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Abstract: This paper studies the optimization of microgrid plant and controller features to reduce
environmental impacts. The configuration and control of grid technology is critical for storing and
supplying energy. While these systems are traditionally designed for maximizing efficiency and frequency
regulation, there is a shift towards minimizing grid environmental footprints. This work presents a
framework to enable sustainability-centric microgrid design, with two main features. The first is the
inclusion of control co-design (CCD), which expands the design space and potential capabilities of the
microgrid. The second is the introduction of sustainability-centric objective functions, categorized into
environmental impact from microgrid component manufacturing, operation, and disposal. After introducing
the candidate microgrid’s model, controller, and CCD framework, the system is optimized to support a data
center during a blackout. The relationship between the sustainability objective functions and the plant and
controller design variables are explored. Pareto fronts are identified and studied, providing a comparison

of the influence of each sustainability category on environmental impact.
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1. INTRODUCTION

This paper explores the connection between plant features,
controller parameters, and sustainability for optimization of
microgrid systems. Microgrid-based technology is expected to
propel the next generation of the energy sector, facilitating
integration of heterogeneous energy producing components
and stand-alone power delivery. However, while grid-side
supply and storage continue to evolve, so too do power
demands. Consider data centers, which consume 1-2% of
global energy produced (Shehabi et al., 2016; Fuchs et al.,
2020), with that percentage expected to increase over the next
decade (Koot and Wijnhoven, 2021). Such large-scale power
loads for microgrid systems raise concerns not only with
energy efficiency, but also environmental impact and
sustainability. This reformulates the requirements when
designing, building, and managing grid systems.

There are multiple pathways for yielding microgrid designs
that meet the increasing standards and expectations. We break
these pathways up into two broad categories:

(1) Design space expansion: System outcomes are often
enhanced by expanding the design variables considered. This
includes consideration of nontraditional plant features, such as
photovoltaic (PV) farm and battery bank size, within optimal
sizing procedures (Alramlawi and Li, 2020; Masaud and El-
Saadany, 2020). This also includes alterations to microgrid
supervisory management, with examples including optimal PI
controller design (Abou El-Ela, Mosalam and Amer, 2023)
and model predictive control (Parisio and Glielmo, 2011). A
small number of studies simultaneously optimize plant and
controller parameters, known as control co-design (CCD).
CCD can support new system capabilities, such as hybrid tidal-
solar-battery integration (Cohen et al., 2023).

(2) Objective function diversification: The changes in
expectations of microgrid capabilities can be captured by
changes to the objectives. Traditional objectives for a
microgrid controller include stabilization and frequency
regulation (Wang et al., 2020; Aazami ef al., 2022), as well as
matching power supply and demand (Zhao and Ding, 2018).
Plant sizing objective functions often reflect cost, such as
through a levelized cost of energy (Pandit et al., 2021). A
greater emphasis has been placed on inclusion of greenhouse
gas (GHG) emissions (Barakat, Ibrahim and Elbaset, 2020;
Attia et al., 2021), which is often combined with energy,
capital, and maintenance expenses (Yan ef al., 2017).

While progress has been made to adapt microgrid designs for
the future of the energy sector, several gaps have been left
unaddressed. First, microgrid CCD remains limited in scope.
Second, sustainability-related metrics are often regulated to a
small piece of the optimization problem, rather than a focus.
In comparison to previous studies, this paper presents
sustainability-centric CCD for microgrid optimization.
Through this, CCD methods are broadened to support
microgrid plant and controller parameter optimization,
expanding the microgrid design space. Within the CCD
framework, objective functions are defined to quantify and
emphasize sustainability at three life stages of microgrid
components: manufacturing, operation, and disposal. This
framework is set to facilitate superior microgrid design and
control, reflecting the requirements of the future energy sector.

To develop the sustainability-centric CCD framework, an
outline of the baseline microgrid model and controller is
presented (Section 2). Next, the CCD optimization problem is
formulated (Section 3). Within this, sustainability objective
functions are defined as relating to the three identified
microgrid component lifecycle stages. A test case of
optimizing the microgrid to power a data center during a
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Figure 1. Microgrid plant configuration.

blackout is explored, with relationships between the design
variables and objective functions determined (Section 4).
Finally, the paper ends with a summary of the major elements
presented and future steps (Section 5).

2. MICROGRID DYNAMICS AND CONTROLLER

This section summarizes the baseline configuration of the
microgrid and the control algorithm that manages the system
dynamics. The microgrid model consists of five components,
each described by a set of differential algebraic equations
(DAEs). The baseline control algorithm developed is built to
track desired state and power demand references using a
model-free approach.

2.1 Microgrid Plant Model

Figure 1 presents the configuration of the candidate microgrid.
For this study, the primary purpose of the microgrid is to meet
the data center power demand during a 24-hour blackout
scenario. Components are modeled as DC elements, with the
methods applicable to AC components. The first component is
the voltage bus, which acts as a bridge connecting all power
supply and demand flows. The bus, with voltage state Vj,,
consists of a capacitor with capacitance Cp, s = 1000 F. The
state equation, based on the conservation of energy, is:

Vbus =

_‘;bus>' (1)

( Iout,l + Iout,z - uOIload b1

Chus
The first two terms on the right side of (1) are the output
currents of the two converters, I, ; fori € [1..2], defined as:
Iout,i = é’z(Vout,i - Vbus)a ()
with converter output voltage state V,,,; ;, and resistance Ry, , =
107*(Q used to capture inefficiencies. Note that the differences
between the output and bus voltages are very small. The third
term in (1) contains I;,,4, the load current from the data center,
and u,, a duty cycle control input that throttles power to the
data center. The power to the data center is defined as Py,,q =
WolioqaVpus. Figure 2 presents a power demand profile
Pioaa,rer Tor a data center (Wang et al., 2012), scaled to have a
peak power of 1 MW. The final term of (1) captures additional
power dissipation from the bus, with resistance R, ; = 10*Q.

Each DC-DC converter has an input current I;,, ;, input voltage
Vin,i» output current I, ;, output voltage V,,,; ;, and duty cycle

EI_I Voltage Bus J_

Data Center

u;. The duty cycles act as the control inputs for regulating the
voltages. Capacitors, with € = 1000 F, are placed in parallel
with each input and output connection, and resistors R, =
10*Q, R.51 =5x107°Q, and R.,, =5x 107*Q capture
converter inefficiencies. The boost converter (i = 1) connects
the PV subsystem to the bus, stepping up V. 1 from V;,, 1:

1 Vina 1
E(Iin,l - Req - Rez1 (Vin,l - u1Vout,1) »
Uy
( (Vm 1 ul out, 1) Iout,l) .

The buck converter (i = 2) connects the Li-ion battery pack to
the bus. This converter drops the voltage from input to output:

Vin,l =
(3)

Vout 1

Vout 1=

y _ 1 Vin,z
Vin,2 - [in,2 - - (uZ in2 — out,Z) )
4 Rc1 Repp
4)
. 1 1 Vout 2
% =—-(—(w,V; | .
out,2 c Rc,z,z ( 2Vin2 — out 2) c,1 out,2

The PV subsystem consists of 20000 solar panels in parallel.
Equations (5) presents the thermal dynamics for a single PV
module (Jones and Underwood, 2001; Docimo, Ghanaatpishe
and Mamun, 2017). The parameters C,,=4580 J /K, apy, = 0.7,
Ag = 0.8 m?
capacitance, absorptivity, module surface area, and convection
coefficient, respectively. This equation shows how PV
temperature Tp, is impacted by irradiation G, ambient
temperature To., and output electrical power Ppy = Ipy Vpy .
Note that I 1 = Ipy and Vi ; = Vpy. The current Ipy, is
dependent on Tpy, G, and Vpy, with the nonlinearity and
parameters defined in (Villalva, Gazoli and Filho, 2009):

= IpyVpy). (5

and h = 13.4% are the lumped thermal

. 1
Tpy = a(aPVAsG — hAs(Tpy — To)

The Li-ion battery pack is composed of Ngg.p; = 112 and
Npgr,i lithium iron phosphate cells in series and parallel,
respectively. An equivalent circuit model is used to describe the
battery dynamics, with the states including the state of charge
(SOC) and relaxation voltages V, ;; for p = [2,3,4]. The Li-ion
battery cell’s dynamics, with battery current [;; = I;,, and
battery cell voltage V;; = V;;, , can be summarized in:

) = — I
SOC = — 21, (6)
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Figure 2. Scaled data center power demand (Wang et al., 2012).
. 1 Vp,Li
V ;= — <I P >, 7
p,Li Cp,Li Li Rp,Li ( )

Vi =0CV,(S0C) — VZ,Li - V3,Li - V4,Li - [LiRl,Li~ (3

The nominal capacity for a cell is Q;; = 1.21 Ah. The
capacitances are C, ;; = 15000 F, C3;; = 8000 F, and C, ;; =
550 F, and the resistances are R;;; = 0.01920Q, R,;; =
0.219Q, R3;; = 0.0257 Q, and R,;; = 0.0331 Q. Figure 3
presents the open-circuit voltage, OCV,;, as a function of SOC.

Combining these component models creates the microgrid
representation as a set of DAEs. As noted in previous work, it
is possible to convert these dynamics into a conservation of
energy-based graphical model, with storage capacitance
matrix C, incidence matrix M, and nonlinear power flows P
(Pangborn et al., 2018; Laird et al., 2022):

Cx = —MP(x,u,x%). 9)

The 15 X 1 state vector x consists of the states, such as Vs,
Tpy, and SOC. The 3 X 1 control input vector u contains the
duty cycles ug, u;, and u,. The 7 X 1 external state vector x°
consists of exogeneous inputs and disturbances, such as I;,q4
and T.. This compact representation supports the CCD
framework of Section 3.

2.2 Control Algorithm

The purpose of the control algorithm is to determine the next
set of duty cycle values after each timestep At. This work
utilizes a model-free procedure based on perturb and observe
methods (Ali ef al., 2020). Figure 4 presents the generalized
procedure. At each timestep, a duty cycle u;, with integer j €
[0..2], is perturbed by an amount —Au, 0, or +Au, with Au
as a constant. After observing the change in the system from
the previous to the current timestep, quantified by a and 3, the
input is perturbed again to track the desired outcome for a.
This process repeats continuously, keeping the inputs within
their limits. There are three control modes:

(a) In the nominal mode, the input associated with the data
center, u,, is adjusted to track the power demand. To
implement this with j = 0 and time index k, the terms in
the flowchart of Figure 4 become @y = Piogarefk —
Progar and By = ug, — Ugk—1. In addition, PV output
power is maximized in the nominal mode, with a; =
Ppy . — Ppy -1 and By = Vpy — Vpy k1 to determine
u;. The buck converter input u, is set to a constant.

0 0.2 0.4 0.6 0.8 1
SOC

Figure 3. Open-circuit voltage of the Li-ion battery.

(b) If SOC > SOC,,4y, then the PV is shut off to avoid
overcharging the battery, with u; = 0. To return to a safe
operating mode for the battery, the buck converter is used
to track a desired SOC,.r. With this, a; = SOCyef ) —
SOC, and B = Uy p — Uy j—1.

(c) Similarly, if SOC < SOC,,;,,, data center power tracking
is turned off to avoid undercharging the battery, so uy, =
0. Again, SOC tracking is implemented.

3. SUSTAINABILITY-CENTRIC CONTROL CO-DESIGN

This section presents the CCD framework used for
sustainability-centric optimization of microgrids. First, the
plant and controller design variables are defined. Second, the
objective functions are presented, divided into three categories
related to sustainability. Third, the constraints of the
optimization problem are summarized.

3.1 Design Variables

To expand the design space for microgrid optimization, the
framework of this paper explicitly includes both plant and
controller parameters. Plant design variables, 6, include both
sizing- and topology-related parameters. Appropriate
microgrid examples include the number of PVs, types and
configurations of the battery packs, and converter dimensions.
Controller design variables, ¢, can include the control
architecture, timestep, horizon for predictive algorithms,
weights, and gains. For this work, one of each type of design
variable is considered, supporting analysis of identified
designs without loss of generality. The plant design variable is
the number of Li-ion cells in parallel, 8 = 8 = Npq,. ;. The
controller design variable is the duty cycle perturbation
magnitude, ¢ = ¢ = Au.

3.2 Objective Functions

One of the most critical metrics for future microgrids is the
ability of the system to support environmental sustainability.
Expanding beyond the typical viewpoint presented in the
microgrid literature, we define three essential categories of
sustainability objective functions: manufacturing, operations,
and disposal. The manufacturing objective, /,,, relates to direct
and indirect environmental impacts from building and
assembling microgrid components. Depending on the
component and energy source used for manufacturing, this can
generate the highest GHG emissions from all lifecycle stages
of the microgrid component (Larcher and Tarascon, 2015). For
this work, the function is defined as:
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Figure 4. Logic of the perturb & observe control algorithm.
(10)

where ¢, = 224 kgCO,/cell is determined using values
from (Hao et al., 2017) to convert the size of the battery pack
into equivalent CO; (CO,,) released. The operations objective,
Jo, quantifies environmental impacts due to operation of the
microgrid. For the system and blackout scenario considered in
this work, no fossil fuels are used. Total wasted energy into the
environment is considered the impact from operations:

]m = Cmea

Jo = €0 J, Poue(x)d1. (11)

In (11), P,y is the sum of all waste heat terms from (9), and t¢
is the final time. The coefficient ¢, = 3.7 X 107? kgCO0, /]
converts the wasted energy into kg of COs., using the
knowledge that waste heat has a fraction of an impact as CO»
release does over a century (Zevenhoven and Beyene, 2011).
The disposal objective, J;, quantifies impact from disposing of
microgrid components at the end-of-life. This can relate to
recycling and electronic waste (e-waste). For this work, higher
battery degradation is used to represent earlier component
failure, replacement, and disposal. The capacity loss of a cell,
Q055 1s dependent on the battery SOC and current, with this
nonlinear dynamic described in (Ramadass et al., 2004;
Docimo and Fathy, 2017):

Ja = Quoss(SOC, Iy). (12)

The individual objective functions can be combined into a total
objective, J;,¢, with weights w,,,, w,, and w,;. Withn > 1 used
for compromise programming, J/;,; can be expressed as:

Jtot =Wm.]rrtlm+wo]g+wd]r?' (13)

3.3 Constraints

The first constraint for the CCD problem ensures the scaled
microgrid model dynamics are obeyed. Inclusion of the plant
design variables is equivalent to augmenting the graph-based
model of (9):

W_(0)Cx = —M¥(0)P(x,u, x°), (14)

where W,.(0) and W(0) are diagonal matrices that scale the
parameters of the plant (Docimo et al., 2021). The second
constraint relates to the controller, which depends on the
controller design variables. A compact representation of the
controller presented in Section 2.2 is:

Wprr = F(P Wi, Wpem, Xp, Xie—1, Prey Pie—1, Xpef oo Preg i) (15)

with X, and P, as the reference state and power flow
vectors. With the emphasis on sustainability within the
objective function, power tracking for the data center is related
to the constraints. The third constraint defines a maximum
total tracking error, [;., differentiating acceptable and
unacceptable designs:

2
fotf (Plﬂad'ref(f) - Ploaa(T)) dt < [y (16)

The final constraints bound the design variables to minimum
(0 1min> Prmin) and maximum values (0,4, Pmax):

Bmin <6< emax'

¢min =< ¢ =< ¢max-

Given initial conditions for the states, the CCD optimization
problem is defined to determine the 6 and ¢ values that
minimize (13). This is subject to the numerical solutions of
(14)-(16) and (17).

amn

4. RESULTS

This section presents the results from applying the CCD
framework to the defined microgrid. To confirm the controller
is able to perform properly, the system is tested with
preliminary values for the design variables. Solutions to the
CCD problem are then determined through a grid search of the
design space. The relationship between the design variables
and sustainability objectives, as well as Pareto solutions, are
explored.

4.1 Controller Validation

To confirm the controller is able to track the data center power
demand (Figure 2) and limit SOC bound violations, the
microgrid model and control algorithm are evaluated with
baseline parameters. The design variables are set to 6 as
10000, 12000, and 14000, and ¢ as 0.01. The remaining
controller parameters are defined as At = 60s, SOC,,;,, = 0.1,
S0Cmax = 0.9, and SOC,.r = 0.5. A sinusoidal irradiation
profile is used with T, = 25°C. While ty = 24 hr is used,
results approximately reflect long-term sustainability criteria.
The MATLAB function ode23tb is used for simulation.

Figure 5 presents Pjyqq, SOC, and the energy produced from
the PV, Epy, over time. This figure provides two pieces of
information. The first piece is that the controller behaves as
expected. The data center power demand is tracked within
acceptable tolerances, with all three designs having nearly
identical outputs through the first 20 hours. When SOC reaches
SOC ., energy from the PV is reduced. For some of the
designs, SOC hits SOC,,;,, shutting off power to the data
center. This leads to the second piece — smaller battery pack
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Figure 5. Microgrid (a) data center power, (b) battery SOC, and (c)
energy out of the PV with ¢ = 0.01 and three battery pack sizes.
The black solid line represents the reference power, and the black
dashed lines represent SOC limits.

sizes lead to power tracking failure at the end of the simulated
blackout. This enables the identification of an appropriate
value of fi,, = 1 X 10>, A value above this reflects that the
microgrid design and controller fails to perform as required.

4.2 Optimal Microgrid Designs

To determine the relationship between the design variables and
objective functions, a grid search is used to solve the CCD
problem. The search uses 6 from 8,,;, = 10000 to 8,4, =
28000 in steps of 1000, and ¢ from ¢,,i, = 0.01 to Pprax =
0.06 in steps of 0.01. While this does not guarantee the global
minima is found, it provides approximate trends for the design
space. Of the 114 designs, the 18 with 8 < 13000 violate the
[ limit and are eliminated. Figure 6 presents the relationship
between each sustainability objective function and the design
variables. From this, we make the following observations:

(a) The manufacturing objective function is only sensitive to
the plant design variable, as expected from (10).

(b) The operations objective is more sensitive to the
controller, rather than the plant, design variable. Larger
values of ¢ increase the total wasted energy.

(¢) The disposal objective is sensitive to both variables.
Decreasing ¢ and increasing 6 leads to more degradation,
more component replacements, and thus more e-waste.

Comparing Figures 6(a) and 6(c) shows that J,, and J; are
generally not competing objectives in the design space. Figure
7 presents the design space comparing (a) /,, and J, and (b) /4
and J,, with w; = 0 and w,,, = 0 in (13), respectively. The
Pareto front of Figure 7(a) indicates the manufacturing and
operations sustainability objectives compete. However, as
these have the same units, J,,, is orders of magnitude larger than
Jo- This implies that GHG emissions from manufacturing
dwarf waste heat in terms of environmental impact, and

(a) J
0.06 = 6.36+06
2 ;I/ 61}
0.02
2.2e+06
1 1.5 2 2.5
0 «10%
(b) J,
0.06 4 2.2e+02
0.02
1.1e+02
1 1.5 2 2.5
0 «10*
(c) Jy
0.06 ~ 15
= 0.04 7
0.02 -
1 1.5 2 25 '
0 «10*

Figure 6. (a) J;, (b) J,, and (c) J4 versus design variable values, with
gray diagonal lines indicating infeasible designs that violate ;.
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J

Figure 7. Design options (black) and Pareto fronts (cyan) for (a)
wy = 0 and (b) w,,, = 0.

minimizing J,, minimizes J;,;. The magnitude of c¢,,, and thus
Jm» would need to be reduced by 10* before J, should be
considered with respect to environmental impacts. For the
front of Figure 7(b), the units of J; and J, do not match. The
selection of w,, w,, and n in (13) determines which design to
pick for a nonconvex problem such as this. There is no
definitive requirement to prioritize minimizing J; or J,, as this
will depend on the needs of the designer.

5. CONCLUSIONS

This paper presents a sustainability-centric, control co-design
framework for optimal design of microgrid systems. As the
requirements of energy supply and demand evolve, the
environmental impact of power delivery becomes more
critical. This work enables the development of next generation
microgrids by optimizing both plant and controller features
simultaneously with objective functions explicitly related to
sustainability. The objectives are categorized based on the
lifecycle stages of the microgrid components: manufacturing,
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operation, and disposal. The CCD framework is tested using a
candidate microgrid configuration intended to power a data
center during a blackout. Results for the test scenario show that
environmental impacts from manufacturing are greater than
those from operations. Future work will expand on the forms
and types of the sustainability objectives, and the relationship
of these with multiple plant and controller design variables.
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