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Figure 1: Parametric edits in CAD can lead to errors. The user is editing the current model (A) by modifying the sketch Aileron 
Profile (B). They intend to move the orange curve to the right side of the green square (C) to obtain the model show in (D). 
However, they are confronted with error messages and a broken model (E). Whereas the frst error message appears in Spar 
Fastener Hole, the actual error happens in Aileron Airfoil Guide. (F) Our debugger, DeCAD, makes readily available the 
information needed to locate and understand the problem. The top and bottom rows of the visualizer show the CAD model 
before and after the edit, respectively. Aileron Airfoil Guide is extruding the wrong face after the edit. 

ABSTRACT However, due to the ambiguity of changing references to inter-
mediate, updated geometry, parametric edits can lead to reference One of the core promises of parametric Computer-Aided Design 
errors which are difcult to fx in practice. We claim that debugging (CAD) is that users can easily edit their model at any point in time. 
reference errors remains challenging because CAD systems do not 
provide users with tools to understand where the error happened 
and how to fx it. To address these challenges, we prototype a graph-
ical debugging tool, DeCAD, which helps comparing CAD model 
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We conclude with design implications for future debugging tool 
developers. 
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1 INTRODUCTION 
Parametric Computer-Aided Design (CAD) software is the most 
widely used tool for manufacturing-oriented design. Such systems 
(e.g. Onshape, Solidworks, Fusion, AutoCAD) essentially represent 
3D geometry as a sequence of operations that build the geometry 
bottom up. As shown in Figure 2, these operations take as input 
numerical parameters (e.g. the length of a fllet) and references to 
existing geometry (e.g., the edge that should be chamfered). While 
not commonly recognized as such, under this representation, a 
CAD model is a program. 

One of the most important benefts of this modeling paradigm 
is that it supports further modeling iterations through parameter 
editing. In practice, however, editing parameters of one operation 
often causes subsequent operations to fail. 

Most commonly, these errors are the result of a failure to resolve 
references. During modeling, users create references to interme-
diate geometric entities (faces, edges, and vertices) by clicking on 
them in the CAD GUI. CAD systems have mechanisms for recog-
nizing these references and fnding appropriate matches when the 
topology changes, see Fig 2. While the heuristics used to drive these 
algorithms are often successful, they can sometimes lead to unin-
tended reference changes. In long, real-world modeling sequences, 
the efects of reference errors can propagate and cause downstream 
operations to fail, see Fig. 1. 

It is well understood that while better reference matching algo-
rithms can minimize the number of errors in practice, ultimately 
such errors cannot be completely avoided because the reference 
matching problem is inherently ambiguous—the act of clicking 
over a geometric entity does not fully determine how the reference 
should behave when the topology changes [12] . In this work, we 
therefore propose to support users in correcting these errors when 
they appear. Our key insight is that, since CAD models are pro-
grams, when the user is confronted with reference errors, they are 
actually confronted with a broken program, which they have to 
debug. Therefore, the main research question of this work is: What 
should a debugger for CAD look like? 

Importantly, while CAD systems will highlight the operations 
that failed, reference errors are silent and may have occurred in 
any operation preceding the failed one. For example, in Fig. 1, the 
reference error happens in Aileron Airfoil Guide whereas the 
frst failed CAD operation was Spar Fastener Hole. Therefore, 
the debugger should help the user answering two questions: 

• Where did a reference error occur? 
• How do we fx it? 

Our goal is to work towards a debugger for CAD by investigat-
ing what specifc challenges users face and what workfows they 
gravitate towards to overcome them. 

Width: 1 cm Width: 0.8 cm Width: 0.5 cmOperations

Figure 2: CAD operations (left) take as input references to 
intermediate geometry. Fillet1 (bottom left) rounds two 
top edges of the cuboid (highlighted in orange). Editing the 
width of the cuboid to 0.8 cm seamlessly updates downstream 
operations. However, reducing the width to 0.5cm changes 
the input topology to Fillet1 and the CAD system has to 
guess which edges to select. Here, it chooses all four edges. 

Specifcally, based on informal discussions with experts, real-
world user interaction data and our own experience, we provide 
an analysis of current UI features, debugging challenges and work-
fows. Our analysis concludes that users have to simultaneously 
discover where topological changes happen and where an unin-
tended reference change happens. This is challenging with CAD 
systems which are primarily designed for modeling, but not for 
debugging. 

Informed by our analysis, we design a prototype debugger, called 
DeCAD. Implemented as a plugin to an industry standard CAD 
system, Onshape [2], we develop three key features: (1) a volume 
diference chart for a high-level summary of per-operation geomet-
ric change; (2) a two dimensional panel view of the CAD model 
to compare a model to its original design intent; (3) per-operation 
boolean diference, overlay visualizations and reference arrows to 
support per-operation change discovery. 

To examine if users face our hypothesized challenges or if they 
face additional challenges and to understand their debugging work-
fows, we conduct a qualitative lab study with CAD experts. In the 
study, users are asked to resolve erroneous edits from real-world 
CAD models. 

In our lab study, we use DeCAD as a probe to understand if we 
can tackle hypothesized debugging challenges and what new work-
fows we can enable. Based on our fndings, participants managed 
to integrate DeCAD into their debugging workfow. The proposed 
features address our initial set of challenges but they also introduce 
new challenges. We synthesize our fndings into a set of design 
guidelines for future tool-builders. 

In summary, our contributions are: 
• An analysis of challenges that users face when dealing with 
reference errors (Sec. 3). 

• A publicly available prototype debugger, DeCAD (Sec. 4). 

https://doi.org/10.1145/3654777.3676353
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• Findings from our lab study with CAD experts and design 
implications for future tool builders (Sec. 5). 

2 RELATED WORK 
Our research lies at the intersection of 3D shape editing, references 
management in CAD systems, methods for visualizing programs 
and tools for debugging support. 

2.1 Shape editing 
Signifcant prior work focused on editing geometry directly without 
the constraints of parametric programs by optimizing an energy 
functional [29], modifying proxy models [34] or by analyzing per-
ceptual shape properties [17]. Within parametric shape editing, 
prior work studied the challenges of manipulating procedural mod-
els [49]. Approaches to tackle these challenges include intermediate 
editing structures [10, 16] and leveraging prompt-driven models to 
modify parameters [18]. Bidirectional editing methods prioritize di-
rect interaction with geometry and they have been studied for SVG 
[25], CSG [21] and parametric CAD [13, 44]. Instead of proposing 
a diferent method to perform an edit, our work seeks to augment 
the standard editing interface with tools to inspect the modeling 
sequence and to understand the efects of the edit. 

2.2 References in CAD 
Modern, GUI-based CAD systems predict how references should 
match to new entities after a topological change provoked by an 
edit. This process is called entity matching. Prior work has focused 
on improving entity matching methods, for example by using pro-
gram synthesis to automatically generate reference queries [40]. 
Some textual CAD programming languages, such as CADQuery [1] 
expose reference queries as a programming primitive. While such 
advances can minimize the number of references errors in practice, 
these cannot be avoided because the problem is underconstrained. 

To address this fundamental limitation, Cascaval et al. have pro-
posed a domain-specifc language (DSL) for CAD that allows users 
to unambiguously specify how references propagate with topologi-
cal changes [12]. Although this approach ofers formal guarantees 
that such reference errors will be avoided, it requires signifcantly 
more programming efort from the user upfront. Instead of merely 
clicking on a geometric entity in a user interface, users must explic-
itly program the reference construction. 

Our work takes the position that entity matching is a good default 
mode since it requires minimal efort from the user most of the 
time and professional users are used to it. We acknowledge that 
the propagation of an edit is inherently ambiguous and additional 
information from the user is necessary. Our work aims at providing 
a graphical interaction mode for allowing users to easily understand 
what information is missing so that they can resolve the error. 

2.3 Visualizing programs and program histories 
Program visualizations have been widely studied to support stu-
dents and developers to reason about their code [26, 50]. One ap-
proach consists in creating situated variable visualizations next to 
the original code [23, 36]. Omnicode lets the developer visualize 
the entire history of variable values via a matrix of scatterplots [31]. 
LaToza and Myers focus on visualizing the call graph to support 

understanding the control fow of a program [35]. Theseus also 
focuses on the function call behavior of programs and visualizes 
the call count of functions over the code [37]. BiFröst and WiFröst 
focus on supporting makers of IoT devices to visualize the runtime 
behavior of embedded code and circuits [42, 43]. 

Our work is aligned with the aforementioned prior work to 
reduce excessive cognitive load [45] by visualizing program states 
and the control fow, applied to 3D CAD. 

We also relate to work which focuses on visualizing program 
histories, which has been studied in the context of manipulating 
editing histories in interactive data visualizations [24]. NodeGit 
computes the diference between two graphically created, para-
metric programs [47], which is a challenging problem. Instead of 
visualizing the entire history of edits or computing program difer-
ences automatically, we focus on providing designers with tools to 
locally discover changes incurred by their edit. 

2.4 Debugging tools 
Debugging is a challenging and time-consuming activity in software 
development which has motivated prior work to analyze debug-
ging behavior, time spent on debugging activities and debugging 
challenges [8, 9, 20, 33, 53]. McCauley et al. provide a survey of the 
diferent causes of bugs and what kind of knowledge developers 
seek out during debugging [41]. 

To address debugging challenges, prior research has proposed 
methods for log-based debugging [30], breakpoint-based debugging 
[51], omniscient debugging [46] and interrogative debugging [32]. 

Debugging has also been adopted by specifc domains, such as 
electronic circuit design [38], database queries [19], data wrangling 
[48], reactive programming [27] and multiverse analysis [22]. 

Our research aligns with prior work on domain-specifc debug-
ging tools, which we apply to 3D CAD. Similar to the goals of other 
tools, we want to reduce commonly observed context switches to 
reduce user’s cognitive load [7, 32]. 

3 ANALYSIS OF ERRORS AND CHALLENGES 
The goal of this section is to analyze how users currently deal with 
reference errors in CAD to inform both the design of our prototype 
debugger and our lab study. 

First, what exactly do we mean by reference errors? We are 
assuming the following scenario. The user performs an edit on 
an operation ����� . Due to this edit, some subsequent operation 
����� will be the frst operation to now produce a diferent topology 
w.r.t. before the edit. Starting from ����� , all subsequent operations 
are now topologically diferent. However, a diference in topology 
is not necessarily unexpected or undesirable. Then, due to the 
topology change, some operation ��� � will reassign its references 
in an unintended way. We say that ��� � has a reference error. Due 
to the reference error, ��� � now generates unintended geometry, 
but it does not fail, i.e., the geometry kernel reruns successfully. We 
say that ��� � exhibits a geometric error. The geometric error will 
change the input for downstream operations, of which � � ��� is the 
frst downstream operation failing to regenerate and throwing an 
error. 

The abstracted operation sequence is the following: 
[..., ����� , ..., ����� , ..., ��� � , ..., � � ��� , ...]. 
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Importantly, a change in topology is not necessarily wrong. 
Caused by the reference error, it is the geometric error which derails 
downstream operations. The challenge is to locate ��� � among all 
the changes occurring between ����� and � � ��� . 

Next, we qualitatively analyze the features provided by GUI-
based CAD systems to fnd ��� � , Sec. 3.1. Then, we quantitatively 
analyze a dataset of reference errors and debugging traces, Sec. 
3.2. Lastly, we hypothesize debugging challenges that users face in 
current CAD systems, 3.3. 

3.1 GUI features in CAD systems 
When a user encounters a reference error, the user interface will 
look similar to Fig. 1 (bottom left). Inspecting a failed operation � � ��� 
(marked in red) will show an error message, ranging from more 
specifc messages, e.g. two entities are not intersecting anymore, to 
more generic messages which simply indicate that the operation 
could not regenerate. These error messages will be specifc to the 
failed operation, which is the visible symptom, but not the root 
cause of the problem, they are not indicating the reference error. 

The geometric change in Fig. 1 (bottom left) is easily visible, the 
initial part has been split in two and they are assigned diferent col-
ors. However, especially in a multi-part CAD model and depending 
on the current 3D view, geometric changes can be challenging to 
discover. 

For debugging, users need to gather information about both the 
program behavior and about the geometric behavior of their model. 
For this discussion and throughout the rest of the paper, we will 
talk about the diferent model states of a CAD model. A CAD model 
changes its model state if the program has been edited or if the 
last executing operation has been changed. The main 3D modeling 
view of a CAD system shows one model state at a time. 

Features to navigate the program. CAD systems have developed 
several UI features to explore the operation sequence, i.e., the pro-
gram. 

There are three main interactions which, starting from an oper-
ation, give the user information about the operation’s geometric 
behavior, see Fig. 3. For example, users can inspect an operation 
by entering an edit mode, see Fig. 3 (middle), which changes the 
visualized model state to the selected operation. 

Users can also inspect operation dependencies, which opens a 
sublist view of all operations which created or modifed the opera-
tion’s input entities. Note that in Solidworks[5], the CAD system 
closest to Onshape, users create a tree of operations, which reifes 
operation dependencies and exposes them by default. 

Lastly, some CAD systems have version control systems (VCS), 
similar to VCS used in software engineering [14]. It allows users 
to overlay geometry from diferent, timestamped versions of the 
CAD model, which are always executed until the last operation. 

Features to navigate the geometry. CAD systems propose stan-
dard visualization tools, such as hiding diferent parts, curves and 
sketches and rendering only wireframe geometry. Users can also 
create section views, which are invisible 3D planes to create a cut 
in the geometry and hide the part closest to the user, creating a vi-
sualization similar to section views found in engineering drawings 
[11]. 

Features to navigate the program and the geometry. CAD systems 
also provide features to interact between the two domains. Hov-
ering over an operation highlights which geometry was created 
or modifed, and vice-versa, clicking on a geometric entity will 
highlight the operation(s) which created it. Users can undo and 
redo actions which they performed in the GUI. This action history 
works linearly and mixes program actions and geometry actions. 
As a consequence, if a user wants to undo an edit they have to undo 
all intermediate actions that they have performed since the edit, 
including non-programmatic actions like hiding 3D parts. 

Summary. We observe that CAD systems provide features for 
inspecting the diferent operations of the CAD program and for 
inspecting 3D geometry. These features have been designed for 
working with a single model state. 

3.2 Creating and analyzing a CAD error dataset 
In this section, we create and analyze a dataset of reference errors 
to gain further insight into how reference errors occur in the real 
world and how users overcome them. This dataset was also used to 
fnd examples for our lab study. The data originates from Onshape’s 
public documents, which comes from users who have agreed to 
make their document publicly available. These documents contain a 
modeling history, which is a log of changes made to either the CAD 
program or to the visibility of geometry. The modeling history does 
not contain more detailed UI traces such as the two frst temporary 
model state changes from Fig. 3. 

Onshape provided us with 200 high-quality CAD documents 
(featuring a high number of the variable operations) which result in 
1768 modeling histories. Out of all edits performed on a CAD model, 
5123 of them cause a subsequent operation to fail for the frst time, 
which is a total of 3% of all edits. In total, 75% of error messages are 
directly related to reference problems. Of the remaining, 8% may 
hide reference errors. 

Debugging segments. We are interested in segments of the mod-
eling history where a reference error occurs and the user manages 
to fx it. We call them debugging segments. Formally, we defne a 
debugging segment by a sequence of successive modeling history 
entries which starts with a CAD model without any errors, fol-
lowed by an edit that causes one or multiple operations to break 
and which ends without any errors. Additionally, we impose that (1) 
the CAD program should have the same operations at the start and 
at the end of the segment and that (2) the segment cannot contain a 
sufciently high number of undo actions to remove the initial edit. 
In total, our dataset contains 3243 debugging segments. 

We conceptualize debugging reference errors as a searching 
process between an edited operation ����� and a failed operation 
� � ��� , see Sec. 3.1. We defne the number of operations between 
these two operations as the error range, i.e., the length of the opera-
tion sequence which users have to parse. The distribution of error 
ranges in our dataset is a long-tail distribution with many short 
error ranges where � � ��� occurs only a couple of operations after 
����� . Similarly, if we look at how long users took for debugging 
an error, we can see a similar distribution where the median time 
is under a minute to solve an error, see Fig. 4. However, looking at 
segments with an error range higher than 5, the median debugging 
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Figure 3: CAD systems provide diferent interactions to inspect operations. Left: Hovering over an operation highlights geometry 
created by the operation. Middle: Editing an operation shows the 3D model only until the selected operation and its created 
geometry. Right: Moving the rollback bar to an operation permanently stops the execution of any subsequent operation. 
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Figure 4: Distribution of debugging times in our dataset. 
While many errors are easy to fx, 10% of the debugging seg-
ments take longer than 4 minutes to debug. 
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Figure 5: Distribution of actions taken during debugging. The 
four most common actions are: Edit an operation; Hide ge-
ometry; modify the Rollback Bar (see Fig. 3); Undo an action. 

time increases to 4 minutes. This confrms that the current CAD 
features already work well for close-by errors but also that debug-
ging becomes increasingly more difcult with growing program 
complexity. Note that our dataset contains only errors which users 
actually managed to solve, which means that we might not capture 
many challenging errors. 

How do users tackled errors in our dataset? Counting the num-
ber of most used operations, see Fig. 5, we can see that a common 
strategy performed to tackle an erroneous edit is to perform more 
edits. Users also frequently toggle on and of the visibility of geom-
etry (Hide action) and they change the model state by changing the 

last execution of the program (called Rollback Bar in Onshape). 
On fourth place, users use both the Undo and Redo action. This is 
aligned with the navigation features listed in Sec. 3.1. 

3.3 Hypothesized challenges and conceptual 
model 

From these observations, we hypothesize four fundamental chal-
lenges in debugging CAD reference errors: 
Challenge 1: Geometric Complexity To understand reference 
errors, users need to identify intended topological changes and un-
intended geometric errors. Complex geometry can make it tedious 
to perform these evaluations and even lead to overlooking changes. 
Challenge 2: Program Complexity Users need to analyze each 
operation in detail to identify where the error occurred. For longer 
programs, this becomes more challenging. 
Challenge 3: Analyzing Multiple States Since references are bro-
ken after an edit, identifying them involves understanding how the 
model changed after the edit. This in turn involves understanding 
the model in two states (before and after the edit) and comparing 
them. 
Challenge 4: Reference Dependencies Between Operations 
Since references point to geometric entities created at any point 
in the program, discovering reference errors and resolving them 
requires analyzing the operations in context and understanding the 
dependencies across diferent operations. 

Inspired by these four challenges, we hypothesize a conceptual 
model that represents the user’s investigative process as they search 
for an unintended reference change within the CAD program. This 
model, illustrated in Fig. 6, features a two-dimensional exploration. 
The frst dimension represents movement between operations. Sim-
ilar to lines in a program, the operation structure of a CAD model 
has to be periodically rediscovered by the user (Challenge 2). The 
second dimension involves transitioning between two states: before 
and after the edit (Challenge 3). Each point in this 2D space has 
geometric information that must be inspected (Challenge 1). Fi-
nally, points in this 2D space must be analyzed in context to extract 
reference dependencies (Challenge 4). 
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Before edit

After edit
Start/End

Figure 6: Our conceptual model for debugging reference errors. Users need to understand the programmatic modeling sequence 
(horizontal dimension) and the diferences before and after the edit (vertical dimension). Since CAD systems present a single 
view at a time, users often create a mental map of these model states by interactively navigating this 2D space (arrows). For 
example, users will use undos and the rollback bar to navigate the vertical and horizontal dimensions, respectively. 

4 PROTOTYPE: DECAD 
Our goal is to understand challenges and workfows involved in 
debugging reference errors and how to support them. For this 
purpose, we created a DeCAD, a prototype debugger for CAD. We 
will use DeCAD as a probe for our lab study and to inform future 
tool designers. 

The following design goals are directly derived from the chal-
lenges listed in Sec. 3.3: 
DG1. Facilitate the collection of per-operation information and sum-
marize it succinctly. After performing an edit, the user should be 
assisted in the search of the operation featuring an unintended 
reference change. The user should be able to quickly pinpoint oper-
ations worth investigating. Searching for this operation requires 
efciently collecting per-operation information. 
DG2. The tool should help the user to efortlessly compare multiple 
operations in detail. During debugging, users need to understand 
how an operation sequence works and how it changed after the edit. 
The tool should support this two-dimensional exploration problem. 
DG3. A debugging tool for CAD should support discovering change 
both in geometry and in references. Confronted with unintended 
entity matching results, users need to discover arbitrary changes in 
references and geometry, made by the CAD system. CAD models 
can be complex and change blindness and out-of-view parts of 
interest should be taken into account. 

Based on the three design goals, we have implemented three 
groups of features in DeCAD: (DG1) a volume diference chart; 
(DG2) a two-dimensional view of the CAD operations; (DG3) per-
operation shape comparison features between edits and reference 
arrows. Each feature will be explained in the following sections. 

4.1 Volume diference chart 
When confronted with a reference error, one of the main challenges 
that a user is facing is to fnd out which operation is subject to an 
unintended reference change. With current CAD systems, the user 
can only inspect operations one at a time to gather information 
about changes w.r.t. the edit. 

Figure 7: The volume diference chart presents scalar infor-
mation about geometrically divergent operations without 
the need to inspect each operation at a time. The top row 
shows what this geometric diference corresponds to. 

Instead of the user executing this repetitive task, we propose a 
feature to provide a succinct, scalar answer for all operations to a 
question which can be proceduralized. 

More specifcally, our idea is to investigate change in geometric 
behavior of an operation after an edit. We ask the following ques-
tion: what is the boolean diference at operation �� between the 
model’s geometry after the edit and before the edit? Mathematically, 
this question corresponds to Eq. 1 : 

�� � � (�� ) = ��� (�after (�� ) − �before (�� )) (1) 

where ��� is the scalar volume function, �after (�� ), �before (�� ) is 
the CAD model’s geometry at operation �� after the edit and before 
the edit, respectively. We visualize these values in an operation 
timeline chart, see Fig. 7. We also highlight operations with an 
increasing diference w.r.t. to the previous operation with a larger 
circle. 

The intended use of this feature is to locate operations which are 
worth inspecting in more detail, based on the divergence in geo-
metric behavior. For example, it is often worth inspecting the frst 
operation which diverges geometrically after the edited operation. 
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After edit

Before edit

Figure 8: Using the two-dimensional view feature, the user 
can select operations which they want to compare. 

Note that a diverging operation might be diferent from a failed 
operation, see Sec. 3.1. 

4.2 Two-dimensional view 
To support the comparison between multiple model states, we 
propose a two-dimensional panel view feature. To build the visual-
ization, the user selects operations in the standard CAD interface 
and then clicks on the start button, see Fig. 8. This will unroll the 
model states for the selected operations in a two-dimensional grid 
structure, where the top row visualizes per-operation model states 
before the edit and the bottom row visualizes per-operation model 
states after the edit. With multiple model states unrolled in this 
view, the user can avoid frequent context switches to compare them. 

Note that visual programs are often represented with node graphs, 
e.g. Adobe Substance. However, graph representations take up more 
screen space to account for operation dependencies. Inspired by 
[24], we adopt a comic-strip layout because it is the most economi-
cal layout in terms of screen real estate. This choice also stays close 
to the list-like representation of the host CAD system, where the 
operations of a model are represented as list of operations, hiding 
their dependency structure away from the user. 

Each panel is a 3D scene, that the user can interact with. The 
typical 3D camera controls, i.e., zoom, pan and rotation are synchro-
nized between all panels. Thanks to this, when the user is looking in 
one panel at a particular part of the 3D geometry, other panels are 
showing what this part of the geometry looks like at diferent model 
states. In practice, we use a single camera which is shared among 
all 3D scenes. Similarly, the user can select parts to show and hide, 
using a similar interaction as in the host interface. A selected part 
will be hidden among all operations in the same row. However, part 
identifers before and after the edit are not necessarily the same 
and we therefore cannot synchronize this feature between the two 
rows. 

Hovering over an operation panel will highlight input entities in 
the previous panel in which they appeared last. For example, a se-
lected sketch face will be highlighted in the sketch operation which 
created the face. This highlight can be made permanent by clicking 
on an operation panel. The highlighting feature is synchronized 
among columns to facilitate comparison before and after the edit. 

Direct comparison Overlay Boolean difference

Figure 9: Instead of comparing side-by-side geometry (left), 
the user can overlay geometry and change their opacity (mid-
dle) or they can visualize the boolean diference (right). 

4.3 Comparison features 
We want to support the discovery of change, both in geometry and 
in references. The two-dimensional panel view already provides a 
means of comparing geometry visually by synchronizing 3D model 
states before and after the edit. The model before the edit will be 
shown in the top panel and the model after the edit will be shown 
in the bottom panel, see Fig. 9. The user can use this stacked view 
to compare geometry and highlighted input entities. 

However, for more complex models, we ofer additional features. 
First, the user can overlay the geometry from the top row onto the 
bottom row. The transparency of the overlayed geometry can be 
modifed if needed, see Fig. 9 (middle). This feature is also useful to 
recontextualize geometry from both rows after a major change. 

Second, the user can directly visualize the boolean diference 
in geometry between the two rows. More specifcally, we subtract 
the geometry from before the edit from the geometry after the edit. 
The resulting geometry will be shown in red. We also perform the 
boolean diference in the opposite direction to obtain the geometry 
which has been added after the edit. This geometry will be shown 
in green. 

Third, we provide reference arrows to support the discovery of 
changing references. Reference arrows point from an operation 
to its input entities, see Fig. 10. They are implemented as leader 
lines, which point from an operation panel to an entity from a 
previous operation, they point from right to left. We fx the starting 
point of each leader line on the left side of the operation label. The 
anchor point of each leader line, i.e. its end point [52], points to the 
projected area of a 3D entity. We optimize for the best anchor point, 
which is a challenging problem [15]. We simplify the problem by 
considering each leader line separately and by adopting a simplifed 
notion of saliency to choose an anchor point. Inspired by [15], 
we want to select the 2D point which is furthest away from the 
boundary of its region and which is closest the right side of the 
panel. While the frst criteria favors points which are local centroids 
and far away from thin features, the second criteria accounts for 
the fact that leader lines come in from latter operations, i.e., from 
the right side of the panel. More specifcally, we maximize Eq.2. 

� 
�������� ((�,�)) = �������ℎ������ ((�,�)) + (2)

������ 

To improve runtime behavior, we solve the optimization problem 
only if the view has been modifed by the user and only every 
second (and not every frame), which we found to work well in 
practice. While recomputing the most salient point, we lift the most 
salient 2D point back to its 3D entity and defne this salient 3D 
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Participant ID P1 P2 P3 P4 P5 P6 
CAD systems 
Years of experience 

O, S 
> 5 

O, S, I 
> 5 

O 
< 1 

O, S 
1-3 

S 
> 5 

O, S, I, F 
> 5 

Out-of-view references

Pan view to
discover references

Reference comparison

Figure 10: The user can activate reference arrows to show 
which entities have been used by which operation (left). Ref-
erence arrows are also useful to discover out-of-view entities 
(right). 

point as the anchor point of the leader line, whose position is being 
updated every frame. Lastly, we only compute salient anchor points 
for currently highlighted entities. 

Leader lines for non-highlighted entities are rendered trans-
parently to not obstruct the view unnecessarily, yet they are not 
invisible to be discoverable. Leader lines can be toggled on or of. 

Reference arrows help the user to distinguish which entities 
have been used by which operation and to emphasize change in 
use of entities, see Fig. 10 (left). They are also helpful to discover 
referenced entities which might be out of view from a particular 
3D viewpoint. They provide the user with an incentive to discover 
diferent parts of the 3D scene. 

4.4 Implementation 
We implemented DeCAD as an extension to Onshape. Extensions 
are websites exposed through an iframe in the CAD system. Our 
website is implemented in html/css/javascript, using three.js [6] for 
3D rendering. The website exchanges messages with a local python 
server which performs REST API calls to download program and 
geometry data from Onshape. The python server also performs 
geometric computation with a local Parasolid [3] version, which is 
the geometry kernel used by Onshape. 

For the volume diference chart and for the two-dimensional view 
feature, we require intermediate geometry for two diferent versions 
of the CAD program. While CAD systems often cache intermediate 
geometry for the current program, for example to allow users to 
quickly inspect intermediate geometry, they do not keep geometry 
from previous versions. Similarly, the boolean computation for the 
volume diference chart takes additional time. We emphasize that 
these are not conceptual limitations for the proposed features. For 
the lab study, we download necessary geometry in advance and 
pre-compute boolean diferences. 

5 LAB STUDY 
Using debugging as a metaphor for how users fx reference errors 
in CAD, we conduct a qualitative lab study. The goal of the lab 
study is to observe challenges that users face in practice, and what 
debugging workfows they gravitate towards to overcome them. Ad-
ditionally, we want to understand the efects of a debugging-specifc 
intervention in an already existing CAD system via a tangible tool, 
DeCAD, and to advise design implications for future tool builders. 

Table 1: CAD systems: O: Onshape, S: Solidworks, I: Inventor, 
F: Fusion360. 

The examples used in the study are challenging cases from the 
dataset created in Sec. 3.2. 

5.1 Research Questions and Methods 
The lab study was designed to investigate the following research 
questions: 
RQ1 - Challenges What challenges do CAD users face when debug-
ging reference errors? Do these match our hypothesized challenges? 
What additional challenges do they face? 
RQ2 - Workfows What debugging workfows do users adopt? In 
what ways are they diferent from our hypothesized workfow? 
RQ3 - Tool How does our tool address challenges faced by CAD 
users? What new workfows does DeCAD enable? 

Study protocol. The study was conducted in a lab using a Mac-
Book Pro on a 23-inch monitor, a keyboard and a mouse. The study 
itself was structured in 3 phases: a tutorial phase, fve debugging 
tasks and two follow-up questions. 

The tutorial phase began with a video explanation of DeCAD in 
the context of an erroneous edit. To familiarize participants with 
our tool, they were asked to use DeCAD themselves on the same 
model to debug it. 

For the debugging task phase, participants could ask questions 
about Onshape, the tool or the task itself, but they were not given 
any hints about the source of the reference error. Each debugging 
task started with the modeling context in the form of an image 
illustrating either the real-world inspiration for the model or the 
use of the model in a larger assembly. Then followed a video with 
an edit on the model, leading to a reference error. Next, participants 
were asked to open an Onshape document containing the working 
model, and to replicate the edit themselves. Next, participants were 
asked to fx the model within 10 minutes. More specifcally, fxing 
the model was framed as to "correct all errors without removing or 
adding features and without changing the edit". Framing the task in 
this way prevented participants from any major remodeling, but it 
was still open ended enough to allow for multiple solutions. 

Participants could always use all the tools available within On-
shape, and for some tasks they were asked to also use DeCAD. We 
randomly assigned which participants could use DeCAD, so that 
we would observe participants with and without the tool on the 
same task. After the time-limit or when they fnished debugging 
the model, we asked them what went wrong in the model and how 
they fx it. 

In the last phase of the study, we asked participants what aspects 
of DeCAD they found the most useful and how they would improve 
the tool. In this part, participants could give feedback and engage 
in an open discussion around the errors and the tool. 

The study lasted approximately one hour and participants were 
compensated with a 30$ Amazon gift card. With the consent of 
the participants, we recorded their audio and screen and later tran-
scribed the sessions. 

https://three.js
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Figure 11: Interaction with DeCAD. (1) Using the volume diference chart, the user identifes the frst geometrically divergent 
operation, Extrude138. After selecting Extrude138 (2) and the edited operation Sketch69 (here out of view), the user discovers 
the reference error in the two-dimensional view (3). A semi-circle has been extruded, adding an unintended bump to the 
previously straight edge. The frst failed operation, Sketch75 appears 47 operations after the edit, making this error difcult to 
locate without DeCAD. 

Participants. The debugging tasks in our study involve three 
components which can be challenging for participants. First, CAD 
systems are known for having a steep learning curve. Second, partic-
ipants will need to learn how to use our tool within the time allotted 
during the study. Third, participants will need to understand the 
workings of an unknown CAD model. 

Anticipating these challenges, we were looking for participants 
with extensive experience in a parametric CAD system to lower 
at least the impact of the frst challenge. We contacted CAD users 
through relevant mailing lists and messaging channels within our 
institution. In our sign-up form, we asked potential participants in 
what context they use CAD, which CAD software they are most 
familiar with and for how many years they have been practicing 
CAD. We ran the entire study with 13 participants. After observing 
challenges related to learning parametric CAD concepts or adapt-
ing to substantial software diferences, e.g. users who were only 
familiar with Solidworks, we discarded 7 participants. Finally, we 
retained data from six expert participants who either have been 
using Onshape or Solidworks for a long time (over 5 years) or who 
have been primarily using Onshape for a shorter time, but also for 
side projects, see Table 1. 

5.2 Results 
Based on participants’ interactions and answers during the lab 
study, we identify 5 challenges that were commonly encountered 
and four workfow phases. Using DeCAD, participants managed 
to overcome our hypothesized challenges and to employ a new 

workfow. However, using our tool, they also encounter two new 
challenges. 

These results are best understood by looking at the interactions. 
Please refer to the accompanying video and the supplemental ma-
terials. 

5.2.1 What challenges do users face when debugging reference er-
rors? We examine the sessions to confrm that the four challenges 
identifed in Section 3.3 refect reality. Our analysis reveals evidence 
to support each of the four initially hypothesized challenges, along 
with the identifcation of an unforeseen ffth challenge. 

Challenge 1: Geometric complexity. We observe that partici-
pants invest time interacting with 3D geometry to improve their 
understanding, e.g. by hiding 3D parts, rotating around the model, 
and zooming into various parts. 

P4 described that geometric information can be obstructed by 
diferent parts of the scene: "That was hard to identify, because there’s 
other parts in the middle. This gear gets in the way this part gets in 
the way, and it was difcult to tell that without just going through 
feature by feature." (P4) 

Whereas another participant strategically decided to get a holis-
tic view of the geometric change before inspecting operations: "I 
guess it might be good to just compare back and forth frst, to see 
what are we expecting to change with the whole. And what are we 
not expecting to change with it." (P2) 
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Figure 12: CAD model states of three debugging sessions without DeCAD (top row) and with DeCAD (bottom row). Each step 
along the x-axis represents one model state change. The y-axis indicates the index of the current operation in the CAD program. 
The label Pi-Tj stands for participant i on task j. We identify four common debugging phases: (1) [��, �� ]: Searching for the 
most relevant geometric error, often by undoing the edit. (2) [�� , �� ]: Searching for the frst operation featuring a reference error, 
often by inspecting many operations. (3) [�� , �� ]: Gathering contextual information, often by inspecting operations leading up 
to the faulty operation. (4) [�� , �� ]: Acquiring more detailed information to correct the reference error, often by undoing the 
edit. In the bottom row, we observe that frequent model state changes are being replaced by fewer but longer interactions with 
DeCAD’s features. 

Challenge 2: Program complexity. Users were challenged by 
the need to explore a long list of operations. When faced with an 
error, participants have little guidance about what operations to 
inspect apart from error messages from failed operations. These 
were generally not perceived as helpful: "Okay, we’re missing a 
reference to geometry. But what geometry? Good luck!" (P2) 

One common pattern was to start inspecting one operation and 
to discover changes leading up to that operation. Participants did 
not describe this process constructively: "So I kind of spent a while 
digging around through some other things to see if the error happened 
earlier. One of the main points I wasn’t sure about was at what point 
did it happen?" (P6) Other participants described this as "just going 
through feature by feature" and as "some more poking". Additionally, 
participants found it useful to undo the edit multiple times, see Fig. 
12 (Phases (1) and (2)). 

Challenge 3: Analyzing Multiple States. The need for simul-
taneous understanding of the before and after states was evident 
by users undoing and redoing the edit. As explained in Sec. 3.1, the 
undo function in CAD systems includes not only program changes, 
but also other UI interactions which are being used for program 
exploration. This means that often an edit cannot be undone via a 
single click and participants had to enter the edited operation and 
reverse the edit manually. This explains the strong oscillations in 

the frst three session diagrams in Fig. 12. This also makes geometry 
comparison between diferent program states more tedious. 

Challenge 4: Understanding reference dependencies between 
operations. To fnd out how to fx an error, most users will try to 
understand what caused an unintended change. One common strat-
egy is to inspect operations leading up to the suspected reference 
error and to undo the edit several times to gain visual confrmation, 
Phase (3) and Phase (4) in Fig. 12, respectively. 

However, we observe that the underlying mechanism for changes 
is not always obvious to participants: "That is what I believe went 
wrong. . . . I don’t know that I’m 100% confdent in knowing why 
changing something in Sketch 69 caused the other part to have an 
error." (P6) 

Not understanding why a change occurred might the reason for 
participants undoing the edit multiple times just before correcting 
a reference error. This general lack of explainability from CAD 
systems was well expressed by P1: "I don’t understand how this 
works, but I built enough intuition." (P1) 

Additional Challenge: Verifcation. While not previously hy-
pothesized, we observe in our study that participants not only 
struggled to explain why something changed but also often lacked 
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confdence in their fx. "I don’t know if I fxed it correctly. But it’s not 
angry anymore." (P3) 

Interestingly, there is no guarantee for the absence of other silent 
errors which have not caused any other operation to fail. "I guess we 
don’t have errors. I’m not entirely convinced the model will actually 
work." (P2) 

5.2.2 What debugging processes do users adopt? Even though par-
ticipants showcased idiosyncratic interactions with the CAD sys-
tem, we observed four commonly encountered debugging phases: 
(1) Locate topological changes; (2) Searching for reference errors; 
(3) Understanding the context; (4) Understanding how to correct 
an error. 

(1) Locate topological changes. Confronted with an erroneous 
edit, participants frst searched for what particular part of the 3D 
model changed w.r.t. before the edit. This is achieved by undoing the 
edit multiple times and navigating the 3D geometry to understand 
what parts have changed. 

(2) Searching for the reference error. After locating the gen-
eral 3D region, many operations are being traversed to search for 
relevant operations. 

(3) Understanding context. Once an operation is being sus-
pected as likely to have a reference error, local context information 
is gathered to rule out a false positive. 

(4) How to correct the error. Since no straightforward expla-
nation about a change is provided to participants from the CAD 
system, participants try to semantically copy the references from 
before the edit, applied to the new topology of the model. This can 
require multiple undo actions of the edit. 

5.2.3 How does DeCAD address challenges faced by CAD users? 
We found that participants managed to use DeCAD and to integrate 
it in their debugging process. In participants’ workfows, DeCAD 
replaces frequent model state changes by a few interactions with 
the volume diference chart and the two-dimensional view features, 
see Fig. 12. 

We observed that DeCAD was helpful tackling the aforemen-
tioned debugging phases. While DeCAD helps to minimize the 
number of undo actions to understand diferent model states, it 
does not support undoing exploratory edits to fx the error. DeCAD 
also introduces two new challenges: additional CAD program states 
can lead to confusion and sometimes too much visual information 
is introduced with reference arrows. 

Finding unintended topological changes and reference er-
rors. A common pattern for fnding relevant geometric changes 
was to use the volume diference chart as a useful starting point. 
"It helped me pinpoint where to go look. [. . . ] in one case, the sketches 
like way over here to the left, and then you only saw that errors come 
up later. [. . . ] I probably would spend a lot of time focusing on the 
errors right around that sketch." (P1) 

Participants were aware of the gap between the information 
provided by the host CAD system and the hidden operation that 
they had to fnd: "Having this ability to see when something is chang-
ing the model, not necessarily when an error is introduced, is really 
helpful. Because usually, I think in many of these cases the problem 

with the error is not with the feature that has the error, but it’s some 
sort of feature leading up to it. " (P2) 

The interaction logs show that the frst two to three debugging 
phases are often replaced with a few usages of the volume diference 
chart and the two-dimensional view, see Fig. 12. 

Discovering changes. Once a problematic region of operations 
was identifed via the volume diference chart, participants used the 
two-dimensional view feature to visually inspect these changes. In 
this mode, for several participants, the "change in geometry aspect 
of it was really handy" (P3), i.e., the boolean diference visualization. 
The boolean diference complements the standard, constructive 
view of the host CAD system by a comparative view which visually 
explains what an operation might be missing: "We made a change 
in the extrude based of the sketch that was changed. It didn’t include 
all the pieces that it should have included. So I determined that was 
the case by looking at the volume diference" (P6) 

Several participants made use of the reference arrows and ap-
preciated this new visual vocabulary: "Because I think that’s one of 
those things that’s a little bit hard to compare. Otherwise is you’re 
looking at, okay, so we have this area of the sketches red, you know, 
or it’s changed, or something like that. " (P2). DeCAD’s comparison 
features helped users to tackle the last two debugging phases. 

Have I fxed it correctly? After fxing an erroneous edit, some 
participants lost trust in the correctness of the model because other 
operations could still be dysfunctional, even if it did not cause an 
error message. Unexpectedly, we found that the volume diference 
chart helped raising confdence in an edit, since participants could 
see which operations would introduce additional change: "I was 
pretty confdent that that would be the fx, because everything after 
that was just built of of Extrude 4. Because, like once you have this 
missing piece, everything else kind of looks like it’s also missing." (P6) 

New challenges. During one debugging task, P4 was confused 
by the three program states in front of them: one from the host CAD 
system and two from the two-dimensional view. This led to the 
participant trying to fx an error, even though they had temporarily 
undone the edit. 

The program states of the two-dimensional view are detached 
from the host CAD system by design to provide users with a per-
manent view of the entire operation sequence. However, as a side 
efect, this introduces additional cognitive load. 

Additionally, P6 commented on the lack of visibility when they 
used the reference arrows on task 3. When activated, too many 
reference arrows would be visualized by default. The participant 
mentioned that they wanted a more intelligent selection of relevant 
references, see Fig. 13. 

6 DISCUSSION 
In this section, we summarize our study fndings and the lessons 
that we have learned into a set of design guidelines for future 
debugging tool builders. Then, we mention the limitations of our 
work and discuss future work in this feld. 
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Figure 13: (Left) Initially, the user is presented a visual high-
light comparison of reference inputs. (Middle) Activating 
the reference arrow feature can be overwhelming. (Right) 
Ideally, we would want to select only relevant references. 

6.1 Design guidelines 
Comparative features. The features in DeCAD are largely driven 

by the need for visibility and juxtaposition in debugging [32]. How-
ever, currently CAD systems do not provide comparative features 
in the two-dimensional mode state space from Fig. 6. In the study, 
participants extensively used the comparison features and found 
it useful. Future tools should consider providing even more per-
operation comparative features. 

Tools should be as integrated as possible. While participants ap-
preciated the implementation of DeCAD as an extension to their 
already known CAD system, we observed that the tool could be 
even more integrated. In particular, the volume diference chart lets 
the user interact with a list of operations. However, in Onshape 
there is already such a list. 

Additionally, we observed that while it was helpful that the cam-
era was synchronized between the panels of the two-dimensional 
view, it would have helped some participants if the main view of 
Onshape would also be synchronized. We advocate for sharing a 
single 3D scene between editing and debugging views and a tight 
integration into the already existing UI instruments. 

Similarly to debugging tools in software IDEs, DeCAD does not 
need to be open all the time, we envision that it can be opened and 
closed on demand. 

Customize the comparative function. The volume diference chart 
feature is a useful comparative feature in cases where the edit does 
not intend to change the geometry early on. However, depending 
on the edit, a pure boolean diference operation as a comparison 
function might give a noisy and useless signal. We recommend 
that users can customize the comparison function that they wish 
to summarize in a timeline chart. 

As already mentioned, the reference arrows were sometimes 
perceived as introducing too much noise. We advocate for more 
intelligent, customizable selection tools for reference arrows. 

Customizable layout. Participants pointed out that they would 
have liked to open the two-dimensional view and the volume dif-
ference chart as external windows or as draggable panels. Indeed, 
introducing new debugging features should not signifcantly lower 

the screen real estate of existing UI elements. Besides from layout 
customization, we also recommend thinking of debugging informa-
tion as a kind of reference material used for 3D modeling and to 
explore the idea of providing temporal features which have been 
proposed in the context of digital drawing tools [28]. 

Improve discoverability. Particularly for references, we observed 
that discoverability is an issue, even in a single model state context. 
Depending on the current 3D view, referenced entities might be 
overlooked or it might be hard to discover how many entities are 
currently being referenced. Our proposed reference arrows showed 
promising interaction behavior by introducing a new visual vo-
cabulary for references. For future tool-builders, we recommend 
improving the discoverability of the inner workings of CAD pro-
grams. 

6.2 Limitations 
Observations and data are Onshape-centric. For this work, we 

made the assumption that Onshape represents an industry-standard 
parametric CAD modeling tool. While the underlying principles of 
parametric CAD are shared among diferent tools, we think that 
it is important to acknowledge that there are also diferences. For 
example, Solidworks uses a diferent operation sequence represen-
tation, a tree, not a list, which reifes the dependencies between 
operations. Also in Solidworks, a sketch cannot be shared between 
multiple operations and the software does not allow multi-part 
modeling. These restrictions lower the impact of reference errors. 
Onshape gives users more freedom which comes at a price. 

Unknown models in lab study. In our lab study, users were con-
fronted with CAD models which they did not author themselves. 
Based on our discussions with experts, engineers work mostly on 
their own models or on models created by team members who can 
explain them. We argue that developing tools to explore unknown 
models is still useful. First, in software engineering as in CAD, a 
program which has not been revisited for a while has to be partially 
rediscovered even by the author themselves. Second, sharing CAD 
programs with others has been introduced by Onshape’s public 
documents repository. Models from this repository are commonly 
copied by other users who need to or want to discover how they 
work. Third, recent industry efort has been made to translate Solid-
works programs into Onshape programs [4]. This is potentially 
foreshadowing a future where CAD programs will be shared more 
widely among diferent CAD systems, as opposed to only geome-
try, as it is the case today, increasing the need for CAD program 
exploration tools. Lastly, with the future development of AI tools 
capable of working with code, images and 3D data, it is likely that 
CAD programs will be at least partially written by the tool itself 
[39]. Users will need tools to understand automatically generated 
CAD programs. 

6.3 Future work 
Broader applicability. DeCAD has been designed for debugging 

reference errors through visualization. However, DeCAD’s visual-
ization features can also be used to explore the functioning of a 
modeling sequence without the context of an edit by unrolling parts 
of the sequence and visualizing references. This could be especially 
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useful in an educational setting. Additionally, an edit does not need 
to provoke an explicit error message. DeCAD can be used to detect 
silent errors and to verify the absence of change in geometry and 
in reference assignment. 

Make suggestions. The features implemented in DeCAD support 
users in discovering relevant diferences in a CAD program before 
and after an edit. Future work could consider going one step further 
into working on algorithms which suggest to users which refer-
ences should be verifed. Since matching references is an ill-posed 
problem, it would be interesting to develop a sound, customizable 
matching tool to empower users. 

Other kinds of errors. In this work, we focused on reference errors. 
However, another major class of CAD errors, geometric errors 
would also beneft from future visualization work. For example, 
after an edit, guide and path curves for Loft operations might no 
longer be intersecting even though this seems to be the case to the 
naked eye. Knowing which curves are not intersecting, where they 
intersected before and why they no longer intersect each other 
are interesting questions at the intersection of programming and 
geometry. 

Trust in CAD systems. We observed in the lab study that users 
found it challenging to verify that the CAD model still worked after 
an edit, even without throwing any errors. This points to a larger 
question: why should a user trust a CAD system to not modify 
their program without their consent in unexpected places? And 
how do we recover the trust of the user in the model? Future work 
should investigate verifcation mechanisms for users and think 
about asking the user’s consent before making changes. 

7 CONCLUSION 
In this work, we tackle errors in CAD as a debugging problem. 
First, we analyze the domain-specifc debugging challenges which 
arise when reasoning about both geometry and program structure. 
Informed by this analysis, we prototype DeCAD, a debugger for 
CAD which supports users in comparing diferent model states. We 
use DeCAD in a qualitative lab study as a probe to better understand 
user’s challenges and workfows. We hope that our fndings will be 
informative for future tool-builders to support CAD designers and 
educators. 
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