Correcting dispersion corrections with density-corrected DFT
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Almost all empirical parameterizations of dispersion corrections in DFT use only energy errors, thereby mixing
functional and density-driven errors. We introduce density and dispersion corrected DFT (D?C-DFT), a dual-
calibration approach that accounts for density delocalization errors when parametrizing dispersion interactions.
We simply exclude density-sensitive reactions from the training data. We find a significant reduction in both errors
and variation among several semilocal functionals and their global hybrids when tailored dispersion corrections

are employed with Hartree-Fock densities.
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Significance

Density functional theory (DFT) is widely used in chemistry.
Still, even the most popular approximations suffer from two
fundamental limitations - they often predict that electrons
are more delocalized than they should be and fail to capture
weak long-range attractions between molecules. These issues
are usually addressed separately by density correction schemes
and empirical dispersion corrections. Here, we show that a
"dual-calibration" approach, fitting dispersion corrections on
density-corrected DFT energies, provides a more balanced and
robust solution. The resulting density and dispersion-corrected
DFT method improves accuracy across various functionals
and chemical systems, particularly those susceptible to density
delocalization errors, by simultaneously addressing two major
error sources in DFT.

Introduction

Kohn-Sham density functional theory (KS-DFT)|1,2] is a
standard method in computational chemistry, striking a
balance between computational efficiency and accuracy.|3]
However, the quality of results depends on the quality of
the approximate exchange-correlation functional used.[4]
Density-corrected DFT (DC-DFT) is a generic methodology
for separating errors in the functional from errors in the self-
consistent density.|[5,/6] The principles of DC-DFT follow
directly from simple (functional) analysis and can be applied
(in principle) to every approximate KS-DFT calculation ever
run. In practice, for DC-DFT to yield improved energetics
in (a subset of) KS calculations, several conditions must be
met.[7] In some cases, these conditions can be checked with
highly accurate quantum chemical calculations|8,9], while
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in others, improved energetics resulting from the procedure
suggest the conditions have been met. In either case, DC-
DFT has had an impact in a variety of challenging areas
for standard DFT calculations.|10+24]

Semilocal density functional approximations (DFAs) of-
ten fail to capture long-range dispersion interactions accu-
rately due to their local nature.|25] To remedy this, many
dispersion corrections have been developed as empirical
pair-wise additions to DFT energies, with parameters fitted
to databases dominated by weak interactions.|26H31| These
corrections are computed for each XC functional and then
tested on other databases where dispersion effects vary in
magnitude. However, in all these databases, the energy error
of the DFA mixes both functional and density-driven er-
rors, which in turn affects the choice of optimum dispersion
parameters. This effect is particularly acute for reactions
that are density-sensitive, i.e., those whose density-driven
errors are large. In some cases, density-driven errors are
much larger than dispersion corrections and can hopelessly
distort the choice of dispersion parameters.[32]

The remedy is very simple. Drop any density-sensitive
reactions from the training data, find the optimal dispersion
parameters, and then test on all the data using Hartree-
Fock (HF) densities. It is known that HF densities typically
greatly reduce density-driven errors for density-sensitive
reactions and do little (if any) harm for insensitive cases.[5]

To fully assess the impact of both dispersion and density
corrections, we apply them to a wide range of XC approxi-
mations, aiming to demonstrate the generality of the im-
provements and the reduction in the variance of predictions
across different functionals. Figure [1] illustrates our results,
using the extensive GMTKN55 database for general-main
group thermochemistry, kinetics, and non-covalent interac-
tions[33]. The left panel takes several popular semilocal
XC approximations, showing their improvements upon first
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Figure 1: Performance of DFT, DFT-D4, and density and
dispersion corrected DFT (D?C-DFT) for several semilocal func-
tionals (a) and their corresponding hybrids (b), measured by
the weighted total mean absolute deviation on the GMTKN55
database|33] (W2-GM55). D?C-DFT significantly enhances ac-
curacy and reduces variability across a wide range of functionals.
MO06 and MO6L show no such improvement.

adding dispersion corrections without DC-DFT analysis
(the standard approach, DFT-D4) and then adding density
corrections using the principles of DC-DFT (D2C-DFT).
All but one of the functionals improve significantly with
each correction. Moreover, their errors become comparable
once both corrections are employed. The glaring exception
is MO6L. Because of its highly empirical construction, which
likely mixes functional and density-driven errors and already
includes dispersion, it shows no improvement whatsoever,
moving it from among the best performers without correc-
tion to the worst after correction. We also point to the right
panel, which are global hybrids made from those on the
left, where all the same effects occur, but less dramatically,
because a fraction of the HF density is already being used.

The current paper presents an example of what we call
dual-calibration, a general approach in which empirical pa-
rameters in a DFT correction are chosen under DC-DFT
principles. Dual-calibration aims to resolve density-driven
and functional errors simultaneously, with the specific com-
bination of density correction and dispersion correction
being one such example. It was first used to create the
BL1p functional|32] and later to create the HF-r2’SCAN-
DC4 method[21]. The latter, which employs an explicit
dispersion formula, has shown remarkable accuracy across
various applications, from water complexes to biomolecules,
and has been further refined.|34] By studying many differ-
ent DFAs, the present work demonstrates that D2C-DFT
is a general procedure that should be adopted whenever
empirical parameters are optimized in DFT calculations.

Background

Density-Corrected DFT

DC-DFT provides a framework for analyzing the energy
error in any self-consistent KS-DFT calculation.|5}/11] The
energy error can be separated into the contribution due to
errors in the functional (for a given density, n) and those in
the self-consistent density (7i, introduced by the use of an
approximate XC potential). Using tildes for approximate
quantities, we write:

= E[i] - E[n] + E[n] - E[n] (1)
density-driven functional
error(AEp) error(AER)

The errors in most KS-DFT calculations are dominated by
the functional contribution, but even very small density-
driven errors can have an impact on overall performance,
as we show below.

For theoretical studies of small molecules, accurate den-
sities are sometimes available from quantum chemical
methods, such as Coupled Cluster Singles and Doubles
(CCSD)[8]. However, most practical applications use the
HF density as a proxy for the exact one, as its computa-
tional cost is often comparable to the corresponding KS-
DFT calculation. For cases where density-driven errors are
significant, the HF density is usually a good proxy. In such
cases, a useful indicator is the ‘density sensitivity,” defined
as,

§ = |E[n""] - E[n"PA]]. (2)

This density sensitivity, which makes use of HF and LDA
densities, provides a crude measure of how sensitive the den-
sity in a system is likely to be to the choice of XC functional.
If the sensitivity is low, the density-driven error is small
in the system. Conversely, if the sensitivity is high, there
is a higher probability of significant density-driven error
in the system.[35] We have shown that significant density
sensitivity suggests that a system is suffering substantial
density-driven error, which can be mitigated by employing
HF density. In cases where the HF density is a good proxy
for the exact density, we expect

D[n™] = E[n"'"] ~ Efn] (3)

to be smaller than the density-driven error of the usual
calculation. While it can make sense to vary the cut-off for
different-sized systems or weaker bonds or define in a new
way,|36},37] here, we simply apply 2 kcal/mol to all cases.

Likewise, it has been shown that ROHF (restricted open-
shell) can perform better than UHF (unrestricted) for DC-
DFT calculations. 38| Here, for ease of implementation and
to keep computational costs down, we use UHF throughout
whenever HF breaks symmetry.



Dispersion-Corrected DFT

Since it is widely acknowledged that (semi)local DFT can-
not correctly capture long-range dispersion interaction, [25]
various methods to correct dispersion interaction have been
developed. These include explicit nonlocal density func-
tionals[39-41], empirical functionals|42,43], and additive
correction methods|26-31]. Nonlocal methods are often
computationally expensive in codes using atom-centered
basis sets, and empirical functionals are known to miss
capturing accurate asymptotic behavior.[44]

Considering the cost-accuracy balance, which is also the
philosophy of DFT, the practical choice is additive correc-
tion. In Grimme and coworkers’ additive dispersion model,
DFT-D4[26,27], dispersion energy is defined as,

CAB
fdamp<RAB) +EG) (a)
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where the sums are over all atom pairs A and B separated
by Rap, and the D4 model swiftly evaluates two-body
(E®) and three-body (E®)), contributions to the energy
based on dispersion coefficients (C/AP) between atoms using
fractional coordination numbers and atomic charges from a
structure.

Additive corrections require appropriately fitted global
parameters for each functional since the base energy from
DFA already contains varying degrees of intermediate-range
dispersion depending on the functional used.[45] In its major
two-body term, there are global parameters sg and sg, which
directly scale the multipolar contributions (dipole-dipole
and dipole-quadrupole interactions, respectively), with sg =
1 unless it is paired with double-hybrid functionals. In
contrast, sg is specifically tuned to the functional in use,
adjusting the contribution of medium-range dispersion. [46)

Further, the D4 model employs the Becke-Johnson choice
of damping function|47] to prevent the dispersion energy
from diverging at small interatomic separations:

1
+ (R{B/Rap)™’

fgamp(RAB) = 1 (5)

where RAB = a1RAB + a9 is a scaled and offset Van der
Waals radlus RAB The parameters a1 and ag are globally
chosen for a given functional.

The fitting of these parameters sg, a1, and a9 is a crit-
ical process in dispersion-corrected DFT. They need to
be optimized to reflect the unique dispersion characteris-
tics of different functionals without double-counting the
dispersion effects already included in the base functional.
Typically, the optimization process minimizes the discrep-
ancy between calculated and reference interaction energies,
leveraging databases rich in non-covalent interactions for
effective parameterization.|48] Details on the DFT-D4 can
be found in Ref. [26].

Functionals, Datasets, Basis sets, and Methods Used

Our study involves many standard (and some non-standard)
choices of DFA, chemical databases, basis sets, and method-
ologies. In this section, we explain these choices.

Functionals: We include 7 popular semilocal func-
tionals; 6 with few or no parameters, plus one heavily
parametrized example. The 6 account for most DFT cal-
culations at present and are computationally efficient for
both molecules and materials. There are 3 generalized
gradient approximations (GGAs) and three meta-GGAs
(mGGASs) (including dependence on the kinetic energy
density or Laplacian). They are PBE[49], a widely used
non-empirical functional; revPBE[50], a modified version
of PBE that performs well with dispersion corrections in
GMTKNS55; and BLYP|51}/52], an empirical functional com-
bining the Becke88 exchange|51] and Lee-Yang-Parr corre-
lation[52]. We include 4 mGGA functionals: TPSS[53}54],
a non-empirical functional designed for broad applicabil-
ity; SCAN|55], Strongly-Constrained and Appropriately-
Normed functional which satisfies all 19 known exact con-
straints[56]; r?SCAN|57], a numerically stable regularized
version of SCAN; and MO6L[58], a highly parameterized
functional that implicitly captures some dispersion effects.

We also study global hybrids related to these seven. Hy-
brid functionals incorporate a fraction of exact exchange
from HF theory, which helps reduce self-interaction error
and improves band gaps. The optimal fraction of exact
exchange is around 20-25% for thermochemistry and ki-
netics.[59] We consider 7 hybrid functionals: PBE0[59,/60]
(25% exact exchange), B3LYP[61] (20% exact exchange),
and hybrid versions of the mGGA functionals with 25%
exact exchange (TPSS0[62], SCANO[63], r?SCANO0[64]), as
well as the M06[42] functional with 27% exact exchange.

Databases: To assess the performance and transferabil-
ity of the D2C-DFT approach, we employ diverse datasets
covering a wide range of chemical systems and properties.

Our primary dataset is GMTKN55[33], a comprehensive
benchmark suite for general main group thermochemistry,
kinetics, and non-covalent interactions. It consists of 55
distinct sub-datasets, totaling 1505 relative energies. We
use the weighted total mean absolute deviation (WTMAD-
2) metric to evaluate the performance of functionals on
this dataset. Each dataset has a weight determined by its
average energy divided by the average of all average energies
of the 55 databases. Thus, strong bonds have low weights,
and non-covalent interactions have high weights. Without
this weighting, weak bonds have little effect on any averages.
We use this weighting in all analyses of distributions in the
database in this paper and refer to W2-GM55 as shorthand
for WITMAD-2 on the GMTKN55 database.

The DIET dataset[65] is a smaller version of GMTKNG55,
designed to accelerate benchmarking while maintaining the
diversity of the complete set. It contains 150 relative ener-
gies selected using a genetic algorithm, such that the ranking
of functionals based on the DIET set closely mimics the
ranking based on the complete GMTKN55 set, saving com-



putational costs when finding parameters. For D2C-DFT
training, we used the mean absolute error (MAE) of the
density-insensitive subset of DIET, considering the vary-
ing number of density-insensitive reactions (100-130) for
different functionals. However, for the basis set compar-
ison involving the complete DIET set, we employed the
WTMAD-2 metric with the original weights from each reac-
tion’s home subset, referred to as W2-DIET in this paper.
The P30 ‘poison’ dataset|66] is also a subset of GMTKN55,
representing the 30 most difficult reactions in it. We used
the P30-5 subset, composed of systems up to 5 atoms, to
check the impact of the dispersion correction fitting on the
most challenging cases.

A specific dataset, the WATER27[67], will play a vital
role, consisting of 27 neutral and charged water clusters with
up to 20 molecules. It tests a functional’s ability to describe
hydrogen bonding and other non-covalent interactions in
aqueous systems. Extreme accuracy is vital in this subset
for condensed phase simulations of water.|17,21]

Beyond the GMTKNS55 dataset, we use four others for val-
idation and testing. The S66x8 dataset|[68] is an extended
version of the S66 dataset|69] from GMTKN55, providing
non-covalent binding energies for 66 small molecular dimers
of biological importance at eight different intermolecular
distances. This extension allows for a more comprehen-
sive assessment of a functional’s ability to describe non-
covalent interactions across a range of distances. We used
CCSD(T)/CBS energy from Ref. [70].

The Bauzd dataset[71] contains 30 complexes featuring
halogen, chalcogen, and pnictogen bonds, which are essential
non-covalent interactions. This dataset tests a functional’s
ability to describe o-hole interactions and the impact of
dispersion corrections on these systems. We used geometries
and revised CCSD(T)/CBS values from Ref. [72].

Finally, the S6L[73] and L7[74] datasets contain large
supramolecular complexes, with S6L focusing on host-guest
systems and L7 on extended molecular complexes. These
datasets test the ability of functionals to capture dispersion
interactions in large systems. These are vital as small
errors in dispersion corrections are magnified in these larger
systems. The S6L is the half of original S12L (2a, 2b, 4a,
5a, 6a, 7b), and we used reference DLPNO-CCSD(Ty)/CBS
energy from Ref. |75] for both S6L and L7.

Basis sets: We employed the widely-used Karlsruhe
def2 family|76,,77] of basis sets throughout this work, with
the default being def2-QZVPPD, a large and accurate basis
set that provides high-quality results. Polarization functions
(P) allow for a better description of the distortion of atomic
orbitals in molecules, while diffuse functions (D) improve the
description of loosely bound electrons, which are essential
for both anions and long-range interactions.

Methods: We compare five DFT methodologies. Self-
consistent DFA calculations without any corrections (DFT);
self-consistent DFA calculations with D4 model dispersion
corrections (DFT-D4)[26l27]; DFA calculations on HF densi-
ties (HF-DFT)|[78-81]; HF-DFT with dispersion correction

Trainl: DIET (118), Density Insensitive
Train2: DIET (32), Density Sensitive
Train3: DIET (150), Mixture of both
Test: S66x8 (528)
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Figure 2: Parameter dependence of various training sets for
D2C-B3LYP, showing the effects of individually adjusting each
parameter while fixing the others at their optimal values. The
dataset size for each set is indicated in parentheses. (See

Fig. [S1] for r?SCAN.)

using the original D4 parameters for the corresponding
self-consistent DFA (HF-DFT-D4¢,ig); and our proposed
method, HF-DFT with tailored dispersion correction opti-
mized within the DC-DFT framework (D?C-DFT).

Results and Discussion

Density and Dispersion-Corrected DFT (D2C-DFT)

D2C-DFT employs DFA calculations on HF densities of
density-insensitive systems with new dispersion parameters
accounting for DC-DFT. An earlier version applied it to
the r2SCAN functional (the HF-r?’SCAN-DC4 method[21]),
but recent work finds inaccuracies when applied to large
molecular systems.[34] Given that up to 60 % of interaction
energy in large systems can stem solely from dispersion
contributions, careful consideration in parameterization
becomes crucial. This work aims to refine and expand
HF-r2SCAN-DC4, focusing on its parameterization process.

For efficient parameterization, we use the DIET subset.
For any specific DFA, we first identify any reactions that are
density-sensitive and remove them to ensure density-driven
errors have negligible impact on dispersion corrections. The
density-sensitive reactions depend on the choice of DFA.
Through global optimization using the density-insensitive
training set from DIET, we find roughly 30 local minima.
We next ranked these local minima based on their W2-GMb55
and selected the top 20 parameter sets. These were then
re-ranked based on their MAE performance on WATER27
to find the best 10, which ensures very high accuracy for
WATER27. In the final stage, each was evaluated on the L7
dataset, which contains large organic complexes and ensures



Table 1: Errors in kcal/mol of DFT, DFT-D4, and D?C-DFT across 14 functionals, using five datasets: GMTKN55, WATER27,
Bauza, L7, and S6L. For the last three, "orig" indicates HF-DFT with dispersion correction using the original D4 parameters for the
corresponding self-consistent DFA, where boldface denotes the smaller value (if better by more than 20%).

CMTKN55% WATER27° Bauza® L7be S6LYC
DFT DFT-D4 D?C DFT DFT-D4 D2C D2?C orig D?C orig D?C orig
GGA PBE 13.89 10.12 6.53 2.34 7.58 201 073 065 253 210 1.72 6.07
revPBE 20.62 8.27 6.03 17.51 3.11 8.07 047 040 1.26 140 4.74 5.33
BLYP 21.10 9.48 6.60 9.79 2.30 099 054 073 081 229 345 3.29
mGGA TPSS 15.69 8.98 6.34 5.11 3.66 1.33 095 0.57 217 1.12 3.75 3.89
SCAN 8.64 7.67 5.37 7.07 8.46 1.16 164 093 1.14 2.65 190 4.74
>SCAN 8.66 7.11 5.36 4.24 6.30 0.95 1.11  0.82 1.09 210 2.26 4.16
MO6L 8.56 8.53 8.17 1.94 1.24 6.55 0.73 0.72 1.19 1.34 3.06 3.26
Hybrid GGA PBEO 10.94 6.18 5.42 2.22 4.91 1.24 089 0.68 0.62 1.12 230 3.12
revPBEO 16.51 5.26 5.47 14.24 3.77 8.67 0.56 041 1.24 1.16 3.57 3.52
B3LYP 16.15 6.15 4.67 5.99 3.02 0.80 043 033 071 149 264 1.69
Hybrid mGGA  TPSS0 13.06 5.80 5.18 5.59 1.86 232 090 063 0.69 085 235 2.67
SCANO 7.59 5.91 5.61 4.76 6.36 1.65 157 090 1.62 0.87 1.98 1.05
r2SCANO 7.65 5.47 5.53 2.76 5.05 1.07 123 0.84 0.64 1.72 077 2.74
MO06 5.92 5.89 6.37 2.65 1.63 503 0.83 080 249 117 578 1.75
* W2-GM55
b Mean absolute error
¢ Calculated with dual-basis HF-DFT|34] using def2-SVPD/def2-TZVPPD basis set with counterpoise correction|82]
our method’s ability to precisely depict dispersion forces (a) (b)
even when dominant. The best-performing parameter set on 25 25
L7, in terms of MAE, was ultimately chosen as the optimal - feBVEPBE - :ﬁ%m
parameter set for D2C-DFT. The final optimized parameter =20 —— BLYP 20 —&— B3LYP
sets for D2C-DFT are available next to the standard choices é i Ziiil __:: EESA?\?O
for DFT-D4 from the literature. (SI Appendiz| Table g15 —— r2SCAN 15 —— r?SCANO
Our study, as illustrated in Fig. [2| emphasizes the critical g 10 Mook 10 Hoe
importance of careful training set selection in parameteriza- ©
tion. By comparing the outcomes of parameterization using s 5 5 ;';%
density-insensitive, density-sensitive cases, and a mixture of
both from the DIET dataset, we consistently find that exclu- 0 0

sively training with density-insensitive cases leads to more
precise parameter minima for the unseen test set. The fig-
ure demonstrates that calibrating the empirical parameters
solely based on density-insensitive reactions (red) consis-
tently leads to the most accurate parameters, as indicated
by the minimum MAE (gray dashed line). In contrast, cali-
brating parameters using density-sensitive reactions (blue)
or a combination of density-sensitive and density-insensitive
reactions (purple) results in less accurate parameters due to
density-driven errors in the loss function. The conventional
parameterization process produces sub-optimal parameters.
Despite density-sensitive cases being fewer in number, their
higher error rates significantly distort the loss function.
This analysis extends to the 30 most challenging reactions
in the GMTKN55 dataset, the P30 set. Contrary to expec-
tations, training on these difficult cases did not enhance
parameter accuracy, reinforcing the necessity of excluding
density-sensitive cases for optimal parameter fitting. @
Figs. and A fundamental principle in our
DC-DFT approach is that accurate parameterization re-
quires training on only functional error. By adhering to this

DFT DFT-D4 D?C-DFT DFT DFT-D4 D?C-DFT
Figure 3: Same as Fig. [1} but including only density-sensitive
cases, highlighting the importance of the HF density for semilocal

approximations, but less so for hybrids.

strategy, D2C-DFT effectively separates both density-driven
errors and dispersion portions from functional errors.

Overall performance of D2C-DFT

In Table [I, we report errors for many functionals across
several databases. We analyze these fully, reading from
the leftmost results to the right. Results for W2-GM55
were already illustrated in Fig. [I, demonstrating a signif-
icant error reduction relative to DFT and DFT-D4 for
semilocal functionals and the same (but lesser) effect for
their global hybrids. If we analyze the individual func-
tionals, we first ignore the Minnesota functionals. Then
D2C improves all semilocal functionals over either DFT
or DFT-D4, sometimes by a factor of 3. When hybrids
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Figure 4: Performance of BSLYP in GMTKN55, divided into
standard categories 1|SI Appendz’zl, Tables and [S3]), for four

different methodologies. (See |SI Appendiz| Figs. [S4}
and |S7|for all 14 functionals.)

are considered, this trend is much weaker. In two cases,
results are (very slightly) worsened. We attribute this to
the mixing of HF exchange, which likely mixes functional
and density-driven errors, which are unaccounted for when
choosing the amount of mixing. Figure [3| highlights the per-
formance of D?C-DFT on just density-sensitive reactions,
where density-driven errors are significant. The results for
density-insensitive reactions, which constitute the majority
of the GMTKNG55 dataset, exhibit trends similar to those
observed in Fig. |1, as they are major in GMTKN55. @
Fig,

Finally, we note that, for both Minnesota functionals,
almost no effect is seen either in D4 or D2C. We attribute
this to their highly parameterized construction, which pre-
sumably thoroughly mixes both dispersion and density cor-
rections, leading to no improvement when such effects are
systematically accounted for. A critical paper claimed DFT
was straying from the exact path due to deficiencies in
densities,, but DC-DFT found no evidence of errors
in chemically significant differences. However, the current
analysis (Fig.[1) demonstrates the problems with such ap-
proaches.

Focusing on D?C-B3LYP, its superior performance can
be attributed to the synergy between the overly repulsive
Becke88 exchange and purely attractive dispersion cor-
rections. Radar plots separate the relative performance of
methods on different types of GMTKNS5 databases. @
Tables [S2| and Figure |4 showcases this bal-
anced improvement across multiple GMTKNb55 subgroups,
indicating a harmonious error correction in various chemi-
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Figure 5: The standard deviation of predictions from (a) six
semilocal and (b) six hybrid functionals (no M functionals) for
every reaction in GMTKNS55. The width of the distribution
shrinks from DFT to DQC—DFT, showing improved agreement.
For semilocals, the averages are 7.8, 5.4, and 3.8 respectively,
with 50%, 40%, and 25% above 5 kcal/mol. The corresponding
numbers for hybrids are 5.5, 4, and 3, and 40%, 25%, and 16%,
respectively.

cal systems. Here, we see that HF-B3LYP largely worsens
performance in many categories, while D2C-B3LYP outper-
forms B3LYP-D4 in all categories. Radar plots for all other

functionals are available. (SI Appendiz) Figs.
and

Possibly more importantly, we see decreased variation in
DFT results, both across different functionals and, for a
given functional, across the GMTKNG55 database. Figure
showcases the first phenomenon, showing the standard devi-
ation among six functionals. Its distribution in GMTKN55
becomes significantly narrower with D?C-DFT, illustrating
a notable improvement in precision. Also, by examining the

radar plots for all functionals grouped by rung (ST Appendix
Figs. and |S7), we observe that the DC variants

exhibit pink hexagons of similar size and shape, indicating
similar behavior of functionals in the D?C framework.

The second narrowing is for the error distribution within a
given functional, as shown in[ST Appendiz, Figs.[S9 and [S10.
This reduced variability among DFA answers can be cru-
cial in real-world situations where a benchmark answer is
unavailable.

In we provide all 100k calculations used
to generate the W2-GM55 data in this paper. We empha-
size that it contains an extraordinary wealth of specific
information that can interest specific communities. Some
communities care only about one particular functional (such
as users of PBE or users of BE‘»LYP7 largely an orthog-
onal set). Others might care deeply about performance on
a specific type of system, such as non-covalent interactions
in general or water in particular. Meanwhile, devel-
opers might be most interested in self-interaction errors.
The current paper provides only a broad overview and some
interesting slices.

To emphasize the importance of looking within data sets,
Table [2] gives results for each separate dataset with B3LYP,



Table 2: Performance of BSLYP across the GMTKN55 sub-
datasets, with mean absolute errors reported in kcal/mol. The
first column (Dens.) indicates whether half or more of the
systems in the dataset are density-sensitive by the threshold
S > 2 (see Eq. . The second column (Disp.) indicates whether
half or more of the systems in the dataset are dominated by
dispersion effects. A system is considered dispersion-dominated
if the dispersion-corrected (D4) energy differs from the self-
consistent DFT energy by more than 50%. In the majorit

of cases, D?C outperforms other methods. (See

Table [S3|for a description of each dataset.)

Dens. Disp. DFT DFT-D4 HF-DFT D2?C-DFT

Basic properties and reaction energies for small systems

Wi4-11 YES NO 3.66 3.16 7.44 5.60
G21EA NO NO 2.28 2.31 2.73 2.69
G21IP NO NO 3.77 3.74 4.14 4.11
DIPCS10 NO NO 4.56 4.57 4.19 4.33
PA26 NO NO 2.29 1.97 1.47 1.18
SIE4x4 YES NO 1744 17.72 12.46 12.77
ALKBDE10 NO NO 443 4.33 4.48 3.99
YBDE18 NO YES 825 4.72 7.39 2.62
AL2X6 NO YES 8389 3.23 9.50 2.78
HEAVYSB11  NO NO 7.57 3.29 7.63 2.71
NBPRC NO YES 511 2.00 5.76 1.29
ALKS8 NO YES 582 4.68 6.09 4.61
RC21 YES YES 2.09 2.43 6.63 3.70
G2RC NO NO 2.36 2.57 2.12 2.00
BH76RC NO NO 2.03 1.95 1.83 1.57
FH51 NO YES 385 2.51 4.07 2.05
TAUT15 NO NO 115 1.14 0.63 0.69
DC13 NO NO 15.04 9.46 15.02 7.82
Reaction energies for large systems and isomerisation reactions
MB16-43 YES YES 58.04 28.47 64.66 26.45
DARC NO NO 1546 7.62 16.07 5.60
RSE43 NO NO 1.99 1.82 1.62 1.55
BSR36 NO YES 10.72 2.51 10.93 1.12
CDIE20 NO NO 1.25 1.08 1.03 0.72
15034 NO NO 2.26 1.74 2.23 1.40
ISOL24 NO NO 9.45 5.38 9.18 4.43
C60ISO YES NO 2.15 2.63 3.68 3.14
PArel NO NO 1.18 1.14 1.01 0.91
Reaction barrier heights

BHT76 YES NO 4.32 5.04 2.73 2.44
BHPERI NO YES 435 1.13 4.75 2.42
BHDIV10 NO NO 2.75 3.23 2.16 2.03
INV24 NO YES 1.88 1.02 1.89 1.10
BHROT27 NO NO 0.41 0.42 0.34 0.41

PX13 YES NO 3.51 4.17 0.98 2.06
WCPT18 YES YES 1.03 2.06 1.67 1.32

Intermolecular noncovalent interactions
RG18 NO YES 0.82 0.16 0.89 0.20
ADIM6 NO YES 498 0.24 5.32 0.43
S22 NO YES 3.78 0.42 4.19 0.28
S66 NO YES 324 0.30 3.59 0.25
HEAVY28 NO YES 131 0.21 1.48 0.18
WATER27 NO YES 599 3.02 10.71 0.80
CARBHBI12 NO YES 0.68 0.64 1.03 0.38
PNICO23 NO YES 1.83 0.31 2.41 0.20
HALS59 NO YES 177 0.54 2.49 0.24
AHB21 NO YES 087 0.41 1.31 0.24
CHB6 NO YES 113 0.96 1.24 1.24
IL16 NO YES 394 0.33 4.93 0.41
Intramolecular noncovalent interactions

IDISP NO YES 19.24 5.87 16.95 1.98
ICONF NO NO 0.59 0.28 0.66 0.31

ACONF NO YES 095 0.06 1.04 0.12
AmiN20x4 NO YES 0.66 0.20 0.76 0.21

PCONF21 NO YES 3.80 0.36 3.81 0.25
MCONF NO YES 248 0.26 2.70 0.25
SCONF NO YES 0.75 0.31 1.38 0.20
UPU23 NO YES 247 0.58 2.56 0.59
BUT14DIOL  NO NO 0.41 0.46 0.68 0.26

highlighting in bold whenever one of the methods is more
than 20% better than its nearest rival. We have also listed
which datasets are density-sensitive (more than half the
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Figure 6: Performance of (a) r?’SCAN and (b) B3LYP func-
tionals on the WATER27 dataset. The D?C approach outper-
forms other methods, particularly for larger water clusters. This
improvement is crucial for accurately modeling aqueous environ-

ments. (See|SI Appendiz, Figs. [S11][S12] and for the

other functionals.)

reactions are) and which are dispersion dominated (DFT
and DFT-D4 errors differ by more than half the DFT error).
Clearly, D?C does best most often, but it is interesting
to compare it with DFT-D4, i.e., the standard dispersion
methodology without density correction. It is not intuitive
why using HF densities does not improve some of these
datasets. Doubtless, there are accidental error cancellations
between the underlying functional error, the error in the
dispersion estimate, and the density-driven error, none of
which are driven to zero with our methodology.

The middle columns of Table [T highlight the outper-
formance of D?C on the WATER27 dataset. We regard
achieving high accuracy for water clusters as a crucial com-
ponent of any D?C methodology. The principle of using
HF densities to fix issues in semilocal functionals for wa-
ter models was first noted by Dasgupta et al.[@,@, and
further refinement led to the HF-r?’SCAN-DC4 method.
Here, the improvement for the six semilocal functionals is
even more considerable than in W2-GMb55 and is unpacked
for 12SCAN in Fig. @(a). Starting from the pure functional,
D4 corrections make things worse. Insertion of HF densi-
ties significantly overcorrects. Using HF and D4 (original



parameters) gives a better performance, but much better
results for the crucial 20-mers occur with D2C. Such a small
error is needed for models of water, which is why we use
WATER27 as a validation set.

Figure [6(b) shows the corresponding figure for B3LYP,
showing the same overall trends and comparable results. A
unique observation is the underperformance of D2C-revPBE
and D?C-revPBEO in WATER27. We interpret this as a
result of the resolution of charge transfer errors inherent
in revPBE family functionals through the use of HF den-
sity, eliminating the compensatory error cancellation.[84]
WATER27 plots for the remaining functionals are available.
(ST Appendiz| Figs. and This accuracy
can also be seen in water hexamer and 20-mers, where D?C-
r2SCAN provides the most accurate predictions compared
to other dispersion-corrected HF-r2SCAN variants, and get-
ting (almost) all relative energies correct. (SI Appendiz,
Figs. and

The rightmost columns of Table E detail D?C-DFT’s
evaluation across the Bauza, L7, and S6L datasets. The
Bauza set is analogous to the WATER27 but is not in the
validations set. It is discussed in detail in the next section.
The rest test the capability of D2C with large molecular
structures, as exemplified by S6L and L7.

In summary, our study generalizes the D2C-DFT method
from HF-r2SCAN-DC4 across various functionals, achieving
a balanced performance in diverse chemical situations. This
success stems from the effective use of HF density in miti-
gating density-driven errors and precise dispersion parame-
terization within the DC-DFT framework, thus validating
the dual-calibration approach’s principles and effectiveness.

Origins of density delocalization errors

In this section, we delve into mitigating density-driven
errors, which are intrinsically linked to delocalization errors
in DFT. Delocalization error remains a major challenge in
DFT|85H87], impacting dissociation limits[88], band gaps|89|
90|, and charge transfer predictions|91]. Some (but not
all) can be alleviated with DC-DFT methods. We use
technology developed in Refs. [12] and [15].

A classic (and extreme) case of density delocalization er-
ror is stretching an ionic bond to extremes.[92] Figure [7a)
shows conventional DFAs struggling with severe delocal-
ization error in the NaCl dissociation curve, leading to
incorrect energies and fractional charges as they approach
the dissociation limit. In contrast, D?C-DFT, using HF
density, accurately captures the correct charge and densi-
ties and thus produces much more accurate energies at the
dissociation limit. To demonstrate the underlying reason,
we conduct a fractional analysis for infinitely separated Na
and Cl atoms, as depicted in Fig. b). While the DFAs ex-
hibit a concave upward curve leading to fractional electron
convergence and inaccuracies in dissociation limits (typi-
cally about 0.4 of an electron remains transferred, even as
R — o), HF’s concave downward curve has sharp down-
ward cusps exactly at integers, just like the exact curve
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Figure 7: Origin of errors in DFA bond dissociation curves of
NaCl: (a) displays the NaCl dissociation curve, with an inset
displaying the calculated partial charge on the Na atom; (b)
examines fractional electron analysis for isolated Na and Cl with
the x-axis indicating charge on Na; (c) and (d) utilize Kohn-
Sham inversion to dissect errors within B3LYP and IQSCAN,
respectively. The £0.5 kcal/mol bands illustrate the inversion’s
uncertainty.|15,/16]

(which consists of linear segments|93]). Note that the HF
energies are hopelessly inaccurate, while in the vicinity
of the integer, the DFA energies are much more accurate.
Hence, the value of HF-DF'T, as the HF density and charges
remain very accurate, and the functional error of the DFA
is very small on the right density.

To gain insights into the remaining error of D2C-B3LYP,
we conducted Kohn-Sham inversion[15,/94] as shown in
Fig. [7(c), using a reference CCSD density(8], to strictly
separate functional and density-driven errors, as in Eq. [L.
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Figure 8: Evaluation of B3LYP behavior using the Bauzd
dataset, testing the accuracy of o-hole interactions. The use of

the HF density in DC si gnificantly reduces delocalization errors.
(See|SI Appendiz| Fig. for rZSCAN.)

Notably, BSLYP exhibits a constant functional error of ap-
proximately 5 kcal/mol, while its density-driven error varies
from zero to a significant amount as stretching occurs. In
contrast, the density difference of HF remains uniformly
close to zero due to its correct behavior. So, the errors in
D2C-B3LYP’s dissociation curve in (a) stem from B3LYP’s
uncorrected functional errors, as D?C-DFT primarily ad-
dresses dispersion errors—a minor component in the NaCl
system (~0.1 kcal/mol). On the other hand, in the case of
r2SCAN illustrated in Fig. d), the density difference of HF
and further functional error of r?SCAN are also nearly zero,
which results in D2C-r?2SCAN’s near perfect dissociation
curve in (a). Here, r?SCAN is much better than B3LYP.
In either case, the HF density is an excellent proxy for the
exact density.

Moving from the illustrative case of NaCl dissociation to
the Bauza dataset, we expand our analysis of delocalization
errors. The Bauzé dataset, a collection of Halogen, Chalco-
gen, and Pnictogen-involved systems, offers an ideal ground
to assess the accuracy of o-hole interaction representation,
which is known to pose significant delocalization error,[72]
and was attributed to large density-driven errors in our
prior work.|14]

As demonstrated in Fig. [8, when dispersion correction
is applied to the self-consistent BSLYP, B3LYP-D4 often
results in overbinding, worsening results. However, D?C-
B3LYP leads to a remarkable decrease in errors in almost
every reaction. Applying the HF density means accurate
dispersion is restored in dispersionless situations,[45,/95]
substantially improves results. This can also be thought of
in terms of the absence of self-interaction error in HF.[96]
Averages across types are reported in Table

Like the NaCl dissociation case, the effects of delocal-
ization in the self-consistent density in the dissociation
of halogen complexes were studied in Ref. [14]. The con-
ventional DFT tends to overbind due to artificial charge
transfer. In stark contrast, HF-DFT precisely mirrors the

Table 3: Mean absolute errors (in kcal/mol) for the Bauza
dataset, categorized by interaction type and overall performance

(Al).

Halogen Chalcogen Pnictogen — All
B3LYP 1.64 1.02 2.54 1.45
B3LYP-D4 3.22 0.83 0.33 1.21
HF-B3LYP 1.44 2.14 2.93 2.16
D2C-B3LYP  0.86 0.28 0.43 0.43

reference curve, adeptly tackling a major element of delocal-
ization error - stretched geometries. This is consistent with
other studies that highlight the impressive capability of
HF-DFT in mitigating other aspects of delocalization error,
including ions-in-solution|11], spin gaps|13|, and torsional
barriers|16].

Transferability of Parameters across basis sets

For D2C-DFT applications, we recommend the def2-
QZVPPD basis set, quadruple-zeta level with diffusion
functions, chosen for its minimal basis set errors. Our pa-
rameters were optimized using this set, but this may become
unaffordable for large systems. Here, we test the transfer-
ability of our dispersion parameters to smaller basis sets,
using W2-DIET for efficiency. Figure E shows that D?C-
DFT’s parameters are transferable effectively down to the
triple zeta level with a diffused basis set (def2-TZVPPD) or
at the quadruple-zeta level without diffusion functions (def2-
QZVP). Below this, performance significantly diminishes.
Despite ongoing discussions about the necessity for basis
set-specific parameter fitting in dispersion correction,|97,/98]
we recommend using def2-QZVPPD as the first choice, with
feasible applicability down to def2-TZVPPD.

For larger systems, we suggest the dual-basis method|99]
for HF-DF'T discussed in Ref. |34]. This approach, start-
ing with a double-zeta level calculation, allows a triple- or
quadruple-zeta level computation at a much lower com-
putational cost, striking a balance between efficiency and
accuracy, which is particularly apt for larger molecules
where computational efficiency is paramount.

Conclusion

Our study illustrates the general principle of dual calibra-
tion: Separating distinct sources of error when parameters
are being fitted in empirical density functionals. Here, the
two sources are dispersion corrections and density correc-
tions. By separating these two, we improve results compared
to either individually (DFT-D4 for dispersion and HF-DFT
for density-correction) or even compared to both if the
original D4 parameters are used.

To demonstrate its generality, we applied our procedure
to a broad range of non-empirical and only slightly empiri-
cal functionals that enjoy considerable popularity in their



W2-DIET [kcal/mol]
Primitives
basis B3LYP | B3LYP-D4 diff. HF-B3LYP |D*C-B3LYP diff.
QZVPPD 16.11 6.42 -5% 16.85 4.49 = 1098
QZvp 15.94 6.78 - 16.64 4.66 4% 996
TZVPPD 15.89 6.53 -4% 16.74 4.62 3% 602
TZVP 15.60 8.55 26% 15,73 6.02 34% 356
SVPD 12.54 11.34 67% 13.25 8.80 96% 304
Svp 19.64 18.92 179% 17.19 15.51 245% 202

Figure 9: Transferability of dispersion parameters in B3LYP-D4
and D2C-B3LYP, optimized repectively for the def2-QZVP and
def2-QZVPPD, across various basis set sizes within the Karlsruhe
(def2-) family. For context, we note the number of primitive
Gaussians for the CgH1g molecule. Rows are color-coded based
on the difference relative to optimized basis sets (Positive values
indicate degraded performance.): Green for <10%, yellow for

10-50%, and red for >50%. This analysis leverages the DIET, a
subset of GMTKNS55. (See SI Appendw Fig. [S18 for rQSCAN

respective fields of application. By eliminating density-
sensitive cases from our training data, our dispersion cor-
rections differ somewhat from the standard choices, as they
correct only functional errors. On the WTMAD-2 measure
of the GMTKNS55 database, our results are indistinguishable
from HF-DFT-D4 using the original parameters. However,
because of our DC-DFT training and validation, we do sig-
nificantly better in crucial cases like WATER27 and large
dispersion-dominated databases. Our results here can be
considered a generalization of (and improvement over) that
of Ref. [21], which applied these principles to the r2’SCAN
semilocal functional.

While double-hybrid functionals have recently achieved
impressive accuracy on GMTKNS5, their reliance on costly
MP2 calculations limits their applicability to larger sys-
tems.[100,/101]. Such functionals suffer much less from
dispersion- and density-driven errors, so our dual calibra-
tion approach would have a much smaller impact. Nonethe-
less, given the impressive accuracy that these functionals
already achieve, even a much smaller improvement might
be significant.

We also point out that the dual calibration approach,
perhaps surprisingly, does not rely on the HF density being
‘better’ (i.e., yielding more accurate energies in approxi-
mate functionals) than self-consistent densities, even for
density-sensitive problems. The critical step is to find global
dispersion parameters (for each approximate functional) on
only density-insensitive cases, thereby minimizing any arbi-
trary bias produced by density-driven errors. The fact that
density-sensitive cases can be significantly improved when
HF densities are used with dispersion corrections suggests
that, at least in those cases, the HF density is better, but
only in the sense defined above. Finding a more accurate
density than HF density remains a pressing and challenging
issue, as it would unveil the true functional errors without
making assumptions. Additionally, identifying the various
types of functional errors beyond dispersion errors would

10

be required for a clear resolution of them.

In summary, the dual-calibration method, embodied by
the D2C-DFT, stands as a promising method with capabili-
ties to improve DFT systematically. The results shown here
suggest that some version of this would be helpful in almost
all searches for empirical parameters. Its continued devel-
opment and refinement hold great potential for advancing
the DFT functionals and their applications.

Computational Methods

All DFT calculations were performed at Pyscf[102,[103]. Disper-
sion corrections were facilitated by employing the dftd4 program
for D4 corrections|26}/27]. Dispersion parameters of D?C-DFT
were optimized using the SciPy|104] shgo optimizer[105|. Re-
sults for datasets L7 and S6L were calculated with dual-basis
HF-DFT|34,[99] targeting def2-TZVPPD with counterpoise cor-
rection[82]. A fractional electron picture was drawn with the
method of Refs. |[106] and |107]. A Mulliken population analy-
sis[108] based on meta-Lowdin atomic orbitals[109] is used to
determine partial charges of NaCl. For the error decomposition,
Kohn-Sham inversion was conducted using KS-pies|110], in the
Wu-Yang scheme|94], targeting CCSD density|(8] at aug-cc-pVTZ
basis set[111].

S| Appendix

Dispersion parameters for 14 D?C-DFT and DFT-D4, Ab-
breviation used for GMTKN55, Description of subsets within
GMTKN55, Simplified view on parameterization strategy, Perfor-
mance on GMTKNS55 for 14 functionals, Distribution of weighted
errors for 14 functionals across GMTKN55, Performance on
WATER27 for 14 functionals, Performance on water hexamers
and 20-mers, Evaluation of r2SCAN correction variants using
the Bauza dataset, Transferability of dispersion parameters for
r?SCAN variants.

Raw data of calculations in GMTKN55 database
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Table S1: DFT-D4 parameters used in our work. sg is set to 1. Refer to Subsection "D?C-DFT” in the

main text.
D2C-DFT DFT-D4

Sg ay as cf. S8 ai as Ref
PBE 1.78595387 | 0.88511469 | 2.32863362 | a | 0.95948085 | 0.38574991 | 4.80688534 | [1]]
PBEO 1.53360351 | 0.78689150 | 3.25641582 1.20065498 | 0.40085597 | 5.02928789 | [1]]
revPBE 1.80966761 | 0.58558155 | 2.71965468 1.74676530 | 0.53634900 | 3.07261485 | [1]
revPBEO | 1.74590783 | 0.40385673 | 4.26818294 1.57185414 | 0.38705966 | 4.11028876 | [1]
BLYP 1.65244425 | 0.56438878 | 2.65715701 2.34076671 | 0.44488865 | 4.09330090 | [1]
B3LYP 1.35513689 | 0.41757850 | 3.84594813 2.02929367 | 0.40868035 | 4.53807137 | [1]
TPSS 1.54044984 | 0.69473318 | 2.51512802 1.76596355 | 0.42822303 | 4.54257102 | [1]
TPSSO 1.50843498 | 0.60162555 | 3.65500533 1.62438102 | 0.40329022 | 4.80537871 | [1]
SCAN 1.72616184 | 0.06450398 | 8.62911596 1.46126056 | 0.62930855 | 6.31284039 | [1]
SCANO 3.69655894 | 0.16214976 | 8.90158495 6.1187 0.3750 8.1124 [21
r?SCAN | 0.02734375 | 0.74707031 | 3.34667969 | b 0.6019 0.5156 5.7734 [30
r2SCANO | 3.97877459 | 0.75987648 | 5.45977445 0.8992 0.4778 5.8779 (30
MO6L 0.75781250 | 0.81445313 | 6.16992188 0.59493760 | 0.71422359 | 6.35314182 | [1]
MO6 1.30522230 | 0.83568617 | 4.37780185 0.16366729 | 0.53456413 | 6.06192174 | [1]

@ Parameters revised from Ref. [4]

b Parameters revised from Ref. [3]
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Table S2: Abbreviation, description, and the number of reactions included in the GMTKNS55[6], classi-
fied further by 5 subgroups. In the main text, the Fig. uses this classification.

abbreviation description #
GMTKNS5 Full GMTKNS5 1505
basic + small Basic properties and reaction energies for small systems 473
iso. + large Reaction energies for large systems and isomerization reactions 243
barriers Reaction barrier heights 194
intermol. NCIs Intermolecular noncovalent interactions 304
intramol. NCIs Intramolecular noncovalent interactions 291
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Table S3: Description of the subsets within the GMTKNS55 database. This table is from Ref. [6].
GMTKNSS5 database is utilized throughout the main text.

Set Description #e Weight

Basic properties and reaction energies for small systems

W4-11 Total atomisation energies 140 (152) 0.185198
G21EA Adiabatic electron affinities 25 (50) 1.690459
G211P Adiabatic ionisation potentials 36 (71) 0.220644
DIPCS10 Double-ionisation potentials of closed-shell systems 10 (20) 0.086877
PA26 Adiabatic proton affinities (incl. of amino acids) 26(52) 0.300655
SIE4x4 Self-interaction-error related problems 16 (23) 1.685397
ALKBDE10 Dissociation energies in group-1 and -2 diatomics 10 (20) 0.564505
YBDE18 Bond-dissociation energies in ylides 18 (29) 1.153513
AL2x6 Dimerisation energies of AIX3 compounds 6 (11) 1.584022
HEAVYSBI1 Dissociation energies in heavy-element compounds 11(22) 0.979616
NBPRC Oligomerisations and Hy fragmentations of NH3/BH3 systems; 12 (21) 2.051368
H2 activation reactions with PH3/BH3 systems
ALKS8 Dissociation and other reactions of alkaline compounds 8(17) 0.907969
RC21 Fragmentations and rearrangements in radical cations 21 (41) 1.592221
G2RC Reaction energies of selected G2/97 systems 25 (47) 1.108788
BH76RC Reaction energies of the BH76 set 30 2.657109
FH51 Reaction energies in various (in-)organic systems 51(87) 1.832899
TAUTI15 Relative energies in tautomers 15 (25) 18.66054
DC13 13 difficult cases for DFT methods 13 (30) 1.033859
Reaction energies for large systems and isomerisation reactions
MB16-43 Decomposition energies of artificial molecules 43 (58) 0.121351
DARC Reaction energies of Diels—Alder reactions 14 (22) 1.750462
RSE43 Radical-stabilisation energies 43 (88) 7.47666
BSR36 Bond-separation reactions of saturated hydrocarbons 36 (38) 3.509304
CDIE20 Double-bond isomerisation energies in cyclic systems 20 (36) 14.01726
1S034 Isomerisation energies of small and medium-sized organic molecules 34 (63) 3.901167
I1SOL24 Isomerisation energies of large organic molecules 24 (48) 2.593214
C60ISO Relative energies between Cgp isomers 9(10) 0.578511
PArel Relative energies in protonated isomers 20 (31) 12.27513
Reaction barrier heights
BH76 Barrier heights of hydrogen transfer, heavy atom transfer, 76 (86) 3.053538
nucleophilic substitution, unimolecular and association reactions
BHPERI Barrier heights of pericyclic reactions 26 (61) 2.723125
BHDIV10 Diverse reaction barrier heights 10 (20) 1.253833
INV24 Inversion/racemisation barrier heights 24 (48) 1.784849
BHROT27 Barrier heights for rotation around single bonds 27 (40) 9.061109
PX13 Proton-exchange barriers in HO, NH3, and HF clusters 13 (29) 1.703758
WCPT18 Proton-transfer barriers in uncatalysed and water-catalysed reactions 18 (28) 1.624567
Intermolecular noncovalent interactions

RG18 Interaction energies in rare-gas complexes 18 (25) 98
ADIM6 Interaction energies of n-alkane dimers 6(12) 16.92506
S22 Binding energies of noncovalently bound dimers 22 (57) 7.783781
S66 Binding energies of noncovalently bound dimers 66 (198) 10.39698
HEAVY28 Noncovalent interaction energies between heavy element hydrides 28 (38) 45.78596
WATER27 Binding energies in (H20),,, H* (H20), and OH™ (H20),, 27 (30) 0.700517
CARBHB12 Hydrogen-bonded complexes between carbene analogues and HyO, NH3, or HCI 12 (36) 9.417873
PNICO23 Interaction energies in pnicogen-containing dimers 23 (69) 13.30064
HALS59 Binding energies in halogenated dimers (incl. halogen bonds) 59 (105) 12.3775
AHB21 Interaction energies in anion—neutral dimers 21 (63) 2.527774
CHB6 Interaction energies in cation—-neutral dimers 6(18) 2.122083
1L16 Interaction energies in anion—cation dimers 16 (48) 0.521253

Intramolecular noncovalent interactions

IDISP Intramolecular dispersion interactions 6(13) 3.99625

ICONF Relative energies in conformers of inorganic systems 17 (27) 17.40104
ACONF Relative energies of alkane conformers 15 (18) 30.99011
AMINO20x4 Relative energies in amino acid conformers 80 (100) 23.30762
PCONF21 Relative energies in tri- and tetrapeptide conformers 18 (21) 35.05036
MCONF Relative energies in melatonin conformers 51(52) 11.43436
SCONF Relative energies of sugar conformers 17 (19) 12.35652
UPU23 Relative energies between RNA-backbone conformers 23 (24) 9.932533
BUT14DIOL Relative energies in butane-1,4-diol conformers 64 (65) 20.30227

@ Relative energy counts and required single-point computations (in parenthesis)
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Figure S1: Simplified view on D?C-r?SCAN’s parameterization strategy, highlighting the distinction

between training set types. Three graphs illustrate the effects of individually adjusting each parameter

while fixing the others at optimal values. The datasets utilized in this analysis are from Refs. [7] and [8].
Refer to Fig. in the main text for D2C-B3LYP results.
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Figure S2: Simplified view on D2C-B3LYP’s parameterization strategy, using P30-5 dataset [9] instead,

highlighting the distinction between training set types. Refer to Fig. [2]in the main text which utilizes a

different training set.
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Figure S3: Simplified view on D?C-r?SCAN’s parameterization strategy, using P30-5 dataset [9] in-

stead. Refer to Fig. @ which uses a different training set.
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HF-PBE D’C-PBE PBE PBE-D4 HF-REVPBE D’C-REVPBE REVPBE REVPBE-D4 HF-BLYP D’C-BLYP BLYP BLYP-D4
WTMAD-2 13.96 6.53 13.89 10.12 WTMAD-2 21.97 6.03 20.62 8.27 WTMAD-2 22.06 6.6 21.1 9.48
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Figure S4: Performance of the GGA functionals variants across the GMTKNS5S5 database. [6] Each

section signifies a distinct category. basic + small: Basic properties and reaction energies for small

systems, iso + large: Reaction energies for large systems and isomerization reactions, barriers: Reaction
barrier heights, intermol NCIs: Intermolecular noncovalent interactions, intramol NClIs: Intramolecular
noncovalent interactions, GMTKN55 WTMAD-2: Weighted Total Mean Absolute deviation. Refer to

Fig. @in the main text for comparison with B3LYP variants.
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Figure S5: Performance of the mGGA functionals variants across the GMTKNS55 database.

intramol.
NCIs

GMTKN55
WTMAD-2
[kcal/mol]

20

HF-PBEO
D?C-PBEO
— PBEO
PBE0-D4

iso. + large

GMTKN55
WTMAD-2
[kcal/mol]

intramol.
NCIs

HF-REVPBEO
D?C-REVPBEQ
—— REVPBEO
REVPBEO-D4

intramol.
N

iso. + large Cls

GMTKN55
WTMAD-2
[kcal/mol]

HF-B3LYP
D2C-B3LYP
— B3LYP
B3LYP-D4

iso. + large

5 s 5
intermol. intermol. s intermol.
torme Basic + small o basic + small oo basic + small
s
10 10 10
barriers barriers barriers
HF-PBEO D?C-PBEO PBEO PBE0-D4 HF-REVPBEOD?C-REVPBE( REVPBEO REVPBE0-D4 HF-B3LYP  D?C-B3LYP B3LYP B3LYP-D4
‘WIMAD-2 11.79 5.42 10.94 6.18 WIMAD-2 17.95 5.47 5.26 ‘WIMAD-2 17.37 4.67 16.15 6.15
intra. NCIs 21.09 5.66 18.34 6.2 intra. NCIs 32.24 6.68 4.48 intra. NCIs. 28.33 4.81 25.43 6.16
intor, NCIs 19.48 493 15.84 576 intor, NCIs 30,04 595 B intor. NCIs 3350 385 2839 195
barriers 5.73 6.54 7.61 8.84 barriers 6.23 5.8 7.22 barriers 6.35 5.13 8.19
basic + small 3.88 3.8 4.26 43 basic + small 4.71 3.87 421 basic + small 5.11 347 4.16
iso. + large 11.26 8.03 11.58 8.21 iso. + large 13.34 6.29 6.1 iso. + large 16.69 7.49 17.35 9.86

Figure S6: Performance of the Hybrid GGA functionals variants across the GMTKNS55 database.
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Figure S7: Performance of the Hybrid mGGA functionals variants across the GMTKNSS5 database.
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Figure S8: Performance of DFT, DFT-D4, and D>C-DFT on the density-insensitive reactions in
GMTKNS55 database[6]. See Figs. [I] and [3]in the main text for all reactions in GMTKNS55 and only
density-sensitive reactions in GMTKNSS5.
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Figure S10: Distribution of Weighted Signed Errors for each mGGA-based functionals across 1505

reactions in GMTKNSS5, including mean and standard deviation (in parenthesis).
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Figure S12: Performance of mGGA functionals on WATER27 dataset.
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Figure S13: Performance of Hybrid GGA functionals on WATER?27 dataset.
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Figure S14: Performance of Hybrid mGGA functionals on WATER?27 dataset.
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Figure S15: Water hexamers’ relative energy compared to prism structure. Geometries are from
Ref. [[11] and reference CCSD(T)/CBS energy from Ref. [12]. D?C-r?’SCAN, HF-r>’SCAN-D40Orig,
and SM21 are the same HF-r>’SCAN schemes coupled with different dispersion parameters. Dispersion

parameter for D4Orig is from Ref. [[1] and SM21 is from Ref. [2]. See Subsection *Overall performance
of D2C-DFT” in the main text.
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Figure S16: Water 20-mers’ relative energies from WATER27[10].
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Figure S17: Evaluation of r2SCAN correction variants using the Bauza dataset [13]. This dataset
encompasses a wide range of reactions involving Halogen, Chalcogen, and Pnictogen elements, making
it an ideal benchmark for testing the accuracy in modeling o-hole interactions. See Fig. [8|in the main
text for the B3LYP results.

W2-DIET [kcal/mol] Primitives

basis r’SCAN | r’SCAN-D4 diff. HF-r’SCAN |D*C-r’SCAN diff. CgHig
QZVPPD 8.88 7.24 5% 7.97 4.88 - 1098
QZVP 9.13 7.60 - 7.94 4.98 2% 996
TZVPPD 8.80 7.35 -3% 7.90 4.99 2% 602
TZVP 10.05 8.83 16% 7.63 5.83 19% 356
SVPD 9.77 12.02 58% 6.63 9.16 88% 304
SVP 16.26 17.38 129% 12.52 14.35 194% 202

Figure S18: Transferability of dispersion parameters in r’SCAN-D4 and D2C-r>SCAN, optimized for
the def2-QZVP and def2-QZVPPD, across various basis set sizes within the Karlsruhe family[14, [15].
For context, we note the number of primitive Gaussians for the CsH;s molecule. Difference relative
to def2-QZVPPD (diff.) is color-coded: Green marks mean degradation below 10 %, yellow for 10-
50 %, and red for over 50 %. This analysis leverages the DIET150[8], a subset of GMTKNS55[6]. The

parameter of D2C-r>’SCAN can be safely used down to def2-TZVPPD. See Fig. @ in the main text for
the B3LYP result.
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