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(a) Initial Frame (b) Final frame with our membrane model (c) Final frame with an isotropic model

Figure 1: Renderings of two simulations of a feather where the base of the rachis is held in place (a) and then the tip of the
vane is moved downwards in a direction parallel to the vane (b,c). Inset, the same scenario reproduced on a real feather. This
scenario is run both with our new strongly anisotropic membrane model (b) and with an isotropic elastic material (c). Our
model captures well the behaviour of the real feather (in particular the quasi-inextensibility of the membrane in the barb
direction, causing the bending of the rachis), while the naive isotropic elasticity model is unable to.
ABSTRACT
Feathers exhibit a highly anisotropic behaviour, governed by their

complex hierarchical microstructure composed of individual hairs

(barbs) clamped onto a spine (rachis) and attached to each other

through tiny hooks (barbules). Previous methods in computer graph-

ics have approximated feathers as strips of cloth, thus failing to cap-

ture the particular macroscopic nonlinear behaviour of the feather

surface (vane). To investigate the anisotropic properties of a feather
vane, we design precise measurement protocols on real feather

samples. Our experimental results suggest a linear strain-stress

relationship of the feather membrane with orientation-dependent

coefficients, as well as an extreme ratio of stiffnesses in the barb

and barbule direction, of the order of 10
4
. From these findings we

build a simple continuum model for the feather vane, where the
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vane is represented as a three-parameter anisotropic elastic shell.

However, implementing the model numerically reveals severe lock-

ing and ill-conditioning issues, due to the extreme stiffness ratio

between the barb and the barbule directions. To resolve these is-

sues, we align the mesh along the barb directions and replace the

stiffest modes with an inextensibility constraint. We extensively

validate our membrane model against real-world laboratory mea-

surements, by using an intermediary microscale model that allows

us to limit the number of required lab experiments. Finally, we

enrich our membrane model with anisotropic bending, and show

its practicality in graphics-like scenarios like a full feather and

a larger-scale bird. Code and data for this paper are available at

https://gitlab.inria.fr/elan-public-code/feather-shell/.
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1 INTRODUCTION
The unique mechanical behaviour and optical complexity of feath-

ers gives birds their characteristic appearance. They have also been

distinctive components of garments for centuries, from traditional

Native American and First Nations decorations to modern-day ac-

cessories. Despite the fact that feathers are composed of hundreds

to thousands of precisely aligned fibers, previous computer graphics

works have uniformly approximated feathers as strips of isotropic

cloth. While this approximation suffices for scenarios where the

feathers interact in simple ways, it ignores a variety of visually

important mechanical behaviors, such as anisotropic stiffness, and

disparity in stiffness between the central spine (rachis) and its at-

tached fibers (barbs).
Relying on experiments conducted at the micro-scale, we in-

troduce a simple macroscopic feather model based on anisotropic

elastic shell models that captures these phenomena. Our model has

been carefully validated against real-world laboratory experiments,

and is capable of capturing intricate and subtle motions that we

have not seen elsewhere in the literature.

Our main contributions are as follows:

• A characterisation of the anisotropic in-plane elasticity of a

feather, arising from a unique set of micro-scale experiments

conducted on a large set of feather samples, which reveals, on

the one hand, a simple linear strain-stress relationship of the

feather membrane with orientation-dependent coefficients,

and on the other hand, an extreme ratio of stiffnesses in the

barb and barbule direction, of the order of 10
4
;

• The derivation of a local linear orthotropic elastic membrane

based on a minimal set of three parameters whose anisotropy

falls far outside the range of usual models for cloth;

• A robust numerical implementation of this new strongly

anisotropic membrane model, which addresses severe lock-

ing and ill-conditioning issues thanks to an adapted feather

mesh and an inextensibility constraint in the barb direction;

• The careful validation, both quantitatively and qualitatively,

of our model against micro-scale experiments and simula-

tions conducted on feather samples.

We also add a plausible anisotropic bending energy for simulating

full-size feathers subject to various motions and constraints. De-

spite its apparent simplicity, our method, implemented within the

ARCSim simulator [Pfaff et al. 2014], proves to capture real-world

scenarios more faithfully than standard isotropic models or mildly

anisotropic models (see Figure 1 and our accompanying video).

2 RELATEDWORK
In addition to their unique mechanical properties, feathers possess

a variety of rich geometric appearances and motions, which makes

them especially attractive for computer graphics applications such

as bird animations and decorative objects.

2.1 Related work in graphics
The layout and grooming of multiple feathers [Liu et al. 2015, 2017;

Baron and Patterson 2019] and feather precursors [Chuong et al.

2000] such as scales [Landreneau and Schaefer 2010] has been a

subject of interest formany years. Film production houses have built

many custom systems, including ones from ILM [Bowline and Kačić-

Alesić 2011], DreamWorks Animation [Weber and Gornowicz 2009;

Augello et al. 2019], Animal Logic [Heckenberg et al. 2011], and

MPC [Haapaoja and Genzwürker 2019]. Across all of these systems,

the feathers are modeled as isotropic strips of cloth; none undertake

an in-depth examination of anisotropic feather mechanics. The

individual fibers on a feather were modeled by Streit and Heidrich

[2002], but to our knowledge, no attempt was made to simulate

the model. Simulations of feathers in the wind [Wei et al. 2003]

have aimed to capture tumbling dynamics. Bird flight animation

controllers [Wu and Popović 2003] also operate at the cloth level,

and some even assume featherless dragon wings [Won et al. 2017].

We will build on previous works that use experimental mea-

surements to guide both model design and parameter tuning. Both

Wang et al. [2011] and Miguel et al. [2012] measured forces and

displacements at multiple points of a cloth sample, and then ran

a gradient descent optimisation to obtain the parameters for an

orthotropic, in-plane stretching model. Both Clyde et al. [2017] and

Sperl et al. [2022] used simple stretching experiments to measure

the force and displacement at just one end of the sample, and also

used gradient descent to fit the data to cloth parameters. Volino

et al. [2009] also ran simple stretching experiments with a few mea-

surements, but instead of running an optimisation, derived model

parameters directly from the measurements. Unfortunately, most

of these experiments do not transfer to feathers.

On the rendering side, a variety of works have attempted to

quantify and capture the visually complex, iridescent, anisotropic

reflectances that arise from the highly aligned fibers in feathers

[Chen et al. 2002; Harvey et al. 2013; Huang et al. 2022; Baron et al.

2022]. Our work on the simulation of feathers complements these

investigations into feather appearance.

2.2 Studies of feather mechanics
In mechanical engineering, some works have measured the physical

parameters of feathers. However, they either focus on the rachis

[Purslow and Vincent 1978; Macleod 1980] or compute the Young’s

modulus of the underlying feather material, 𝛽-keratin [Bonser and

Purslow 1995; Wool 2011]. Both of these measurements are insuffi-

cient for our purposes.

To the best of our knowledge, models from physics, mechanics

and biology represent each fiber (barb) individually, which makes

simulating a full feather computationally prohibitive [Kovalev et al.

2014; Chen et al. 2016; Zhang et al. 2018]. Taking inspiration from

the experimental setup of Kovalev et al. [2014] and Zhang et al.

[2018], we instead design our own experiments for studying the

stretching behaviour of feathers. We will use the insights from these

experiments to guide the design of our anisotropic shell model.

3 FEATHER STRUCTURE AND MECHANICS
A feather consists of a thick shaft called the rachis from which

thinner rods called barbs emanate on either side, forming two sheet-

like structures called vanes (see Figure 2). Both the rachis and the

https://doi.org/10.1145/3641519.3657503
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Figure 2: Hierarchical structure of a feather. The central shaft
is the rachis, and the hundreds of rods that branch off it are
barbs (left). Each barb has hundreds of barbules. The barbules
along one side possess hooks, while those on the other do
not, allowing barbs to reversibly attach and detach (right).
The attached barbs form a surface called the vane.

barbs taper in thickness from base to tip, leading to significant

variation in rigidity across the vane [Purslow and Vincent 1978].

Each barb has many barbules which can hook onto barbules from

adjacent barbs in the vane, in a manner similar to Velcro. Applied

forces can form or break individual connections between barbules.

This multiscale structure gives rise to unique mechanical be-

haviours. For example, suppose each barb’s barbules are hooked

onto those of its neighbours. The resulting cohesion between barbs

causes the vane to behave as a continuous sheet, but with highly

anisotropic and spatially varying elastic properties: it is far stiffer in

the orientation parallel to the barbs and closer to the rachis. If the

vane is subject to sufficient tension perpendicular to the barbs, the

connections between barbules can detach, resulting in an apparent

fracture of the vane parallel to the barb orientation.

We refer to this continuum, sheet-like view of feather mechanics

as the “macroscopic” view, in contrast to the “microscopic” interac-

tions of individual barbs and barbules. In the following, we aim to

characterise the behaviour of the feather at the macroscopic scale

and derive a simple anisotropic shell model that captures the most

salient properties of a feather.

4 MEASUREMENT OF IN-PLANE ELASTICITY
To study the behaviour of the feather vane at the macroscopic

scale, we propose systematic tensile tests on real feather samples at

various orientations. To the best of our knowledge, this is the first

time that such tests have been performed on real feathers.

4.1 Experimental setup
Performing reproducible tensile tests on real feathers is particu-

larly challenging given the variability of mechanical parameters

between species, and the highly heterogeneous nature of biological

materials. To avoid species variability, we perform experiments

on commercially available 25 cm swan feathers, as well as on a

few guinea fowls
1
(see Figure 3, top). From each feather we cut

rectangular patches with three different barb orientations, and to

1
We preferred to work with swan feathers because these show the most regular barb

distribution, hence they serve as a model biological system to test our assumptions.

Our validation protocol only uses swan samples.

Figure 3: Top: Real feather and example patches. Bottom left:
Experimental setup for traction tests. Bottom right: Zoom
on the traction experiment.

have a statistical distribution of the mechanical response, we take

sample patches from different regions of a feather.

When subjected to load-unload cycles we observe hysteresis,

which is inherent to the frictional nature of the connection between

barbules. However, we limit our work here to a non-dissipative

model, and only present pure traction experiments (without cycling)

from which we can obtain elastic parameters.

In anticipation of validating our macroscopic model against a

microscopic model where barbs are represented explicitly (see sub-

section 8.1), we strive to measure through our tensile tests both the

barb and barbule stiffnesses, as well as their geometrical distribu-

tion. Towards this aim, we devise an experimental setup that allows

us to measure force-displacement relationships with high accuracy

(Figure 3, bottom). See supplementary document, section 2 for more

details.

4.2 Methodology
We test, in pure traction, patches cut with three different orienta-

tions (see images in Figure 13, and top row of Figure 9). To avoid

damaging the feather sample in the cutting process, we use a paper

guillotine. Samples are then clamped to two edges: during traction,

one remains fixed and attached to the force sensor while the other,

attached to the motorized stage, is pulled up. Each run is performed

in consecutive steps up to a target maximal strain. In each step we

displace the motor to a given position, stop, and make a measure-

ment for 2 second at 5 Khz. Hence, one data point is the average

of 10,000 measures, allowing us to make a highly sensitive force

estimation.

Each sample is characterised by its width 𝑙𝑥 , height 𝑙𝑦 , thick-

ness ℎ, and barb orientation 𝜃 with respect to the sample edges. We

assume the thickness and barb orientation to be uniform across

the sample. The width is measured on the sample once it is cut,

while the height is computed from the position of the motor at the

beginning of a traction test. To estimate one thickness value per

sample, we compute the average over several measurements taken

using a micrometer on different regions of the sample patch. To

avoid any difference in mechanical response due to damage by the
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Figure 4: Surface coverage of barbs and barbules. Left: the
segmented barbs (red) and barbules (green). Right: the orig-
inal image of the patch region. Everywhere, the vane is lo-
cally symmetric with respect to the axis tangent to the barbs
( ).
micrometer, we perform thickness measurements after the traction

test is done.

4.3 Observations
The results of our force-displacement measurements are shown in

the inset in Figure 13. As expected, we see significant variability

from sample to sample. To define global mechanical parameters for

the elastic response of feathers, we use the Green-Lagrange strain

tensor,

𝜖 =
1

2

((
𝑑

𝑙𝑦
+ 1

)
2

− 1

)
(1)

and the second Piola-Kirchhoff stress tensor,

𝜎 =
𝑙𝑦

𝑙𝑥 (𝑑 + 𝑙𝑦)
𝐹

ℎ
(2)

where 𝐹 is the measured force and 𝑑 is the measured displacement.

For simplicity, we will refer to the Green-Lagrange strain tensor as

the strain tensor and the second Piola-Kirchhoff stress tensor the

stress tensor.
In Figure 13, we show that the data collapses remarkably well (for

a heterogeneous biological material), whether for the swan species

or the guinea fowl species, andwe remark that the average thickness

ℎ is the key scaling factor. A first important result is the linear stress-
strain relationship that we can observe, in all three orientations,

prior to fracture. A second important result is the extreme ratio

that we observe, both for swan and guinea fowl feathers, between

the barb and barbule stiffnesses, of the order of 10
4
. It is also worth

noticing that the traction response becomes stiffer as we reach

the 90
◦
orientation, and fracture nucleates very early in the tilted

experiment driven by the shearing between barbs. The fracture is

not brittle, which indicates significant energy dissipation prior to

fracture, possibly due to inter-barbule friction.

Finally, we estimate the density of barbs and barbules by analysing

50 zoomed images from different regions on a feather vane (Figure 4

(right)). Intensity thresholding is performed to segment the barbs

from the barbules (green and red, respectively, in Figure 4 (left)).

The threshold value is chosen manually per image to avoid includ-

ing the dark middle parts corresponding to the interlaced barbules.

From these measurements, we computed the average surface den-

sity of barbs and barbules to beΦ𝐵 = 0.16±0.03 andΦ𝑏 = 0.84±0.03
respectively.

5 A SIMPLE ANISOTROPIC VANE MODEL
Inspired by our experimental results on uniform vane samples,

we propose a simple continuum model for a feather vane that

relies on an anisotropic, membrane model that requires only three

macroscopic parameters.

5.1 Uniform barb orientation
We first restrict ourselves to the case where all barbs share the same

orientation, similar to our experiments in section 4. Experimental

results show a linear relation between the stress and the strain

tensors for tensile deformations at 0
◦
, 90

◦
, and 45

◦
. We extrapolate

this behaviour to all deformations and model the elasticity using a

linear relationship between stress and strain. In Voigt’s notations,

this reads as 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

 =


𝐸11 𝐸12 𝐸13
𝐸12 𝐸22 𝐸23
𝐸13 𝐸23 𝐸33

︸                 ︷︷                 ︸
E


𝜖𝑥𝑥
𝜖𝑦𝑦
2𝜖𝑥𝑦

 . (3)

For this model to respect energy conservation, the matrix E, com-

monly called the elasticity tensor, must be symmetric. The elasticity

tensor generally has six parameters, but we can reduce them to

three using the following geometric and physical considerations

specific to feathers.

At any point on the vane of a feather, the vane is locally sym-

metric around the axis collinear to the barbs (See Figure 4). This

symmetry, usually called orthotropy, removes some components

from the elasticity tensor [Milton 2002, p. 37], namely 𝐸13 = 0 and

𝐸23 = 0.

Moreover, the stretched sample in the transverse experiment

does not show any deflection along the 𝑥-axis. Since no forces are

applied on the side of the sample, this implies that feather vanes

have zero Poisson’s ratio, that is, 𝐸12 = 0. This last property is ex-

pected from the stiffness of barbs. When the barbules are stretched,

they cannot compress the barbs they are attached to, which prevents

deformation in the direction transverse to the deformation.

With these parameters removed, our analytical vane model is

left with only three parameters, giving,
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

 =


𝐸𝑥𝑥 0 0

0 𝐸𝑦𝑦 0

0 0 𝐸𝑥𝑦



𝜖𝑥𝑥
𝜖𝑦𝑦
2𝜖𝑥𝑦

 , (4)

where we renamed the parameters of the elasticity tensor to be

closer to the notations of the stress and strain that they relate. We

will refer to 𝐸𝑥𝑥 as the longitudinal modulus, 𝐸𝑦𝑦 as the transverse
modulus and 𝐸𝑥𝑦 as the shear modulus.

5.2 Non-uniform barb orientation
The barb orientation is not uniform over a vane, and therefore we

cannot simply choose a coordinate system in which the elasticity

tensor is of the above form at all points on the vane. Instead, given

the barb orientation 𝜃 at a point, we perform a change of basis of
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the previously defined tensor E so that the stiffest orientation, 𝐸𝑥𝑥
here, is aligned with 𝜃 . Then, we can derive stretching forces from

the areal energy density

1

2

ℎ𝜖 : E(𝜃 ) : 𝜖 , (5)

whereℎ is the thickness of the vane and E(𝜃 ) is the rotated elasticity
tensor.

This elasticity model is close to the usual linear orthotropic elas-

tic materials seen in cloth simulation up to the following differences:

our model is heterogeneous across the shell and, due to the extreme

stiffness ratio between barbs and barbules and the structure of the

vane, the range of parameters value needed to properly model feath-

ers is widely different to the range of parameters used to model

cloth. Anticipating results of subsection 8.1, we checked that the be-

haviour obtained with a standard orthotropic cloth material taken

from Wang et al. [2011] is indeed very different from ours, see also

our accompanying video.

6 NUMERICS: LOCKING, ILL-CONDITIONING
We implemented our anisotropic model numerically in the freely

available thin elastic plate simulator ARCSim [Pfaff et al. 2014], to

which we added a full nonlinear solver based on Ipopt [Wächter

and Biegler 2006] (see supplementary document, section 3). In this

implementation, triangular and linear Lagrange elements are used.

Unfortunately, two serious issues rapidly became apparent in

our simulations. First, we identified the presence of numerical lock-
ing, i.e. the higher the stiffness ratio between the two material

directions, the slower the convergence of the finite element model
2

(see supplementary document, section 4). When using the extreme

value of 10
4
, which corresponds to our experimentally measured

(see section 4) barb/barbule stiffness ratio, the cost of convergence

becomes prohibitive (see Figure 5 ). Second, this extreme ratio

also makes the problem ill-conditioned, which considerably impacts

the convergence of the nonlinear solver.

Mesh alignment. To mitigate the locking phenomenon, we take

inspiration from the work of [Yu et al. 2006] and [ten Thije and

Akkerman 2008], which consider a material with two very stiff

directions relative to its shear stiffness. One of their solutions is to

align the mesh elements along the directions of high stiffness. We

apply this in our context, and ensure that each triangular element

has at least one edge aligned along the barb direction . As expected,

this alignment considerably improves convergence (see Figure 5

).

Constraint in the barb direction. Aligning the mesh with the

stiffest direction mitigates the locking phenomenon, but does not

prevent the problem of ill-conditioning at large stiffness ratios. As a

result, an undesirably large number of iterations are needed for the

non-linear solver to converge (see Figure 6 and ). Our so-

lution is to directly introduce the limit case of inextensibility along

the stiffest direction. We replace the energy component in the high

stiffness direction with a constraint that prevents extension along

2
This locking phenomenon is not specific to the ARCSim implementation, as we have

checked that it also arises when using a thin membrane model implemented within

the Fenics library [Hale et al. 2018].
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tions. Inset: due to poor conditioning, unconstrained results
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oscillation-free solutions are computed at much lower cost.

the same direction (see supplementary document, section 5 for

more details). This modification does not degrade the convergence

of the elements (see Figure 5) and allows us to remove oscillatory

artifacts that arise from the poor conditioning (see Figure 6).

7 SIMULATING A FULL FEATHER
Similar to previous works on shell simulation [Grinspun et al.

2003; Chen et al. 2018], we represent a feather as a triangle mesh

with internal membrane and bending forces. We model the rachis

as a distinguished thin region of the feather mesh, with a highly

stiff isotropic material (see Figure 7). We chose this approach for
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Figure 7: In the mesh of the feather, the rachis (orange) is
distinguished from the vane (light blue) and has a different
material from the vane. The barb orientation is given as
splines by the user (dark blue), those are used to generate a
mesh aligned with those orientation.

simplicity to remain within the sheet simulation framework. One

could alternatively model it as a stiff elastic rod [Bertails et al. 2006;

Bergou et al. 2008; Bertails 2009] coupled with the vane, although

this would require solving the coupled dynamics.

In the rest of this section we discuss the simulation model used

for the rest of the feather sheet.

Non-uniform anisotropy. As mentioned earlier, the barb orienta-

tion is non-uniform across the vane. This non-uniformity is supplied

by the user through splines in texture coordinate. Since we need

the mesh elements within the vane to be aligned with the barb

direction, they are generated such that most of them have at least

one edge aligned with the splines (See Figure 7 and supplementary

document, section 6, for more details).

Anisotropic membrane. The barb orientation field is chosen to be

piecewise constant per faces. Since our membrane energy density

defined in Equation 5 is orthotropic per faces, it is already handled

by ARCSim.

Anisotropic bending. Bending forces are derived from an energy

associated to each edge,

𝐴1 +𝐴2

6

𝐸𝐼 (𝛽) (𝜅 − 𝜅0)2 , (6)

where 𝐴1 and 𝐴2 are the area of the triangles incident to the edge,

𝜅 and 𝜅0 are respectively the curvature and rest curvature at the

edge, and 𝐸𝐼 (𝛽) is the bending modulus. The curvature is computed

through themethod described inGrinspun et al. [2003]. The bending

modulus depends on the angle 𝛽 made between the edge and the

local barb orientation in reference space, which we call the tilt
angle.

The directional variation of the bending modulus is parametrized

by the longitudinal bending modulus 𝐸𝐼⊥ (bending the barbs them-

selves) and the transverse bending modulus 𝐸𝐼 | | (bending the vane

keeping the barbs straight). The relation between the bending

modulus and the tilt angle is chosen such that 𝐸𝐼 (0) = 𝐸𝐼 | | and
𝐸𝐼

(
𝜋
2

)
= 𝐸𝐼⊥:

𝐸𝐼 (𝛽) =
𝐸𝐼 | | − 𝐸𝐼⊥

2

cos(2𝛽) +
𝐸𝐼 | | + 𝐸𝐼⊥

2

. (7)

For feathers, 𝐸𝐼 | | is chosen much smaller than 𝐸𝐼⊥ so that deforma-

tions that avoid bending of barbs are favored.

Since the barb orientation is defined constant on faces, we have

two tilt angles 𝛽1 and 𝛽2, one for each face. The tilt angle is obtained

through an area based average of both angles,

𝛽 =
𝐴1𝛽1 +𝐴2𝛽2

𝐴1 +𝐴2

. (8)

𝑑𝐵

𝑤𝐵

Figure 8: The microscale model is composed of bands of
isotropic elastic material that are alternately stiff (blue) and
supple (red). Both materials have zero Poisson’s ratio. The
Young modulus of the stiff bands is denoted by 𝐸𝐵 , and that
of supple bands by 𝐸𝑏 . This model is also parametrized by the
distance between barb centers 𝑑𝐵 and the width of barbs𝑤𝐵 ,
which allows us to define the barb surface density as Φ𝐵 =

𝑤𝐵

𝑑𝐵
.

8 VALIDATION AND RESULTS
We validate our macroscopic membrane model quantitatively

against real and virtual traction tests of feather samples conducted

at the microscale, before presenting some visual comparisons on

a full feather. Finally, we show that our approach extends to the

realistic simulation of a larger scale bird with flapping wings. Please

watch our accompanying video for animated results. Our imple-

mentation is released freely at https://gitlab.inria.fr/elan-public-

code/feather-shell/ as an updated version of ARCSim.

The method used to choose the parameters is detailed in supple-

mentary document, section 7.

8.1 Quantitative validation on feather samples
Our local orthotropic membrane model is characterised by three

independent parameters, 𝐸𝑥𝑥 , 𝐸𝑦𝑦 , and 𝐸𝑥𝑦 . While the first two

parameters can be measured on longitudinal and transverse trac-

tion tests respectively
3
, the last one, 𝐸𝑥𝑦 , requires a tilted traction

test (involving shearing) to be estimated. This would require us to

design yet another tilted traction experiment so as to perform an

independent validation of the model.

Given the difficulty performing multiple tilted traction tests

on feather samples at different angles, we choose not to validate

our membrane model directly on real experiments. Instead, we

introduce an intermediary, so-called microscale numerical model,

validated on a unique experimental tilted traction test, which is

then meant to serve as a reference for validating our macroscale

model at any angle (in the limit of admissible angles, see below).

Microscale model. The microscale model reproduces the micro-

structure of the vane at the barb scale, through a non-homogeneous

shell consisting of stiff bands representing the barbs, connected

by supple bands representing the barbules. The materials of both

bands are isotropic elastic with zero Poisson’s ratio (see Figure 8).

The parameters of this model are measured from the data gath-

ered in our experiments. The ratio between the width of barbs𝑤𝐵

and the distance between barbs 𝑑𝐵 is set to the measured surface

density of barbs Φ𝐵 , i.e. Φ𝐵 = 0.16 ± 0.03.

3
Actually, with the inextensibility constraint, 𝐸𝑥𝑥 does not need to be estimated

anymore and is simply set to the same value as 𝐸𝑦𝑦 .

https://gitlab.inria.fr/elan-public-code/feather-shell/
https://gitlab.inria.fr/elan-public-code/feather-shell/
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This leaves two unknown parameters, the Young modulus of

barbs 𝐸𝐵 , and that of barbules 𝐸𝑏 . Among our experiments (longi-

tudinal, transverse, and tilted traction tests), the tilted experiment

yields the most complex deformation. Hence, we leverage it as

a demanding, independent validation target while the first two

experiments are used to measure 𝐸𝑏 and 𝐸𝐵 .

In the longitudinal scenario, it can be shown that the slope
4

of the microscale model Δ | | is related to the material parameters

through

Δ | | = Φ𝐵 𝐸𝐵 + (1 − Φ𝐵) 𝐸𝑏 . (9)

The slope of the longitudinal experiment determines Δ | | , leaving
one degree of freedom between 𝐸𝑏 and 𝐸𝐵 .

In the transverse scenario, we are unable to obtain a similarly

simple expression relating the material parameters to the stress-

strain data. Instead, we determine the parameter values by fitting

a numerical simulation to the observed slope in the transverse

experiment. We set up the microscale model in ARCSim and per-

form the transverse experiment numerically using different values

of 𝐸𝑏 (fixing 𝐸𝐵 as well as using Equation 9), record the slope of

the computed stress-strain relationship, and perform bisection to

find the parameter values for which the slope matches that of the

experimental data. The measured parameters are listed in Table 1.

In Figure 12 (top), we show the comparison between real and

virtual traction tests using our microscale model. As expected, our

model shows excellent agreement with the longitudinal and trans-

verse tests. More remarkably, the agreement remains excellent on

the tilted scenario (right), which is an independent test not used
for measurement. Given these good results, we now consider our

microscale model to be sufficiently predictive so that it can be used

reasonably as a reference for validating our macroscale model.

Note that we sometimes observe that barbules rearrange them-

selves as the material is sheared in some tilted scenario performed

in the lab (see supplementary document, section 12, for more de-

tails). Those plastic (irreversible) events cause a drop in stress and

are not taken into account by our model which is purely elastic. In

our validation, we specifically chose an experiment where those

plastic events do not appear, as dealing with them is out of the

scope of this paper and is left for future work.

Macroscale model. The macroscale model parameters are mea-

sured from the microscale model. The longitudinal and transverse

moduli 𝐸𝑥𝑥 and 𝐸𝑦𝑦 are equal to the slopes in the longitudinal and

transverse scenarios, respectively, as simulated with the microscale

model. This leaves the shear modulus 𝐸𝑥𝑦 to be measured
5
.

Using the same method used for microscale model, we measure

this parameter through bisection, performing macroscale model

simulations with different values of 𝐸𝑥𝑦 to match the slope with

that of the microscale model in the tilted scenario.

4
In our measurement protocols, we do not use directly stress-strain data points, instead

we use the slope of those sets obtained through linear regression. Hence, when the

slope of an experiment or a simulation is mentioned, this denotes the slope obtained

through a linear regression of the generated stress-strain data points.

5
An ideal and elegant solution would have consisted in retrieving this modulus analyt-

ically from the stress-strain curve in the tilted experiment. However we were unable

to do so because finite-size effects on the border of the sample prevented us from

finding a closed-form solution to the associated elasticity problem. The previous work

of Volino et al. [2009] did this for cloth by using samples with a large size aspect ratio,

which reduces the impact of finite-size effects. Such a protocol is not transferable to

feathers, as the size of our samples are constrained by the vane size.

Table 1: Microscale and macroscale model measurements.
The macroscale measurements were obtained by fitting to
the microscale model parameters.

Φ𝐵 𝐸𝑏 [Nm
−2
] 𝐸𝐵 [Nm

−2
] 𝐸𝑦𝑦 [Nm

−2
] 𝐸𝑥𝑦 [Nm

−2
]

0.13 4.0 × 10
4

2.8 × 10
9

4.7 × 10
4

2.9 × 10
4

0.16 3.7 × 10
4

2.3 × 10
9

4.5 × 10
4

3.1 × 10
4

0.19 3.6 × 10
4

1.9 × 10
9

4.6 × 10
4

3.4 × 10
4

In Figure 11, we eventually show that the macroscale model,

whose parameters have been fitted from the microscale model on

the longitudinal, transverse and tilted traction tests, matches the

same microscale model on traction scenarios with barbs oriented at

various angles. This shows the validity of our model. The measured

parameters for the macroscale model are listed in Table 1.

In addition to this quantitative validation, we also visually com-

pare, on the tilted traction test, the geometry of our macroscale

model, microscale model, and real experiment (see Figure 9). Re-

markably, we observe not only the same contours of the samples

during extension, but also the very similar appearing of a shear band

(in the experiment and in the macroscale model), which increases

in width as the aspect ratio of the feather sample is increased. These

observations nicely complete our quantitative agreements on forces

with qualitative agreements on shapes.

8.2 Qualitative results
Qualitative validation on a full feather. In Figure 1 we visually

compare footage of a real feather with results from a simulation

using our macroscale model. Our model is run with the previously

measured membrane parameters obtained for a surface density

of barbs Φ𝐵 = 0.16 (see Table 1) and with bending moduli 𝐸𝐼 | | =
10

−7
Nm and 𝐸𝐼⊥ = 2.5 × 10

−4
Nm.

In this scenario, a feather is held at the base of its rachis while

its tip is moved downwards, in a direction parallel to the vane. We

compare our simulator to a standard isotropic elasticity model. The

isotropic model uses a Young modulus 𝐸 equal to the transverse

modulus 𝐸𝑦𝑦 of our model and a zero Poisson ratio. In the isotropic

simulation, the bending is simulated the same as with our model. In

addition, in our accompanying video we also perform simulations

using a mildly anisotropic model with no inextensibility constraint

(see supplementary document, section 9). Results show that unlike

the isotropic and mildly anisotropic models, our solution matches

the behaviour of the real feather. In particular, it allows to recover

the bending of the rachis, while other models are unable to. More-

over, the isotropic simulation took 3min to be completed, compared

to 5min for the anisotropic one, on the same computer. This shows

that our model speed has the same order of magnitude as a usual

ARCSim simulation.

Larger scale scenario: the flapping wing example. Finally, we ap-
ply our model to a large scale scenario featuring a bird with two

flapping wings made of 10 feathers each, see Figure 10. To simu-

late one animation cycle of the bird, 432 time-steps of 2.8 µs each

were necessary to handle collision. Each cycle took 8.5 hours to be

computed with our model.
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9 CONCLUSION
In this work, we have presented a first, validated macroscale model

for simulating the in-plane deformation of a bird feather realisti-

cally, efficiently and robustly. Thanks to our laboratory experiments,

we found that the feather’s vane obeys a simple linear orthotropic

constitutive law, albeit with an extreme ratio of stiffness between

the two principal directions of the material. This led us to model

the vane as a strongly anisotropic elastic membrane. Based on

the ARCSim software, we have incorporated strong anisotropy

in the membrane while adressing numerical locking issues and

ill-conditioning through an adapted mesh and an inextensibility

constraint. Our novel anisotropic membrane model was quanti-

tatively validated against real experiments. In addition, we have

shown that feathers simulated with our membrane model, together

with anisotropic bending stiffness, visually match the behaviour

of real feathers. In the future, we plan to enrich our feather model

by carefully validating our anisotropic bending model, as well as

incorporating fracture and non-uniform thickness of the membrane.

We believe our work can be inspirational for all kinds of materials

involving extreme anisotropy, such as fibrous media that can be

found in biological tissues and reinforcement structures.
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Figure 9: Tilted scenario with increasing sample aspect ratio (left to right) executed in the lab (top), in the simulation with
microscale model (middle), and with the macroscale model (bottom). At fixed aspect ratio, each traction test depicts a shear band
which increases in width as the sample is deformed. The shear band is remarkably similar between the real experiments and
our macroscale model. This similarity demonstrates the capacity of our model to capture well the geometry of the deformed
feather.

Figure 10: Bird flight simulation using our feather model, coupled with contact.
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Figure 11: Comparison between slopes of the stress-strain curves of the macroscale model and the microscale model in traction
scenarios with barbs oriented at different angles. The slopes are nondimensionalized through scaling by the Young modulus of
the barbules in the microscale model 𝐸𝑏 . Comparison is done using the measured barb density Φ𝐵 = 0.16, as well as the two
extreme values of the error range ±0.03.
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between the stress-strain curves measured in our three traction experiments. Parameters of the microscale model were chosen
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Figure 13: Experimental stress-strain measurements for feather patches with two different orientations: transverse (left),
longitudinal (right). Patches were taken from feathers of swans ( ) and guinea fowls ( ). Force-displacement curves are
inset of the stress-strain curves, showing how the computation of the stress and strain collapses the curve of each bird species
together, see Equation 2 and Equation 1 respectively. The experiments themselves are shown in the bottom row. Note the linear
elastic constitutive law of the membrane, as well as the extreme stiffness ratio, of the order of 104, between the barb direction
(measured with the longitudinal test) and the barbule direction (measured with the transverse test). The measured dimensions
of samples can be found in Table 1 in the supplemental document.
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