

Perdew Festschrift editorial

Jianwei Sun,¹ Kieron Burke,^{2,3} and Weitao Yang⁴

¹⁾*Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA*

²⁾*Department of Chemistry, University of California, Irvine, California 92697, USA*

³⁾*Department of Physics and Astronomy, Irvine, California 92697, USA*

⁴⁾*Department of Chemistry, Duke University, Durham, North Carolina 27708, USA*

(*Electronic mail: weitao.yang@duke.edu)

(*Electronic mail: kieron@uci.edu)

(*Electronic mail: jsun@tulane.edu)

(Dated: 23 April 2024)

This special issue of the Journal of Chemical Physics is dedicated to the work and life of John P Perdew. A short bio is available within the issue¹. Here, we briefly summarize key publications in density functional theory by Perdew and his collaborators, followed by a structured guide to the papers contributed to the special issue.

The first part of this editorial focuses on the work of John Perdew himself, with a special emphasis on some of his more important papers. That work fits into two categories. In the first category, there are the approximations he has developed, often with several co-authors. These approximations are so heavily used that Perdew is likely the most cited physicist of all time. The second category focuses on his more foundational and conceptual works. These derive many properties of the exact functional, and influence how we think about it. They have had enormous influence in the entire community of DFT developers, whether in chemistry or physics or elsewhere.

I. DENSITY FUNCTIONAL THEORY AND JOHN PERDEW

Density functional theory (DFT) is an enormous success story. In particular, Kohn-Sham density functional theory (KS-DFT)^{2,3} is the world's most popular electronic structure method. From about 1965 to 1990, it was the standard tool for solid-state electronic structure calculations. About 1990, better approximations made it usefully accurate in chemistry, leading to a revolution in quantum chemistry, and finally the Nobel prize in chemistry to Walter Kohn and John Pople in 1998.

John Perdew is the physicist who has done more than any other to develop both the theory and approximations used in DFT calculations. Because of this, Perdew is (very likely) the most cited physicist of all time. Fig 1 shows citations to his papers over time, as computed by web of knowledge. The scale is in thousands of citations per year. The enormous numbers largely reflect the many approximations which he developed that are in common use today. In particular, almost all materials calculations using DFT (which is almost all of them) use an approximation bearing his name (or, at least, initial). NERSC estimates that about 30% of DOE's entire supercomputer is devoted to DFT calculations and almost all use one or another of Perdew's formulas.

Fig 2 also shows how remarkably productive Perdew has

been, as it shows the number of papers each year, since 1976, i.e., during almost half a century. Even today, at age 80, he remains remarkably productive and active. The dip for 2023 likely reflects his moving to a new faculty position at Tulane, which is also a return home¹. We are confident his pace will pick back up in future years.

Perdew is most well-known to the world for the number and impact of his approximations (often in collaboration) for the XC energy. The *Self-interaction correction to density-functional approximations for many-electron systems*, with Alex Zunger in 1981⁴ combined deep insights with a very practical approximation, the self-interaction correction (SIC). An entire subfield of DFT has evolved in 40 years and uses SIC for some of the most difficult materials problems⁵.

A key input to the local density approximation (LDA) is the XC energy per particle of the uniform electron gas³. The paper above contains an early version (PZ81) of this XC energy that is used in many LDA calculations. A later update was *Accurate and simple analytic representation of the electron-gas correlation energy*, with Yue Wang in 1992⁶ (PW92). This yeoman's work provided the most careful and accurate formula for the uniform electron gas energy, a vital input into almost all DFT approximations used in materials science.

Perdew's most heavily cited work is for the development of generalized gradient approximations (GGAs). This work spanned about 20 years, starting in 1977 with the formal work with David Langreth⁷. With many papers along the way, this led to *Generalized gradient approximation made simple*, with Ernzerhof and Burke in 1996 (PBE).⁸ This is the most cited Physical Review Letter ever. It was based on general principles of quantum mechanics, and used no empirical input. The paper showed that seven simple exact constraints yield the same approximation as a fully numerical construction from many-body theory⁹. This approximation is the most commonly used for materials calculations and is the driver behind the materials genome project and about 30% of all DOE supercomputer use.

Other variations (some earlier, some later) also exist, including the *Density-functional approximation for the correlation energy of the inhomogeneous electron gas* in 1986 (P86).¹⁰ This early generalized gradient approximation is

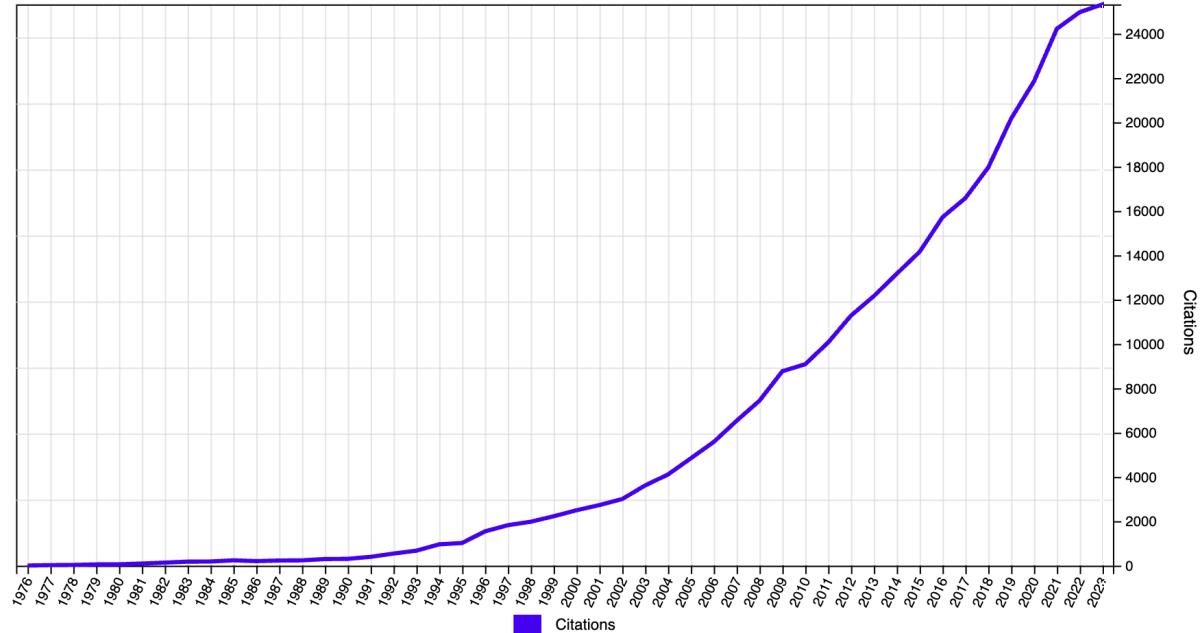


FIG. 1. Number of papers citing Perdew's work each year from 1976 to 2023

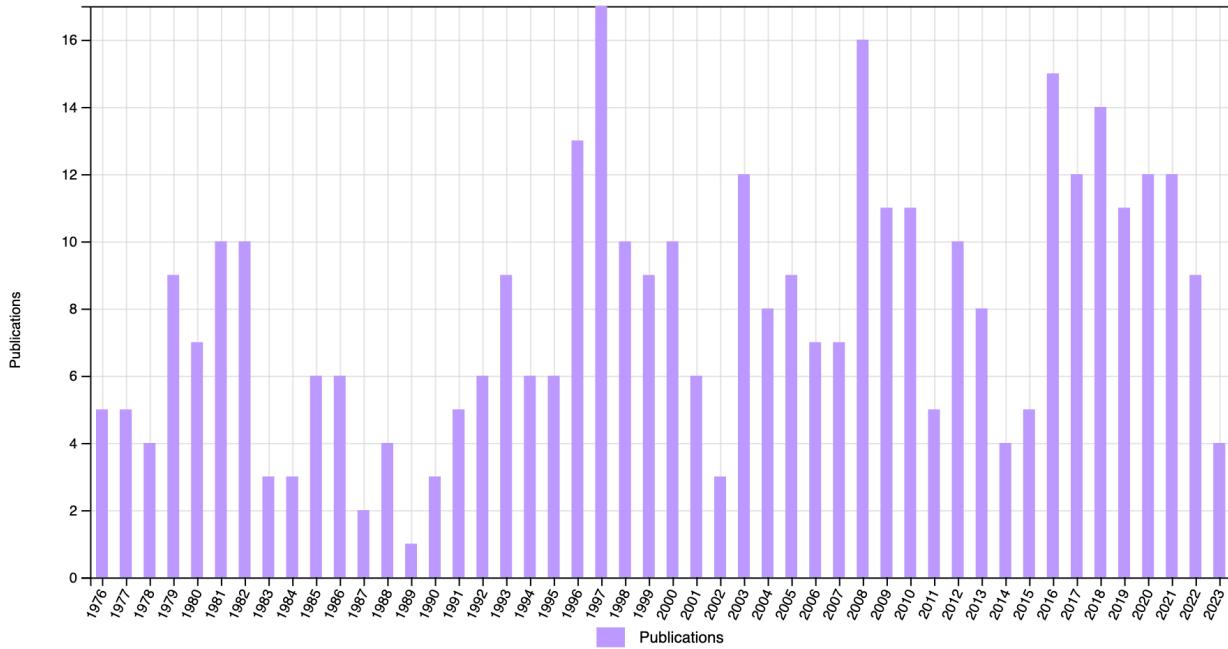


FIG. 2. Number of papers published by Perdew each year from 1976 to 2023

still in considerable use today, especially when weak non-covalent bonds are important. A later variant was tested in *Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and corre-*

lation, with many co-authors (1992)¹¹. This is the famous PW91 approximation¹², the precursor to the ubiquitous PBE, and still in common use today. On the other hand, one could later see the limitations of the PBE functional for lat-

tice parameters and phonons, leading to *Restoring the density-gradient expansion for exchange in solids and surfaces* with many co-authors in 2008 (PBEsol)¹³. This modification of the PBE generalized gradient approximation was designed to improve properties for solids, while lessening accuracy for energy differences. It has become a standard alternative to PBE for solid calculations of lattice constants and phonon spectra.

The meta-GGA is the next logical step after GGA's in improving semilocal functionals. The *Strongly constrained and appropriately normed semilocal density functional* with Sun and Ruzsinszky in 2015 (SCAN)¹⁴ meta-GGA is the latest version from Perdew and co-authors, and does almost everything better than PBE. It is being widely adopted by the materials community. Finally, we mention global hybrids, functionals that mix in a fixed fraction of exact exchange. *Rationale for mixing exact exchange with density functional approximations* with Ernzerhof and Burke in 1996¹⁵ shows how mixing 1/4 of exact exchange could be theoretically justified, and led directly to the creation of PBE0.

However, perhaps somewhat less well known to the community of DFT users, but equally important, are his contributions to the fundamental theory behind DFT. Many of these prove exact conditions that the exact functional must satisfy. These then form crucial building blocks for the design of his most successful approximations.

Despite its odd name, *The exchange-correlation energy of a metallic surface*, with David Langreth in 1975¹⁶ was the first to correctly identify the adiabatic connection - fluctuation dissipation formula in KS-DFT. This method for analyzing exact and approximate functionals is now part of all textbooks on the subject. Some of our most important insights into global hybrid approximations are due to this result¹⁷.

Another key paper involves deriving exact conditions. *Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms*, with Mel Levy in 1985¹⁸ was the first precise use of coordinate scaling to derive many of the exact conditions that guide non-empirical functional construction today. In particular, almost all new approximations for exchange satisfy their simple relation.

Perhaps the most celebrated (and subtle) paper concerns variations with particle number. *Density-functional theory for fractional particle number: Derivative discontinuities of the energy*, with Levy, Parr, and Balduz in 1982¹⁹ extended the domain of DFT to fractional electron numbers based on the grand canonical ensemble, and developed the exact conditions for fractional electron numbers. It clearly identified the infamous derivative discontinuity of the exact energy functional for the first time, and showed how the Kohn-Sham band gap of a periodic solid is an underestimate of the fundamental gap, even with the exact XC functional.

The rest of this editorial is a discussion of the many various papers in the rest of this issue. Almost every DFT paper published today contains some nugget of Perdew's work, and about half of them cite him.

II. GUIDE TO PAPERS IN THIS SPECIAL ISSUE

As you will see in the contents of this special issue, KS-DFT is applied to a dazzling array of diverse problems, and folks are working in many different directions to improve it. We have done our best to provide a structured guide to the contents.

A. Exact Conditions, limits, bounds, and prototypical systems

Several of the papers focus on the development or understanding of conditions satisfied by the exact functional. Laestadius et al²⁰ revisit the exchange-only virial relation¹⁸ from the adiabatic connection. Pederson and Burke²¹ consider if local conditions have been overenforced in guiding density functional approximation, and if that might explain the quite strong difference between approximations used in materials and those used in chemistry. On the other hand, Burgess et al²² consider the convexity condition, i.e., that the total energy as a function of particle number is a convex function¹⁹, and give an extremely general proof. Ayers²³ shows by explicit construction that the energy is not a convex function of the number of particles for the Coulomb-like r^{-k} repulsion with $k > \log_3 4$. In a completely different vein, Sobrino et al²⁴ look at a very simple lattice Hamiltonian, and show how it is related to DFT in real space, especially at finite temperatures²⁵. Savin and Karwowski²⁶ revisit the adiabatic connection formula¹⁶, generalizing it beyond first order perturbation theory. Redd et al²⁷ investigate the exchange energy of neutral atoms in the large-Z limit while Daas et al²⁸ investigate the large-Z limit of neutral atoms for both exchange and infinite-coupling strength interaction. Lin et al²⁹ calculate the coupling-constant averaged exchange correlation hole of the 2-electron Hooke's atoms and study the effect of electron-electron cusp condition.

B. Tools

John Perdew has always been an important developer of tools for understanding DFT. Gould³⁰ has taken basic concepts from density-corrected DFT³¹ and applied them to the Hartree case, i.e., where the XC energy is set to zero, to measure differences between densities. On the other hand, Lutz et al³² have applied tools from conceptual DFT (as championed by Bob Parr³³) to study hydrolysis reactions of various metal hexafluorides, while Titeca et al³⁴ extend the charge stabilization method from conceptual DFT to include the Fukui function and electron localization function in combination of Berlin's binding function for studying the dissociative electron attachment (DEA) mechanism in ethene and its chlorinated derivatives. Roy et al³⁵ develop an electron-centric approach to calculating the XC energy directly, without needing an explicit density functional. Tozer³⁶ revisits some old ideas of Ghosh and Parr concerning the scaling of the functional under density scaling¹⁸. Finally, Zhang et al³⁷ use the Pauli energy to characterize if bonds are weak or strong.

C. Beyond ground-state KS-DFT

Most (but not all) of Perdew's work has focused on developing ground-state Kohn-Sham DFT, where indeed most of the applications of DFT occur. But ground-state DFT directly yields only ground-state quantities, so excitations and other properties require extensions, such as time-dependent DFT³⁸. Another kind of extension is to use other techniques from more traditional many-body approaches, which typically yield both ground-state energies and other useful properties, such as the spectral function³⁹.

Sigurdson et al⁴⁰ study Rydberg states of molecules, but include the self-interaction⁴ correction to improve KS potentials. Darwood and Maitra⁴¹ show how to find an improved description of double excitations within TDDFT, while Kaplan and Ruzsinszky⁴² study the other extreme of low-energy excitations in a uniform gas. Tang et al⁴³ use many-body theory to study K-edge spectroscopy in salt solutions. Fang et al⁴⁴ use TDDFT to study both excitations and ultrafast dynamics in porphyrins.

On the other hand, Wei et al⁴⁵ show how to calculate dissociation of H₂ on a copper surface via an embedding technique using the random phase approximation (RPA). Graf and Thom⁴⁶ claim that RPA energies can be improved by using HF densities using DC-DFT.

Simplified Hamiltonians are the mainstay of condensed matter physics. Dutta et al⁴⁷ develop an efficient algorithm to implement the recently introduced binary tree state (BTS) ansatz on a classical computer, which shows great promise in benchmark applications to the reduced Bardeen-Cooper-Schrieffer Hamiltonian and the one-dimensional XXZ Heisenberg Hamiltonian. Adhikari and Baer⁴⁸ develop first and second-order solvers for the Itô-Schrödinger equation using the Itô-Taylor expansion with exact derivatives in the interaction picture, which proved efficient on thermal-coupled Morse oscillators, yielding practical estimates within tens of iterations.

Returning to DFT, Yu et al⁴⁹ show that the under-determination problem to define a ground-state energy functional of the natural determinant reference (NDR) are overcome in a grand-canonical ensemble framework at the zero-temperature limit, while Harding et al⁵⁰ propose a generalized thermal adiabatic connection (GTAC) formula that uses a fictitious temperature parameter to improve simulations of warm dense matter.

D. Approximations

A large number of our papers are devoted to the development of new DFT approximations and their testing. We classify these based on the level of approximation that's being tested, trying to follow Jacob's ladder⁵¹.

Going all the way back to the HK theorem, in orbital-free DFT, Horowitz et al⁵² study orbital-free DFT for metal slabs. At the level of pure exchange, Bosko and Satroverov⁵³ revisit the Fermi-Amaldi approximation for exchange, the original inspiration for the SIC correction, while Trushin and

Görling⁵⁴ discuss how to do exact exchange calculations for open shell systems. Then Aschebrock et al⁵⁵ show that the ultra-nonlocal density response of exact exchange can be accurately captured by a metaGGA.

In terms of global hybrids, the work of Hostas et al⁵⁶ discusses how the fraction of exact exchange greatly affects ordering of spin states in a transition metal cluster, as do Manukovsky et al⁵⁷.

Much work is now focussed on meta-GGAs. Francisco, Cancio, and Trickey^{58,59} have contributed two papers on the Tao-Mo meta-GGA functional (not a Perdew approximation): The first simplifies it, while the second removes its explicit orbital-dependence, a vital step if it is to be used in an orbital-free code. Kovacs et al⁶⁰ discuss in general how metaGGA's affect band gaps in solids. Meanwhile Palos et al⁶¹ use density corrected DFT to study ion hydration in water using SCAN. Wittmann⁶² use the SCAN variant, r^2 SCAN, to construct several global double hybrid approximations.

There is also much interest in treating strongly correlated systems, and using more non-local ingredients. Constantin et al⁶³ revive the interaction strength interpolation (ISI) of Perdew and co-workers⁶⁴, generalizing old forms to better fit the adiabatic connection of the uniform gas. Meanwhile, Shi et al⁶⁵ use partition DFT to introduce approximations that capture effects in strongly correlated systems, while Ponra et al⁶⁶ look at difficult multireference cases and how the multiplet-sum-method treats them. Chen and Yang⁶⁷ develop a machine-learning finite-range nonlocal density functional. In a totally new vein, Tancogne-Dejean et al⁶⁸ propose to replace the energy functionals in ground-state DFT with exact, physically equivalent force formulations. Zhang et al show that commonly used density functionals struggle to accurately simulate the structural, electric, and magnetic transitions of VO₂ from insulating to metallic phases.

An important class of functionals for molecular calculations is the double hybrid. Becke⁶⁹ presents some slight but crucial revisions to the DH23 hole-based functional, slightly reducing its error, but also showing better generalization, managing a record-breaking 1.76 kcal/mol error for the (weighted) mean absolute deviation on the GMTN55 database. Meanwhile, Bi et al⁷⁰ explore the effect of the choice of density in XYG3-type double hybrids, and Bremond et al⁷¹ introduce a new flavor of range-separated double hybrid and test its properties for both ground states and excitations.

In terms of self-interaction corrected functionals, Bi et al⁷² introduce a novel constraint that facilitates self-consistent localization of the self-interaction-correction orbitals to solve its well-known numerical instability. Tancogne-Dejean et al⁷³ extend some of the well-established self-interaction correction (SIC) schemes of density-functional theory — the Perdew-Zunger SIC and the average-density SIC — to the case of systems with noncollinear magnetism. Hooshmand et al⁷⁴ explore the reasons why standard functionals fail for diradical systems, and the improvements that can be found with self-interaction corrections. Singh et al⁷⁵ investigate the reasons behind the improvement in chemical reaction barrier height predictions by the Fermi-Löwdin orbital self-interaction correction (FLOSIC)⁷⁶. Manier et al⁷⁷ show that

while LSDA and PBE effectively describe the strongly correlated chromium dimer by breaking spin-symmetry, a full Perdew-Zunger SIC creates an unphysical symmetry-broken state.

For weakly bonded systems, Ning et al⁷⁸ show the importance of van der Waals (vdW) and self-interaction corrections for accurate first-principles cuprate lattice dynamics.

Lastly, the work of Lehtola and Marques⁷⁹ is about *all* modern XC approximations. They curate the libXC library of approximate functionals, and their paper is a plea to those suggesting new approximations, and how to avoid ambiguities when reporting them.

E. Calculations

Although you could never tell from this special issue, at least 90% of all papers using DFT simply report the results of KS-DFT calculations in order to compare with experiment and do some science. In this section, we discuss the papers that are primarily focussed on that. It gives a nice sense of the breadth of modern DFT applications.

For materials science, Rumson and Johnson⁸⁰ study the thermal expansion of layered electrides and the importance of the approximation used. Ramakrishnan and Jain⁸⁰ attempt to estimate band gaps of various semiconductors using reference calculations with the HSE06 functional⁸¹. Yang et al⁸² study irradiation effects in silicon transistors using TDDFT calculations to find excitations. Machrodt et al⁸³ calculate the energies and charge and spin distributions of the low-lying excited states in singlet and triplet N₂V defects in diamond from direct Δ-SCF calculations with various density functionals. Remsing and Thakur⁸⁴ study the Nuclear quantum effects in the acetylene: ammonia plastic co-crystal. Liu et al⁸⁵ assess the r2SCAN meta-GGA for structural parameters, cohesive energy, mechanical modulus, and thermophysical properties of 3d, 4d, and 5d transition metals. Friedrich and Curtarolo⁸⁶ provides the AFLOW with the coordination corrected enthalpies (CCE) method for the thermodynamics of ionic materials.

In terms of chemistry, Petersen and Solling⁸⁷ report how small halocarbons dissociate, a crucial question in destruction (or recovery) of the ozone hole in the upper atmosphere. Pederson et al⁸⁸ use Fermi-Löwdin orbitals (FLO) for self-interaction corrections (SIC) in DFT calculations of anion-solvent interactions. Nguyen et al⁸⁹ show that the FLO self-interaction correction can reproduce the bond-length alternation in π -conjugated polymers. Chen et al⁹⁰ use the XYG3 approximation to create a global potential energy surface for Al and O₂.

Finally, several papers focus on the importance of basis sets in all these calculations. Determan and Wilson⁹¹ design correlation consistent basis sets for density functional calculations, focusing on the third-row atoms (Ga-Br). Yang et al⁹² develop correlation-consistent numeric atom-centered orbital basis sets for Krypton with applications in RPA-based correlated calculations.

ACKNOWLEDGMENTS

We end by thanking John Perdew for his endless source of ideas, his endless inspiration and perspiration in pursuing them, and his general all-round good humour that permeates this field and community. We hope that readers will find this Festschrift special issue useful and we look forward to celebrating his 100th birthday. We also point out, for the sake of Perdew's many collaborators over the years (including the three of us), that the middle initial P could stand for pesky, persnickety, or pnitpicky. Take your pick.

KB thanks Steven Cristosco for help in preparing this manuscript and acknowledges support from NSF CHE-2154371. JS acknowledges the support from the U.S. National Science Foundation under Grant No. DMR-2042618. WY acknowledges the support from the National Science Foundation (CHE-2154831) and the National Institute of Health (R01-GM061870).

- ¹J. P. Perdew, "My life in science: Lessons for yours?" *The Journal of Chemical Physics* **160** (2024).
- ²P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," *Physical review* **136**, B864 (1964).
- ³W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," *Physical review* **140**, A1133 (1965).
- ⁴J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems," *Physical Review B* **23**, 5048 (1981).
- ⁵S. Kümmel and L. Kronik, "Orbital-dependent density functionals: Theory and applications," *Reviews of Modern Physics* **80**, 3 (2008).
- ⁶J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," *Physical review B* **45**, 13244 (1992).
- ⁷D. Langreth and J. Perdew, "Exchange-correlation energy of a metallic surface: Wave-vector analysis," *Phys. Rev. B* **15**, 2884 (1977).
- ⁸J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," *Physical review letters* **77**, 3865 (1996).
- ⁹K. Burke, J. P. Perdew, and Y. Wang, "Derivation of a generalized gradient approximation: The pw91 density functional," in *Electronic Density Functional Theory: recent progress and new directions* (Springer, 1998) pp. 81–111.
- ¹⁰J. P. Perdew, "Density-functional approximation for the correlation energy of the inhomogeneous electron gas," *Physical Review B* **33**, 8822 (1986).
- ¹¹J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," *Physical review B* **46**, 6671 (1992).
- ¹²J. Perdew, *Physica B* **172**, 1 (1991).
- ¹³J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, "Restoring the density-gradient expansion for exchange in solids and surfaces," *Physical review letters* **100**, 136406 (2008).
- ¹⁴J. Sun, A. Ruzsinszky, and J. P. Perdew, "Strongly constrained and appropriately normed semilocal density functional," *Physical review letters* **115**, 036402 (2015).
- ¹⁵J. P. Perdew, M. Ernzerhof, and K. Burke, "Rationale for mixing exact exchange with density functional approximations," *The Journal of chemical physics* **105**, 9982–9985 (1996).
- ¹⁶D. C. Langreth and J. P. Perdew, "The exchange-correlation energy of a metallic surface," *Solid State Communications* **17**, 1425–1429 (1975).
- ¹⁷A. D. Becke, "Density-functional thermochemistry. iii. the role of exact exchange," *J. Chem. Phys.* **98**, 5648–5652 (1993).
- ¹⁸M. Levy and J. P. Perdew, "Hellmann-feynman, virial, and scaling requisites for the exact universal density functionals. shape of the correlation potential and diamagnetic susceptibility for atoms," *Physical Review A* **32**, 2010 (1985).
- ¹⁹J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr, "Density-functional

theory for fractional particle number: Derivative discontinuities of the energy,” *Physical Review Letters* **49**, 1691 (1982).

²⁰A. Laestadius, M. A. Csirik, M. Penz, N. Tancogne-Dejean, M. Ruggenthaler, A. Rubio, and T. Helgaker, “Exchange-only virial relation from the adiabatic connection,” *The Journal of Chemical Physics* **160** (2024).

²¹R. Pederson and K. Burke, “The difference between molecules and materials: Reassessing the role of exact conditions in density functional theory,” *The Journal of Chemical Physics* **159**, 214113 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0172058/18241193/214113_1_5.0172058.pdf.

²²A. C. Burgess, E. Linscott, and D. D. O’Regan, “The convexity condition of density-functional theory,” *The Journal of Chemical Physics* **159**, 211102 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174159/18233387/211102_1_5.0174159.pdf.

²³P. W. Ayers, “Energy is not a convex function of particle number for r-k interparticle potentials with $k > \log 34$,” *The Journal of Chemical Physics* **160** (2024).

²⁴N. Sobrino, D. Jacob, and S. Kurth, “What can lattice DFT teach us about real-space DFT?” *The Journal of Chemical Physics* **159**, 154110 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0170312/1817764/154110_1_5.0170312.pdf.

²⁵N. D. Mermin, “Thermal properties of the inhomogenous electron gas,” *Phys. Rev.* **137**, A: 1441 (1965).

²⁶A. Savin and J. Karwowski, “Second-order adiabatic connection: The theory and application to two electrons in a parabolic confinement,” *The Journal of Chemical Physics* **159**, 134107 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0167851/18151355/134107_1_5.0167851.pdf.

²⁷J. J. Redd, A. C. Cancio, N. Argaman, and K. Burke, “Investigations of the exchange energy of neutral atoms in the large-z limit,” *The Journal of Chemical Physics* **160** (2024).

²⁸K. J. Daas, D. P. Kooi, T. Benyahia, M. Seidl, and P. Gori-Giorgi, “Large-Z atoms in the strong-interaction limit of DFT: Implications for gradient expansions and for the Lieb–Oxford bound,” *The Journal of Chemical Physics* **159**, 234114 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174592/18266751/234114_1_5.0174592.pdf.

²⁹L. Hou, T. J. Irons, Y. Wang, J. W. Furness, A. M. Wibowo-Teale, and J. Sun, “Capturing the electron-electron cusp with the coupling-constant averaged exchange-correlation hole: A case study for hooke’s atoms,” *The Journal of Chemical Physics* **160** (2024).

³⁰T. Gould, “A step toward density benchmarking—The energy-relevant “mean field error”,” *The Journal of Chemical Physics* **159**, 204111 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0175925/18229920/204111_1_5.0175925.pdf.

³¹M.-C. Kim, E. Sim, and K. Burke, “Understanding and reducing errors in density functional calculations,” *Phys. Rev. Lett.* **111**, 073003 (2013).

³²J. J. Lutz, D. S. Jensen, and J. A. Hubbard, “Deposition products predicted from conceptual DFT: The hydrolysis reactions of MoF₆, WF₆, and UF₆,” *The Journal of Chemical Physics* **159**, 184305 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0176552/18208568/184305_1_5.0176552.pdf.

³³R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules* (Oxford University Press, 1989).

³⁴C. Titeca, T.-C. Jagau, and F. De Proft, “Combining extrapolated electron localization functions and berlin’s binding functions for the prediction of dissociative electron attachment,” *The Journal of Chemical Physics* **160** (2024).

³⁵P.-O. Roy, T. Henkes, and M. Ernzerhof, “The electron-centric approach to the exchange-correlation energy,” *The Journal of Chemical Physics* **159**, 151104 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0166486/18177741/151104_1_5.0166486.pdf.

³⁶D. J. Tozer, “Effective homogeneity of Fermi-Amaldi-containing exchange-correlation functionals,” *The Journal of Chemical Physics* **159**, 244102 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0179111/18270754/244102_1_5.0179111.pdf.

³⁷W. Zhang, X. He, M. Li, J. Zhang, D. Zhao, S. Liu, and C. Rong, “Simultaneous identification of strong and weak interactions with Pauli energy, Pauli potential, Pauli force, and Pauli charge,” *The Journal of Chemical Physics* **159**, 184104 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0173666/18203602/184104_1_5.0173666.pdf.

³⁸E. Runge and E. K. U. Gross, “Density-functional theory for time-dependent systems,” *Phys. Rev. Lett.* **52**, 997 (1984).

³⁹R. M. Martin, L. Reining, and D. M. Ceperley, *Interacting electrons* (Cambridge University Press, 2016).

⁴⁰A. E. Sigurdarson, Y. L. A. Schmerwitz, D. K. V. Tveiten, G. Levi, and H. Jónsson, “Orbital-optimized density functional calculations of molecular Rydberg excited states with real space grid representation and self-interaction correction,” *The Journal of Chemical Physics* **159**, 214109 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0179271/18236027/214109_1_5.0179271.pdf.

⁴¹D. B. Dar and N. T. Maitra, “Oscillator strengths and excited-state couplings for double excitations in time-dependent density functional theory,” *The Journal of Chemical Physics* **159**, 211104 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0176705/18233586/211104_1_5.0176705.pdf.

⁴²A. D. Kaplan and A. Ruzsinszky, “Revealing quasi-excitations in the low-density homogeneous electron gas with model exchange-correlation kernels,” *The Journal of Chemical Physics* **159**, 224112 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174165/18258136/224112_1_5.0174165.pdf.

⁴³F. Tang, K. Shi, and X. Wu, “Exploring the impact of ions on oxygen K-edge X-ray absorption spectroscopy in NaCl solution using the GW-Bethe-Salpeter-equation approach,” *The Journal of Chemical Physics* **159**, 174501 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0167999/18192421/174501_1_5.0167999.pdf.

⁴⁴H. Fang, M. J. Wilhelm, D. L. Kuhn, Z. Zander, H.-L. Dai, and G. A. Petersson, “The low-lying electronic states and ultrafast relaxation dynamics of the monomers and J-aggregates of meso-tetrakis (4-sulfonatophenyl)-porphyrins,” *The Journal of Chemical Physics* **159**, 154302 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174368/18171999/154302_1_5.0174368.pdf.

⁴⁵Z. Wei, J. M. P. Martirez, and E. A. Carter, “Introducing the embedded random phase approximation: H₂ dissociative adsorption on Cu(111) as an exemplar,” *The Journal of Chemical Physics* **159**, 194108 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0181229/18212861/194108_1_5.0181229.pdf.

⁴⁶D. Graf and A. J. W. Thom, “Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost,” *The Journal of Chemical Physics* **159**, 174106 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0168569/18196158/174106_1_5.0168569.pdf.

⁴⁷R. Dutta, F. Gao, A. Khamoshi, T. M. Henderson, and G. E. Scuseria, “Correlated pair ansatz with a binary tree structure,” *The Journal of Chemical Physics* **160** (2024).

⁴⁸S. Adhikari and R. Baer, “Weak second-order quantum state diffusion unraveling of the lindblad master equation,” *The Journal of Chemical Physics* **160** (2024).

⁴⁹J. M. Yu, J. Tsai, A. Rajabi, D. Rappoport, and F. Furche, “Natural determinant reference functional theory,” *The Journal of Chemical Physics* **160** (2024).

⁵⁰B. P. Harding, Z. Mauri, v. W. Xie, and A. Pribram-Jones, “Exchange–correlation entropy from the generalized thermal adiabatic connection,” *The Journal of Chemical Physics* **160**, 154108 (2024).

⁵¹J. P. Perdew and K. Schmidt, in *Density Functional Theory and Its Applications to Materials*, edited by V. E. V. Doren, K. V. Alsenoy, and P. Geerlings (American Institute of Physics, Melville, NY, 2001).

⁵²C. M. Horowitz, C. R. Proetto, and J. M. Pitarke, “Orbital-free density-functional theory for metal slabs,” *The Journal of Chemical Physics* **159**, 164112 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0169977/18187800/164112_1_5.0169977.pdf.

⁵³I. P. Bosko and V. N. Staroverov, “Derivation and reinterpretation of the Fermi–Amaldi functional,” *The Journal of Chemical Physics* **159**, 131101 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0166358/18156997/131101_1_5.0166358.pdf.

⁵⁴E. Trushin and A. Görling, “Avoiding spin contamination and spatial symmetry breaking by exact-exchange-only optimized-effective-potential methods within the symmetrized Kohn–Sham framework,” *The Journal of Chemical Physics* **159**, 244109 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0171546/18276169/244109_1_5.0171546.pdf.

⁵⁵T. Aschebrock, T. Lebeda, M. Brüting, R. Richter, I. Schel

ter, and S. Kümmel, "Exact exchange-like electric response from a meta-generalized gradient approximation: A semilocal realization of ultranonlocality," *The Journal of Chemical Physics* **159**, 234107 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0173776/18261464/234107_1_5.0173776.pdf.

⁵⁶J. Hostaś, K. O. Pérez-Becerra, P. Calaminici, L. Barrios-Herrera, M. P. Lourenço, A. Tchagang, D. R. Salahub, and A. M. Köster, "How important is the amount of exact exchange for spin-state energy ordering in DFT? Case study of molybdenum carbide cluster, Mo4C2," *The Journal of Chemical Physics* **159**, 184301 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0169409/18205339/184301_1_5.0169409.pdf.

⁵⁷N. Manukovsky, G. Kamieniarz, and L. Kronik, "Spin state and magnetic coupling in polynuclear Ni(II) complexes from density functional theory: is there an optimal amount of Fock exchange?" *The Journal of Chemical Physics* **159**, 154103 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0169105/18171931/154103_1_5.0169105.pdf.

⁵⁸H. Francisco, A. C. Cancio, and S. B. Trickey, "Reworking the Tao–Mo exchange–correlation functional. I. Reconsideration and simplification," *The Journal of Chemical Physics* **159**, 214102 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0167868/18235850/214102_1_5.0167868.pdf.

⁵⁹H. Francisco, A. C. Cancio, and S. B. Trickey, "Reworking the Tao–Mo exchange–correlation functional. II. De-orbitalization," *The Journal of Chemical Physics* **159**, 214103 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0167873/18235488/214103_1_5.0167873.pdf.

⁶⁰P. Kovács, P. Blaha, and G. K. H. Madsen, "Origin of the success of mGGAAs for bandgaps," *The Journal of Chemical Physics* **159**, 244118 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0179260/18280136/244118_1_5.0179260.pdf.

⁶¹E. Palos, A. Caruso, and F. Paesani, "Consistent density functional theory-based description of ion hydration through density-corrected many-body representations," *The Journal of Chemical Physics* **159**, 181101 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174577/18205349/181101_1_5.0174577.pdf.

⁶²L. Wittmann, H. Neugebauer, S. Grimme, and M. Bursch, "Dispersion-corrected r2SCAN based double-hybrid functionals," *The Journal of Chemical Physics* **159**, 224103 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174988/18249331/224103_1_5.0174988.pdf.

⁶³L. A. Constantin, S. Jana, S. Śmiga, and F. Della Sala, "Adiabatic connection interaction strength interpolation method made accurate for the uniform electron gas," *The Journal of Chemical Physics* **159**, 244111 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0178800/18276100/244111_1_5.0178800.pdf.

⁶⁴M. Seidl, J. Perdew, and M. Levy, "Strictly correlated electrons in density-functional theory," *Physical Review A* **59**, 51 (1999).

⁶⁵Y. Shi, Y. Shi, and A. Wasserman, "Strong electron correlation from partition density functional theory," *The Journal of Chemical Physics* **159**, 224108 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0175538/18255921/224108_1_5.0175538.pdf.

⁶⁶A. Ponra, C. Bakasa, A. J. Etindele, and M. E. Casida, "Diagrammatic multiplet sum method (MSM) density functional theory (DFT): Investigation of the transferability of integrals in "simple" DFT-based approaches to multideterminantal problems," *The Journal of Chemical Physics* **159**, 244306 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0173572/18276501/244306_1_5.0173572.pdf.

⁶⁷Z. Chen and W. Yang, "Development of a machine learning finite-range nonlocal density functional," *The Journal of Chemical Physics* **160** (2024).

⁶⁸N. Tancogne-Dejean, M. Penz, A. Laestadius, M. A. Csirik, M. Ruggenthaler, and A. Rubio, "Exchange energies with forces in density-functional theory," *The Journal of Chemical Physics* **160** (2024).

⁶⁹A. D. Becke, "Doubling down on density-functional theory," *The Journal of Chemical Physics* **159**, 241101 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0178236/18272969/241101_1_5.0178236.pdf.

⁷⁰S. Bi, S. Wang, I. Y. Zhang, and X. Xu, "Improving XYG3-type doubly hybrid approximation using self-interaction corrected SCAN density and orbitals via the PZ-SIC framework: The xDH@SCAN(SIC) approach," *The Journal of Chemical Physics* **159**, 234103 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174040/18261499/234103_1_5.0174040.pdf.

⁷¹Brémond, J. Pérez-Jiménez, J. C. Sancho-García, and C. Adamo, "SOS1-RSX-QIDH: A spin-opposite-scaled range-separated-exchange quadratic-integrand double-hybrid density functional," *The Journal of Chemical Physics* **159**, 234104 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174048/18261479/234104_1_5.0174048.pdf.

⁷²S. Bi, C. Carbogno, I. Y. Zhang, and M. Scheffler, "Self-interaction corrected scan functional for molecules and solids in the numeric atom-center orbital framework," *The Journal of Chemical Physics* **160** (2024).

⁷³N. Tancogne-Dejean, M. Lüders, and C. A. Ullrich, "Self-interaction correction schemes for non-collinear spin-density-functional theory," *The Journal of Chemical Physics* **159** (2023).

⁷⁴Z. Hooshmand, J. G. Bravo Flores, and M. R. Pederson, "Orbital dependent complications for close vs well-separated electrons in diradicals," *The Journal of Chemical Physics* **159**, 234121 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0174061/18268045/234121_1_5.0174061.pdf.

⁷⁵Y. Singh, J. E. Peralta, and K. A. Jackson, "The rise and fall of stretched bond errors: Extending the analysis of perdew–zunger self-interaction corrections of reaction barrier heights beyond the lsda," *The Journal of Chemical Physics* **160**, 124105 (2024).

⁷⁶M. R. Pederson, A. Ruzsinszky, and J. P. Perdew, "Communication: Self-interaction correction with unitary invariance in density functional theory," *The Journal of Chemical Physics* **140** (2014).

⁷⁷R. Maniar, K. P. Withanage, C. Shahi, A. D. Kaplan, J. P. Perdew, and M. R. Pederson, "Symmetry breaking and self-interaction correction in the chromium atom and dimer," *The Journal of Chemical Physics* **160**, 144301 (2024).

⁷⁸J. Ning, C. Lane, B. Barbiellini, R. S. Markiewicz, A. Bansil, A. Ruzsinszky, J. P. Perdew, and J. Sun, "Comparing first-principles density functionals plus corrections for the lattice dynamics of yba2cu3o6," *The Journal of Chemical Physics* **160** (2024).

⁷⁹S. Lehtola and M. A. L. Marques, "Reproducibility of density functional approximations: How new functionals should be reported," *The Journal of Chemical Physics* **159**, 114116 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0167763/18131548/114116_1_5.0167763.pdf.

⁸⁰A. F. Rumson and E. R. Johnson, "Low thermal expansion of layered electrodes predicted by density-functional theory," *The Journal of Chemical Physics* **159**, 174701 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0171959/18192482/174701_1_5.0171959.pdf.

⁸¹J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid functionals based on a screened coulomb potential," *The Journal of Chemical Physics* **118**, 8207–8215 (2003).

⁸²Z.-h. Yang, Y. Liu, N. An, and X. Chen, "The mechanism of the irradiation synergistic effect of silicon bipolar junction transistors explained by multiscale simulations of Monte Carlo and excited-state first-principle calculations," *The Journal of Chemical Physics* **159**, 034710 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0159746/18053296/034710_1_5.0159746.pdf.

⁸³W. C. Mackrodt, A. Platonenko, F. Pascale, and R. Dovesi, "The energies and charge and spin distributions in the low-lying levels of singlet and triplet n2v defects in diamond from direct variational calculations of the excited states," *The Journal of Chemical Physics* **160** (2024).

⁸⁴A. C. Thakur and R. C. Remsing, "Nuclear quantum effects in the acetylene: ammonia plastic co-crystal," *The Journal of Chemical Physics* **160** (2024).

⁸⁵H. Liu, X. Bai, J. Ning, Y. Hou, Z. Song, A. Ramasamy, R. Zhang, Y. Li, J. Sun, and B. Xiao, "Assessing r2scan meta-gga functional for structural parameters, cohesive energy, mechanical modulus, and thermophysical properties of 3d, 4d, and 5d transition metals," *The Journal of Chemical Physics* **160** (2024).

⁸⁶R. Friedrich and S. Curtarolo, "Aflow-cce for the thermodynamics of ionic materials," *The Journal of Chemical Physics* **160** (2024).

⁸⁷A. C. Petersen and T. I. Sølling, "Dissociation processes of ionized freons: CHFCI2+ and CF2Cl2+ in the gas phase," *The Journal of Chemical Physics* **159**, 174306 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0169883/18196169/174306_1_5.0169883.pdf.

⁸⁸M. R. Pederson, K. P. K. Withanage, Z. Hooshmand, A. I. Johnson, T. Baruah, Y. Yamamoto, R. R. Zope, D.-Y. Kao, P. B. Shukla, J. K. Johnson, J. E. Peralta, and K. A. Jackson, "Use of FLOSIC for understanding anion-solvent interactions," *The Journal of Chemical Physics* **159**, 154112 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0169883/18196169/154112_1_5.0169883.pdf.

pdf/doi/10.1063/5.0172300/18177829/154112_1_5.0172300.pdf.

⁸⁹D. B. Nguyen, K. A. Jackson, and J. E. Peralta, “Bond length alternation of -conjugated polymers predicted by the Fermi–Löwdin orbital self-interaction correction method,” *The Journal of Chemical Physics* **160**, 014101 (2024), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0178251/18284240/014101_1_5.0178251.pdf.

⁹⁰J. Chen, F. Wang, and X. Xu, “A global 2A state potential energy surface for the Al (2P) + O₂ (g3) → AlO (2+) + O (3P) reaction based on the doubly hybrid functional XYG3,” *The Journal of Chemical Physics* **159**, 224303 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0176798/18252256/224303_1_5.0176798.pdf.

⁹¹J. J. Determan and A. K. Wilson, “Correlation consistent basis sets designed for density functional theory: Third-row atoms (ga–br),” *The Journal of Chemical Physics* **160** (2024).

⁹²S. Yang, I. Y. Zhang, and X. Ren, “Developing correlation-consistent numeric atom-centered orbital basis sets for krypton: Applications in rpa-based correlated calculations,” *The Journal of Chemical Physics* **160** (2024).