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Machine learning (ML) models are alternatives to traditional hydrologic modeling for streamflow predictions in
ungauged basins (PUB). The variability in watershed characteristics of ungauged basins; however, adds un-
certainties to PUB frameworks based on ML models. These uncertainties arise from the inconsistency in the
statistical distributions between the dataset used to train and test a ML model, known as covariate shifts, and the
real-world (global) dataset on which the trained model is implemented. In real-world applications, covariate shift
is a widespread issue for ML that has not been investigated in hydrological applications. This study evaluates the
uncertainty in ML-based PUB method including Random Forest (RF) and Artificial Neural Network (ANN) under
the influence of covariate shift. The Monte Carlo method is applied to aggregate simulations of RF and ANN
according to various data splitting configurations as predictive distributions. The results indicate that ML per-
formance is not robust under covariate shifts. ML performance is influenced by watershed characteristics dis-
playing heterogeneity, such as drainage area, dam density, and urbanized area. 20-48% simulation results show
a departure from the normal distribution under different covariate shift scenarios Furthermore, the efficiency and
limitation of Random Forest models for PUB are highlighted by investigating their biased predictions in wa-
tersheds with varying dam density, drainage area, and meteorological variables, such as annual snowfall and
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annual precipitation.

1. Introduction

Many hydrologic studies including flow prediction rely on moni-
toring data from larger basins, and prediction in ungauged basins (PUB)
provides an option to complement monitoring with information about
smaller watersheds. Predicting streamflow at ungauged reaches is a
challenging using conceptual or physically based hydrological models
because of the heterogeneity of streamflow generation processes
(Sivapalan et al. 2003; Hrachowitz et al 2013). In this context, Machine
Learning (ML) is investigated as an alternative to conceptual or physi-
cally based modelling. ML has emerged as a promising method for PUB,
demonstrating robustness and accuracy in predicting streamflow
(Mosavi et al., 2018; Petty and Dhingra, 2018; Worland et al., 2018;
Kratzert et al., 2019; Xiang et al., 2020; Adnan et al., 2021). PUB has
been widely addressed using physics-based distributed hydrologic
models involving basin/site-specific parameters (AghaKouchak and
Habib, 2010; Razavi and Coulibaly, 2013; Hrachowitz et al., 2013;
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Pechlivanidis and Arheimer, 2015; Petty and Dhingra, 2018; Saksena
et al., 2019) or using conceptual models utilizing lumped or semi-
distributed approach with fewer model parameters (Das et al., 2008;
Chang et al., 2017; Seibert et al., 2019; Darbandsari and Coulibaly,
2020). Physical-based approaches face challenges related to the unique
physical interpretability of such models (Beven, 2006; Her and Chaubey,
2015; Her et al., 2019), while ML data-driven approaches face chal-
lenges associated with the preparation of data, ML algorithms, and their
parameters (Schmidt et al., 2020; Underwood et al., 2023; Samadi et al.,
2024).

ML models built for PUB generally follow a random data splitting
process (Reitermanova, 2010), which divides the selected stations into
training data for building ML models and testing data for evaluating ML
models. Random sampling process can be insufficient for PUB due to the
heterogeneity in hydrological datasets and unique watershed charac-
teristics (Sivapalan et al., 2003; Hrachowitz et al., 2013). In traditional
PUB studies, data splitting processes of conventional statistical models
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and conceptual models have been developed by dividing basins into sub-
basins (Kuchment and Gelfan, 2009; Janji¢ and Tadi¢, 2023; Wang et al.,
2023). Using a random splitting process for heterogeneous datasets can
lead to inconsistencies in the statistical distributions of input variables
between training and testing data, known as covariate shift (Sugiyama
et al., 2007; Reitermanova, 2010; Balogun and Attoh-Okine, 2021).

Although covariate shifts have been studied in applications related to
image corruption, geometry detection, and credit card fraud, their im-
pacts on hydrologic applications, particularly in the context of PUB,
remain unexplored (Lucas et al., 2019; Schneider et al., 2020; Balogun
and Attoh-Okine, 2021). For example, the distribution of drainage area
and reservoir density in training data may be different from the testing
data under covariate shift due to the random data splitting process.
Under this scenario, ML models may underperform due to the mis-
matched generalization in the learning process of ML (Sugiyama et al.,
2007; Balogun and Attoh-Okine, 2021). To investigate the influence of
covariate shifts on ML’s performance, Monte Carlo method is applied to
address the uncertainty of ML models by creating multiple modeling
scenarios by repeating the random data splitting process (Breuer et al.,
2006; Moges et al., 2021). The results of the Monte Carlo method
represent the distribution of ML model performance (Neal, 1992) and
provide a better understanding of covariate shifts’ implications on ML
models for PUB.

Additionally, PUB models, ML or conceptual, cannot perfectly learn
all the streamflow generation processes, surface runoff routing, and
reservoir impact for basin-scale simulations (Hrachowitz et al., 2013;
Khandelwal et al., 2020; Adombi et al., 2021; Fleming et al., 2021a;
Nearing et al., 2021). Quantifying the preference features range and
limitations of PUB models informs users and researchers about the
appropriate physical settings for applying a specific PUB model. Under a
data-driven framework, a ML model mines the inherent pattern within
the data, which includes a combination of possible physical processes
and the corresponding noise in streamflow generation. How a ML model
learns the streamflow generation process depends on the collective un-
derstanding of the elements established by its algorithm (McGovern
et al., 2019; Fleming et al., 2021b). The performance of ML models in
streamflow prediction can be decoded by analyzing the mini-
mum-maximum performance of ML models according to their input
features.

Above discussion show that ML models have emerged as efficient
approaches for large-scale applications in PUB, but their performance
can be affected by the uncertainty in the random data splitting process
(Addor et al., 2018; Nearing et al., 2021; Prieto et al., 2022), which can
introduce covariate shift. The impact of covariate shifts on the perfor-
mance of ML models in PUB needs to be investigated and quantified.
Additionally, understanding the range for each variable that leads to
better simulations, henceforth referred to as “preferred range,” can help
in identifying the appropriate physical settings of ML models for PUB
(Prieto et al., 2022). This study addresses the mentioned issues by (i)
evaluating the performance and incorporating uncertainty in ML models
through Monte Carlo simulations, (ii) investigating the impacts of co-
variate shifts on the performance of ML models, and (iii) quantifying the
preferred range of input variables for ML models and exploring their
connection with possible streamflow generation regimes.

It is recognized that random splitting of a variable can generate two
differently statistical distributions, which can introduce covariate shift
and different results from ML application. The question that this study is
attempting to address is how are the results affected with or without
covariate shift. If the results are unaffected, then covariate shift can be
ignored, but if they are affected, is it possible to identify which variables
are problematic and quantify the their range of values, “preferred
range”, within which results are acceptable. Overall, the results from
this study can lead to improved understanding of the impact of covariate
shift in input data on streamflow prediction, which can have broader
implications beyond ML.
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2. Study area and dataset
2.1. Study areas

The Ohio River Basin (ORB, Fig. 1 and Table 1) is a two-digit Hy-
drological Unit Code (HUCZ2; 05) named by the United States Geological
Survey (USGS) and is one of the 21 major water resource regions in the
United States. The ORB encompasses watersheds from 11 U.S. states:
Illinois, Indiana, Kentucky, Maryland, New York, North Carolina, Ohio,
Pennsylvania, Tennessee, Virginia, and West Virginia. About 35 % of
land use in the ORB is agricultural, and agricultural usage is primarily
located in the states of Kentucky, Ohio, Indiana, and Illinois (Electric
Power Research Institute (EPRI); 2010, 2014, 2016). The ORB has
experienced extreme flood events since 1773 (National Water Service
(NWS), 2017; Schlef et al., 2018; Gibson, 2020; Hauser, 2020), partic-
ularly in Indiana, Ohio, and Kentucky. These flood events highlight the
need for streamflow prediction at ungauged reaches for developing
flood mitigation and management strategies.

There are 598 USGS daily streamflow stations in the ORB (USGS,
2023), but only 431 USGS streamflow stations were selected here
(explained in Section 2.2). The number and density of selected USGS
stations from the ORB and five four-digit HUC (HUC4) level subregions
within the ORB: Allegheny (0501), Monongahela (0502), Kentucky-
Licking (0510), Wabash (0512), and Lower Ohio (0514) are shown in
Fig. 1 and Table 1. The Other subregions within the ORB are not chosen
due to insufficient number of streamflow stations (<30 available sta-
tions). The spatial scale and density of stations provide an overall un-
derstanding of the station network within study areas. The ORB has the
largest study area (421,951 km?), and the other watersheds have the
same order of magnitude of study areas (1 0% km?). The Wabash River is
the largest HUC4 region (85,349 krnz) selected and has the greatest
number of gauged reaches of the HUC4 regions included in this study
(Table 1). Monongahela and Lower Ohio subregions are the smallest
HUC4 regions selected. Monongahela has the highest stream gauging
density (17 stations in 10* km?), followed by Kentucky-Licking, Alle-
gheny, Lower Ohio, Wabash, and the ORB (Table 1).

2.2. Datasets

This study builds ML models to predict daily streamflow series in
ungauged reaches from 2010/10/01 to 2020/09/30. Accordingly,
streamflow data from USGS stations are used to build and test the model.
Ensuring the quality and coverage of streamflow data is crucial for
constructing reliable data-driven PUB models (Razavi and Coulibaly,
2017; Yilmaz and Bihrat, 2019). The USGS stations, which are impacted
by regulation of dams, and nested stations where the spatial correlation
is high, were eliminated.

Dams in a streamflow network lead to the anthropogenic impact on
streamflow generation processes (Hodgkins et al., 2023). The dam in-
fluence on streamflow cannot be fully mitigated, and it is difficult to
define the ‘natural’ river because dams are ubiquitous in rivers and
creeks. Stations with significant impact of dams need to be removed.
Usually, a comparison of dam storage and annual hydrograph can
delineate stations with “unnatural” flow. However, dam storage infor-
mation is not always available which makes it difficult to implement
such a threshold consistently across all stations. Therefore, in this study,
streamflow data collected within 3.2 km of a dam or reservoir are
eliminated to alleviate the impact of reservoir control on streamflow
measurements following the investigation made in the ORB (Yilmaz and
Bihrat, 2019). Additionally, the distributions of correlations between
rainfall and streamflow for dam influenced stations and the final chosen
stations (shown in Fig. S1) seems to suggest that there is some
improvement in the correlation of rainfall and streamflow for the final
chosen set.

Nested stations are eliminated from the streamflow stations due to
the high spatial correlation between the stations shared the similar
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Fig. 1. Map of the ORB and the HUC4 level watersheds: Allegheny, Monongahela, Kentucky-Licking, Wabash, and Lower Ohio subregion. The distribution of USGS

streamflow stations is also presented.

Table 1

Study area, number of available streamflow stations, and streamflow stations
density of the study areas (following the selection process of USGS stations in
Section 2.2).

Watershed HUC Study area Number of Density of stations

level (km?) available (stations/10*
stations km?)

Ohio Region HUC2 421,951 431 10
(05)

Allegheny HUC4 30,376 37 12
(0501)

Monongahela HUC4 19,104 33 17
(0502)

Kentucky- HUC4 27,638 35 13

Licking (0510)

Wabash HUC4 85,349 87 10
(0512)

Lower Ohio HUC4 32,633 40 12
(0514)

portion of watersheds. The spatial correlation of streamflow stations
observed in connected streams (Krajewski et al., 2020; Krajewski and
Sikorska-Senoner, 2021), known as spatial persistence, is minimized to
ensure the quality of streamflow data. Krajewski et al. (2020) suggested
that when the drainage area ratio of an upstream watershed to the
corresponding downstream watershed is large (>0.6), the upstream and
downstream station have similar streamflow patterns. As a result, when
the drainage area ratio for a given station is greater than 0.6, its
downstream station is removed from this study to avoid the influence of
spatial correlation between stations.

Previous hydrological studies filtered the hydrological datasets with
a missing rate ranging from 10 % to 20 % (Milly et al., 2005; Razavi and
Coulibaly, 2017; Yilmaz and Bihrat, 2019). In addition, ML studies have
highlighted the influence of missing data on model performance when
the missing rate exceeds 5 % (Moorthy et al., 2014; Thomas and Rajabi,
2021). To minimize the uncertainty caused by missing data, a 5 %
missing rate is chosen as the criteria for selecting USGS stations in this
study. Thus, any USGS station having more than 5 % missing values or
located within 3.2 km downstream of a reservoir was removed from this
study.

PUB models are usually built using watershed characteristics and
meteorological variables (Razavi and Coulibaly, 2013; Zhang et al.,
2018; Schoppa et al., 2020). Both meteorological variables (Beck et al.,
2017; Zhang et al., 2018) and watershed characteristics, including
topography, soil, and land use conditions (Saadi et al., 2019; Schoppa
et al., 2020) could act as major controls of PUB models. Table 2 shows
the variables used in building ML models and evaluating the model
performance in this study. Meteorological variables represent dynamic
variation in climate, whereas watershed characteristics serve as static
variables to capture streamflow generation processes. While anthropo-
genic modifications, such as dam density, are not commonly used in
building PUB models, the impact of dams on hydrological response is
investigated in the discussion section of this article (Nathan and Lowe,
2012; Yihdego and Webb, 2013; Fleming, B et al., 2021; Singh and Basu,
2022). Dam density is the density of georeferenced dams within a study
area collected from the National Inventory of Dams (NID, 2022).

2.2.1. Meteorological variables

Rainfall and snowfall are the major meteorological forcing for
streamflow generation processes. The meteorological variables include
rainfall, snowfall, snow depth, and temperature. The ORB is in the
middle latitude region, so snowfall and snow depth data are also
included (Winkler et al., 2020; Schoppa et al., 2020). The temperature
dataset indicates the possibility of snowmelt and frozen rivers (Prieto
et al., 2019). Daily rainfall, snowfall, depth of snow, and temperature
are downloaded from the National Oceanic and Atmospheric Adminis-
tration (NOAA) Global Historical Climatology Network (GHCN) data-
base (Menne et al., 2012). Streamflow is associated with current rainfall
and the extension of the previous rainfall event, known as the ante-
cedent rainfall (Istok and Boersma, 1986; Upreti and Ojha, 2021).
Antecedent precipitation variables: precipitation in the previous one
day, seven days, and thirty days are chosen to capture the influence of
earlier rainfall (Table 2). In addition, the snow depth and snowfall affect
the magnitude of streamflow when the snowmelt event happens
(Winkler et al., 2020). The snowfall and snow depth at current time step
are incorporated in the RF model (Table 2). The water equivalent from
snow is considered by including the monthly snowfall and difference
between snow depth at current time step and previous day to meteo-
rological variables (Bergeron et al., 2016).
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Table 2
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Variables applied in the RF model. Dam density (with an asterisk) is not used to train the ML models but is used to disclose the impact of covariate shift and preferred

range of ML models.

Categories Variables Code Details Range Source
Meteorology Rainfall PRCP Daily rainfall — GHCN
Previous Rainfall (one day) ~ PRCP_lagl Precipitation in the previous day (one day lag) — GHCN
Previous Rainfall (seven PRCP_7D Seven days accumulation of precipitation — GHCN
days)
Previous Rainfall (one PRCP_30D Thirty days accumulation of precipitation — GHCN
month)
Snowfall SNOW Daily snowfall - GHCN
Previous snowfall (one SNOW_30D  Thirty days accumulation of snowfall — GHCN
month)
Snow depth SNWD Daily snow depth — GHCN
Snow depth difference SNWD_diff The difference between the snow depth at current time step and — GHCN
previous day
Maximum temperature TMAX Maximum daily temperature — GHCN
Minimum temperature TMIN Minimum daily temperature — GHCN
Topography Drainage Area (km?) Area Drainage area 7.76-251,229  USGS
Average Elevation (m) Elev Averaged elevation 41.3-386.3 DEM from
USGS
Slope Slope Averaged Slope 7 x 103-0.47  DEM from
USGS
Land Use Impervious Percentage Imper Averaged impervious percentage 0.11-56.0 NLCD
Urbanized Area (%) Urban Averaged urbanized area 1.7-99.9 NLCD
Soil Clay% Clay% Averaged clay percentage 16.0-45.1 STATSGO
Sand% Sand% Averaged sand percentage 6.4-49.6 STATSGO
Permeability (cm/hr) Perm Averaged permeability 1.0-15.1 STATSGO
Hydraulic Conductivity K Averaged hydraulic conductivity 0.01-77.2 STATSGO
(pm/s)
*Anthropogenic *Dam Density (dams/km?) Averaged dam density 0-0.122 NID
Modification

2.2.2. Watershed characteristics

Watershed characteristics are presumed to affect streamflow gener-
ation in response to meteorological forcing. ML models for PUB focus on
generalizing the streamflow generation processes related to watershed
characteristics, including soil properties, land use properties, and
topography (Sivapalan et al., 2010; Razavi and Coulibaly, 2013). Here,
the watershed characteristics for building the ML models include
topography, soil, and land use. Topographic variables include slope,
elevation, and drainage area of watersheds. The drainage area and
elevation are the basic geometry and topography describing the water-
shed’s latitude and size for understanding the overall capacity of surface
water. The average slope of a watershed is related to the kinetic behavior
and driving force of water flowing in the watershed due to the force of
gravity. The average elevation and slope of watersheds are calculated
from 30 m resolution Digital Elevation Model (DEM) from USGS 3D
Elevation Program (USGS, 2022). The drainage area of watersheds is
obtained from the metadata of USGS stations.

Soil properties and land use of watersheds provide information of
rainfall abstraction and evapotranspiration processes. Watershed aver-
aged land use and soil variables are prepared using the Stream-
Catchment (StreamCat) dataset (Hill et al., 2016; USEPA, 2022). Soil
properties, including clay%, sand%, permeability, and hydraulic con-
ductivity, are obtained from 0.5° resolution State Soil Geographic
(STATSGO) dataset (Schwarz and Alexander, 1995; USDA, 2022).
Finally, impervious percentages and urbanized area are obtained from
30 m resolution 2011 and 2016 National Land Cover Database (NLCD)
from StreamCat (Table 2; MRLC, 2022).

The urbanized area in this study includes developed open area,
developed low-intensity area, developed medium-intensity area, and
developed high-intensity area. The difference between urbanized area
and impervious percentage is that urbanized area represents only the
percentage of developed area in a watershed, but the impervious per-
centage represents the percentage of developed area that is impervious
and varies according to the intensity of development. The impervious
percentage is 0-20 % of the total cover for developed open areas, 20-49
% for developed low-intensity areas, 50 %-79 % for developed medium-

intensity areas, and 80-100 % for developed high-intensity areas
(Wickham et al., 2013).

3. Methodology
3.1. Data preparation

In this study, the PUB models are built as lumped models requiring
representative values of watershed characteristics and meteorological
variables for each watershed. The boundary of each watershed is
delineated using the DEM obtained from USGS. Watershed characteris-
tics are derived by spatially averaging the raster datasets listed in Sec-
tion 2.2. Meteorological variables for each watershed are spatially
averaged using the Thiessen polygon method, which is typically used for
estimating spatial averages of meteorological variables in flat topog-
raphy, such as the ORB (Thiessen, 1911; McCuen, 2004). To evaluate the
performance of a PUB model, the USGS stations, which are the outlets of
the watersheds, are split into training/testing sets. An 80/20 split of
streamflow stations for training/testing data is selected as presented in
Table 3 because 80/20 has been reported as one of the best choices for
dividing the dataset for the training/testing process in a machine
learning model (Anifowose et al., 2017; Gholamy et al., 2018). The
training set, which contains the remaining stations, is used to train the
machine learning model (Fig. 2; Cibin et al., 2014; Athira et al., 2016;

Table 3
Number of streamflow stations used during the training and testing process and
optimized hyperparameters of RF.

No. of Training Testing Number Maximum
stations stations stations of trees depth
ORB 431 344 87 1500 30
Allegheny 37 29 8 500 27
Monongahela 33 26 7 300 22
Kentucky- 35 28 7 300 20
Licking
Wabash 87 69 18 1100 30

Lower Ohio 40 32 8 500 24
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Fig. 2. The flow chart of applying RF models for PUB. (a) data preparation, (b) the training and testing process of RF with early stopping method. The training
dataset is used in the training process for building RF models, and the testing dataset is used to evaluate the simulations (dashed lines). The solid arrows are the
processed information passing to the next process. The heavy dashed line highlights the early stopping process as the iterative process to get the optimized

hyperparameters of RF models.

Choubin et al., 2019). The testing set, hereafter referred to as pseudo
ungauged reaches, is used for evaluating the model.

3.2. Machine learning model — random Forest

Random Forest (RF) is one of the most widely used algorithms for
PUB due to its interpretability and non-parametric properties, facili-
tating its applications by engineers and researchers (Ziegler and Konig,
2014; Addor et al., 2018; Li et al., 2019; Prieto et al., 2019; Saadi et al.,
2019; Araza et al., 2020; Desai and Ouarda, 2021; Esmaeili-Gisavandani
et al., 2023). RF is capable of extracting similarities from vast datasets,
which are typical of natural systems over large spatial, national, or
global scales (Catal and Diri, 2009; Biau and Scornet, 2016; Carlisle
et al., 2010; Miller et al., 2018; Mosavi et al., 2018; Saadi et al., 2019;
Tyralis et al., 2019; Zhang et al., 2019). RF is an ensemble method that
predicts physical quantity by averaging the predictions made among the
decision trees (Breiman, 2001).

Decision trees in a RF model are built based on bootstrapped samples
from training data. Each decision tree model is developed by splitting
nodes into sub-nodes to make streamflow predictions. Each node in
decision trees represents criteria based on specific input variables that
determine the subsequent path toward streamflow predictions. The de-
cision tree algorithm tends to have a high variance in simulation and
often leads to overfitting problems. As a result, RF averages the pre-
dictions made among all the decision trees to prevent overfitting prob-
lems (Breiman, 2001). This study uses the Scikit-learn module in the
Python development environment (Pedregosa et al., 2011) to develop
the RF model.

The number of decision trees and the maximum depth of RF models
are optimized using the out-of-bag (OOB) sample (Fig. 2). The OOB
sample contains the left-out training data points during the training step.
The early stopping method avoids over-fitting issues of RF models by
finding optimized hyperparameters with the least out-of-bag error,
which is in the form of mean squared error (Svetnik et al., 2003). During
the optimization process, RF models are initialized by a set of hyper-
parameters, which is a pair of the number and maximum depth of de-
cision trees. The optimized values of hyperparameters are found by grid
search (Hinton, 2012), tries all pairs of the number of decision trees
(from 100 to 1,800 at the step interval of 100) and maximum depth
(from 10 to 50 at the step interval of one). Table 3 shows the optimized
hyperparameters of RF models for all study areas.

Investigating the relative feature importance of variables in RF
models provides insights into which variables contribute more to
streamflow predictions made by RF (Fisher et al., 2019). RF’s feature
importance is used to determine the importance of input variables by
measuring the reduction of impurity (variability of a variable within a
decision tree node) by adding such variable during the regression pro-
cess compared to the other variables (Breiman et al., 2017). The rank of
feature importance reveals the relevance of variables in streamflow
generation as learned by RF.

3.3. Machine learning model — Artificial Neural Network (ANN)

A fully connected shallow Artificial Neural Network (ANN) is the
algorithm applied to predict streamflow in the ORB and is compared
with the RF models for PUB in this study. ANN has been developed as
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one of the most popular ML models for PUB (Besaw et al., 2010; Chen
et al., 2010; Valizadeh et al., 2017; Mosavi et al., 2018). This study
develops an ANN model using the TensorFlow Keras module in the Py-
thon development environment.

The ANN model developed this study contains perceptron layers,
activation functions between perceptron layers, and the regularization
components (Fig. 3). Each layer of perceptron, known as a hidden layer,
has multiple neurons. These neurons process the input information by
multiplying the input from the previous layer by weights and then
adding constant variables as the output. For the first perceptron layer,
the input is the prepared datasets of watershed characteristics and
meteorological variables (see Section 2.2). After processing, each per-
ceptron layer passes its results to the subsequent layer, and this process
continues until it reaches the final output layer. The weights and con-
stant variables are determined during the training process.

Between each hidden layer, the activation functions decide whether
the output of the neurons should be activated or not. Rectified linear
activation units (ReLU) is chosen as the activation function due to its
proven performance for regression and classification in ANN models
(Goodfellow et al., 2016). ReLU is applied between each hidden layer to
filter the negative values and produce the maximum values between the
input values and zero (Eq. (1).

ReLU(x) = max(0,x),x € R 1)
which x is the output of each hidden layer in this study.

The hyperparameters indicates the overall structure of ANN
including the number of neurons in each hidden layer and the param-
eters for regularization techniques (Table 4). The optimization process
of ANN’s hyperparameters searches a set of parameters that minimizes
validation errors. The validation errors are the errors of ANN simula-
tions by utilizing validation data, which is separated from the training
data. The number of neurons for the two hidden layers is 1,000 and 100
respectively (Fig. 3). During the optimization process, the dropout and
L2 regularization techniques are applied to prevent overfitting issues
(Srivastava et al., 2014). The dropout randomly drops a percentage of
neurons in a hidden layer during the training process to strengthen the
learning ability of the other neurons and prevent the neurons from
overly adapting the information of training data (Srivastava et al.,
2014). The dropout rate is one of the hyperparameters in the ANN and
ranges from 0 % to 10 % for shallow ANN models (Piotrowski et al.,
2020). The other hyperparameter of regularization techniques is L2

Journal of Hydrology 653 (2025) 132731

Table 4
Optimized hyperparameters of ANN include the number of neurons, L2 ratio,
and dropout rate of each hidden layer.

Hidden Layer 1 Hidden Layer 2

Numbers of neurons 1000 100
L2 ratio 0.0001 0.0001
Dropout Rate 5% -

regularization. L2 regularization adds an error term, which multiplies
the L2 ratio with the square magnitude of the weight of neurons, in the
loss function of ANN in the training process to avoid overfitting issues
(Eq. (2). There are three values of the L2 regularization: 0.00001,
0.0001, and 0.001 for the optimization process. The optimized hyper-
parameters are found by the grid search method with the least error
during the optimization process (Table 4).

n
L2error = 1) w}

i=1

(2)

where 4 is the L2 ratio, w; is the weight of neuron i in a hidden layer, and
n is the number of neurons in the hidden layer.

3.4. Monte Carlo method for assessing uncertainty within data splitting
process

The performance of ML models here may change with different
training and testing data combinations due to the complexity of hy-
drological datasets. Therefore, any single set of training and testing data
can be unreliable for evaluating the performance of ML models in hy-
drology (Araza et al., 2020; Schoppa et al., 2020; Prieto et al., 2022). To
quantify the uncertainty in RF and ANN for PUB due to the data splitting
process and covariate shift, Monte Carlo method is implemented as a
bootstrap method for generating the empirical cumulative distribution
function (CDF) of RF and ANN performance (Robert and Casella, 2013).
One thousand training and testing data combinations, known as the
Monte Carlo scenarios, are generated by repeatedly and randomly
sampling the entire dataset (Fig. 2). In each scenario, 345 stations are
randomly chosen as training set, and the rest of the stations (86) are
chosen as testing set in the ORB. Repeating this process 1000 times leads
to 1000 different combinations of training/testing set. Each station is
expected to get selected in the training set around 800 times and in the
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Fig. 3. The architecture of the shallow ANN applied to PUB. For each time step (from day 1 to day 3653), the ANN model generates a streamflow prediction for a
station (training or testing). The accumulation of all 10 years of simulations becomes one complete prediction of the streamflow series at the station. x; is the input
variables, such as precipitation, snowfall, and drainage area, of a data point in a certain time step at the station.
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testing set around 200 times under an 80/20 split chance for the
training/testing dataset. The aggregate of simulation results from Monte
Carlo scenarios represents predictive distributions of each reach: prob-
ability density functions (PDFs) of the performance of ML models using
NSE. Due to the high computational demand of Monte Carlo analysis,
high-performance computing (HPC) resources from the Extreme Science
and Engineering Discovery Environment (XSEDE) (Towns et al., 2014)
were used.

A covariate shift is present when input variables are distributed
differently between a training and testing dataset. The presence of co-
variate shifts causes a trained ML model to fail to capture the inherent
patterns in the testing set (Ramchandran and Mukherjee, 2021). The
two-sample Kolmogorov-Smirnov (KS) test compares the distribution of
variables in the training and testing dataset to determine whether the
distributions are identical or independent (Raza et al., 2015). If the
distributions of input variables are different between the training and
testing datasets, the data splitting process is considered to include the
covariate shift phenomenon. For example, suppose a Monte Carlo sce-
nario has a training set entirely of stations with large drainage areas and
a testing set containing only stations with small drainage areas. In that
case, the inherent patterns learned by ML models are biased towards
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performance is unsatisfactory. Table 5 shows that ANN has the highest
unsatisfactory rate, and more than 50 % of the pseudo ungauged reaches
cannot get satisfactory simulations. The accuracy and overall perfor-
mance of RF models are better than ANN models. There are four case
studies of hydrographs of observations and predictions by RF and ANN
models (Fig. 5 and Fig. 6). For the best scenarios, RF models are better in
predicting high streamflow values than ANN models (Fig. 5). For the
worst scenarios, ANN models would overestimate in the large stream-
flow case (Fig. 6). RF models have better simulation results for case
studies of the best/worst performances in the ORB models. Table 5
shows NSE values at the 50 % cumulative probability (CP), which de-
scribes half of the simulation results exceeding the listed NSE values, of

Table 5

NSE values at 50 % CP, unsatisfactory rates, and the KS test results of ML per-
formance. The unsatisfactory rate is defined as the number of pseudo ungauged
reaches with unsatisfactory performance (NSE < 0.5; Moriasi et al., 2007)
divided by the total number of available streamflow stations in the study areas.
The KS tests (significant level is 0.05) are applied between the RF simulations in
the ORB and the other simulations.

streamflow generation processes represented in large basins and may NSE at Unsatisfactory KS Test of NSE values (p
fail to estimate accurate streamflow for the testing set. This Monte Carlo 50%CP  Rate (%) value)
. . . . ces All Station
scenario has suffered from inconsistency in the data splitting process due si .
i K imulations Means
to covariate shift.
ORB RF 0.65 16 - -
. . ORB_ANN 0.49 52 reject reject
4. Result and discussion (p = 0.00) ( = 0.00)
Allegheny 0.65 16 reject fail to
4.1. Machine learning performance using Monte Carlo method (p = 0.00) reject
(p=0.33)
. . M hel 0.71 3 j fail
The overall performance of RF and ANN is evaluated using the enongahea E;Je:cto 00) r‘;e:
Nash-Sutcliffe Efficiency (NSE) of streamflow simulations in a unit (p=0.18)
drainage area (Fig. 4). NSE reveals the ability of RF and ANN in Kentucky- 0.60 31 reject fail to
detecting peak flows, and RMSE shows the overall error of ML perfor- Licking (p = 0.00) reject
mance. For most of the study areas, more than 80 % of RF simulations . (p,: 0.08)
) . . Wabash 0.62 20 reject fail to
have satisfactory performance (NSE > 0.5; Moriasi et al., 2007). The RF ( = 0.00) reject
simulations in Monongahela show the best overall performance with 97 (p = 0.06)
% satisfactory simulations. In comparison, the ones in Kentucky-Licking Lower Ohio 0.70 13 reject fail to
only have 69 % satisfactory simulations, much lower than RF simula- (p = 0.000) IEJE“O 5
tions in the other study areas. On the other hand, 52 % of ANN p=0
1.0
0.9
0.8
0.7
0.6 — T
B 05t 7 et
Z 0| ST et - = ORB_RF U
. ot ” - -
041 ¥ - —— ORB_ANN
.y -~ o
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Fig. 4. CDF of the accumulated performance (NSE of depths of daily streamflow) using the ANN model for the ORB and RF models for the ORB, Allegheny,
Monongahela, Kentucky-Licking, Wabash, and Lower Ohio subregion. S/U stands for satisfactory/unsatisfactory simulation results (NSE > 0.5/ NSE < 0.5; Moriasi

et al., 2007).
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Fig. 5. The hydrographs of observation, RF simulations, and ANN simulations at (a) USGS 03118000 (NSE = 0.96 for RF and 0.74 for ANN) and (b) USGS 03240000
(NSE = 0.96 for RF and 0.78 for ANN), which are the stations with one of the best ML performances in the ORB.

all the CDFs of RF and ANN simulations. The KS test results show
whether the distribution of RF and ANN simulation results in a study
area is identical to the distribution of RF simulation results in ORB. The
distribution of ANN simulation results is significantly different from the
RF simulations (Table 5).

RF performance shows no specific correlation with the size of study
areas with different spatial scales for PUB. Kentucky-Licking and Mon-
ongahela are the smallest study areas in this study. However, RF per-
forms worst in Kentucky-Licking and has the lowest satisfactory rate (69
%), while it performs best in Monongahela with the highest satisfactory
rate of simulations (97 %). In addition, the difference between the
performance of RF models for ORB, Allegheny, Kentucky-Licking, and
Wabash is small (Table 5). This comparison shows that the size of the
study area may not be the only factor influencing the performance of RF.
In order to have a more comprehensive investigation of RF performance,
the distribution of RF simulations using Monte Carlo realizations is
investigated (Fisher et al., 2019; Clark et al., 2021). This study provides

two primary directions to investigate the performance of RF: (i) the
statistics of RF’s performance for pseudo ungauged reaches in study
areas and (ii) the feature importance of RF and RF’s preferred ranges of
watershed characteristics (descriptions in Section 4.3).

Mean, variance, skewness, and kurtosis (actually excess kurtosis
based on comparing the sample to a normal distribution) of predictive
distributions, formed by aggregating RF simulation results among Monte
Carlo scenarios, represent the pattern of RF’s performance regarding
pseudo ungauged reaches (Fig. 7). The mean values of predictive dis-
tributions show that most stations are expected to perform satisfactorily.
In addition, more than 98 percent of stations show a low variance of NSE
values, and only less than 2 percent of distributions have their variance
reaching more than 0.01. Overall results from the mean and variance of
the predictive distributions show that RF simulations are consistent at
most stations.

Though the mean and variance of predictive distributions are
consistent, the predictive distributions at some reaches are negatively
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Fig. 6. The hydrographs of observation, RF simulations, and ANN simulations at (a) USGS 03289193 (NSE = 0.37 for RF and 0.34 for ANN) and (b) USGS 03378635
(NSE = 0.37 for RF and 0.24 for ANN), which are the stations with one of the worst ML performances in the ORB.

skewed and have high kurtosis (Fig. 8). The skewness of predictive
distributions shows the lack of symmetry of their shape, and the excess
kurtosis describes their peak and tail. Normal distribution tends to have
zero skewness and kurtosis; however, the predictive distributions having
negative skewness and high kurtosis tend to have a heavy tail and a
higher chance of having outliers with poor performance (Westfall,
2014). Overall, the high skewness and kurtosis among Monte Carlo re-
sults show that relying on a single RF simulation for PUB may lead to
potential outliers (extremes) and increased uncertainty in streamflow
predictions.

4.2. Influence of covariate shift on RF and ANN

ML models suffer from covariate shifts of variables in the data
splitting process in many real-world applications (McGaughey et al.,
2016; Lucas et al., 2019; Schneider et al., 2020; Balogun and Attoh-
Okine, 2021). PUB includes high variability of inputs (watershed

characteristics) and might encounter covariate shifts when applying ML
models. This section uses the Monte Carlo method to evaluate the effect
of covariate shifts in ML models in the context of PUB in the ORB. Two
criteria quantify the covariate shift phenomenon: (i) the total number of
input variables suffering from covariate shift, henceforth referred to as
global heterogeneity, and (ii) the influence of a specific covariate shift
variable henceforth referred to as individual variable heterogeneity. The
influence of covariate shift is quantified by comparing the mean, vari-
ance, skewness, and kurtosis of predictive distributions with and
without covariate shift. 5,000 Monte Carlo scenarios are applied to
investigate how predictive distributions vary under the covariate shift of
a specific variable.

The numbers of global heterogeneity and individual variable het-
erogeneity from the Monte Carlo scenarios are shown in Fig. 9 and
Table 6. The number of homogeneous/heterogeneous scenarios are
similar in RF and ANN models due to the same data splitting method:
random sampling. About 3,000 Monte Carlo scenarios are free from
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Fig. 7. Box plots showing (a) mean, (b) variance, (c) skewness, and (d) kurtosis of RF predictive distributions in different study areas.

covariate shifts, and the other Monte Carlo scenarios have at least one
heterogeneous variable. Around 1150 scenarios are influenced by one
covariate shift variable, which have the most frequent variables:
drainage area, urbanized area, and dam density. The overall distribu-
tions of these variables are not normally distributed and show that most
of the watersheds tend to have relatively low urbanized area, dam
density, and drainage area (Fig. 10).

Covariate shifts result in predictive distributions’ departures from
normal distributions to non-normal distributions, known as the depar-
ture from normality (D°Agostino and Pearson, 1973; Das and Imon,
2016). In this study, the departure rate is defined as the ratio of the
number of stations’ predictive distributions suffering from the de-
partures from normality to the total number of stations under covariate
shift. Both global heterogeneity and individual variable heterogeneity
result in departures from the normality of simulations (Fig. 11).
Regarding the global heterogeneity, the departure rate of RF models
increases from 18 % (one heterogeneous variable) to 22 % (three het-
erogeneous variables). ANN models maintain higher departure rates (28
% to 31 %) than RF models across different global heterogeneities.
Overall, the results show that high global heterogeneity has consider-
able repercussions on kurtosis and skewness and can significantly add
uncertainty and non-normality to the model performance.

The three most heterogenous variables— urbanized area, dam den-
sity, and drainage area — change the normality of more than 20 % of
stations’ predictive distributions of RF and ANN simulations (Fig. 11).
RF and ANN have different departure rates under different individual
variable heterogeneity. The covariate shifts caused by drainage area and
dam density for RF and ANN simulations result in higher departure rates
than the covariate shift with global heterogeneity of three random
heterogeneous variables. The covariate shift caused by urbanized area
for RF simulations has about 20 % departure rate, but the one for ANN
simulations has 48 % departure rates, which shows the vulnerability of
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ANN models to the inconsistency of urbanized area between training
and testing dataset.

The covariate shifts associated with drainage area, urbanized area,
and dam density should be avoided because they have negative impacts
on the normality of ML simulations and yield inconsistent patterns of
biased streamflow generation regimes learned by ML models. Drainage
area, urbanized area, and dam density are explicitly related to the
streamflow generation regimes. Spatial scales of watersheds, described
by their drainage area, are critical for building hydrological models
(Betson, 1964; Jha et al., 2004). Furthermore, urbanized area and dam
density represent the influence of anthropogenic activities on stream-
flow generation regimes of watersheds (Nathan and Lowe, 2012; Yih-
dego and Webb, 2013; Singh and Basu, 2022). As a result, the data
prepared for RF (non-parametric ML) and ANN (parametric ML) models
must avoid covariate shift of drainage area, dam density, and urbanized
area due to the concern of the biased streamflow generation regime
learned by ML models.

4.3. Role of variables in RF

How RF models learn streamflow generation processes from input
variables and what the range of variables is favored for RF’s best/worst
performance reveal the applicability and limitations of RF. Feature
importance represents the contribution of each variable in reducing the
impurity of decision trees during the model-building process of RF. Most
of the meteorological variables have greater feature importance (>
0.05) compared to the watershed characteristics (< 0.05) among all
study areas (Fig. 12). The standard deviation of feature importance is
relatively low compared to the mean of feature importance (<1%).
Meteorological variables play a dominant role in building the RF model
for PUB, while the watershed characteristics have much lower feature
importance than the meteorological variables. The low feature
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Fig. 8. Skewness-kurtosis plots of RF’s performance in (a) Ohio River Basin, (b) Allegheny, (c) Monongahela, (d) Kentucky-Licking, (e) Wabash, and (f) Lower Ohio.

importance of watershed characteristics raises doubt about the ability of
RF to apply watershed characteristics in predicting streamflow.

Among the meteorological variables, precipitation is noted as the
most important variable, followed by short-term antecedent pre-
cipitations on the previous day or week in most of the study areas. These
findings are consistent with Zhang et al. (2018), Beck et al. (2017), and
Addor et al. (2018); climatic variables, such as precipitation and aridity,
are among the most important variables for predicting the runoff
signature by RF (Fig. 12). In areas with relatively higher annual snow-
fall, Allegheny and Monongahela, long-term snowfall (SNOW 30D) has
higher feature importance than the other study area, and precipitation
has lower feature importance than the other study area. The short-term
snow variables, such as snowfall and snow depth, have much lower

feature importance than the other meteorological variables and fail to
contribute to building RF models even in the Allegheny and Mono-
ngahela (Fig. 12).

RF performs best when they have learned the streamflow generation
processes and applied them to the PUB task in corresponding water-
sheds, while it performs worst when it fails to learn certain types of
streamflow generation processes. Best and worst RF performance is
defined as the top 10 percentile and bottom 10 percentile of expected
NSE of predictive distribution among all stations. In the ORB, stations
with expected NSE below the 10th percentile (NSE < 0.45) and above
the 90th percentile of mean NSEs (NSE > 0.8) are assigned to the worst-
performing group and best-performing group, respectively. For identi-
fying significant differences in variables between the best/worst group
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Table 6
The percentage of covariate shift alone in Monte Carlo scenarios, which is
visualized in Fig. 9 as the column selected by the dashed line.

Variables Code Details Percentage of
scenarios (%)
Annual Rainfall - Annual averaged 8.1
precipitation
Annual Snowfall — Annual averaged 3.9
snowfall
Annual Snow - Annual averaged snow 3.5
Depth depth
Maximum TMAX  Maximum daily 4.1
temperature temperature
Minimum TMIN Minimum daily 4.1
temperature temperature
Drainage area Area Drainage area 11
Averaged elevation ~ Elev Averaged elevation 5.2
Slope Slope Averaged Slope 6.1
Impervious% Imper Averaged impervious 5.6
percentage
Urbanized area (%) Urban Averaged urbanized area 9.9
Clay% Clay%  Averaged clay 5.2
percentage
Sand% Sand Averaged sand 5.4
% percentage
Permeability Perm Averaged permeability 5.2
Hydraulic K Averaged hydraulic 12.3
conductivity conductivity
Dam density - Averaged dam density 10.3

of stations and the overall stations, a two-sample KS test is applied with a
5 % significance level (Table 7).

The distribution of drainage area for overall stations is significantly
different from the distribution of drainage area from stations with best
simulations, while the drainage area distribution of the worst group does
not show difference from the overall distribution of drainage area
(Fig. 13a). About 60 % of reaches within the best group have upstream
watersheds with drainage area from 1,000 to 10,000 km?2. Only about
20 % of reaches within the best group have their drainage area smaller
than 1,000 km?. On the contrary, 60 % of overall reaches are at the
outlets of watersheds having drainage area smaller than 1,000 km?, but
only about 30 % are within 1,000 to 10,000 km?, which is 30 % short
compared to the best group. As a result, RF is more efficient in learning
the streamflow generation processes for watersheds having larger
drainage area (1,000 to 10,000 km?) considering that larger basins mask
the heterogeneity present in small ones (<1000 km?). This preferred
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range of RF models in watershed scales may be related to the streamflow
generation processes of watersheds with drainage area larger than
1,000 km?, which have a higher signal-to-noise ratio of streamflow data
compared to watersheds that are smaller than 1,000 km?. Thus, RF
models learn the signals of streamflow collected from watersheds with
drainage area larger than 1,000 km? with less interference of noise than
the ones from small watersheds (<1,000 km?). In addition, the
streamflow response, which is longer for meteorological forcings in
watersheds with drainage area larger than 1,000 km?, may dominate the
streamflow generation processes learned by RF models. As a result, the
streamflow generation processes learned by a ML model can capture the
signals for most of the large watersheds (>1,000 km?).

Dam density shows a preferred range of best simulations compared
to the overall performance (Fig. 13b). More than 90 % of the reaches
within the best group have dam density from 0.004 to 0.02 dams/km?2.
However, only 40 % of overall reaches have dam density within this
range. About 20 % of overall reaches have no dam within the upstream
watershed. In comparison, only one reach (around 2.3 %) within the
best group has no dam influence. The best group tends to have a nar-
rower range of dam density than the overall reaches. According to NID
(2022), the average dam density within the ORB is around 0.01 dams/
km?. The streamflow generation process learned by the RF model carries
the influence of dams and fits better for watersheds with a moderate
density of reservoirs (0.004 to 0.02 dams/km?).

Rainfall and snowfall are the major meteorological forcing and the
most important variables in the model building process here. The best
performing stations show a moderate range of annual rainfall from 1 m
to 1.5 m compared to the entire distribution of annual rainfall from 0.7
m to 2.5 m (Fig. 14a). The top thirty percent (70 %-100 % CP) of the
stations within the best group have annual snowfall greater than 1.5 m,
which is much higher than the ones in overall stations with top ten
percent (90 %-100 % CP) of the stations. As a result, the streamflow
generation regime learned by RF involves the meteorological trans-
formation process, which can manage a moderate range of rainfall and
relatively high snowfall. RF models show high efficiency and accuracy in
dealing with watersheds with meteorological forcing in the form of
rainfall and snowfall. On the other hand, 50 % (50 %-100 % CP) of the
stations within the best group have annual snowfall of more than 0.5 m,
which is much higher than the worst group with about 15 % (85 %-100
% CP) of the stations. RF fails to simulate the streamflow generation
processes at pseudo ungauged reaches with relatively low snowfall due
to the relatively high feature importance of long-term snowfall in the
model building process of RF. The absence of the variation of snowfall
inputs may lead to the malfunctioning of some splits of the nodes related
to the long-term snowfall within a RF model, such as melting of large
snowpacks. These dominant processes of RF models cannot participate
in predicting streamflow in the watersheds with low snowfall, and the
streamflow predicted at such watersheds tend to be more inaccurate
than the ones with the participation of all the learned processes in RF
(Sivakumar, 2000; Sivakumar, 2004).

5. Conclusions

ML methods provide an appealing alternative to traditional hydro-
logic models for PUB. A better understanding of the sources of uncer-
tainty in ML model performance can enable them to be implemented
more widely across large scales with greater confidence. This study
quantifies the effect of data splitting process and the resulting covariate
shift on the performance of ML models for PUB. Specifically, it imple-
ments RF and ANN to analyze (i) how to assess the problem of data
splitting process of ML models, (ii) how covariate shifts of variables link
to the high uncertainty incorporated in the performance of ML models,
and (iii) what are the preferred ranges of watershed characteristics for
ML models.

In order to assess the effect of data splitting in ML models, a Monte
Carlo analysis is implemented to estimate the predictive distribution of
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Table 7

KS test p-value of variables between the overall simulations and simulations
from the best/worst 10 % group in the ORB. The vertical red line represents the
p = 0.05 significance level, which is the criteria to reject/ or fail to reject the null
hypothesis of KS test. (The distributions of all variables can be found in Fig. S1).

Variables Code Details kS test p kS test p
value for value for
worst case best case

Annual Rainfall - Annual averaged 0.15 0.04

precipitation

Annual - Annual averaged 0.00 0.02

Snowfall snowfall
Annual Snow - Annual averaged 0.00 0.04
Depth snow depth

Maximum TMAX  Maximum daily 0.04 0.08

temperature temperature

Minimum TMIN Minimum daily 0.00 0.01

temperature temperature

Drainage area Area Drainage area 0.26 0.00

Averaged Elev Averaged elevation  0.00 0.01

elevation

Slope Slope Averaged Slope 0.11 0.36

Impervious% Imper Averaged 0.95 0.04

impervious
percentage
Urbanized area Urban  Averaged 0.83 0.10
(%) urbanized area

Clay% Clay%  Averaged clay 0.08 0.10

percentage

Sand% Sand Averaged sand 0.00 0.09

% percentage

Permeability Perm Averaged 0.06 0.00

permeability

Hydraulic K Averaged

conductivity hydraulic
conductivity

Dam density - Averaged dam 0.20 0.00

density

NSE for PUB. Further, the analysis is also implemented on different
subbasins of ORB to study the differences in predictive distribution with
respect to spatial scale of the watersheds. The predictive distributions
are relatively consistent in terms of mean and have low variance indi-
cating that RF performs satisfactorily at most stations across different
data splits which indicates that ML has the potential for satisfactory
performance in PUB. However, the negative skewness and high kurtosis
of the predictive distributions indicate the likelihood of outliers in single
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RF simulations which can lead to erroneous predictions when ML is
applied with random data splitting for PUB.

To overcome the limitations of the random data splitting, this study
analyzed the effect of heterogeneity of the input variables, resulting in
covariate shifts, on the performance of ML modeling for PUB. Covariate
shift causes departures from normality for both parametric and non-
parametric ML models in the applications of PUB. Under the influence
of covariate shifts, ML may learn biased meteorological transformation
processes from input variables to streamflow. Data splitting processes
for training/testing ML models should avoid covariate shifts to alleviate
the uncertainty in PUB. Global heterogeneity and heterogeneity of
specific watershed characteristics in data splitting processes add un-
certainty to ML modeling results. Specifically, the distribution of
watershed characteristics like drainage area, urbanized area, and dam
influence should be consistent between training and testing inputs so
that ML models can learn and assess the appropriate meteorological
transformation process.

Preferred ranges of variables, including drainage area, dam influ-
ence, and meteorological variables in the ORB for RF can be determined.
RF can successfully learn the streamflow generation process from
mesoscale watersheds with areas from 1,000 to 10,000 km? with a
moderate range of dam density (4 to 20 dams/1,000 km?). Meteoro-
logical forcings have a higher impact on the performance of RF for the
ORB, as evidenced by the fact that the model performs well at stations
with a moderate range of annual rainfall (1 to 1.5 m/year) and relatively
high snowfall (0.5 to 1.5 m/year). RF works well in watersheds with the
composition of rainfall and snowfall. On the contrary, watersheds with
low snowfall tend to show poorer performance from RF due to the
malfunctions of the splits created in RF for long-term snowfall. RF fails
to predict the streamflow in regions with relatively low annual snowfall
(<0.5 m) in the ORB.

Taken together, the three objectives can provide important guide-
lines regarding the implementation of ML for PUB. ML implementations
need to incorporate targeted data splitting where the distribution of
input variables are consistent between training and testing sets instead
of using random sampling. Input variables should also be checked to
ensure that they fall within the preferred range for the adopted ML
technique. When implementing a trained ML model to an ungauged site,
it is not possible to check its performance because of the lack of
streamflow data at the site. However, checking the distribution and
range of input variables can provide important indications to the
robustness of the ML model’s performance.

The impact of covariate shift can be alleviated using validation



P.-C. Li et al.

(a)
s || — worst 10%
1073 —best 10%
| —an
b 4
§ 10 5
8
< 3]
Ef) 10
£
g
A 1074
10"
0 20 40 60 80 100

Cumulative Probability (%)

Fig.

(a)
2.50 1
—worst 10%
2.251| ——best 10%
—all
2.00 A

— — —_—

N 3 ~

W S W
s L L

Annual Precipitation (m)

=
S

0.75 1

0 20 40 60 80
Cumulative Probability (%)

100

Journal of Hydrology 653 (2025) 132731

(b)
0.1

——worst 10%
——Dbest 10%
—all

Dam Density (dams/km?)
=)
o

0.0017

0 20 40 60 80
Cumulative Probability (%)

100

13. CDF plots of (a) Drainage area and (b) dam density distribution of the best/worst 10% group and the overall performance.

(b)
357 — worst 10%
30 ——best 10%
—_ —all
£
5
3 20 T
2
ZRRE
<
=
g 1.0
0.54
0.0 1
0 20 40 60 80 100

Cumulative Probability (%)
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techniques. These techniques include applying weights to training data
or testing data (Reddi et al., 2015; Segovia-Martin et al., 2023),
adjusting loss function and optimization process (Bickel et al. 2009; Liu
and Ziebart, 2017), and splitting training/ testing data with pre-defined
conditions (Lopez et al., 2014; Rezaei et al., 2021). Future forays in this
direction should analyze the effect of different validation techniques and
data split ratios for ML in PUB. Also, this study was implemented on ORB
which has gauges on streams with a wide range of drainage areas.
However, smaller basins are generally less likely to be gauged and are
therefore often underrepresented in training/testing dataset which can
lead to more unpredictable behavior in prediction of streamflow gen-
eration process. This calls for a more in-depth analysis on the effect of
covariate shift at different scales with a particular focus on smaller
basins.

CRediT authorship contribution statement

Pin-Ching Li: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Sayan Dey:
Writing — review & editing, Writing — original draft, Validation,
Conceptualization. Venkatesh Merwade: Writing — review & editing,
Supervision, Project  administration, Funding  acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was performed with funding from the U.S. National Sci-
ence Foundation (OAC:1835822, OAC:1829764, and OAC:2118329).
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE) Bridges-2 at
the service-provider through allocation TG-ASC170016. Authors thank
Roberta Lynn Vance from the Lyles School of Civil Engineering at Pur-
due University for proofreading the paper.

Open Research

The datasets generated in this study are made available in the Purdue
University Research Repository (PURR) at Li et al. (2023a), and the
Python codes are made available in the Purdue University Research
Repository (PURR) at Li et al. (2023b). In addition, the list of all stations

15



P.-C. Li et al.

in the ORB (1284 stations), including stage and streamflow stations, the
list of daily streamflow stations in the ORB (598 stations), and the final
list of selected stations (431 stations) are available in the Purdue Uni-
versity Research Repository (PURR) at Li et al. (2023a).

Data availability

Data will be made available on request.

References

Addor, N., Nearing, G., Prieto, C., Newman, A.J., Le Vine, N., Clark, M.P., 2018.

A ranking of hydrological signatures based on their predictability in space. Water
Resour. Res. 54 (11), 8792-8812. https://doi.org/10.1029/2018 WR022606.

Adnan, R.M., Petroselli, A., Heddam, S., Santos, C.A.G., Kisi, O., 2021. Comparison of
different methodologies for rainfall-runoff modeling: machine learning vs
conceptual approach. Nat. Hazards 105 (3), 2987-3011. https://doi.org/10.1007/
5§11069-020-04438-2.

Adombi, A.V.D.P., Chesnaux, R., Boucher, M.A., 2021. Theory-guided machine learning
applied to hydrogeology—state of the art, opportunities and future challenges.
Hydrgeol. J. 29 (8), 2671-2683. https://doi.org/10.1007/510040-021-02403-2.

AghaKouchak, A., Habib, E., 2010. Application of a conceptual hydrologic model in
teaching hydrologic processes. Int. J. Eng. Educ. 26 (4 (S1)), 963.

Anifowose, F., Khoukhi, A., Abdulraheem, A., 2017. Investigating the effect of
training-testing data stratification on the performance of soft computing techniques:
an experimental study. J. Exp. Theor. Artif. Intell. 29 (3), 517-535. https://doi.org/
10.1080/0952813X.2016.1198936.

Araza, A., Hein, L., Duku, C., Rawlins, M. A., & Lomboy, R. (2020). Data-driven
streamflow modelling in ungauged basins: regionalizing random forest (RF) models.
bioRxiv. d0i:10.1101/2020.11.14.382598.

Athira, P., Sudheer, K.P., Cibin, R., Chaubey, ., 2016. Predictions in ungauged basins: an
approach for regionalization of hydrological models considering the probability
distribution of model parameters. Stoch. Env. Res. Risk A. 30 (4), 1131-1149. https://
doi.org/10.1007/s00477-015-1190-6.

Balogun, I., Attoh-Okine, N., 2021. Random Forest-based covariate shift in addressing
nonstationarity of railway track data. ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems, Part a: Civil Engineering 7 (3), 04021028. https://doi.org/
10.1061/AJRUA6.0001141.

Beck, H.E., van Dijk, A.L, Roo, A.D., Dutra, E., Fink, G., Orth, R., Schellekens, J., 2017.
Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol.
Earth Syst. Sci. 21 (6), 2881-2903. https://doi.org/10.5194/hess-21-2881-2017.

Bergeron, J.M., Trudel, M., Leconte, R., 2016. Combined assimilation of streamflow and
snow water equivalent for mid-term ensemble streamflow forecasts in snow-
dominated regions. Hydrol. Earth Syst. Sci. 20 (10), 4375-4389. https://doi.org/
10.5194/hess-20-4375-2016.

Besaw, L.E., Rizzo, D.M., Bierman, P.R., Hackett, W.R., 2010. Advances in ungauged
streamflow prediction using artificial neural networks. J. Hydrol. 386 (1-4), 27-37.
https://doi.org/10.1016/j.jhydrol.2010.02.037.

Betson, R.P., 1964. What is watershed runoff? J. Geophys. Res. 69 (8), 1541-1552.
https://doi.org/10.1029/JZ069i008p01541.

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320 (1-2), 18-36.
https://doi.org/10.1016/j.jhydrol.2005.07.007.

Biau, G., Scornet, E., 2016. A random forest guided tour. TEST 25 (2), 197-227. https://
doi.org/10.1007/s11749-016-0481-7.

Bickel, S., Briickner, M., Scheffer, T., 2009. Discriminative learning under covariate shift.
J. Mach. Learn. Res. 10 (9).

Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5-32. https://doi.org/
10.1023/A:1010933404324.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 2017. Classification and regression
trees. Routledge. https://doi.org/10.1201/9781315139470.

Breuer, L., Huisman, J.A., Frede, H.G., 2006. Monte Carlo assessment of uncertainty in
the simulated hydrological response to land use change. Environ. Model. Assess. 11
(3), 209-218. https://doi.org/10.1007/s10666-006-9051-9.

Carlisle, D.M., Falcone, J., Wolock, D.M., Meador, M.R., Norris, R.H., 2010. Predicting
the natural flow regime: models for assessing hydrological alteration in streams.
River Research and Applications 26 (2), 118-136. https://doi.org/10.1002/rra.1247.

Catal, C., Diri, B., 2009. Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem. Inf. Sci. 179 (8),
1040-1058. https://doi.org/10.1016/j.ins.2008.12.001.

Chang, Y., Wu, J., Jiang, G., Kang, Z., 2017. Identification of the dominant hydrological
process and appropriate model structure of a karst catchment through stepwise
simplification of a complex conceptual model. J. Hydrol. 548, 75-87. https://doi.
org/10.1016/j.jhydrol.2017.02.050.

Chen, C.S., Chou, F.N.F., Chen, B.P.T., 2010. Spatial information-based back-propagation
neural network modeling for outflow estimation of ungauged catchment. Water
Resour. Manag. 24, 4175-4197. https://doi.org/10.1007/s11269-010-9652-6.

Choubin, B., Solaimani, K., Rezanezhad, F., Roshan, M.H., Malekian, A.,
Shamshirband, S., 2019. Streamflow regionalization using a similarity approach in
ungauged basins: Application of the geo-environmental signatures in the Karkheh
River Basin. IranCatena 182, 104128. https://doi.org/10.1016/j.
catena.2019.104128.

Cibin, R., Athira, P., Sudheer, K.P., Chaubey, I., 2014. Application of distributed
hydrological models for predictions in ungauged basins: a method to quantify

16

Journal of Hydrology 653 (2025) 132731

predictive uncertainty. Hydrol. Process. 28 (4), 2033-2045. https://doi.org/
10.1002/hyp.9721.

Clark, M.P., Vogel, R.M., Lamontagne, J.R., Mizukami, N., Knoben, W.J., Tang, G.,
Papalexiou, S.M., 2021. The abuse of popular performance metrics in hydrologic
modeling. Water Resour. Res. 57 (9), @2020WR029001. https://doi.org/10.1029/
2020WR029001.

R.A.L.P.H. D’Agostino E.S. Pearson Tests for departure from normality. Empirical results
for the distributions of b2 and y/b1 Biometrika 60 3 1973 613 622 10.1093/biomet/
60.3.613.

Darbandsari, P., Coulibaly, P., 2020. Inter-comparison of lumped hydrological models in
data-scarce watersheds using different precipitation forcing data sets: Case study of
Northern Ontario. Canada. journal of Hydrology: Regional Studies 31, 100730. https://
doi.org/10.1016/j.ejrh.2020.100730.

Das, K.R., Imon, A.-H.M.R., 2016. A brief review of tests for normality. Am. J. Theor. ApplL
Stat. 5 (1), 5-12. https://doi.org/10.11648/j.ajtas.20160501.12.

Das, T., Bardossy, A., Zehe, E., He, Y., 2008. Comparison of conceptual model
performance using different representations of spatial variability. J. Hydrol. 356
(1-2), 106-118. https://doi.org/10.1016/j.jhydrol.2008.04.008.

Desai, S., Ouarda, T.B., 2021. Regional hydrological frequency analysis at ungauged sites
with random forest regression. J. Hydrol. 594, 125861. https://doi.org/10.1016/].
jhydrol.2020.125861.

Electric Power Research Institute (EPRI) (2010). Program on technology innovation:
Ohio River water quality trading pilot program—business case for power company
participation, 2008. Palo Alto, CA: Electric Power Research Institute. Technical
Report 1018861. Retrieved from http://kieser-associates.com/uploaded/epri_
business_case_report.pdf [Accessed on 3rd August 2020].

Electric Power Research Institute (EPRI) Ohio River Basin water quality trading project
http://wqt.epri.com/pdf/3002001739_WQT-Program-Summary_2014-03.pdf 2014
Electric Power Research Institute Palo Alto, CA Retrieved from [Accessed on 3rd
August 2020].

Electric Power Research Institute (EPRI) Ohio River Basin water quality trading project
http://wqt.epri.com/pdf/NEWSLETTER%20Jan%202016.pdf 2016 Electric Power
Research Institute Palo Alto, CA Retrieved from [Accessed on 3rd August 2020].

Esmaeili-Gisavandani, H., Zarei, H., Fadaei Tehrani, M.R., 2023. Regional flood
frequency analysis using data-driven models (M5, random forest, and ANFIS) and a
multivariate regression method in ungauged catchments. Appl Water Sci 13 (6), 139.
https://doi.org/10.1007/5s13201-023-01940-3.

A. Fisher C. Rudin F. Dominici All models are wrong, but many are useful: learning a
variable’s importance by studying an entire class of prediction models
simultaneously J. Mach. Learn. Res. 20 177 2019 1 81 PMCID: PMC8323609.

Fleming, B.J., Archfield, S.A., Hirsch, R.M., Kiang, J.E., Wolock, D.M., 2021a. Spatial and
temporal patterns of low streamflow and precipitation changes in the Chesapeake
Bay Watershed. JAWRA Journal of the American Water Resources Association 57 (1),
96-108. https://doi.org/10.1111/1752-1688.12892.

Fleming, S.W., Watson, J.R., Ellenson, A., Cannon, A.J., Vesselinov, V.C., 2021b.
Machine learning in Earth and environmental science requires education and
research policy reforms. Nat. Geosci. 14 (12), 878-880. https://doi.org/10.1038/
$41561-021-00865-3.

Gholamy, A., Kreinovich, V., Kosheleva, O., 2018. Why 70/30 or 80/20 relation between
training and testing sets: A pedagogical explanation. Int. J. Intell. Technol. Appl. Stat.
11 (2), 105-111. https://doi.org/10.6148/1JITAS.201806_11(2).0003.

Gibson, L. (2020). 113,000 more properties may be at risk of flooding in Indiana than
previously thought, report says. Indianapolis Star. Retrieved from https://www.
indystar.com/story/news/environment,/2020/08/17/113-000-more-homes-risk-
flooding-indiana-report-says/5571932002/. [Accessed on 12th December 2020].

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. ISBN:
0262337371.

Hauser, C. (2020, March 20). Heavy Rains Flood Parts of Ohio, Stranding Residents. The
New York Times. Retrieved from https://www.nytimes.com/2020/03/20/us/ohio-
flooding.html [Accessed on 12th December 2020].

Her, Y., Chaubey, I., 2015. Impact of the numbers of observations and calibration
parameters on equifinality, model performance, and output and parameter
uncertainty. Hydrol. Process. 29 (19), 4220-4237. https://doi.org/10.1002/
hyp.10487.

Her, Y., Yoo, S.H., Cho, J., Hwang, S., Jeong, J., Seong, C., 2019. Uncertainty in
hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble
predictions. Sci. Rep. 9 (1), 1-22. https://doi.org/10.1038/541598-019-41334-7.

Hill, R.A., Weber, M.H., Leibowitz, S.G., Olsen, A.R., Thornbrugh, D.J., 2016. The
Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the
conterminous United States. JAWRA Journal of the American Water Resources
Association 52 (1), 120-128. https://doi.org/10.1111/1752-1688.12372.

Hinton, G.E., 2012. A practical guide to training restricted Boltzmann machines. Neural
Networks: Tricks of the Trade: Second Edition 599-619. https://doi.org/10.1007/978-
3-642-35289-8_32.

Hodgkins, G.A., Over, T.M., Dudley, R.W., Russell, A.M., LaFontaine, J.H., 2023. The
consequences of neglecting reservoir storage in national-scale hydrologic models: An
appraisal of key streamflow statistics. JAWRA Journal of the American Water
Resources Association. https://doi.org/10.1111/1752-1688.13161.

Hrachowitz, M., Savenije, H.H.G., Bloschl, G., McDonnell, J.J., Sivapalan, M.,
Pomeroy, J.W., Cudennec, C., 2013. A decade of Predictions in Ungauged Basins
(PUB)—a review. Hydrol. Sci. J. 58 (6), 1198-1255. https://doi.org/10.1080/
02626667.2013.803183.

Istok, J.D., Boersma, L., 1986. Effect of antecedent rainfall on runoff during low-intensity
rainfall. J. Hydrol. 88 (3-4), 329-342. https://doi.org/10.1016/0022-1694(86)
90098-3.


https://doi.org/10.1029/2018WR022606
https://doi.org/10.1007/s11069-020-04438-2
https://doi.org/10.1007/s11069-020-04438-2
https://doi.org/10.1007/s10040-021-02403-2
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0020
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0020
https://doi.org/10.1080/0952813X.2016.1198936
https://doi.org/10.1080/0952813X.2016.1198936
https://doi.org/10.1007/s00477-015-1190-6
https://doi.org/10.1007/s00477-015-1190-6
https://doi.org/10.1061/AJRUA6.0001141
https://doi.org/10.1061/AJRUA6.0001141
https://doi.org/10.5194/hess-21-2881-2017
https://doi.org/10.5194/hess-20-4375-2016
https://doi.org/10.5194/hess-20-4375-2016
https://doi.org/10.1016/j.jhydrol.2010.02.037
https://doi.org/10.1029/JZ069i008p01541
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s11749-016-0481-7
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0080
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0080
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/s10666-006-9051-9
https://doi.org/10.1002/rra.1247
https://doi.org/10.1016/j.ins.2008.12.001
https://doi.org/10.1016/j.jhydrol.2017.02.050
https://doi.org/10.1016/j.jhydrol.2017.02.050
https://doi.org/10.1007/s11269-010-9652-6
https://doi.org/10.1016/j.catena.2019.104128
https://doi.org/10.1016/j.catena.2019.104128
https://doi.org/10.1002/hyp.9721
https://doi.org/10.1002/hyp.9721
https://doi.org/10.1029/2020WR029001
https://doi.org/10.1029/2020WR029001
https://doi.org/10.1016/j.ejrh.2020.100730
https://doi.org/10.1016/j.ejrh.2020.100730
https://doi.org/10.11648/j.ajtas.20160501.12
https://doi.org/10.1016/j.jhydrol.2008.04.008
https://doi.org/10.1016/j.jhydrol.2020.125861
https://doi.org/10.1016/j.jhydrol.2020.125861
https://doi.org/10.1007/s13201-023-01940-3
https://doi.org/10.1111/1752-1688.12892
https://doi.org/10.1038/s41561-021-00865-3
https://doi.org/10.1038/s41561-021-00865-3
https://doi.org/10.6148/IJITAS.201806_11(2).0003
https://doi.org/10.1002/hyp.10487
https://doi.org/10.1002/hyp.10487
https://doi.org/10.1038/s41598-019-41334-7
https://doi.org/10.1111/1752-1688.12372
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1111/1752-1688.13161
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1016/0022-1694(86)90098-3
https://doi.org/10.1016/0022-1694(86)90098-3

P.-C. Li et al

Jha, M., Gassman, P.W., Secchi, S., Gu, R., Arnold, J., 2004. Effect Of watershed
subdivision on SWAT flow, sediment, and nutrient predictions. JAWRA Journal of the
American Water Resources Association 40 (3), 811-825. https://doi.org/10.1111/
j.1752-1688.2004.tb04460.x.

Janji¢, J., Tadi¢, L., 2023. Fields of Application of SWAT Hydrological Model—A Review.
Earth 4 (2), 331-344. https://doi.org/10.3390/earth4020018.

Khandelwal, A., Xu, S., Li, X., Jia, X., Stienbach, M., Duffy, C., Nieber, J., & Kumar, V.
(2020). Physics Guided Machine Learning Methods for Hydrology. arXiv preprint.
http://arxiv.org/abs/2012.02854.

Krajewski, A., Sikorska-Senoner, A.E., Hejduk, A., Hejduk, L., 2020. Variability of the
initial abstraction ratio in an urban and an agroforested catchment. Water 12 (2),
415. https://doi.org/10.3390/w12020415.

Krajewski, A., Sikorska-Senoner, A.E., 2021. Suspended sediment routing through a small
on-stream reservoir based on particle properties. J. Soil. Sediment. 21, 1523-1538.
https://doi.org/10.1007/5s11368-020-02872-0.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G., 2019.
Towards learning universal, regional, and local hydrological behaviors via machine
learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23 (12),
5089-5110. https://doi.org/10.5194/hess-23-5089-2019.

Kuchment, L. S., & Gelfan, A. N. (2009). Assessing parameters of physically-based models
for poorly gauged basins. New approaches to hydrological prediction in data sparse
regions. Wallingford: IAHS Press, IAHS Publ, 333, 3-10. ISSN: 0144-7815.

Li, P., Dey, S., Merwade, V.M., 2023a. Data for analyzing the effect of data splitting and
covariate shift on machine learning based streamflow prediction in ungauged basins.
Purdue University Research Repository.

P. Li S. Dey V.M. Merwade Codes for analyzing the effect of data splitting and covariate
shift on machine learning based streamflow prediction in ungauged basins 2023
[Software]. Purdue University Research Repository 10.4231/B783-2C47.

Liu, A., & Ziebart, B. D. (2017). Robust covariate shift prediction with general losses and
feature views. arXiv preprint arXiv:1712.10043. doi: 10.48550/arXiv.1712.10043.

Lopez, V., Fernandez, A., Herrera, F., 2014. On the importance of the validation
technique for classification with imbalanced datasets: Addressing covariate shift
when data is skewed. Inf. Sci. 257, 1-13. https://doi.org/10.1016/j.
ins.2013.09.038.

Lucas, Y., Portier, P.E., Laporte, L., Calabretto, S., He-Guelton, L., Oblé, F., Granitzer, M.,
2019. Dataset shift quantification for credit card fraud detection. In: In 2019 IEEE
Second International Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), pp. 97-100. https://doi.org/10.1109/AIKE.2019.00024.

McCuen, R.H., 2004. Hydrologic analysis and design. Journal of the American Water
Resources Association (JASWR) 40(3), 838, ISBN:0-13-142424-6.

McGaughey, G., Walters, W.P., Goldman, B., 2016. Understanding Covariate Shift in
Model Performance. F1000Research, 5. https://doi.org/10.12688/
f1000research.8317.3.

McGovern, A., Lagerquist, R., Gagne, D.J., Jergensen, G.E., Elmore, K.L., Homeyer, C.R.,
Smith, T., 2019. Making the black box more transparent: Understanding the physical
implications of machine learning. Bull. Am. Meteorol. Soc. 100 (11), 2175-2199.
https://doi.org/10.1175/BAMS-D-18-0195.1.

Menne, M.J., Durre, 1., Vose, R.S., Gleason, B.E., Houston, T.G., 2012. An overview of the
global historical climatology network-daily database. J. Atmos. Oceanic Tech. 29 (7),
897-910. https://doi.org/10.1175/JTECH-D-11-00103.1 [Accessed on 1st May
2020].

Miller, M.P., Carlisle, D.M., Wolock, D.M., Wieczorek, M., 2018. A database of natural
monthly streamflow estimates from 1950 to 2015 for the conterminous United
States. JAWRA Journal of the American Water Resources Association 54 (6),
1258-1269. https://doi.org/10.1111/1752-1688.12685.

Milly, P.C., Dunne, K.A., Vecchia, A.V., 2005. Global pattern of trends in streamflow and
water availability in a changing climate. Nature 438 (7066), 347-350. https://doi.
org/10.1038/nature04312.

Moges, E., Demissie, Y., Larsen, L., Yassin, F., 2021. Sources of hydrological model
uncertainties and advances in their analysis. Water 13 (1), 28. https://doi.org/
10.3390/w13010028.

Moorthy, K., Saberi Mohamad, M., Deris, S., 2014. A review on missing value imputation
algorithms for microarray gene expression data. Curr. Bioinform. 9 (1), 18-22.
https://doi.org/10.2174/1574893608999140109120957.

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.,
2007. Model evaluation guidelines for systematic quantification of accuracy in
watershed simulations. Trans. ASABE 50 (3), 885-900. https://doi.org/10.13031/
2013.23153.

Mosavi, A., Ozturk, P., Chau, K.W., 2018. Flood prediction using machine learning
models: Literature review. Water 10 (11), 1536. https://doi.org/10.3390/
w10111536.

Multi-Resolution Land Characteristics Consortium, 2022. National Land Cover Database
(NLCD) 2016. Retrieved from https://www.mrlc.gov/national-land-cover-database-
nlcd-2016 [Accessed on 1st June. 2022].

Nathan, R., Lowe, L., 2012. The hydrologic impacts of farm dams. Australasian Journal of
Water Resources 16 (1), 75-83. https://doi.org/10.7158/13241583.2012.11465405.

National Inventory of Dams, 2022. NID Data Downloads. Retrieved from https://nid.sec.
usace.army.mil/#/downloads [Accessed on 20th June. 2022].

Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid Monte
Carlo method. Technical Report CRG-TR-92-1. Dept. of Computer Science,
University of Toronto. Retrieved from https://citeseerx.ist.psu.edu/document?
repid=repl&type=pdf&doi=38b7a4d7d9646c4474c893fc53a606dee3264fec
[Accessed on 1st May 2020].

Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M.,

Gupta, H.V., 2021. What role does hydrological science play in the age of machine

17

Journal of Hydrology 653 (2025) 132731

learning? Water Resour. Res. 57 (3), €2020WR028091. https://doi.org/10.1029/
2020WR028091.

National Weather Service (NWS), 2017. Flooding in Kentucky. Retrieved from http://
www.floodsafety.noaa.gov/states/ky-flood.shtml [Accessed on 13th June. 2023].

Pechlivanidis, I.G., Arheimer, B., 2015. Large-scale hydrological modelling by using
modified PUB recommendations: the India-HYPE case. Hydrol. Earth Syst. Sci. 19
(11), 4559-4579. https://doi.org/10.5194/hess-19-4559-2015.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &
Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine
Learning research, 12, 2825-2830. HAL Id: hal-00650905v2.

Petty, T.R., Dhingra, P., 2018. Streamflow hydrology estimate using machine learning
(SHEM). JAWRA Journal of the American Water Resources Association 54 (1), 55-68.
https://doi.org/10.1111/1752-1688.12555.

Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E., 2020. Impact of deep learning-
based dropout on shallow neural networks applied to stream temperature modelling.
Earth Sci. Rev. 201, 103076. https://doi.org/10.1016/j.earscirev.2019.103076.

Prieto, C., Le Vine, N., Kavetski, D., Garcia, E., Medina, R., 2019. Flow prediction in
ungauged catchments using probabilistic random forests regionalization and new
statistical adequacy tests. Water Resour. Res. 55 (5), 4364-4392. https://doi.org/
10.1029/2018WR023254.

Prieto, C., Le Vine, N., Kavetski, D., Fenicia, F., Scheidegger, A., Vitolo, C., 2022. An
exploration of Bayesian identification of dominant hydrological mechanisms in
ungauged catchments. Water Resour. Res. 58 (3), e2021WR030705. https://doi.org/
10.1029/2021WR030705.

Ramchandran, M., & Mukherjee, R. (2021). On ensembling vs merging: least squares and
Random Forests under covariate shift. arXiv preprint. doi:10.48550/
arXiv.2106.02589.

Raza, H., Prasad, G., Li, Y., 2015. EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recogn. 48 (3),
659-669. https://doi.org/10.1016/j.patcog.2014.07.028.

Razavi, T., Coulibaly, P., 2013. Streamflow prediction in ungauged basins: review of
regionalization methods. J. Hydrol. Eng. 18 (8), 958-975. https://doi.org/10.1061/
(ASCE)HE.1943-5584.0000690.

Razavi, T., Coulibaly, P., 2017. An evaluation of regionalization and watershed
classification schemes for continuous daily streamflow prediction in ungauged
watersheds. Canadian Water Resources Journal/revue Canadienne Des Ressources
Hydriques 42 (1), 2-20. https://doi.org/10.1080/07011784.2016.1184590.

Reddi, S., Poczos, B., & Smola, A. (2015, February). Doubly robust covariate shift
correction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 29,
No. 1). Doi: 10.1609/aaai.v29i1.9576.

Reitermanova, Z. (2010). Data splitting. In WDS’10 Proceedings of Contributed Papers, Part
I (pp. 31-36). ISBN 978-80-7378-139-2.

Rezaei, A., Liu, A., Memarrast, O., & Ziebart, B. D. (2021, May). Robust fairness under
covariate shift. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol.
35, No. 11, pp. 9419-9427). Doi: 10.1609/aaai.v35i11.17135.

Robert, C., Casella, G., 2013. Monte Carlo statistical methods. Springer Science & Business
Media. https://doi.org/10.1007/978-1-4757-4145-2.

Saadi, M., Oudin, L., Ribstein, P., 2019. Random Forest ability in regionalizing hourly
hydrological model parameters. Water 11 (8), 1540. https://doi.org/10.3390/
w11081540.

Saksena, S., Merwade, V., Singhofen, P.J., 2019. Flood inundation modeling and
mapping by integrating surface and subsurface hydrology with river hydrodynamics.
J. Hydrol. 575, 1155-1177. https://doi.org/10.1016/].jhydrol.2019.06.024.

Samadi, V.S., Tabas, S.S., Wilson, C.A., Hitchcock, D.R., 2024. Regression-Based Machine
Learning Approaches for Daily Streamflow Modeling. Advanced Hydroinformatics:
Machine Learning and Optimization for Water Resources 129-147. https://doi.org/
10.1002/9781119639268.ch5.

Schmidt, L., HeBe, F., Attinger, S., Kumar, R., 2020. Challenges in applying machine
learning models for hydrological inference: A case study for flooding events across
Germany. Water Resour. Res. 56 (5), €2019WR025924. https://doi.org/10.1029/
2019WR025924.

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M., 2020.
Improving robustness against common corruptions by covariate shift adaptation.
Adv. Neural Inf. Proces. Syst. 33, 11539-11551.

Schoppa, L., Disse, M., Bachmair, S., 2020. Evaluating the performance of random forest
for large-scale flood discharge simulation. J. Hydrol. 590, 125531. https://doi.org/
10.1016/j.jhydrol.2020.125531.

Schlef, K.E., Francois, B., Robertson, A.W., Brown, C., 2018. A general methodology for
climate-informed approaches to long-term flood projection—Illustrated with the
Ohio river basin. Water Resour. Res. 54 (11), 9321-9341. https://doi.org/10.1029/
2018WR023209.

Schwarz, G.E., Alexander, R.B., 1995. State Soil Geographic (STATSGO) Data Base for the
Conterminous United States No. 95-449. https://doi.org/10.3133/0fr95449.

J.I. Segovia-Martin S. Mazuelas A. Liu July). Double-Weighting for Covariate Shift
Adaptation 2023 PMLR 30439 30457.

Seibert, J., Staudinger, M., van Meerveld, H.J., 2019. Validation and over-
parameterization—experiences from hydrological modeling. Computer Simulation
Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical
Perspectives 811-834. https://doi.org/10.1007/978-3-319-70766-2_33.

Singh, N.K., Basu, N.B., 2022. The human factor in seasonal streamflows across natural
and managed watersheds of North America. Nat. Sustainability 5 (5), 397-405.
https://doi.org/10.1038/541893-022-00848-1.

Sivakumar, B., 2000. Chaos theory in hydrology: important issues and interpretations.
J. Hydrol. 227 (1-4), 1-20. https://doi.org/10.1016/50022-1694(99)00186-9.

Sivakumar, B., 2004. Dominant processes concept in hydrology: moving forward. Hydrol.
Process. 18 (12), 2349-2353. https://doi.org/10.1002/hyp.5606.


https://doi.org/10.1111/j.1752-1688.2004.tb04460.x
https://doi.org/10.1111/j.1752-1688.2004.tb04460.x
https://doi.org/10.3390/earth4020018
https://doi.org/10.3390/w12020415
https://doi.org/10.1007/s11368-020-02872-0
https://doi.org/10.5194/hess-23-5089-2019
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0300
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0300
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0300
https://doi.org/10.1016/j.ins.2013.09.038
https://doi.org/10.1016/j.ins.2013.09.038
https://doi.org/10.1109/AIKE.2019.00024
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0330
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0330
https://doi.org/10.12688/f1000research.8317.3
https://doi.org/10.12688/f1000research.8317.3
https://doi.org/10.1175/BAMS-D-18-0195.1
https://doi.org/10.1175/JTECH-D-11-00103.1 [Accessed on 1st May 2020]
https://doi.org/10.1175/JTECH-D-11-00103.1 [Accessed on 1st May 2020]
https://doi.org/10.1111/1752-1688.12685
https://doi.org/10.1038/nature04312
https://doi.org/10.1038/nature04312
https://doi.org/10.3390/w13010028
https://doi.org/10.3390/w13010028
https://doi.org/10.2174/1574893608999140109120957
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/2013.23153
https://doi.org/10.3390/w10111536
https://doi.org/10.3390/w10111536
http://2022%5d
https://doi.org/10.7158/13241583.2012.11465405
http://2022%5d
https://doi.org/10.1029/2020WR028091
https://doi.org/10.1029/2020WR028091
http://2023%5d
https://doi.org/10.5194/hess-19-4559-2015
https://doi.org/10.1111/1752-1688.12555
https://doi.org/10.1016/j.earscirev.2019.103076
https://doi.org/10.1029/2018WR023254
https://doi.org/10.1029/2018WR023254
https://doi.org/10.1029/2021WR030705
https://doi.org/10.1029/2021WR030705
https://doi.org/10.1016/j.patcog.2014.07.028
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
https://doi.org/10.1080/07011784.2016.1184590
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.3390/w11081540
https://doi.org/10.3390/w11081540
https://doi.org/10.1016/j.jhydrol.2019.06.024
https://doi.org/10.1002/9781119639268.ch5
https://doi.org/10.1002/9781119639268.ch5
https://doi.org/10.1029/2019WR025924
https://doi.org/10.1029/2019WR025924
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0515
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0515
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0515
https://doi.org/10.1016/j.jhydrol.2020.125531
https://doi.org/10.1016/j.jhydrol.2020.125531
https://doi.org/10.1029/2018WR023209
https://doi.org/10.1029/2018WR023209
https://doi.org/10.3133/ofr95449
https://doi.org/10.1007/978-3-319-70766-2_33
https://doi.org/10.1038/s41893-022-00848-1
https://doi.org/10.1016/S0022-1694(99)00186-9
https://doi.org/10.1002/hyp.5606

P.-C. Liet al

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V.,
Zehe, E., 2003. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012:
Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48 (6),
857-880. https://doi.org/10.1623/hysj.48.6.857.51421.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929-1958. ISSN: 1532-4435.

M. Sugiyama S. Nakajima H. Kashima P. Buenau M. Kawanabe Direct importance
estimation with model selection and its application to covariate shift adaptation Adv.
Neural Inf. Proces. Syst. 20 2007 ISBN: 9781605603520.

Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P., 2003.
Random forest: a classification and regression tool for compound classification and
QSAR modeling. J. Chem. Inf. Comput. Sci. 43 (6), 1947-1958. https://doi.org/
10.1021/¢i034160g.

Thiessen, A.H., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39 (7),
1082-1089. https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;
2.

Thomas, T., Rajabi, E., 2021. A systematic review of machine learning-based missing
value imputation techniques. Data Technol. Appl. 55 (4), 558.

Towns, J., Cockerill, T., Dahan, M., Foster, 1., Gaither, K., Grimshaw, A., Wilkins-
Diehr, N., 2014. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16 (5),
62-74. https://doi.org/10.1109/MCSE.2014.80.

Tyralis, H., Papacharalampous, G., Langousis, A., 2019. A brief review of random forests
for water scientists and practitioners and their recent history in water resources.
Water 11 (5), 910. https://doi.org/10.3390/w11050910.

Underwood, K.L., Rizzo, D.M., Hanley, J.P., Sterle, G., Harpold, A., Adler, T., Perdrial, J.
N., 2023. Machine-learning reveals equifinality in drivers of stream DOC
concentration at continental scales. Water Resour. Res. 59 (3), e2021WR030551.
https://doi.org/10.1029/2021WR030551.

United States Department of Agriculture, 2022. United_States_General Soil Map_
STATSGO2. Retrieved from https://agdatacommons.nal.usda.gov/articles/model/
United_States_General_Soil Map_STATSGO2_/24660345 [Accessed on 1st June. 2022
1.

United States Environmental Protection Agency, 2022. StreamCat Dataset. Retrieved
from https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset
[Accessed on 1st June. 2022].

United States Geological Survey, 2022. USGS 3D Elevation Program. Retrieved from
https://www.usgs.gov/3d-elevation-program [Accessed on 1st June. 2022].

United States Geological Survey, 2023. USGS current water data for the nation. Retrieved
from https://waterdata.usgs.gov/nwis/rt [Accessed on 20th June. 2023].

18

Journal of Hydrology 653 (2025) 132731

Upreti, P., Ojha, C.S.P., 2021. Comparison of antecedent precipitation based rainfall-
runoff models. Water Supply 21 (5), 2122-2138. https://doi.org/10.2166/
ws.2020.315.

Valizadeh, N., Mirzaei, M., Allawi, M.F., Afan, H.A., Mohd, N.S., Hussain, A., El-
Shafie, A., 2017. Artificial intelligence and geo-statistical models for stream-flow
forecasting in ungauged stations: state of the art. Nat. Hazards 86 (3), 1377-1392.
https://doi.org/10.1007/511069-017-2740-7.

Wang, W., Chen, L., Lin, C., Liu, Y., Dong, X., Xiong, J., Shen, Z., 2023. Source
appointment at large-scale and ungauged catchment using physically-based model
and dynamic export coefficient. J. Environ. Manage. 326, 116842. https://doi.org/
10.1016/j.jenvman.2022.116842.

Westfall, P.H., 2014. Kurtosis as peakedness, 1905-2014. RIP. the American Statistician 68
(3), 191-195. https://doi.org/10.1080/00031305.2014.917055.

Wickham, J.D., Stehman, S.V., Gass, L., Dewitz, J., Fry, J.A., Wade, T.G., 2013. Accuracy
assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ.
130, 294-304. https://doi.org/10.1016/j.rse.2012.12.001.

Winkler, M., Schellander, H., Gruber, S., 2020. May). Snow water equivalents exclusively
from snow heights and their temporal Changes: the ASNOW. In: MODEL. EGU
General Assembly Conference Abstracts. https://doi.org/10.5194/egusphere-egu2020-
11298.

Worland, S.C., Farmer, W.H., Kiang, J.E., 2018. Improving predictions of hydrological
low-flow indices in ungaged basins using machine learning. Environ. Model. Softw.
101, 169-182. https://doi.org/10.1016/j.envsoft.2017.12.021.

Xiang, Z., Yan, J., Demir, 1., 2020. A rainfall-runoff model with LSTM-based sequence-to-
sequence learning. Water Resour. Res. 56 (1), e2019WR025326. https://doi.org/
10.1029/2019WR025326.

Yihdego, Y., Webb, J., 2013. An empirical water budget model as a tool to identify the
impact of land-use change in stream flow in southeastern Australia. Water Resour.
Manag. 27, 4941-4958. https://doi.org/10.1007/s11269-013-0449-2.

Yilmaz, M.U., Bihrat, O.N.O.Z., 2019. Evaluation of statistical methods for estimating
missing daily streamflow data. Teknik Dergi 30 (6), 9597-9620. https://doi.org/
10.18400/tekderg.421091.

Zhang, Y., Chiew, F.H., Li, M., Post, D., 2018. Predicting runoff signatures using
regression and hydrological modeling approaches. Water Resour. Res. 54 (10),
7859-7878. https://doi.org/10.1029/2018WR023325.

Zhang, M., Li, X., Wang, L., 2019. An adaptive outlier detection and processing approach
towards time series sensor data. IEEE Access 7, 175192-175212. https://doi.org/
10.1109/ACCESS.2019.2957602.

Ziegler, A., Konig, L.R., 2014. Mining data with random forests: current options for real-
world applications. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery 4 (1), 55-63.
https://doi.org/10.1002/widm.1114.


https://doi.org/10.1623/hysj.48.6.857.51421
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/ci034160g
https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0585
http://refhub.elsevier.com/S0022-1694(25)00069-1/h0585
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.3390/w11050910
https://doi.org/10.1029/2021WR030551
http://2022%5d
http://2022%5d
http://2022%5d
http://2022%5d
http://2023%5d
https://doi.org/10.2166/ws.2020.315
https://doi.org/10.2166/ws.2020.315
https://doi.org/10.1007/s11069-017-2740-7
https://doi.org/10.1016/j.jenvman.2022.116842
https://doi.org/10.1016/j.jenvman.2022.116842
https://doi.org/10.1080/00031305.2014.917055
https://doi.org/10.1016/j.rse.2012.12.001
https://doi.org/10.5194/egusphere-egu2020-11298
https://doi.org/10.5194/egusphere-egu2020-11298
https://doi.org/10.1016/j.envsoft.2017.12.021
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1007/s11269-013-0449-2
https://doi.org/10.18400/tekderg.421091
https://doi.org/10.18400/tekderg.421091
https://doi.org/10.1029/2018WR023325
https://doi.org/10.1109/ACCESS.2019.2957602
https://doi.org/10.1109/ACCESS.2019.2957602
https://doi.org/10.1002/widm.1114

	Analyzing the effects of data splitting and covariate shift on machine learning based streamflow prediction in ungauged basins
	1 Introduction
	2 Study area and dataset
	2.1 Study areas
	2.2 Datasets
	2.2.1 Meteorological variables
	2.2.2 Watershed characteristics


	3 Methodology
	3.1 Data preparation
	3.2 Machine learning model − random Forest
	3.3 Machine learning model − Artificial Neural Network (ANN)
	3.4 Monte Carlo method for assessing uncertainty within data splitting process

	4 Result and discussion
	4.1 Machine learning performance using Monte Carlo method
	4.2 Influence of covariate shift on RF and ANN
	4.3 Role of variables in RF

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Open Research
	Data availability
	References


