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While progress has been made to adapt microgrid designs for 

the future of the energy sector, several gaps have been left 

unaddressed. First, microgrid CCD remains limited in scope. 

Second, sustainability-related metrics are often regulated to a 

small piece of the optimization problem, rather than a focus. 

In comparison to previous studies, this paper presents

sustainability-centric CCD for microgrid optimization. 

Through this, CCD methods are broadened to support 

microgrid plant and controller parameter optimization, 

expanding the microgrid design space. Within the CCD 

framework, objective functions are defined to quantify and 

emphasize sustainability at three life stages of microgrid 

components: manufacturing, operation, and disposal. This 

framework is set to facilitate superior microgrid design and 

control, reflecting the requirements of the future energy sector.

To develop the sustainability-centric CCD framework, an 

outline of the baseline microgrid model and controller is 

presented (Section 2). Next, the CCD optimization problem is 

formulated (Section 3). Within this, sustainability objective 

functions are defined as relating to the three identified 

microgrid component lifecycle stages. A test case of 

optimizing the microgrid to power a data center during a 

(2) Objective function diversification: The changes in 

expectations of microgrid capabilities can be captured by 

changes to the objectives. Traditional objectives for a 

microgrid controller include stabilization and frequency 

regulation (Wang et al., 2020; Aazami et al., 2022), as well as 

matching power supply and demand (Zhao and Ding, 2018). 

Plant sizing objective functions often reflect cost, such as 

through a levelized cost of energy (Pandit et al., 2021). A 

greater emphasis has been placed on inclusion of greenhouse 

gas (GHG) emissions (Barakat, Ibrahim and Elbaset, 2020; 

Attia et al., 2021), which is often combined with energy, 

capital, and maintenance expenses (Yan et al., 2017).

This paper explores the connection between plant features, 

controller parameters, and sustainability for optimization of 

microgrid systems. Microgrid-based technology is expected to 

propel the next generation of the energy sector, facilitating 

integration of heterogeneous energy producing components 

and stand-alone power delivery. However, while grid-side 

supply and storage continue to evolve, so too do power 

demands. Consider data centers, which consume 1-2% of 

global energy produced (Shehabi et al., 2016; Fuchs et al., 

2020), with that percentage expected to increase over the next 

decade (Koot and Wijnhoven, 2021). Such large-scale power 

loads for microgrid systems raise concerns not only with 

energy efficiency, but also environmental impact and 

sustainability. This reformulates the requirements when 

designing, building, and managing grid systems.

There are multiple pathways for yielding microgrid designs 

that meet the increasing standards and expectations. We break 

these pathways up into two broad categories:

(1) Design space expansion: System outcomes are often 

enhanced by expanding the design variables considered. This 

includes consideration of nontraditional plant features, such as 

photovoltaic (PV) farm and battery bank size, within optimal 

sizing procedures (Alramlawi and Li, 2020; Masaud and El-

Saadany, 2020). This also includes alterations to microgrid 

supervisory management, with examples including optimal PI 

controller design (Abou El-Ela, Mosalam and Amer, 2023)

and model predictive control (Parisio and Glielmo, 2011). A 

small number of studies simultaneously optimize plant and 

controller parameters, known as control co-design (CCD).

CCD can support new system capabilities, such as hybrid tidal-

solar-battery integration (Cohen et al., 2023). 

1. INTRODUCTION
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blackout is explored, with relationships between the design

variables and objective functions determined (Section 4). 

Finally, the paper ends with a summary of the major elements

presented and future steps (Section 5). 

2. MICROGRID DYNAMICS AND CONTROLLER

This section summarizes the baseline configuration of the 

microgrid and the control algorithm that manages the system 

dynamics. The microgrid model consists of five components, 

each described by a set of differential algebraic equations 

(DAEs). The baseline control algorithm developed is built to 

track desired state and power demand references using a 

model-free approach.

2.1 Microgrid Plant Model

Figure 1 presents the configuration of the candidate microgrid.

For this study, the primary purpose of the microgrid is to meet 

the data center power demand during a 24-hour blackout 

scenario. Components are modeled as DC elements, with the 

methods applicable to AC components. The first component is 

the voltage bus, which acts as a bridge connecting all power 

supply and demand flows. The bus, with voltage state 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏, 

consists of a capacitor with capacitance 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏 = 1000 F. The 

state equation, based on the conservation of energy, is:

𝑉̇𝑉𝑏𝑏𝑏𝑏𝑏𝑏 = 1
𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏

( 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,1 + 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,2 − 𝑢𝑢0𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏
𝑅𝑅𝑏𝑏,1

). (1)

The first two terms on the right side of (1) are the output 

currents of the two converters, 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 for 𝑖𝑖 ∈ [1 . . 2], defined as:

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 = 1
𝑅𝑅𝑏𝑏,2

(𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏), (2)

with converter output voltage state 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖, and resistance 𝑅𝑅𝑏𝑏,2 =
10−4Ω used to capture inefficiencies. Note that the differences 

between the output and bus voltages are very small. The third

term in (1) contains 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , the load current from the data center, 

and 𝑢𝑢0, a duty cycle control input that throttles power to the 

data center. The power to the data center is defined as 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑢𝑢0𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏. Figure 2 presents a power demand profile 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟 for a data center (Wang et al., 2012), scaled to have a 

peak power of 1 MW. The final term of (1) captures additional 

power dissipation from the bus, with resistance 𝑅𝑅𝑏𝑏,1 = 104Ω.

Each DC-DC converter has an input current 𝐼𝐼𝑖𝑖𝑖𝑖,𝑖𝑖, input voltage 

𝑉𝑉𝑖𝑖𝑖𝑖,𝑖𝑖, output current 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖, output voltage 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖, and duty cycle 

𝑢𝑢𝑖𝑖. The duty cycles act as the control inputs for regulating the 

voltages. Capacitors, with 𝐶𝐶 = 1000 F, are placed in parallel 

with each input and output connection, and resistors 𝑅𝑅𝑐𝑐,1 =
104Ω, 𝑅𝑅𝑐𝑐,2,1 = 5 × 10−5Ω, and 𝑅𝑅𝑐𝑐,2,2 = 5 × 10−4Ω capture 

converter inefficiencies. The boost converter (𝑖𝑖 = 1) connects

the PV subsystem to the bus, stepping up 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,1 from 𝑉𝑉𝑖𝑖𝑖𝑖,1:

𝑉̇𝑉𝑖𝑖𝑖𝑖,1 = 1
𝐶𝐶 (𝐼𝐼𝑖𝑖𝑖𝑖,1 − 𝑉𝑉𝑖𝑖𝑖𝑖,1

𝑅𝑅𝑐𝑐,1
− 1

𝑅𝑅𝑐𝑐,2,1
(𝑉𝑉𝑖𝑖𝑖𝑖,1 − 𝑢𝑢1𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,1)) ,

𝑉̇𝑉𝑜𝑜𝑜𝑜𝑜𝑜,1 = 1
𝐶𝐶 ( 𝑢𝑢1

𝑅𝑅𝑐𝑐,2,1
(𝑉𝑉𝑖𝑖𝑖𝑖,1 − 𝑢𝑢1𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,1) − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,1

𝑅𝑅𝑐𝑐,1
− 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,1) .

(3)

The buck converter (𝑖𝑖 = 2) connects the Li-ion battery pack to 

the bus. This converter drops the voltage from input to output:

𝑉̇𝑉𝑖𝑖𝑖𝑖,2 = 1
𝐶𝐶 (𝐼𝐼𝑖𝑖𝑖𝑖,2 − 𝑉𝑉𝑖𝑖𝑖𝑖,2

𝑅𝑅𝑐𝑐,1
− 𝑢𝑢2

𝑅𝑅𝑐𝑐,2,2
(𝑢𝑢2𝑉𝑉𝑖𝑖𝑖𝑖,2 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,2)) ,

𝑉̇𝑉𝑜𝑜𝑜𝑜𝑜𝑜,2 = 1
𝐶𝐶 ( 1

𝑅𝑅𝑐𝑐,2,2
(𝑢𝑢2𝑉𝑉𝑖𝑖𝑖𝑖,2 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,2) − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,2

𝑅𝑅𝑐𝑐,1
− 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,2) .

(4)

The PV subsystem consists of 20000 solar panels in parallel. 

Equations (5) presents the thermal dynamics for a single PV 

module (Jones and Underwood, 2001; Docimo, Ghanaatpishe 

and Mamun, 2017). The parameters 𝐶𝐶𝑚𝑚=4580 J/K, 𝛼𝛼𝑃𝑃𝑃𝑃 = 0.7, 

𝐴𝐴𝑠𝑠 = 0.8 m2 and ℎ = 13.4 W
m2K are the lumped thermal 

capacitance, absorptivity, module surface area, and convection 

coefficient, respectively. This equation shows how PV 

temperature 𝑇𝑇𝑃𝑃𝑃𝑃 is impacted by irradiation 𝐺𝐺, ambient 

temperature 𝑇𝑇∞, and output electrical power 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐼𝐼𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃 . 

Note that 𝐼𝐼𝑖𝑖𝑖𝑖,1 = 𝐼𝐼𝑃𝑃𝑃𝑃 and 𝑉𝑉𝑖𝑖𝑖𝑖,1 = 𝑉𝑉𝑃𝑃𝑃𝑃. The current 𝐼𝐼𝑃𝑃𝑃𝑃 is 

dependent on 𝑇𝑇𝑃𝑃𝑃𝑃 , 𝐺𝐺, and 𝑉𝑉𝑃𝑃𝑃𝑃, with the nonlinearity and 

parameters defined in (Villalva, Gazoli and Filho, 2009):

𝑇̇𝑇𝑃𝑃𝑃𝑃 = 1
𝐶𝐶𝑚𝑚

(𝛼𝛼𝑃𝑃𝑃𝑃𝐴𝐴𝑠𝑠𝐺𝐺 − ℎ𝐴𝐴𝑠𝑠(𝑇𝑇𝑃𝑃𝑃𝑃 − 𝑇𝑇∞) − 𝐼𝐼𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃). (5)

The Li-ion battery pack is composed of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝐿𝐿𝐿𝐿 = 112 and 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐿𝐿𝐿𝐿 lithium iron phosphate cells in series and parallel, 

respectively. An equivalent circuit model is used to describe the 

battery dynamics, with the states including the state of charge

(SOC) and relaxation voltages 𝑉𝑉𝑝𝑝,𝐿𝐿𝐿𝐿 for 𝑝𝑝 = [2,3,4]. The Li-ion 

battery cell’s dynamics, with battery current 𝐼𝐼𝐿𝐿𝐿𝐿 = 𝐼𝐼𝑖𝑖𝑖𝑖,2 and 

battery cell voltage 𝑉𝑉𝐿𝐿𝐿𝐿 = 𝑉𝑉𝑖𝑖𝑖𝑖,2 can be summarized in:

𝑆𝑆𝑆𝑆𝑆𝑆̇ = − 𝐼𝐼𝐿𝐿𝐿𝐿
𝑄𝑄𝐿𝐿𝐿𝐿

, (6)

Figure 1. Microgrid plant configuration.
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𝑉̇𝑉𝑝𝑝,𝐿𝐿𝑖𝑖 = 1
𝐶𝐶𝑝𝑝,𝐿𝐿𝑖𝑖

(𝐼𝐼𝐿𝐿𝑖𝑖 − 𝑉𝑉𝑝𝑝,𝐿𝐿𝑖𝑖
𝑅𝑅𝑝𝑝,𝐿𝐿𝑖𝑖

), (7)

𝑉𝑉𝐿𝐿𝑖𝑖 = 𝑆𝑆𝐶𝐶𝑂𝑂𝐿𝐿𝑖𝑖(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑉𝑉2,𝐿𝐿𝑖𝑖 − 𝑉𝑉3,𝐿𝐿𝑖𝑖 − 𝑉𝑉4,𝐿𝐿𝑖𝑖 − 𝐼𝐼𝐿𝐿𝑖𝑖𝑅𝑅1,𝐿𝐿𝑖𝑖. (8)

The nominal capacity for a cell is 𝑄𝑄𝐿𝐿𝑖𝑖 = 1.21 Ah. The 

capacitances are 𝐶𝐶2,𝐿𝐿𝑖𝑖 = 15000 F, 𝐶𝐶3,𝐿𝐿𝑖𝑖 = 8000 F, and 𝐶𝐶4,𝐿𝐿𝑖𝑖 =
550 F, and the resistances are 𝑅𝑅1,𝐿𝐿𝑖𝑖 = 0.0192 Ω, 𝑅𝑅2,𝐿𝐿𝑖𝑖 =
0.219 Ω, 𝑅𝑅3,𝐿𝐿𝑖𝑖 = 0.0257 Ω, and 𝑅𝑅4,𝐿𝐿𝑖𝑖 = 0.0331 Ω. Figure 3

presents the open-circuit voltage, 𝑆𝑆𝐶𝐶𝑂𝑂𝐿𝐿𝑖𝑖, as a function of SOC.

Combining these component models creates the microgrid 

representation as a set of DAEs. As noted in previous work, it 

is possible to convert these dynamics into a conservation of 

energy-based graphical model, with storage capacitance 

matrix 𝑪𝑪, incidence matrix 𝑴̅𝑴, and nonlinear power flows 𝑷𝑷
(Pangborn et al., 2018; Laird et al., 2022):

𝑪𝑪𝒙̇𝒙 = −𝑴̅𝑴𝑷𝑷(𝒙𝒙, 𝒖𝒖, 𝒙𝒙𝒔𝒔). (9)

The 15 × 1 state vector 𝒙𝒙 consists of the states, such as 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏,

𝑇𝑇𝑃𝑃𝑃𝑃 , and 𝑆𝑆𝑆𝑆𝑆𝑆. The 3 × 1 control input vector 𝒖𝒖 contains the 

duty cycles 𝑢𝑢0, 𝑢𝑢1, and 𝑢𝑢2. The 7 × 1 external state vector 𝒙𝒙𝒔𝒔

consists of exogeneous inputs and disturbances, such as 𝐼𝐼𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙
and 𝑇𝑇∞. This compact representation supports the CCD

framework of Section 3.

2.2 Control Algorithm

The purpose of the control algorithm is to determine the next 

set of duty cycle values after each timestep Δ𝑡𝑡. This work 

utilizes a model-free procedure based on perturb and observe 

methods (Ali et al., 2020). Figure 4 presents the generalized

procedure. At each timestep, a duty cycle 𝑢𝑢𝑗𝑗, with integer 𝑗𝑗 ∈
[0 . . 2], is perturbed by an amount −Δ𝑢𝑢, 0, or +Δ𝑢𝑢, with Δ𝑢𝑢
as a constant. After observing the change in the system from 

the previous to the current timestep, quantified by 𝛼𝛼 and 𝛽𝛽, the 

input is perturbed again to track the desired outcome for 𝛼𝛼. 

This process repeats continuously, keeping the inputs within 

their limits. There are three control modes:

(a) In the nominal mode, the input associated with the data 

center, 𝑢𝑢0, is adjusted to track the power demand. To 

implement this with 𝑗𝑗 = 0 and time index 𝑘𝑘, the terms in 

the flowchart of Figure 4 become 𝛼𝛼0 = 𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘 −
𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙,𝑘𝑘 and 𝛽𝛽0 = 𝑢𝑢0,𝑘𝑘 − 𝑢𝑢0,𝑘𝑘−1. In addition, PV output 

power is maximized in the nominal mode, with 𝛼𝛼1 =
𝑃𝑃𝑃𝑃𝑃𝑃,𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃,𝑘𝑘−1 and 𝛽𝛽1 = 𝑉𝑉𝑃𝑃𝑃𝑃,𝑘𝑘 − 𝑉𝑉𝑃𝑃𝑃𝑃,𝑘𝑘−1 to determine 

𝑢𝑢1. The buck converter input 𝑢𝑢2 is set to a constant. 

(b) If 𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, then the PV is shut off to avoid 

overcharging the battery, with 𝑢𝑢1 = 0. To return to a safe 

operating mode for the battery, the buck converter is used 

to track a desired 𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 . With this, 𝛼𝛼2 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘 −
𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 and 𝛽𝛽2 = 𝑢𝑢2,𝑘𝑘 − 𝑢𝑢2,𝑘𝑘−1.

(c) Similarly, if 𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖 , data center power tracking 

is turned off to avoid undercharging the battery, so 𝑢𝑢0 =
0. Again, SOC tracking is implemented.

3. SUSTAINABILITY-CENTRIC CONTROL CO-DESIGN

This section presents the CCD framework used for 

sustainability-centric optimization of microgrids. First, the 

plant and controller design variables are defined. Second, the 

objective functions are presented, divided into three categories 

related to sustainability. Third, the constraints of the 

optimization problem are summarized.

3.1 Design Variables

To expand the design space for microgrid optimization, the 

framework of this paper explicitly includes both plant and 

controller parameters. Plant design variables, 𝜽𝜽, include both 

sizing- and topology-related parameters. Appropriate 

microgrid examples include the number of PVs, types and 

configurations of the battery packs, and converter dimensions. 

Controller design variables, 𝝓𝝓, can include the control 

architecture, timestep, horizon for predictive algorithms, 

weights, and gains. For this work, one of each type of design 

variable is considered, supporting analysis of identified 

designs without loss of generality. The plant design variable is 

the number of Li-ion cells in parallel, 𝜽𝜽 = 𝜃𝜃 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐿𝐿𝑖𝑖. The 

controller design variable is the duty cycle perturbation 

magnitude, 𝝓𝝓 = 𝜙𝜙 = Δ𝑢𝑢.

3.2 Objective Functions

One of the most critical metrics for future microgrids is the 

ability of the system to support environmental sustainability. 

Expanding beyond the typical viewpoint presented in the 

microgrid literature, we define three essential categories of 

sustainability objective functions: manufacturing, operations, 

and disposal. The manufacturing objective, 𝐽𝐽𝑚𝑚, relates to direct 

and indirect environmental impacts from building and 

assembling microgrid components. Depending on the 

component and energy source used for manufacturing, this can 

generate the highest GHG emissions from all lifecycle stages 

of the microgrid component (Larcher and Tarascon, 2015). For 

this work, the function is defined as:

Figure 2. Scaled data center power demand (Wang et al., 2012). Figure 3. Open-circuit voltage of the Li-ion battery.
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𝐽𝐽𝑚𝑚 = 𝑐𝑐𝑚𝑚𝜃𝜃 (10)

where 𝑐𝑐𝑚𝑚 = 224 kgCO2,e/cell is determined using values 

from (Hao et al., 2017) to convert the size of the battery pack 

into equivalent CO2 (CO2,e) released. The operations objective, 

𝐽𝐽𝑜𝑜, quantifies environmental impacts due to operation of the 

microgrid. For the system and blackout scenario considered in 

this work, no fossil fuels are used. Total wasted energy into the 

environment is considered the impact from operations:

𝐽𝐽𝑜𝑜 = 𝑐𝑐𝑜𝑜 ∫ 𝑃𝑃𝑜𝑜𝑏𝑏𝑜𝑜(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
0  (11)

In (11), 𝑃𝑃𝑜𝑜𝑏𝑏𝑜𝑜 is the sum of all waste heat terms from (9), and 𝑡𝑡𝑟𝑟
is the final time. The coefficient 𝑐𝑐𝑜𝑜 = 3.7 × 10−9 kgCO2,e/J
converts the wasted energy into kg of CO2,e, using the 

knowledge that waste heat has a fraction of an impact as CO2

release does over a century (Zevenhoven and Beyene, 2011). 

The disposal objective, 𝐽𝐽𝑙𝑙, quantifies impact from disposing of 

microgrid components at the end-of-life. This can relate to 

recycling and electronic waste (e-waste). For this work, higher 

battery degradation is used to represent earlier component 

failure, replacement, and disposal. The capacity loss of a cell, 

𝑄𝑄𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏, is dependent on the battery SOC and current, with this 

nonlinear dynamic described in (Ramadass et al., 2004; 

Docimo and Fathy, 2017):

𝐽𝐽𝑙𝑙 = 𝑄𝑄𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝐶𝐶, 𝐼𝐼𝐿𝐿𝑖𝑖) (12)

The individual objective functions can be combined into a total 

objective, 𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡, with weights 𝑤𝑤𝑚𝑚, 𝑤𝑤𝑜𝑜, and 𝑤𝑤𝑙𝑙. With 𝑛𝑛 > 1 used 

for compromise programming, 𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡 can be expressed as:

𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑤𝑤𝑚𝑚𝐽𝐽𝑚𝑚
𝑖𝑖 + 𝑤𝑤𝑜𝑜𝐽𝐽𝑜𝑜

𝑖𝑖 + 𝑤𝑤𝑙𝑙𝐽𝐽𝑙𝑙
𝑖𝑖
 (13)

3.3 Constraints

The first constraint for the CCD problem ensures the scaled 

microgrid model dynamics are obeyed. Inclusion of the plant 

design variables is equivalent to augmenting the graph-based 

model of (9):

𝚿𝚿𝒄𝒄(𝜽𝜽)𝑪𝑪𝒙̇𝒙 = −𝑴̅𝑴𝚿𝚿(𝜽𝜽)𝑷𝑷(𝒙𝒙, 𝒖𝒖, 𝒙𝒙𝒔𝒔) (14)

where 𝚿𝚿𝒄𝒄(𝜽𝜽) and 𝚿𝚿(𝜽𝜽) are diagonal matrices that scale the 

parameters of the plant (Docimo et al., 2021). The second 

constraint relates to the controller, which depends on the 

controller design variables. A compact representation of the 

controller presented in Section 2.2 is:

𝒖𝒖𝑘𝑘+1 = 𝒇𝒇(𝝓𝝓, 𝒖𝒖𝑘𝑘, 𝒖𝒖𝑘𝑘−1, 𝒙𝒙𝑘𝑘, 𝒙𝒙𝑘𝑘−1, 𝑷𝑷𝑘𝑘, 𝑷𝑷𝑘𝑘−1, 𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓,𝑘𝑘, 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓,𝑘𝑘), (15)

with 𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓 and 𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 as the reference state and power flow 

vectors. With the emphasis on sustainability within the 

objective function, power tracking for the data center is related 

to the constraints. The third constraint defines a maximum 

total tracking error, 𝜇̅𝜇𝑡𝑡𝑟𝑟, differentiating acceptable and 

unacceptable designs:

∫ (𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟(𝜏𝜏) − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏))
2

𝑑𝑑𝑑𝑑 ≤ 𝜇̅𝜇𝑡𝑡𝑟𝑟
𝑡𝑡𝑓𝑓

0  (16)

The final constraints bound the design variables to minimum 
(𝜽𝜽𝑚𝑚𝑚𝑚𝑚𝑚, 𝝓𝝓𝑚𝑚𝑚𝑚𝑚𝑚) and maximum values (𝜽𝜽𝑚𝑚𝑚𝑚𝑚𝑚, 𝝓𝝓𝑚𝑚𝑚𝑚𝑚𝑚):

𝜽𝜽𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜽𝜽 ≤ 𝜽𝜽𝑚𝑚𝑚𝑚𝑚𝑚,
𝝓𝝓𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝝓𝝓 ≤ 𝝓𝝓𝑚𝑚𝑚𝑚𝑚𝑚. (17)

Given initial conditions for the states, the CCD optimization 

problem is defined to determine the 𝜽𝜽 and 𝝓𝝓 values that 

minimize (13). This is subject to the numerical solutions of 

(14)-(16) and (17).

4.  RESULTS 

This section presents the results from applying the CCD 

framework to the defined microgrid. To confirm the controller 

is able to perform properly, the system is tested with 

preliminary values for the design variables. Solutions to the 

CCD problem are then determined through a grid search of the 

design space. The relationship between the design variables 

and sustainability objectives, as well as Pareto solutions, are 

explored.

4.1 Controller Validation

To confirm the controller is able to track the data center power 

demand (Figure 2) and limit SOC bound violations, the 

microgrid model and control algorithm are evaluated with

baseline parameters. The design variables are set to 𝜃𝜃 as 

10000, 12000, and 14000, and 𝜙𝜙 as 0.01. The remaining 

controller parameters are defined as Δ𝑡𝑡 = 60s, 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1,

𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9, and 𝑆𝑆𝑆𝑆𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 0.5. A sinusoidal irradiation 

profile is used with 𝑇𝑇∞ = 25℃. While 𝑡𝑡𝑟𝑟 = 24 hr is used, 

results approximately reflect long-term sustainability criteria.

The MATLAB function ode23tb is used for simulation.

Figure 5 presents 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑆𝑆𝑆𝑆𝐶𝐶, and the energy produced from 

the PV, 𝐸𝐸𝑃𝑃𝑉𝑉 , over time. This figure provides two pieces of 

information. The first piece is that the controller behaves as

expected. The data center power demand is tracked within 

acceptable tolerances, with all three designs having nearly 

identical outputs through the first 20 hours. When 𝑆𝑆𝑆𝑆𝐶𝐶 reaches

𝑆𝑆𝑂𝑂𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚, energy from the PV is reduced. For some of the 

designs, 𝑆𝑆𝑆𝑆𝐶𝐶 hits 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, shutting off power to the data 

center. This leads to the second piece – smaller battery pack 

  , +1
=   , 

 ake  easurements

  , +1
=   , 
+   

  , +1
=   , 
   

  , +1
=   , 
   

  , +1
=   , 
+   

   0   0

   

  

   
  > 0

  = 0

  

          

Figure 4. Logic of the perturb & observe control algorithm.
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sizes lead to power tracking failure at the end of the simulated 

blackout. This enables the identification of an appropriate 

value of 𝜇̅𝜇𝑜𝑜𝑟𝑟 = 1 × 1015. A value above this reflects that the 

microgrid design and controller fails to perform as required.

4.2 Optimal Microgrid Designs

To determine the relationship between the design variables and 

objective functions, a grid search is used to solve the CCD 

problem. The search uses 𝜃𝜃 from 𝜃𝜃𝑚𝑚𝑖𝑖𝑖𝑖 = 10000 to 𝜃𝜃𝑚𝑚𝑙𝑙𝑚𝑚 =
28000 in steps of 1000, and 𝜙𝜙 from 𝜙𝜙𝑚𝑚𝑖𝑖𝑖𝑖 = 0.01 to 𝜙𝜙𝑚𝑚𝑙𝑙𝑚𝑚 =
0.06 in steps of 0.01. While this does not guarantee the global 

minima is found, it provides approximate trends for the design 

space. Of the 114 designs, the 18 with 𝜃𝜃 < 13000 violate the 

𝜇̅𝜇𝑜𝑜𝑟𝑟 limit and are eliminated. Figure 6 presents the relationship 

between each sustainability objective function and the design 

variables. From this, we make the following observations:

(a) The manufacturing objective function is only sensitive to 

the plant design variable, as expected from (10).

(b) The operations objective is more sensitive to the 

controller, rather than the plant, design variable. Larger 

values of 𝜙𝜙 increase the total wasted energy.

(c) The disposal objective is sensitive to both variables. 

Decreasing 𝜙𝜙 and increasing 𝜃𝜃 leads to more degradation, 

more component replacements, and thus more e-waste. 

Comparing Figures 6(a) and 6(c) shows that 𝐽𝐽𝑚𝑚 and 𝐽𝐽𝑙𝑙 are 

generally not competing objectives in the design space. Figure 

7 presents the design space comparing (a) 𝐽𝐽𝑚𝑚 and 𝐽𝐽𝑜𝑜 and (b) 𝐽𝐽𝑙𝑙
and 𝐽𝐽𝑜𝑜, with 𝑤𝑤𝑙𝑙 = 0 and 𝑤𝑤𝑚𝑚 = 0 in (13), respectively. The 

Pareto front of Figure 7(a) indicates the manufacturing and 

operations sustainability objectives compete. However, as 

these have the same units, 𝐽𝐽𝑚𝑚 is orders of magnitude larger than 

𝐽𝐽𝑜𝑜. This implies that GHG emissions from manufacturing 

dwarf waste heat in terms of environmental impact, and 

minimizing 𝐽𝐽𝑚𝑚 minimizes 𝐽𝐽𝑜𝑜𝑡𝑡𝑜𝑜. The magnitude of 𝑐𝑐𝑚𝑚, and thus 

𝐽𝐽𝑚𝑚, would need to be reduced by 104 before 𝐽𝐽𝑜𝑜 should be 

considered with respect to environmental impacts. For the 

front of Figure 7(b), the units of 𝐽𝐽𝑙𝑙 and 𝐽𝐽𝑜𝑜 do not match. The 

selection of 𝑤𝑤𝑜𝑜, 𝑤𝑤𝑙𝑙, and 𝑛𝑛 in (13) determines which design to 

pick for a nonconvex problem such as this. There is no 

definitive requirement to prioritize minimizing 𝐽𝐽𝑙𝑙 or 𝐽𝐽𝑜𝑜, as this 

will depend on the needs of the designer.

5. CONCLUSIONS

This paper presents a sustainability-centric, control co-design 

framework for optimal design of microgrid systems. As the 

requirements of energy supply and demand evolve, the 

environmental impact of power delivery becomes more 

critical. This work enables the development of next generation

microgrids by optimizing both plant and controller features 

simultaneously with objective functions explicitly related to 

sustainability. The objectives are categorized based on the 

lifecycle stages of the microgrid components: manufacturing, 

Figure 7. Design options (black) and Pareto fronts (cyan) for (a) 

𝑤𝑤𝑙𝑙 = 0 and (b) 𝑤𝑤𝑚𝑚 = 0.

Figure 5. Microgrid (a) data center power, (b) battery SOC, and (c) 

energy out of the PV with 𝜙𝜙 = 0.01 and three battery pack sizes. 

The black solid line represents the reference power, and the black 

dashed lines represent SOC limits. 

Figure 6. (a) 𝐽𝐽𝑚𝑚, (b) 𝐽𝐽𝑜𝑜, and (c) 𝐽𝐽𝑙𝑙 versus design variable values, with 

gray diagonal lines indicating infeasible designs that violate 𝜇̅𝜇𝑜𝑜𝑟𝑟.
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operation, and disposal. The CCD framework is tested using a 

candidate microgrid configuration intended to power a data 

center during a blackout. Results for the test scenario show that 

environmental impacts from manufacturing are greater than 

those from operations. Future work will expand on the forms 

and types of the sustainability objectives, and the relationship 

of these with multiple plant and controller design variables.
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