the uncertainty in the random data splitting process 
(Addor et al., 2018; Nearing et al., 2021; Prieto et al., 2022), which can 
introduce covariate shift. The impact of covariate shifts on the perfor
mance of ML models in PUB needs to be investigated and quantified. 
Additionally, understanding the range for each variable that leads to 
better simulations, henceforth referred to as “preferred range,” can help 
in identifying the appropriate physical settings of ML models for PUB 
(Prieto et al., 2022). This study addresses the mentioned issues by (i) 
evaluating the performance and incorporating uncertainty in ML models 
through Monte Carlo simulations, (ii) investigating the impacts of co
variate shifts on the performance of ML models, and (iii) quantifying the 
preferred range of input variables for ML models and exploring their 
connection with possible streamflow generation regimes.

It is recognized that random splitting of a variable can generate two 
differently statistical distributions, which can introduce covariate shift 
and different results from ML application. The question that this study is 
attempting to address is how are the results affected with or without 
covariate shift. If the results are unaffected, then covariate shift can be 
ignored, but if they are affected, is it possible to identify which variables 
are problematic and quantify the their range of values, “preferred 
range”, within which results are acceptable. Overall, the results from 
this study can lead to improved understanding of the impact of covariate 
shift in input data on streamflow prediction, which can have broader 
implications beyond ML.

2. Study area and dataset

2.1. Study areas

The Ohio River Basin (ORB, Fig. 1 and Table 1) is a two-digit Hy
drological Unit Code (HUC2; 05) named by the United States Geological 
Survey (USGS) and is one of the 21 major water resource regions in the 
United States. The ORB encompasses watersheds from 11 U.S. states: 
Illinois, Indiana, Kentucky, Maryland, New York, North Carolina, Ohio, 
Pennsylvania, Tennessee, Virginia, and West Virginia. About 35 % of 
land use in the ORB is agricultural, and agricultural usage is primarily 
located in the states of Kentucky, Ohio, Indiana, and Illinois (Electric 
Power Research Institute (EPRI); 2010, 2014, 2016). The ORB has 
experienced extreme flood events since 1773 (National Water Service 
(NWS), 2017; Schlef et al., 2018; Gibson, 2020; Hauser, 2020), partic
ularly in Indiana, Ohio, and Kentucky. These flood events highlight the 
need for streamflow prediction at ungauged reaches for developing 
flood mitigation and management strategies.

There are 598 USGS daily streamflow stations in the ORB (USGS, 
2023), but only 431 USGS streamflow stations were selected here 
(explained in Section 2.2). The number and density of selected USGS 
stations from the ORB and five four-digit HUC (HUC4) level subregions 
within the ORB: Allegheny (0501), Monongahela (0502), Kentucky- 
Licking (0510), Wabash (0512), and Lower Ohio (0514) are shown in 
Fig. 1 and Table 1. The Other subregions within the ORB are not chosen 
due to insufficient number of streamflow stations (<30 available sta
tions). The spatial scale and density of stations provide an overall un
derstanding of the station network within study areas. The ORB has the 
largest study area (421,951 km2), and the other watersheds have the 
same order of magnitude of study areas (104 km2). The Wabash River is 
the largest HUC4 region (85,349 km2) selected and has the greatest 
number of gauged reaches of the HUC4 regions included in this study 
(Table 1). Monongahela and Lower Ohio subregions are the smallest 
HUC4 regions selected. Monongahela has the highest stream gauging 
density (17 stations in 104 km2), followed by Kentucky-Licking, Alle
gheny, Lower Ohio, Wabash, and the ORB (Table 1).

2.2. Datasets

This study builds ML models to predict daily streamflow series in 
ungauged reaches from 2010/10/01 to 2020/09/30. Accordingly, 
streamflow data from USGS stations are used to build and test the model. 
Ensuring the quality and coverage of streamflow data is crucial for 
constructing reliable data-driven PUB models (Razavi and Coulibaly, 
2017; Yilmaz and Bihrat, 2019). The USGS stations, which are impacted 
by regulation of dams, and nested stations where the spatial correlation 
is high, were eliminated.

Dams in a streamflow network lead to the anthropogenic impact on 
streamflow generation processes (Hodgkins et al., 2023). The dam in
fluence on streamflow cannot be fully mitigated, and it is difficult to 
define the ‘natural’ river because dams are ubiquitous in rivers and 
creeks. Stations with significant impact of dams need to be removed. 
Usually, a comparison of dam storage and annual hydrograph can 
delineate stations with “unnatural” flow. However, dam storage infor
mation is not always available which makes it difficult to implement 
such a threshold consistently across all stations. Therefore, in this study, 
streamflow data collected within 3.2 km of a dam or reservoir are 
eliminated to alleviate the impact of reservoir control on streamflow 
measurements following the investigation made in the ORB (Yilmaz and 
Bihrat, 2019). Additionally, the distributions of correlations between 
rainfall and streamflow for dam influenced stations and the final chosen 
stations (shown in Fig. S1) seems to suggest that there is some 
improvement in the correlation of rainfall and streamflow for the final 
chosen set.

Nested stations are eliminated from the streamflow stations due to 
the high spatial correlation between the stations shared the similar 
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portion of watersheds. The spatial correlation of streamflow stations 
observed in connected streams (Krajewski et al., 2020; Krajewski and 
Sikorska-Senoner, 2021), known as spatial persistence, is minimized to 
ensure the quality of streamflow data. Krajewski et al. (2020) suggested 
that when the drainage area ratio of an upstream watershed to the 
corresponding downstream watershed is large (>0.6), the upstream and 
downstream station have similar streamflow patterns. As a result, when 
the drainage area ratio for a given station is greater than 0.6, its 
downstream station is removed from this study to avoid the influence of 
spatial correlation between stations.

Previous hydrological studies filtered the hydrological datasets with 
a missing rate ranging from 10 % to 20 % (Milly et al., 2005; Razavi and 
Coulibaly, 2017; Yilmaz and Bihrat, 2019). In addition, ML studies have 
highlighted the influence of missing data on model performance when 
the missing rate exceeds 5 % (Moorthy et al., 2014; Thomas and Rajabi, 
2021). To minimize the uncertainty caused by missing data, a 5 % 
missing rate is chosen as the criteria for selecting USGS stations in this 
study. Thus, any USGS station having more than 5 % missing values or 
located within 3.2 km downstream of a reservoir was removed from this 
study.

PUB models are usually built using watershed characteristics and 
meteorological variables (Razavi and Coulibaly, 2013; Zhang et al., 
2018; Schoppa et al., 2020). Both meteorological variables (Beck et al., 
2017; Zhang et al., 2018) and watershed characteristics, including 
topography, soil, and land use conditions (Saadi et al., 2019; Schoppa 
et al., 2020) could act as major controls of PUB models. Table 2 shows 
the variables used in building ML models and evaluating the model 
performance in this study. Meteorological variables represent dynamic 
variation in climate, whereas watershed characteristics serve as static 
variables to capture streamflow generation processes. While anthropo
genic modifications, such as dam density, are not commonly used in 
building PUB models, the impact of dams on hydrological response is 
investigated in the discussion section of this article (Nathan and Lowe, 
2012; Yihdego and Webb, 2013; Fleming, B et al., 2021; Singh and Basu, 
2022). Dam density is the density of georeferenced dams within a study 
area collected from the National Inventory of Dams (NID, 2022).

2.2.1. Meteorological variables
Rainfall and snowfall are the major meteorological forcing for 

streamflow generation processes. The meteorological variables include 
rainfall, snowfall, snow depth, and temperature. The ORB is in the 
middle latitude region, so snowfall and snow depth data are also 
included (Winkler et al., 2020; Schoppa et al., 2020). The temperature 
dataset indicates the possibility of snowmelt and frozen rivers (Prieto 
et al., 2019). Daily rainfall, snowfall, depth of snow, and temperature 
are downloaded from the National Oceanic and Atmospheric Adminis
tration (NOAA) Global Historical Climatology Network (GHCN) data
base (Menne et al., 2012). Streamflow is associated with current rainfall 
and the extension of the previous rainfall event, known as the ante
cedent rainfall (Istok and Boersma, 1986; Upreti and Ojha, 2021). 
Antecedent precipitation variables: precipitation in the previous one 
day, seven days, and thirty days are chosen to capture the influence of 
earlier rainfall (Table 2). In addition, the snow depth and snowfall affect 
the magnitude of streamflow when the snowmelt event happens 
(Winkler et al., 2020). The snowfall and snow depth at current time step 
are incorporated in the RF model (Table 2). The water equivalent from 
snow is considered by including the monthly snowfall and difference 
between snow depth at current time step and previous day to meteo
rological variables (Bergeron et al., 2016).

Fig. 1. Map of the ORB and the HUC4 level watersheds: Allegheny, Monongahela, Kentucky-Licking, Wabash, and Lower Ohio subregion. The distribution of USGS 
streamflow stations is also presented.

Table 1 
Study area, number of available streamflow stations, and streamflow stations 
density of the study areas (following the selection process of USGS stations in 
Section 2.2).

Watershed HUC 
level

Study area 
(km2)

Number of 
available 
stations

Density of stations 
(stations/104 

km2)

Ohio Region HUC2 
(05)

421,951 431 10

Allegheny HUC4 
(0501)

30,376 37 12

Monongahela HUC4 
(0502)

19,104 33 17

Kentucky- 
Licking

HUC4 
(0510)

27,638 35 13

Wabash HUC4 
(0512)

85,349 87 10

Lower Ohio HUC4 
(0514)

32,633 40 12
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2.2.2. Watershed characteristics
Watershed characteristics are presumed to affect streamflow gener

ation in response to meteorological forcing. ML models for PUB focus on 
generalizing the streamflow generation processes related to watershed 
characteristics, including soil properties, land use properties, and 
topography (Sivapalan et al., 2010; Razavi and Coulibaly, 2013). Here, 
the watershed characteristics for building the ML models include 
topography, soil, and land use. Topographic variables include slope, 
elevation, and drainage area of watersheds. The drainage area and 
elevation are the basic geometry and topography describing the water
shed’s latitude and size for understanding the overall capacity of surface 
water. The average slope of a watershed is related to the kinetic behavior 
and driving force of water flowing in the watershed due to the force of 
gravity. The average elevation and slope of watersheds are calculated 
from 30 m resolution Digital Elevation Model (DEM) from USGS 3D 
Elevation Program (USGS, 2022). The drainage area of watersheds is 
obtained from the metadata of USGS stations.

Soil properties and land use of watersheds provide information of 
rainfall abstraction and evapotranspiration processes. Watershed aver
aged land use and soil variables are prepared using the Stream- 
Catchment (StreamCat) dataset (Hill et al., 2016; USEPA, 2022). Soil 
properties, including clay%, sand%, permeability, and hydraulic con
ductivity, are obtained from 0.5◦ resolution State Soil Geographic 
(STATSGO) dataset (Schwarz and Alexander, 1995; USDA, 2022). 
Finally, impervious percentages and urbanized area are obtained from 
30 m resolution 2011 and 2016 National Land Cover Database (NLCD) 
from StreamCat (Table 2; MRLC, 2022).

The urbanized area in this study includes developed open area, 
developed low-intensity area, developed medium-intensity area, and 
developed high-intensity area. The difference between urbanized area 
and impervious percentage is that urbanized area represents only the 
percentage of developed area in a watershed, but the impervious per
centage represents the percentage of developed area that is impervious 
and varies according to the intensity of development. The impervious 
percentage is 0–20 % of the total cover for developed open areas, 20–49 
% for developed low-intensity areas, 50 %-79 % for developed medium- 

intensity areas, and 80–100 % for developed high-intensity areas 
(Wickham et al., 2013).

3. Methodology

3.1. Data preparation

In this study, the PUB models are built as lumped models requiring 
representative values of watershed characteristics and meteorological 
variables for each watershed. The boundary of each watershed is 
delineated using the DEM obtained from USGS. Watershed characteris
tics are derived by spatially averaging the raster datasets listed in Sec
tion 2.2. Meteorological variables for each watershed are spatially 
averaged using the Thiessen polygon method, which is typically used for 
estimating spatial averages of meteorological variables in flat topog
raphy, such as the ORB (Thiessen, 1911; McCuen, 2004). To evaluate the 
performance of a PUB model, the USGS stations, which are the outlets of 
the watersheds, are split into training/testing sets. An 80/20 split of 
streamflow stations for training/testing data is selected as presented in 
Table 3 because 80/20 has been reported as one of the best choices for 
dividing the dataset for the training/testing process in a machine 
learning model (Anifowose et al., 2017; Gholamy et al., 2018). The 
training set, which contains the remaining stations, is used to train the 
machine learning model (Fig. 2; Cibin et al., 2014; Athira et al., 2016; 

Table 2 
Variables applied in the RF model. Dam density (with an asterisk) is not used to train the ML models but is used to disclose the impact of covariate shift and preferred 
range of ML models.

Categories Variables Code Details Range Source

Meteorology Rainfall PRCP Daily rainfall ¡ GHCN
​ Previous Rainfall (one day) PRCP_lag1 Precipitation in the previous day (one day lag) ¡ GHCN
​ Previous Rainfall (seven 

days)
PRCP_7D Seven days accumulation of precipitation ¡ GHCN

​ Previous Rainfall (one 
month)

PRCP_30D Thirty days accumulation of precipitation ¡ GHCN

​ Snowfall SNOW Daily snowfall ¡ GHCN
​ Previous snowfall (one 

month)
SNOW_30D Thirty days accumulation of snowfall ¡ GHCN

​ Snow depth SNWD Daily snow depth ¡ GHCN
​ Snow depth difference SNWD_diff The difference between the snow depth at current time step and 

previous day
¡ GHCN

​ Maximum temperature TMAX Maximum daily temperature ¡ GHCN
​ Minimum temperature TMIN Minimum daily temperature ¡ GHCN
Topography Drainage Area (km2) Area Drainage area 7.76–251,229 USGS
​ Average Elevation (m) Elev Averaged elevation 41.3–386.3 DEM from 

USGS
​ Slope Slope Averaged Slope 7 × 10-3-0.47 DEM from 

USGS
Land Use Impervious Percentage Imper Averaged impervious percentage 0.11–56.0 NLCD
​ Urbanized Area (%) Urban Averaged urbanized area 1.7–99.9 NLCD
Soil Clay% Clay% Averaged clay percentage 16.0–45.1 STATSGO
​ Sand% Sand% Averaged sand percentage 6.4–49.6 STATSGO
​ Permeability (cm/hr) Perm Averaged permeability 1.0–15.1 STATSGO
​ Hydraulic Conductivity 

(μm/s)
K Averaged hydraulic conductivity 0.01–77.2 STATSGO

*Anthropogenic 
Modification

*Dam Density (dams/km2) − Averaged dam density 0–0.122 NID

Table 3 
Number of streamflow stations used during the training and testing process and 
optimized hyperparameters of RF.

No. of 
stations

Training 
stations

Testing 
stations

Number 
of trees

Maximum 
depth

ORB 431 344 87 1500 30
Allegheny 37 29 8 500 27
Monongahela 33 26 7 300 22
Kentucky- 

Licking
35 28 7 300 20

Wabash 87 69 18 1100 30
Lower Ohio 40 32 8 500 24
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Choubin et al., 2019). The testing set, hereafter referred to as pseudo 
ungauged reaches, is used for evaluating the model.

3.2. Machine learning model − random Forest

Random Forest (RF) is one of the most widely used algorithms for 
PUB due to its interpretability and non-parametric properties, facili
tating its applications by engineers and researchers (Ziegler and König, 
2014; Addor et al., 2018; Li et al., 2019; Prieto et al., 2019; Saadi et al., 
2019; Araza et al., 2020; Desai and Ouarda, 2021; Esmaeili-Gisavandani 
et al., 2023). RF is capable of extracting similarities from vast datasets, 
which are typical of natural systems over large spatial, national, or 
global scales (Catal and Diri, 2009; Biau and Scornet, 2016; Carlisle 
et al., 2010; Miller et al., 2018; Mosavi et al., 2018; Saadi et al., 2019; 
Tyralis et al., 2019; Zhang et al., 2019). RF is an ensemble method that 
predicts physical quantity by averaging the predictions made among the 
decision trees (Breiman, 2001).

Decision trees in a RF model are built based on bootstrapped samples 
from training data. Each decision tree model is developed by splitting 
nodes into sub-nodes to make streamflow predictions. Each node in 
decision trees represents criteria based on specific input variables that 
determine the subsequent path toward streamflow predictions. The de
cision tree algorithm tends to have a high variance in simulation and 
often leads to overfitting problems. As a result, RF averages the pre
dictions made among all the decision trees to prevent overfitting prob
lems (Breiman, 2001). This study uses the Scikit-learn module in the 
Python development environment (Pedregosa et al., 2011) to develop 
the RF model.

The number of decision trees and the maximum depth of RF models 
are optimized using the out-of-bag (OOB) sample (Fig. 2). The OOB 
sample contains the left-out training data points during the training step. 
The early stopping method avoids over-fitting issues of RF models by 
finding optimized hyperparameters with the least out-of-bag error, 
which is in the form of mean squared error (Svetnik et al., 2003). During 
the optimization process, RF models are initialized by a set of hyper
parameters, which is a pair of the number and maximum depth of de
cision trees. The optimized values of hyperparameters are found by grid 
search (Hinton, 2012), tries all pairs of the number of decision trees 
(from 100 to 1,800 at the step interval of 100) and maximum depth 
(from 10 to 50 at the step interval of one). Table 3 shows the optimized 
hyperparameters of RF models for all study areas.

Investigating the relative feature importance of variables in RF 
models provides insights into which variables contribute more to 
streamflow predictions made by RF (Fisher et al., 2019). RF’s feature 
importance is used to determine the importance of input variables by 
measuring the reduction of impurity (variability of a variable within a 
decision tree node) by adding such variable during the regression pro
cess compared to the other variables (Breiman et al., 2017). The rank of 
feature importance reveals the relevance of variables in streamflow 
generation as learned by RF.

3.3. Machine learning model − Artificial Neural Network (ANN)

A fully connected shallow Artificial Neural Network (ANN) is the 
algorithm applied to predict streamflow in the ORB and is compared 
with the RF models for PUB in this study. ANN has been developed as 

Fig. 2. The flow chart of applying RF models for PUB. (a) data preparation, (b) the training and testing process of RF with early stopping method. The training 
dataset is used in the training process for building RF models, and the testing dataset is used to evaluate the simulations (dashed lines). The solid arrows are the 
processed information passing to the next process. The heavy dashed line highlights the early stopping process as the iterative process to get the optimized 
hyperparameters of RF models.
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one of the most popular ML models for PUB (Besaw et al., 2010; Chen 
et al., 2010; Valizadeh et al., 2017; Mosavi et al., 2018). This study 
develops an ANN model using the TensorFlow Keras module in the Py
thon development environment.

The ANN model developed this study contains perceptron layers, 
activation functions between perceptron layers, and the regularization 
components (Fig. 3). Each layer of perceptron, known as a hidden layer, 
has multiple neurons. These neurons process the input information by 
multiplying the input from the previous layer by weights and then 
adding constant variables as the output. For the first perceptron layer, 
the input is the prepared datasets of watershed characteristics and 
meteorological variables (see Section 2.2). After processing, each per
ceptron layer passes its results to the subsequent layer, and this process 
continues until it reaches the final output layer. The weights and con
stant variables are determined during the training process.

Between each hidden layer, the activation functions decide whether 
the output of the neurons should be activated or not. Rectified linear 
activation units (ReLU) is chosen as the activation function due to its 
proven performance for regression and classification in ANN models 
(Goodfellow et al., 2016). ReLU is applied between each hidden layer to 
filter the negative values and produce the maximum values between the 
input values and zero (Eq. (1). 

ReLU(x) = max(0, x), x ∈ R (1) 

which x is the output of each hidden layer in this study.
The hyperparameters indicates the overall structure of ANN 

including the number of neurons in each hidden layer and the param
eters for regularization techniques (Table 4). The optimization process 
of ANN’s hyperparameters searches a set of parameters that minimizes 
validation errors. The validation errors are the errors of ANN simula
tions by utilizing validation data, which is separated from the training 
data. The number of neurons for the two hidden layers is 1,000 and 100 
respectively (Fig. 3). During the optimization process, the dropout and 
L2 regularization techniques are applied to prevent overfitting issues 
(Srivastava et al., 2014). The dropout randomly drops a percentage of 
neurons in a hidden layer during the training process to strengthen the 
learning ability of the other neurons and prevent the neurons from 
overly adapting the information of training data (Srivastava et al., 
2014). The dropout rate is one of the hyperparameters in the ANN and 
ranges from 0 % to 10 % for shallow ANN models (Piotrowski et al., 
2020). The other hyperparameter of regularization techniques is L2 

regularization. L2 regularization adds an error term, which multiplies 
the L2 ratio with the square magnitude of the weight of neurons, in the 
loss function of ANN in the training process to avoid overfitting issues 
(Eq. (2). There are three values of the L2 regularization: 0.00001, 
0.0001, and 0.001 for the optimization process. The optimized hyper
parameters are found by the grid search method with the least error 
during the optimization process (Table 4). 

L2 error = λ
∑n

i=1
w2

i (2) 

where λ is the L2 ratio, wi is the weight of neuron i in a hidden layer, and 
n is the number of neurons in the hidden layer.

3.4. Monte Carlo method for assessing uncertainty within data splitting 
process

The performance of ML models here may change with different 
training and testing data combinations due to the complexity of hy
drological datasets. Therefore, any single set of training and testing data 
can be unreliable for evaluating the performance of ML models in hy
drology (Araza et al., 2020; Schoppa et al., 2020; Prieto et al., 2022). To 
quantify the uncertainty in RF and ANN for PUB due to the data splitting 
process and covariate shift, Monte Carlo method is implemented as a 
bootstrap method for generating the empirical cumulative distribution 
function (CDF) of RF and ANN performance (Robert and Casella, 2013). 
One thousand training and testing data combinations, known as the 
Monte Carlo scenarios, are generated by repeatedly and randomly 
sampling the entire dataset (Fig. 2). In each scenario, 345 stations are 
randomly chosen as training set, and the rest of the stations (86) are 
chosen as testing set in the ORB. Repeating this process 1000 times leads 
to 1000 different combinations of training/testing set. Each station is 
expected to get selected in the training set around 800 times and in the 

Fig. 3. The architecture of the shallow ANN applied to PUB. For each time step (from day 1 to day 3653), the ANN model generates a streamflow prediction for a 
station (training or testing). The accumulation of all 10 years of simulations becomes one complete prediction of the streamflow series at the station. xi is the input 
variables, such as precipitation, snowfall, and drainage area, of a data point in a certain time step at the station.

Table 4 
Optimized hyperparameters of ANN include the number of neurons, L2 ratio, 
and dropout rate of each hidden layer.

Hidden Layer 1 Hidden Layer 2

Numbers of neurons 1000 100
L2 ratio 0.0001 0.0001
Dropout Rate 5 % −
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testing set around 200 times under an 80/20 split chance for the 
training/testing dataset. The aggregate of simulation results from Monte 
Carlo scenarios represents predictive distributions of each reach: prob
ability density functions (PDFs) of the performance of ML models using 
NSE. Due to the high computational demand of Monte Carlo analysis, 
high-performance computing (HPC) resources from the Extreme Science 
and Engineering Discovery Environment (XSEDE) (Towns et al., 2014) 
were used.

A covariate shift is present when input variables are distributed 
differently between a training and testing dataset. The presence of co
variate shifts causes a trained ML model to fail to capture the inherent 
patterns in the testing set (Ramchandran and Mukherjee, 2021). The 
two-sample Kolmogorov–Smirnov (KS) test compares the distribution of 
variables in the training and testing dataset to determine whether the 
distributions are identical or independent (Raza et al., 2015). If the 
distributions of input variables are different between the training and 
testing datasets, the data splitting process is considered to include the 
covariate shift phenomenon. For example, suppose a Monte Carlo sce
nario has a training set entirely of stations with large drainage areas and 
a testing set containing only stations with small drainage areas. In that 
case, the inherent patterns learned by ML models are biased towards 
streamflow generation processes represented in large basins and may 
fail to estimate accurate streamflow for the testing set. This Monte Carlo 
scenario has suffered from inconsistency in the data splitting process due 
to covariate shift.

4. Result and discussion

4.1. Machine learning performance using Monte Carlo method

The overall performance of RF and ANN is evaluated using the 
Nash–Sutcliffe Efficiency (NSE) of streamflow simulations in a unit 
drainage area (Fig. 4). NSE reveals the ability of RF and ANN in 
detecting peak flows, and RMSE shows the overall error of ML perfor
mance. For most of the study areas, more than 80 % of RF simulations 
have satisfactory performance (NSE > 0.5; Moriasi et al., 2007). The RF 
simulations in Monongahela show the best overall performance with 97 
% satisfactory simulations. In comparison, the ones in Kentucky-Licking 
only have 69 % satisfactory simulations, much lower than RF simula
tions in the other study areas. On the other hand, 52 % of ANN 

performance is unsatisfactory. Table 5 shows that ANN has the highest 
unsatisfactory rate, and more than 50 % of the pseudo ungauged reaches 
cannot get satisfactory simulations. The accuracy and overall perfor
mance of RF models are better than ANN models. There are four case 
studies of hydrographs of observations and predictions by RF and ANN 
models (Fig. 5 and Fig. 6). For the best scenarios, RF models are better in 
predicting high streamflow values than ANN models (Fig. 5). For the 
worst scenarios, ANN models would overestimate in the large stream
flow case (Fig. 6). RF models have better simulation results for case 
studies of the best/worst performances in the ORB models. Table 5
shows NSE values at the 50 % cumulative probability (CP), which de
scribes half of the simulation results exceeding the listed NSE values, of 

Fig. 4. CDF of the accumulated performance (NSE of depths of daily streamflow) using the ANN model for the ORB and RF models for the ORB, Allegheny, 
Monongahela, Kentucky-Licking, Wabash, and Lower Ohio subregion. S/U stands for satisfactory/unsatisfactory simulation results (NSE ≥ 0.5/ NSE < 0.5; Moriasi 
et al., 2007).

Table 5 
NSE values at 50 % CP, unsatisfactory rates, and the KS test results of ML per
formance. The unsatisfactory rate is defined as the number of pseudo ungauged 
reaches with unsatisfactory performance (NSE < 0.5; Moriasi et al., 2007) 
divided by the total number of available streamflow stations in the study areas. 
The KS tests (significant level is 0.05) are applied between the RF simulations in 
the ORB and the other simulations.

NSE at 
50% CP

Unsatisfactory 
Rate (%)

KS Test of NSE values (p 
value)
All 
Simulations

Station 
Means

ORB_RF 0.65 16 − −

ORB_ANN 0.49 52 reject 
(p = 0.00)

reject 
(p = 0.00)

Allegheny 0.65 16 reject 
(p = 0.00)

fail to 
reject 
(p = 0.33)

Monongahela 0.71 3 reject 
(p = 0.00)

fail to 
reject 
(p = 0.18)

Kentucky- 
Licking

0.60 31 reject 
(p = 0.00)

fail to 
reject 
(p = 0.08)

Wabash 0.62 20 reject 
(p = 0.00)

fail to 
reject 
(p = 0.06)

Lower Ohio 0.70 13 reject 
(p = 0.00))

fail to 
reject 
(p = 0.15)
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all the CDFs of RF and ANN simulations. The KS test results show 
whether the distribution of RF and ANN simulation results in a study 
area is identical to the distribution of RF simulation results in ORB. The 
distribution of ANN simulation results is significantly different from the 
RF simulations (Table 5).

RF performance shows no specific correlation with the size of study 
areas with different spatial scales for PUB. Kentucky-Licking and Mon
ongahela are the smallest study areas in this study. However, RF per
forms worst in Kentucky-Licking and has the lowest satisfactory rate (69 
%), while it performs best in Monongahela with the highest satisfactory 
rate of simulations (97 %). In addition, the difference between the 
performance of RF models for ORB, Allegheny, Kentucky-Licking, and 
Wabash is small (Table 5). This comparison shows that the size of the 
study area may not be the only factor influencing the performance of RF. 
In order to have a more comprehensive investigation of RF performance, 
the distribution of RF simulations using Monte Carlo realizations is 
investigated (Fisher et al., 2019; Clark et al., 2021). This study provides 

two primary directions to investigate the performance of RF: (i) the 
statistics of RF’s performance for pseudo ungauged reaches in study 
areas and (ii) the feature importance of RF and RF’s preferred ranges of 
watershed characteristics (descriptions in Section 4.3).

Mean, variance, skewness, and kurtosis (actually excess kurtosis 
based on comparing the sample to a normal distribution) of predictive 
distributions, formed by aggregating RF simulation results among Monte 
Carlo scenarios, represent the pattern of RF’s performance regarding 
pseudo ungauged reaches (Fig. 7). The mean values of predictive dis
tributions show that most stations are expected to perform satisfactorily. 
In addition, more than 98 percent of stations show a low variance of NSE 
values, and only less than 2 percent of distributions have their variance 
reaching more than 0.01. Overall results from the mean and variance of 
the predictive distributions show that RF simulations are consistent at 
most stations.

Though the mean and variance of predictive distributions are 
consistent, the predictive distributions at some reaches are negatively 

Fig. 5. The hydrographs of observation, RF simulations, and ANN simulations at (a) USGS 03118000 (NSE = 0.96 for RF and 0.74 for ANN) and (b) USGS 03240000 
(NSE = 0.96 for RF and 0.78 for ANN), which are the stations with one of the best ML performances in the ORB.
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skewed and have high kurtosis (Fig. 8). The skewness of predictive 
distributions shows the lack of symmetry of their shape, and the excess 
kurtosis describes their peak and tail. Normal distribution tends to have 
zero skewness and kurtosis; however, the predictive distributions having 
negative skewness and high kurtosis tend to have a heavy tail and a 
higher chance of having outliers with poor performance (Westfall, 
2014). Overall, the high skewness and kurtosis among Monte Carlo re
sults show that relying on a single RF simulation for PUB may lead to 
potential outliers (extremes) and increased uncertainty in streamflow 
predictions.

4.2. Influence of covariate shift on RF and ANN

ML models suffer from covariate shifts of variables in the data 
splitting process in many real-world applications (McGaughey et al., 
2016; Lucas et al., 2019; Schneider et al., 2020; Balogun and Attoh- 
Okine, 2021). PUB includes high variability of inputs (watershed 

characteristics) and might encounter covariate shifts when applying ML 
models. This section uses the Monte Carlo method to evaluate the effect 
of covariate shifts in ML models in the context of PUB in the ORB. Two 
criteria quantify the covariate shift phenomenon: (i) the total number of 
input variables suffering from covariate shift, henceforth referred to as 
global heterogeneity, and (ii) the influence of a specific covariate shift 
variable henceforth referred to as individual variable heterogeneity. The 
influence of covariate shift is quantified by comparing the mean, vari
ance, skewness, and kurtosis of predictive distributions with and 
without covariate shift. 5,000 Monte Carlo scenarios are applied to 
investigate how predictive distributions vary under the covariate shift of 
a specific variable.

The numbers of global heterogeneity and individual variable het
erogeneity from the Monte Carlo scenarios are shown in Fig. 9 and 
Table 6. The number of homogeneous/heterogeneous scenarios are 
similar in RF and ANN models due to the same data splitting method: 
random sampling. About 3,000 Monte Carlo scenarios are free from 

Fig. 6. The hydrographs of observation, RF simulations, and ANN simulations at (a) USGS 03289193 (NSE = 0.37 for RF and 0.34 for ANN) and (b) USGS 03378635 
(NSE = 0.37 for RF and 0.24 for ANN), which are the stations with one of the worst ML performances in the ORB.
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covariate shifts, and the other Monte Carlo scenarios have at least one 
heterogeneous variable. Around 1150 scenarios are influenced by one 
covariate shift variable, which have the most frequent variables: 
drainage area, urbanized area, and dam density. The overall distribu
tions of these variables are not normally distributed and show that most 
of the watersheds tend to have relatively low urbanized area, dam 
density, and drainage area (Fig. 10).

Covariate shifts result in predictive distributions’ departures from 
normal distributions to non-normal distributions, known as the depar
ture from normality (D’Agostino and Pearson, 1973; Das and Imon, 
2016). In this study, the departure rate is defined as the ratio of the 
number of stations’ predictive distributions suffering from the de
partures from normality to the total number of stations under covariate 
shift. Both global heterogeneity and individual variable heterogeneity 
result in departures from the normality of simulations (Fig. 11). 
Regarding the global heterogeneity, the departure rate of RF models 
increases from 18 % (one heterogeneous variable) to 22 % (three het
erogeneous variables). ANN models maintain higher departure rates (28 
% to 31 %) than RF models across different global heterogeneities. 
Overall, the results show that high global heterogeneity has consider
able repercussions on kurtosis and skewness and can significantly add 
uncertainty and non-normality to the model performance.

The three most heterogenous variables– urbanized area, dam den
sity, and drainage area – change the normality of more than 20 % of 
stations’ predictive distributions of RF and ANN simulations (Fig. 11). 
RF and ANN have different departure rates under different individual 
variable heterogeneity. The covariate shifts caused by drainage area and 
dam density for RF and ANN simulations result in higher departure rates 
than the covariate shift with global heterogeneity of three random 
heterogeneous variables. The covariate shift caused by urbanized area 
for RF simulations has about 20 % departure rate, but the one for ANN 
simulations has 48 % departure rates, which shows the vulnerability of 

ANN models to the inconsistency of urbanized area between training 
and testing dataset.

The covariate shifts associated with drainage area, urbanized area, 
and dam density should be avoided because they have negative impacts 
on the normality of ML simulations and yield inconsistent patterns of 
biased streamflow generation regimes learned by ML models. Drainage 
area, urbanized area, and dam density are explicitly related to the 
streamflow generation regimes. Spatial scales of watersheds, described 
by their drainage area, are critical for building hydrological models 
(Betson, 1964; Jha et al., 2004). Furthermore, urbanized area and dam 
density represent the influence of anthropogenic activities on stream
flow generation regimes of watersheds (Nathan and Lowe, 2012; Yih
dego and Webb, 2013; Singh and Basu, 2022). As a result, the data 
prepared for RF (non-parametric ML) and ANN (parametric ML) models 
must avoid covariate shift of drainage area, dam density, and urbanized 
area due to the concern of the biased streamflow generation regime 
learned by ML models.

4.3. Role of variables in RF

How RF models learn streamflow generation processes from input 
variables and what the range of variables is favored for RF’s best/worst 
performance reveal the applicability and limitations of RF. Feature 
importance represents the contribution of each variable in reducing the 
impurity of decision trees during the model-building process of RF. Most 
of the meteorological variables have greater feature importance (>
0.05) compared to the watershed characteristics (< 0.05) among all 
study areas (Fig. 12). The standard deviation of feature importance is 
relatively low compared to the mean of feature importance (<1%). 
Meteorological variables play a dominant role in building the RF model 
for PUB, while the watershed characteristics have much lower feature 
importance than the meteorological variables. The low feature 

Fig. 7. Box plots showing (a) mean, (b) variance, (c) skewness, and (d) kurtosis of RF predictive distributions in different study areas.
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importance of watershed characteristics raises doubt about the ability of 
RF to apply watershed characteristics in predicting streamflow.

Among the meteorological variables, precipitation is noted as the 
most important variable, followed by short-term antecedent pre
cipitations on the previous day or week in most of the study areas. These 
findings are consistent with Zhang et al. (2018), Beck et al. (2017), and 
Addor et al. (2018); climatic variables, such as precipitation and aridity, 
are among the most important variables for predicting the runoff 
signature by RF (Fig. 12). In areas with relatively higher annual snow
fall, Allegheny and Monongahela, long-term snowfall (SNOW 30D) has 
higher feature importance than the other study area, and precipitation 
has lower feature importance than the other study area. The short-term 
snow variables, such as snowfall and snow depth, have much lower 

feature importance than the other meteorological variables and fail to 
contribute to building RF models even in the Allegheny and Mono
ngahela (Fig. 12).

RF performs best when they have learned the streamflow generation 
processes and applied them to the PUB task in corresponding water
sheds, while it performs worst when it fails to learn certain types of 
streamflow generation processes. Best and worst RF performance is 
defined as the top 10 percentile and bottom 10 percentile of expected 
NSE of predictive distribution among all stations. In the ORB, stations 
with expected NSE below the 10th percentile (NSE < 0.45) and above 
the 90th percentile of mean NSEs (NSE > 0.8) are assigned to the worst- 
performing group and best-performing group, respectively. For identi
fying significant differences in variables between the best/worst group 

Fig. 8. Skewness-kurtosis plots of RF’s performance in (a) Ohio River Basin, (b) Allegheny, (c) Monongahela, (d) Kentucky-Licking, (e) Wabash, and (f) Lower Ohio.
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of stations and the overall stations, a two-sample KS test is applied with a 
5 % significance level (Table 7).

The distribution of drainage area for overall stations is significantly 
different from the distribution of drainage area from stations with best 
simulations, while the drainage area distribution of the worst group does 
not show difference from the overall distribution of drainage area 
(Fig. 13a). About 60 % of reaches within the best group have upstream 
watersheds with drainage area from 1,000 to 10,000 km2. Only about 
20 % of reaches within the best group have their drainage area smaller 
than 1,000 km2. On the contrary, 60 % of overall reaches are at the 
outlets of watersheds having drainage area smaller than 1,000 km2, but 
only about 30 % are within 1,000 to 10,000 km2, which is 30 % short 
compared to the best group. As a result, RF is more efficient in learning 
the streamflow generation processes for watersheds having larger 
drainage area (1,000 to 10,000 km2) considering that larger basins mask 
the heterogeneity present in small ones (<1000 km2). This preferred 

range of RF models in watershed scales may be related to the streamflow 
generation processes of watersheds with drainage area larger than 
1,000 km2, which have a higher signal-to-noise ratio of streamflow data 
compared to watersheds that are smaller than 1,000 km2. Thus, RF 
models learn the signals of streamflow collected from watersheds with 
drainage area larger than 1,000 km2 with less interference of noise than 
the ones from small watersheds (<1,000 km2). In addition, the 
streamflow response, which is longer for meteorological forcings in 
watersheds with drainage area larger than 1,000 km2, may dominate the 
streamflow generation processes learned by RF models. As a result, the 
streamflow generation processes learned by a ML model can capture the 
signals for most of the large watersheds (>1,000 km2).

Dam density shows a preferred range of best simulations compared 
to the overall performance (Fig. 13b). More than 90 % of the reaches 
within the best group have dam density from 0.004 to 0.02 dams/km2. 
However, only 40 % of overall reaches have dam density within this 
range. About 20 % of overall reaches have no dam within the upstream 
watershed. In comparison, only one reach (around 2.3 %) within the 
best group has no dam influence. The best group tends to have a nar
rower range of dam density than the overall reaches. According to NID 
(2022), the average dam density within the ORB is around 0.01 dams/ 
km2. The streamflow generation process learned by the RF model carries 
the influence of dams and fits better for watersheds with a moderate 
density of reservoirs (0.004 to 0.02 dams/km2).

Rainfall and snowfall are the major meteorological forcing and the 
most important variables in the model building process here. The best 
performing stations show a moderate range of annual rainfall from 1 m 
to 1.5 m compared to the entire distribution of annual rainfall from 0.7 
m to 2.5 m (Fig. 14a). The top thirty percent (70 %-100 % CP) of the 
stations within the best group have annual snowfall greater than 1.5 m, 
which is much higher than the ones in overall stations with top ten 
percent (90 %-100 % CP) of the stations. As a result, the streamflow 
generation regime learned by RF involves the meteorological trans
formation process, which can manage a moderate range of rainfall and 
relatively high snowfall. RF models show high efficiency and accuracy in 
dealing with watersheds with meteorological forcing in the form of 
rainfall and snowfall. On the other hand, 50 % (50 %-100 % CP) of the 
stations within the best group have annual snowfall of more than 0.5 m, 
which is much higher than the worst group with about 15 % (85 %-100 
% CP) of the stations. RF fails to simulate the streamflow generation 
processes at pseudo ungauged reaches with relatively low snowfall due 
to the relatively high feature importance of long-term snowfall in the 
model building process of RF. The absence of the variation of snowfall 
inputs may lead to the malfunctioning of some splits of the nodes related 
to the long-term snowfall within a RF model, such as melting of large 
snowpacks. These dominant processes of RF models cannot participate 
in predicting streamflow in the watersheds with low snowfall, and the 
streamflow predicted at such watersheds tend to be more inaccurate 
than the ones with the participation of all the learned processes in RF 
(Sivakumar, 2000; Sivakumar, 2004).

5. Conclusions

ML methods provide an appealing alternative to traditional hydro
logic models for PUB. A better understanding of the sources of uncer
tainty in ML model performance can enable them to be implemented 
more widely across large scales with greater confidence. This study 
quantifies the effect of data splitting process and the resulting covariate 
shift on the performance of ML models for PUB. Specifically, it imple
ments RF and ANN to analyze (i) how to assess the problem of data 
splitting process of ML models, (ii) how covariate shifts of variables link 
to the high uncertainty incorporated in the performance of ML models, 
and (iii) what are the preferred ranges of watershed characteristics for 
ML models.

In order to assess the effect of data splitting in ML models, a Monte 
Carlo analysis is implemented to estimate the predictive distribution of 

Fig. 9. The number or percentage of Monte Carlo scenarios with global het
erogeneity of numbers of Covariate Shift variables.

Table 6 
The percentage of covariate shift alone in Monte Carlo scenarios, which is 
visualized in Fig. 9 as the column selected by the dashed line.

Variables Code Details Percentage of 
scenarios (%)

Annual Rainfall − Annual averaged 
precipitation

8.1

Annual Snowfall − Annual averaged 
snowfall

3.9

Annual Snow 
Depth

− Annual averaged snow 
depth

3.5

Maximum 
temperature

TMAX Maximum daily 
temperature

4.1

Minimum 
temperature

TMIN Minimum daily 
temperature

4.1

Drainage area Area Drainage area 11
Averaged elevation Elev Averaged elevation 5.2
Slope Slope Averaged Slope 6.1
Impervious% Imper Averaged impervious 

percentage
5.6

Urbanized area (%) Urban Averaged urbanized area 9.9
Clay% Clay% Averaged clay 

percentage
5.2

Sand% Sand 
%

Averaged sand 
percentage

5.4

Permeability Perm Averaged permeability 5.2
Hydraulic 

conductivity
K Averaged hydraulic 

conductivity
12.3

Dam density − Averaged dam density 10.3
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Fig. 10. The density plots of (a) urbanized area, (b) dam density, and (c) log10 of drainage area in km2 showing the heterogeneity of distributions.

Fig. 11. Plots showing departure rates of ML models related to (a) global heterogeneity and (b) individual variable heterogeneity of urbanized area, dam density, and 
drainage area.
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NSE for PUB. Further, the analysis is also implemented on different 
subbasins of ORB to study the differences in predictive distribution with 
respect to spatial scale of the watersheds. The predictive distributions 
are relatively consistent in terms of mean and have low variance indi
cating that RF performs satisfactorily at most stations across different 
data splits which indicates that ML has the potential for satisfactory 
performance in PUB. However, the negative skewness and high kurtosis 
of the predictive distributions indicate the likelihood of outliers in single 

RF simulations which can lead to erroneous predictions when ML is 
applied with random data splitting for PUB.

To overcome the limitations of the random data splitting, this study 
analyzed the effect of heterogeneity of the input variables, resulting in 
covariate shifts, on the performance of ML modeling for PUB. Covariate 
shift causes departures from normality for both parametric and non- 
parametric ML models in the applications of PUB. Under the influence 
of covariate shifts, ML may learn biased meteorological transformation 
processes from input variables to streamflow. Data splitting processes 
for training/testing ML models should avoid covariate shifts to alleviate 
the uncertainty in PUB. Global heterogeneity and heterogeneity of 
specific watershed characteristics in data splitting processes add un
certainty to ML modeling results. Specifically, the distribution of 
watershed characteristics like drainage area, urbanized area, and dam 
influence should be consistent between training and testing inputs so 
that ML models can learn and assess the appropriate meteorological 
transformation process.

Preferred ranges of variables, including drainage area, dam influ
ence, and meteorological variables in the ORB for RF can be determined. 
RF can successfully learn the streamflow generation process from 
mesoscale watersheds with areas from 1,000 to 10,000 km2 with a 
moderate range of dam density (4 to 20 dams/1,000 km2). Meteoro
logical forcings have a higher impact on the performance of RF for the 
ORB, as evidenced by the fact that the model performs well at stations 
with a moderate range of annual rainfall (1 to 1.5 m/year) and relatively 
high snowfall (0.5 to 1.5 m/year). RF works well in watersheds with the 
composition of rainfall and snowfall. On the contrary, watersheds with 
low snowfall tend to show poorer performance from RF due to the 
malfunctions of the splits created in RF for long-term snowfall. RF fails 
to predict the streamflow in regions with relatively low annual snowfall 
(<0.5 m) in the ORB.

Taken together, the three objectives can provide important guide
lines regarding the implementation of ML for PUB. ML implementations 
need to incorporate targeted data splitting where the distribution of 
input variables are consistent between training and testing sets instead 
of using random sampling. Input variables should also be checked to 
ensure that they fall within the preferred range for the adopted ML 
technique. When implementing a trained ML model to an ungauged site, 
it is not possible to check its performance because of the lack of 
streamflow data at the site. However, checking the distribution and 
range of input variables can provide important indications to the 
robustness of the ML model’s performance.

The impact of covariate shift can be alleviated using validation 

Fig. 12. Parallel coordinate plots of the feature importance in RF models for different study areas showing the mean of feature importance of variables. (The standard 
deviation of feature importance is orders of magnitude smaller and varies similar to the feature importance).

Table 7 
KS test p-value of variables between the overall simulations and simulations 
from the best/worst 10 % group in the ORB. The vertical red line represents the 
p = 0.05 significance level, which is the criteria to reject/ or fail to reject the null 
hypothesis of KS test. (The distributions of all variables can be found in Fig. S1).

Variables Code Details kS test p 
value for 
worst case

kS test p 
value for 
best case

Annual Rainfall − Annual averaged 
precipitation

0.15 0.04

Annual 
Snowfall

− Annual averaged 
snowfall

0.00 0.02

Annual Snow 
Depth

− Annual averaged 
snow depth

0.00 0.04

Maximum 
temperature

TMAX Maximum daily 
temperature

0.04 0.08

Minimum 
temperature

TMIN Minimum daily 
temperature

0.00 0.01

Drainage area Area Drainage area 0.26 0.00
Averaged 

elevation
Elev Averaged elevation 0.00 0.01

Slope Slope Averaged Slope 0.11 0.36
Impervious% Imper Averaged 

impervious 
percentage

0.95 0.04

Urbanized area 
(%)

Urban Averaged 
urbanized area

0.83 0.10

Clay% Clay% Averaged clay 
percentage

0.08 0.10

Sand% Sand 
%

Averaged sand 
percentage

0.00 0.09

Permeability Perm Averaged 
permeability

0.06 0.00

Hydraulic 
conductivity

K Averaged 
hydraulic 
conductivity

​ ​

Dam density − Averaged dam 
density

0.20 0.00

P.-C. Li et al.                                                                                                                                                                                                                                     Journal of Hydrology 653 (2025) 132731 

14 



techniques. These techniques include applying weights to training data 
or testing data (Reddi et al., 2015; Segovia-Martín et al., 2023), 
adjusting loss function and optimization process (Bickel et al. 2009; Liu 
and Ziebart, 2017), and splitting training/ testing data with pre-defined 
conditions (López et al., 2014; Rezaei et al., 2021). Future forays in this 
direction should analyze the effect of different validation techniques and 
data split ratios for ML in PUB. Also, this study was implemented on ORB 
which has gauges on streams with a wide range of drainage areas. 
However, smaller basins are generally less likely to be gauged and are 
therefore often underrepresented in training/testing dataset which can 
lead to more unpredictable behavior in prediction of streamflow gen
eration process. This calls for a more in-depth analysis on the effect of 
covariate shift at different scales with a particular focus on smaller 
basins.
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