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ABSTRACT

Probability surveys are challenged by increasing nonresponse rates, resulting in biased statistical inference. Auxiliary information
about populations can be used to reduce bias in estimation. Often continuous auxiliary variables in administrative records are
first discretized before releasing to the public to avoid confidentiality breaches. This may weaken the utility of the administrative
records in improving survey estimates, particularly when there is a strong relationship between continuous auxiliary information
and the survey outcome. In this paper, we propose a two-step strategy, where the confidential continuous auxiliary data in the
population are first utilized to estimate the response propensity score of the survey sample by statistical agencies, which is then
included in a modified population data for data users. In the second step, data users who do not have access to confidential
continuous auxiliary data conduct predictive survey inference by including discretized continuous variables and the propensity
score as predictors using splines in a Bayesian model. We show by simulation that the proposed method performs well, yielding
more efficient estimates of population means with 95% credible intervals providing better coverage than alternative approaches.
We illustrate the proposed method using the Ohio Army National Guard Mental Health Initiative (OHARNG-MHI). The methods
developed in this work are readily available in the R package AuxSurvey.

1 | Introduction can be used to improve survey inference [6]. Such data can be
obtained from sources such as administrative records.

Probability samples play an important role in survey research,
facilitating inference about health measures in large finite pop-

ulations using moderately sized samples. However, probability

When only discrete auxiliary variables are available, poststratifi-
cation or raking can be used to weight the sample to reduce bias

surveys have suffered increasingly high nonresponse rates in
the past several decades [1-5], which makes these probability
surveys often nonrepresentative, challenging the validity of sur-
vey inference. Auxiliary information about the target population

in the survey estimation [4, 5, 7, 8]. Poststratification requires
the joint population distributions of the auxiliary variables
to be known, whereas raking utilizes the more commonly
available marginal population distributions [7, 8]. Although
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poststratification and raking are easy to implement, the resultant
weights can be highly variable, and consequently, the weighted
estimators can be unstable [9-13]. Predictive inference rep-
resents an alternative framework for correcting nonresponse
bias, offering the advantage of improved efficiency in survey
inference [9, 10, 12-15]. Multilevel regression and poststrat-
ification (MRP) is a widely used model-based alternative to
the described weighted estimation approaches with important
applications in social and political sciences [14, 16]. MRP models
survey outcomes using a multilevel regression and can generate
accurate survey estimates even from nonprobability samples
[17]. Although MRP has an advantage in improving efficiency in
survey estimation over poststratification and raking, it requires
all the auxiliary variables to be discrete.

When administrative records contain individual-level continu-
ous auxiliary variables, MRP models cannot be directly applied.
Instead, prediction models that allow flexible associations
between survey outcomes and these continuous auxiliary vari-
ables are desirable. Liu et al. proposed a regularized prediction
approach using soft Bayesian Additive Regression Trees (BART)
[6], which predicts survey outcomes in the population using
detailed individual-level data from administrative records. This
approach has been shown to effectively reduce bias and improve
efficiency in survey estimates. However, individual-level con-
tinuous administrative records are often inaccessible due to
confidentiality concerns [18, 19]. With discrete auxiliary vari-
ables, only frequency tables of the population data need to
be released to the public to allow weighting or model-based
adjustments. In contrast, continuous auxiliary variables require
individual-level population information to facilitate prediction
or weighting. When confidentiality concerns prevent the release
of individual-level data, continuous auxiliary variables are often
discretized using percentiles or meaningful cutoffs before mak-
ing the population data available. Using discretized versions of
continuous variables may lead to efficiency loss in predictive
survey inference, particularly when there is a strong relation-
ship between the survey outcome and the continuous variables.
Therefore, we seek a data analysis strategy that makes the best
use of continuous information while avoiding the need to release
individual-level continuous variables.

In this paper, we propose a two-step strategy for predictive survey
inference that maximizes the use of continuous data information
in the population while controlling disclosure risk. In the first
step, statistical agencies with access to confidential adminis-
trative records link survey data with administrative records
and estimate inclusion propensities using both continuous and
discrete auxiliary variables. They then create a modified popula-
tion data set by replacing individual-level continuous data with
continuous inclusion propensity scores and discretized versions
of the continuous variables. In the second step, data users, who
do not have access to the confidential records, perform predictive
survey inference using the survey sample and the modified
population data. This division of tasks ensures that statistical
agencies handle the confidential data while data users conduct
survey inference with the modified population data. We conduct
simulation studies to evaluate the performance of this two-step
strategy compared with alternative methods. We also illustrate
this two-step strategy using the Ohio Army National Guard Men-
tal Health Initiative (OHARNG-MHI) Survey, estimating the

percentage of lifetime alcohol abuse among all service members
in the Ohio National Guard in 2008. Our R package, AuxSur-
vey, is available on Github: https://github.com/zjg540066169
/AuxSurvey and provides researchers with a user-friendly
interface for conducting analyses we discuss in this paper.

2 | Methods

2.1 | Notation and Background

We consider a target population consisting of N units with sur-
veyoutcome Y.LetZ = (Z,, ..., Z p)T denote p discrete auxiliary
variables and X = (X, ..., X q)T be g continuous auxiliary vari-
ables, known for the population. For simplicity, we let ¢ = 1. The
continuous variable X is usually not publicly available due to
confidentiality concerns. Instead, before releasing to the public,
X is discretized, denoted with X*, using percentiles or mean-
ingful cutoffs. The population can be partitioned into J disjoint
and exhaustive cells or poststrata defined by the joint distribution
of (Z, X*), with N, units in cell j, j =1...J and Z,{:le =N

where N; > 0. With ?j = Zfi/l yi/ N, the Bopulation mean of Y
within cell j, the overall population mean Y can be written as,
N J v
Zi=1yi Zjleij

0=Y = = )
J
N Zj:le

Let s denote a probability survey sample of size n selected from
the population with survey outcome values, y,, ..., y,. We can
then use (Z, X*) to divide the sample into J cells; the correspond-
. . . .. . J

ing sample size in cell j is n; with Z,-=1” ; = n and the sample
mean of Y in cell j_is y; = Z:’;l ¥;/n;. Assuming thaty; is an unbi-
ased estimate of Y I the poststratification estimator of § can be
written as

J —_
b= Zj=1Nij _ zlewiyi )
= - ===
Zj:1Nj Zi:lwi
where w; = N, /n; for sample unitiincell j,j =1, ..., J.

Alternatively, w; in formula (2) can be created using the raking
method when only population margins of (Z, X*) are available.
Raking weights are obtained via an iterative proportional fitting
procedure that begins by adjusting design weights to the marginal
distribution of the first auxiliary variable. These adjusted weights
are then updated to conform to the marginal distribution of the
second auxiliary variable. This process of updating the adjusted
weights is carried out for each auxiliary variable and the first iter-
ation ends when the weights are adjusted using the last auxiliary
variable. Subsequent iterations are performed until the weights
conform to the marginal distributions of all the auxiliary vari-
ables, that is, the algorithm converges [ 7]. The Newton-Raphson
method can also be used to obtain the same set of weights [8].

When (Z, X*) are related to survey outcome Y and the distri-
butions of (Z, X*) differ between sample and population, the
poststratification and raking methods can effectively reduce bias
in the estimation of 6, by assigning a weight w, for each sam-
ple unit. However, the weights can be highly variable, especially
when p+q is large and n; is small for some j, j =1, ...,J. Con-
sequently, the weighted estimator can be unstable. Alternatively,
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model-based approaches that predict the nonsampled units in the
population based on a prediction model of the sample units can
be used to improve efficiency in the 6 estimation.

The MRP model [14] has been widely used as a model-based alter-
native to poststratification. MRP uses a hierarchical regression
model to model the survey outcome of interest given the auxiliary
variables,

Py p
Z *
g EXI|Z, X)) =ay+ Zakzik + 2 am{i] + afn[i] 3

k=1 I=p;+1

where g(-) is a link function, such as using an identity link for
continuous Y and a logit link for binary Y; «, is the intercept;
a, is the slope associated with the binary auxiliary variable

Z., k=1,....p, and p, < p; and a”' and o* correspond to

mli] mli]

varying coefficients associated with polytomous variables Z,,
I=(p,+1),...,p, and the discretized continuous variable X*,
respectively, where m[i] indicates the category of the polytomous
variable to which the ith unit belongs. The varying coefficients
“and «* . are given independ ior distributi

: . given independent normal prior distributions,
mli] ml[i]

iid . iid .
f{i] < N(, z}) and s < N(O, 72,), and the variance compo-
nents (T(zp PN r;, 72,) are assigned a hyper-prior distribution
1

each using ~ inv-y2(v,c2) with a weakly informative or non-
informative prior for v and ¢,. Using Bayesian simulations, a
posterior draw of @ is then obtained by replacing Y, in (1) with
E(lez,X *)@, the dth draw from the posterior distribution of

E(Y|Z, X*) for units in cell j, withd =1, ..., D,

[0

o

J -~ d
TN Bz X

J
Zj:le

x

(C))

The posterior mean or median of @ serves as the estimate for 6.

The hierarchical structure in MRP partially pools estimates in
poststrata formed by the auxiliary variables [17, 20, 21], and
improves the estimation of 7j in cells with sparse data by bor-
rowing data information from other poststrata. It also improves
efficiency in the estimation of population means in the presence
of dispersed weights when models are well constructed [11, 13].
The model in (3) can also be extended to include two-way or
higher order interactions between auxiliary variables [22, 23].

2.2 | Generalized Additive Model of Inclusion
Propensity

When the administrative records contain continuous auxiliary
variables, discretizing the continuous variables may result in the
loss of important information, especially when there are strong
smooth relationships between the continuous auxiliary variables
and the survey outcome. In the missing data literature, Little and
An [24] showed that a penalized spline of propensity prediction
model can improve mean estimation when imputation models
are misspecified, where the logit-transformed estimated response
propensity is included in the model using a spline. We borrow this
modeling idea. In addition to including X* as covariates in the
prediction model of the survey outcome, if the sample inclusion
propensity is available, we can also include the logit-transformed

inclusion propensity as a covariate in the prediction model. With
the sample inclusion propensity in conjunction with discretized
variables, we aim to best utilize the continuous auxiliary infor-
mation when access to the individual-level continuous data is not
feasible. Thus, we propose a two-step strategy. In the first step, sta-
tistical agencies who have access to the confidential administra-
tive records link survey sample with administrative records and
estimate the inclusion propensity for both sample and nonsam-
pled units using the continuous and discrete auxiliary variables
measured in the population. They then create a modified popula-
tion data set by replacing the continuous variables X with X* and
the estimated inclusion propensity. In the second step, the data
users, who do not have access to administrative records, utilize
this modified population data together with the sample data for
survey inference.

The sample inclusion propensity can be estimated using a
propensity model [25-27]. Let the sample inclusion indicator I
be coded as 1 for the units in the sample and 0 for the rest of
the units in the population. The estimated inclusion propensity,
denoted by #; for unit i in the population, can be obtained via fit-
ting a logistic or probit regression of I on the discrete auxiliary
variables Z and the original continuous variables X by linking
survey sample with administrative records. When the number of
auxiliary variables is small, parametric or semi-parametric regres-
sion models can be used to estimate the propensity score. When
there exist high-dimensional auxiliary data, machine learning
methods such as binary BART are recommended [6].

The estimated sample inclusion propensity can be included in
the modified population data together with the discrete auxiliary
variables, and serve as a covariate in the prediction model for Y.
Despite the advantages of MRP, the varying coefficients of a;‘:[i] in
the MRP model in (3) assume an exchangeable prior distribution.
Because X * is discretized from the continuous X, the ordering of
the categories of X * may matter. When there is a smooth relation-
ship between X* and Y, an exchangeable prior distribution is not
sufficient. Therefore, we extend the MRP model in (3) to allow a
smooth relationship of Y with both X* and logit(%),

Py p
* Z
QENIZ, X ) =g+ Yt Zy + D, am
k=1 I=p,+1

+ 51 (x7) + s,(logit(z,)) (5)

where 5,(x7) and s,(logit(%;)) are smooth functions of x* and
logit(#;), respectively. These smooth functions allow flexible asso-
ciations between the specified covariates and the survey outcome
and thus protect against potential model misspecification.

When the association between X and Y varies between different
levels of a categorical variable, say Z; with H levels, model (5) can
be extended to reflect the interaction effect by allowing different
smooth functions of X* and logit(#) in each level of Z;,

Z
mli]

P 14
SEWIZ. X)) =g+ Y Zy+ Y @

k=1 I=p,+1

H H
+ s + Y sy (logit(7))  (6)
h=1 h=1
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where s,,(x}) and s,,(logit(#;)) are smooth functions for x* and
logit(#,) in category h of Z;.

The smooth functions can be modeled using spline or kernel
functions. In this article, we use a smooth spline to model each of
these associations. We execute the Bayesian generalized additive
model (GAM) in (5) and (6) using the stan_gamm4 () func-
tion in rstanarm, an R package that estimates models using
RStan [28]. RStan is an R interface to Stan for obtaining Bayesian
inference using the No-U-Turn Sampler, a variant of Hamilto-
nian Monte Carlo [29, 30]. The stan_gamm4 () function fits
the specified GAM by adding priors on the hyperparameters of
smooth splines, which is different from performing (restricted)
maximum likelihood estimation with the 1me4 package in R.
Bayesian estimation provides better estimates for the uncertainty
in the parameter estimates. We monitor the convergence of our
parameter estimates using the convergence measure R that sug-
gests the chains mix well if close to 1.

Models (5) and (6) are used to yield predictions for Y among the
nonsampled units in the population [11, 13, 14]. Our model-based
predictive estimator of 6 is written as

N
émle(Zyi"'Zﬁi) =N1<Zﬁ,«+2(yi—ﬁi)> (7)
i=1

i€s i¢s i€s

where y, denotes the observed Y in the sample, and j; denotes
the predicted Y based on the prediction model. The posterior dis-
tribution of @ is simulated by generating a large number of draws
using the predictive estimator, with the median of these draws
defining the generalized additive model of propensity (GAMP)
estimator.

3 | Simulation Study

3.1 | Design

We simulate a population of size N = 3,000, and generate
three independent binary variables Z = (Z,,Z,,Z;) with
the marginal probabilities of (0.7,0.5,0.4) and one contin-
uous variable X with a standard normal distribution. We
consider two survey outcomes generated using additive
nonlinear models. The first is a continuous outcome with
Y, ~N(15+2.5Z, — Z, + Z, — 2X +3.75X%,3). The second
is a binary outcome Y, generated via logit(Pr(Y,=1)) =
—2.5+0.75Z, —2.5Z, +1.5Z; — 025X + 1.5X%. Both mod-
els show a smooth association between X and survey outcomes.
We then select a sample with approximate n = 600 cases from the
population. We repeat this simulation process 500 times. We com-
pare the performance of various estimators under three settings
using absolute empirical bias, root mean squared error (RMSE),
and average width and coverage rate of the 95% confidence or
credible interval (CI). Credible intervals for Bayesian methods
are calculated using the highest probability density method.

Let 6, be an estimate of the population mean 6, in the " simu-
lation, t = 1, ..., 500. The absolute empirical bias and RMSE are

defined as follows,

500
Absolute bias = ‘%Z(@, - 9,)|,
t=1

RMSE =

Estimators with smaller absolute bias, smaller RMSE, shorter
95% CI, and coverage rate closer to the nominal level are desired.

3.2 | Setting One: X is Associated With Both
Outcome Y and Inclusion I

In this setting, we consider samples selected via an inclusion
model, logit(z) = —1.25 - Z, + 1.25Z, — 0.75Z; + 0.75X —
0.10X72, so that X is associated with both the survey outcomes
Y, and Y, and the sample inclusion probability z. The propensity
scores are estimated by fitting a binary BART model with predic-
tors Z and X by linking the survey sample with the corresponding
population data. BART is a sum-of-trees machine learning model
[31]. It is less sensitive to model misspecification and allows for
nonlinear effects and multi-way interactions between auxiliary
variables and outcomes of interest. The estimated propensity
scores 7 are the posterior mean of the predictive probability of
inclusion.

We estimate population means for the overall population and
for the subset where Z; = 1. We compare the performance of
various estimators, including an unweighted estimator using
sample mean, eight weighted estimators, and four prediction
model-based estimators. The eight weighted estimators are

« IPW and eIPW: the inverse propensity weighted estimators.
IPW uses true propensity scores z, while eIPW uses the esti-
mated propensity scores 7# from BART.

« PostStrat, and (eIPW + PostStrat,): poststratification using
the population joint distributions of Z and X (the dis-
cretized X using population tertiles). (eIPW + PostStrat,)
applies poststratification on the top of the base weights con-
structed using the inverse of the estimated propensity score
from BART.

» Raking. and (eIPW + Raking,): raking using the population
margins of Z and X! (the discretized X using population
quintiles). (eIPW + Raking) applies raking on the top of the
base weights constructed using the inverse of the estimated
propensity score from BART.

« Raking,, and (eIPW + Raking,,): raking using the popula-
tion margins of Z and X7}, (the discretized X using popula-
tion deciles) and raking on the top of the base weights.

Poststratification using Z and X or X7 can lead to sparse or zero
poststratification cells in the sample and thus is not considered
here. Both the unweighted and weighted estimates are obtained
using the survey package in R, in which the finite population
correction is incorporated in variance estimation. We also con-
sider four prediction models implemented using the rstanarm

package in R:
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TABLE1 | Comparison between absolute bias (x100), root mean squared error (RMSE Xx100), average interval width (x100), and coverage rate of

95% CI (x100) for the 13 estimators from setting one.

Continuous outcome Y;

Binary outcome Y,

Estimators Bias RMSE Width Coverage Bias RMSE Width Coverage
Sample mean 146.53 148.05 81.68 0 9.73 9.86 5.9 0
Weighting

IPW 0.32 71.43 207.87 84.6 0.02 3.49 11.98 91.2
e[PW 34.95 50.56 158.41 78.0 0.89 3.01 11.91 94.6
PostStrat, 52.89 60.46 90.38 38.6 1.79 3.29 8.02 78.4
eIPW + PostStrat, 38.17 47.87 99.86 59.8 1.29 3.05 8.45 83.2
raking; 34.69 43.11 91.16 61.6 1.32 2.76 8.54 89.8
eIPW + raking, 25.41 37.82 110.89 77.6 0.61 2.6 9.56 94.4
raking, 18.10 29.76 82.97 80.2 0.64 2.45 8.28 91.8
eIPW + raking,, 16.64 29.82 91.61 84.0 0.23 2.51 8.94 934
Predictive estimators

True model 0.41 15.79 61.4 94.4 0.02 2.06 7.63 93.6
MRP,, 21.51 31.28 87.44 81.6 1.20 2.48 8.36 91.2
GAMP,, 8.02 38.35 96.4 80.8 0.02 2.25 8.07 93.0
eGAMP,, 20.56 31.60 97.0 86.4 0.28 2.28 8.27 93.6

o True Model: the true outcome model.
* MRP,;: MRP model in (3) using Z and X7

+ GAMP,, and eGAMP,,;: GAMP model in (5) using Z, X},
and logit propensity scores. GAMP,, uses logit(x) while

eGAMP,, uses logit(z).

Table 1 presents the simulation results for this setting. The sam-
ple mean, which ignores the unequal probability of inclusion,
performs poorly, exhibiting large bias and RMSE, with the 95%
CI yielding a zero coverage rate. The eight weighted estima-
tors demonstrate much smaller bias and RMSE compared with
the sample mean. Among the eight weighted estimators, IPW
yields the smallest bias but the largest RMSE. Using the esti-
mated propensity score increases bias but reduces RMSE, which
is expected due to the lower variation in the estimated propen-
sity score compared with the true propensity score. Applying
poststratification and raking on top of the base weights con-
structed with estimated propensity scores results in smaller bias
and RMSE compared with poststratification and raking without
considering the base weights for PostStrat, and raking., but the
improvement is small for raking,,. Additionally, raking estima-
tors using X7, perform better than those using X7 and yield the
smallest RMSE among all weighted estimators.

As expected, the predictive estimator using the true outcome
model performs best, with the smallest bias, RMSE and aver-
age width, and coverage rate close to the nominal level. The
MRP,, performs similarly to raking,,. The proposed GAMP,,
yields smaller bias but a wider 95% CI compared with MRP, for
Y, and achieves both smaller bias and a shorter 95% CI for Y,.
When replacing the true response propensity with the estimated
one, the bias increases but the RMSE decreases and coverage rate
of 95% CI improves for Y; while the results for Y, remain largely

unchanged. The 95% CI coverage rates are significantly below the
nominal level for all methods except the true model for Y;. This
occurs because the continuous covariate X has a strong smooth
relationship with both ¥; and inclusion 7, but discretizing X into
quintiles or deciles across methods leads to information loss.

The results of the subgroup analysis are presented in Supporting
Information eTable 1. The conclusions are similar to the over-
all population analysis, except that the model-based estimators
now show greater efficiency gains compared with the weighted
estimators.

3.3 |
Not I

Setting Two: X is Associated With Y but

In the second setting, we simulate one additional indepen-
dent continuous auxiliary variable from a standard normal
distribution, W ~ N(0,1), in the population. Then, samples
are selected using inclusion model, logit(z) =-1.25—-Z, +
1.25Z, — 0.75Z; + 0.75W — 0.1W 2. In this setting, predictors Z,
W, X are used to fit BART to estimate propensity scores 7. Note
that W is associated with the sample inclusion probability z but
not the survey outcomes Y; or Y,, and X is associated with the
survey outcomes but not the sample inclusion.

We compare the same thirteen estimators as setting one. All the
weighted and predictive estimators, except for the true model
estimator, use all available auxiliary information of (Z, X*, W*).
Specifically, PostStrat; uses (Z, X3, W), rakings uses (Z, X,
W¢), and raking,, uses (Z, X;,, W), where W}, W and
Wi, are the discretized W using population tertiles, quin-
tiles, and deciles, respectively. The MRP,, uses (Z, Wy, X)),
whereas GAMP,, and eGAMP, also include logit(x) and logit(7),
respectively.
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TABLE 2 | Comparison between absolute bias (x100), root mean squared error (RMSE Xx100), average interval width (x100), and coverage rate of

95% CI (x100) for the 13 estimators from setting two.

Continuous outcome Y;

Binary outcome Y,

Estimators Bias RMSE Width Coverage Bias RMSE Width Coverage
Sample mean 70.2 73.82 94.08 16.8 9.28 9.42 5.95 0
Weighting

IPW 0.94 40.72 138.26 92 0.04 3.26 11.11 92.6
elPW 7.75 31.27 132.49 96.2 0.05 2.87 11.42 94.4
PostStrat, 3.6 31.62 85.99 81.6 0.99 3.01 6.45 72
eIPW + PostStrat, 8.63 29.43 83.82 84.6 1.12 3.03 6.42 72.2
raking; 0.77 28.46 98.08 92 0.11 2.4 8.3 91
eIPW + raking, 4.97 26.99 102.48 92.4 0.002 2.53 9.16 92.4
raking;, 0.76 24.33 84.45 91.2 0.17 2.38 8.07 90.6
eIPW + raking,, 3.07 23.67 87.04 92.6 0.01 2.55 8.74 90.6
Predictive estimators

True model 0.07 13.4 52.76 954 0.01 1.8 6.75 95.8
MRP,, 0.79 19.56 82.81 97 0.3 1.94 7.48 94.8
GAMP,, 1.1 22.35 89.78 95.6 0.17 2.09 7.77 93.6
eGAMP,, 2.54 20.85 95.07 97.6 0.16 2.11 7.96 93.8

Table 2 presents the results for estimators on the overall pop-
ulation. The results for the subgroup analysis are shown in
Supporting Information eTable 2. Similar to the first setting,
the sample mean performs poorly. Among the eight weighted
estimators, IPW yields the smallest bias but the largest RMSE.
Using estimated response propensity, eIPW results in larger
bias but smaller RMSE compared with IPW. The raking; shows
a smaller bias and RMSE and a 95% CI coverage rate closer
to the nominal level than PostStrat;. However, unlike setting
one, raking,, does not lead to significant improvements than
rakings, with improvements only seen in RMSE for Y;. Applying
poststratification and raking on the top of the base weights
constructed using the inverse of propensity score does not lead
to clear improvements compared with those ignoring the base
weights, resulting in reduced RMSE but larger bias for Y¥; and
reduced bias but larger RMSE for Y,.

All the four prediction model-based estimators have lower bias
and reduced RMSE than the weighted estimators for both Y¥; and
Y,. The inclusion of W in this setting increases the variation in
the sample weights and thus the uncertainty in the weighted esti-
mates, but the impact of W is relatively small in the prediction
model-based estimators. Because only W (and not X) is related
to z, the estimated inclusion propensity # does not contain useful
information about X. As such, the GAMP,, and eGAMP,, that
incorporate the inclusion propensities does not offer improve-
ments over MRP,,. All model-based estimators yield 95% CIs
with coverage rate close to the nominal level.

3.4 | Setting Three: Nonadditive Association
With Both Y and I

In the third simulation setting, we consider two survey out-
comes generated from models with nonadditive association
between X and Y. The first is a continuous outcome Y; ~

NQ5+25Z, — Zy+ Zy = 2X + X2+ Z; x X —2.5Z; % X2,2).

The second is a binary outcome generated via logit(Pr(Y2 = 1)) =
—1.75+0.75Z, —1.5Z, + 1.5Z, —1.5X + X* + Z, % X —2.5Z,
% X2. Then, samples are selected using inclusion model
logit(r) = —0.9 — 0.5Z, + 0.75Z, — Z5 + 0.5X —0.05X2 + 0.5Z,
% X —0.75Z, * X2, which also includes nonadditive association
between X and 7.

We consider the similar weighted and predictive estimators as
before. For raking, we use one-variable margins for Z, and Z;
and two-variable margins for Z; and X: to model the interac-
tion between Z; and X. The raking estimators using Xj, are
not included due to the potential for sparse samples in the
two-variable margins for Z, and X;,. For MRP,, we include
interactions between Z, and Xj,. For GAMP,, the interaction
between Z, and logit(x) is also included. Similarly, interaction
between Z, and logit(#) is specified for eGAMP,,. To further
assess whether the predictive estimators are sensitive to misspec-
ification in the prediction models, we also compare eGAMP;,
to two alternative e GAMP models that either omit the interac-
tion between Z, and X7}, or omit both interactions and compare
MRP,, to the alternative that ignores the interaction between Z;
and X;, for the continuous outcome Y.

Table 3 presents the results for this setting. The results for
the subgroup analysis are available in Supporting Information
eTable 3. The results on the sample mean and weighted esti-
mators are similar to the first setting. However, unlike the first
setting, the predictive estimators show significant improvements
over the weighted estimators, with much smaller bias, lower
RMSE, and 95% CI coverage rates closer to the nominal level.
Compared with MRP,,, GAMP,, and eGAMP,, result in lower
bias, improved efficiency, and closer to nominal level coverage,
especially for the continuous outcome Y;.
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TABLE 3 | Comparison between absolute bias (x100), root mean squared error (RMSE Xx100), average interval width (x100), and coverage rate of

95% CI (x100) for the 11 estimators from setting three.

Continuous outcome Y;

Binary outcome Y,

Estimators Bias RMSE Width Coverage Bias RMSE Width Coverage
Sample mean 39.29 40.65 39.12 3.2 4.63 4.85 5.33 11.8
Weighting

IPW 4.87 38.52 89.67 85.2 0.41 2.95 9.7 93.4
e[PW 26.71 30.26 60.41 59 2 3.13 9.41 87.2
PostStrat, 33.96 36.47 40.58 12.6 1.42 2.91 7.27 75.2
PostStrat, eIPW 28.65 31.93 43.99 29.6 1.45 2.99 7.05 73.8
raking; 26.9 30.25 47.18 38.8 0.85 2.5 8.16 91.4
eIPW + raking, 22.23 27.13 53.67 57.8 0.91 2.73 8.77 91.4
Predictive estimators

True model 1.13 14.11 53.69 94.6 0.23 1.87 7.61 95.8
MRP,, 17.05 21.06 58.73 83.4 0.77 1.99 8.49 97.2
GAMP,, 8.22 18.32 75.84 95.6 0.49 2.05 9.29 97
eGAMP,, 1.99 14.19 64.96 96.2 0.37 2.09 9.19 96.6

TABLE4 | Comparison between absolute bias (x100), root mean squared error (RMSE Xx100), average interval width (x100), and coverage rate of

95% CI (x100) to assess whether the GAMP estimator is sensitive to misspecification in the predictive model and compare to MRP and raking that omit

the interaction effect of Z; and X* using the data in simulation setting three.

Continuous outcome Y;

Estimators Bias RMSE Width Coverage
raking; (omit interaction Z; X X7) 51.06 52.87 55.21 6.0
raking; (include interaction Z; X X7) 26.90 30.25 47.18 38.8
MRP,, (omit interaction Z; X X7, 69.03 70.6 49.02 0
MRP; (include interaction Z; X X7, 17.05 21.06 58.73 83.4
eGAMP,; (omit interaction Z; X X7,) 14.60 18.20 42.10 72.0
eGAMP,,, (omit both interactions) 38.2 42.23 68.58 39.6
eGAMP,, (include both interactions) 1.99 14.19 64.96 96.2

Table 4 shows the sensitivity analysis for raking., MRP,,, and
eGAMP,,. Omitting the interaction between Z;, and X* results
in much large bias and RMSE for all three estimators. However,
the impact on the eGAMP,, (omitting interaction Z; x X7) is
smallest among the three estimators, with smaller bias and RMSE
than the other estimators. Omitting both the Z; X X7, and Z; x
logit(#;) interactions leads to poor performance of eGAMP,,.

4 | Application to the Ohio Army National
Guard Study

The Ohio Army National Guard Mental Health Initiative
(OHARNG-MH]I) study provides information about the preva-
lence and risk factors of mental health-related outcomes among
National Guard service members with the aim of identifying
areas of intervention that can be modified during deployment
to improve the psychological well-being of soldiers [32, 33]. We
apply the methods described in this paper to the OHARNG-MHI
study to estimate the percentage of lifetime alcohol abuse among
all the service members as a data illustration.

The target population for the OHARNG-MHI study included all
active members of the OHARNG between June 2008 and Febru-
ary 2009. All members with address information listed with the
Guard were notified of the study via mailed letter and opt-out
card. Although some members chose to opt out of the study, oth-
ers refused participation when contacted or were not contacted
before the cohort closed [34]. Furthermore, service members with
no or incorrect telephone numbers could not be contacted to com-
plete the 60 min structured computer-assisted telephone inter-
view [34]. As such, the statistical analysis of the OHARNG-MHI
study data is complicated by nonsampling errors due to survey
nonresponse and sampling frame undercoverage. Information on
age group (17-24 years, 25-34 years, 35-44 years, 45 years or
older), gender (male, female), race (White, Black, Other), rank
(enlisted, officer), marital status (single, married, other), and
number of years in service for the target population (N = 10,994)
was available in OHARNG administrative files. A total of n =
2,600 service members completed the survey. Table 5 shows the
distribution of the auxiliary information in the population and
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TABLE 5 | Distribution of auxiliary variables in the OHARNG popu-
lation and OHARNG-MHI survey sample.

Distribution, n(%)

Variable Population MHI Sample
All 10,944 (100.0) 2,600 (100.0)
Age group

17-24 years 4,077 (37.2)  877(33.7)
25-34 years 3,788 (34.6) 844 (32.5)
35-44 years 2,196 (20.1)  631(24.3)
45 years or older 883 (8.1) 248 (9.5)
Gender

Male 9,398 (85.9) 2,213 (85.1)
Female 1,546 (14.1)  387(14.9)
Race

White 9,593 (87.6) 2,284 (87.8)
Black 1,107 (10.1) 194 (7.5)
Other 244 (2.2) 122 (4.7)
Rank

Enlisted 9,857 (90.1) 2,260 (86.9)
Officer 1,087 (9.9)  340(13.1)
Marital status

Single 6,008 (54.9) 1,129 (43.4)
Married 4,069 (37.2) 1,222 (47.0)
Other 867 (7.9) 249 (9.6)
Number of years in service, 9.7 (0-42) 10.1 (0-40)

mean (min-max)

survey sample. It indicates that older, other race, officer rank,
and married service members were overrepresented in the sam-
ple, whereas younger, Black race, enlisted rank, and single service
members were underrepresented. The outcome of interest, pres-
ence of lifetime alcohol abuse, was only measured among survey
participants.

Figure la shows the association between number of years in
service and the logit-transformed proportion of lifetime alcohol
abuse in the sample. Here, the proportion of lifetime alcohol
abuse is computed as the number of participants with lifetime
alcohol abuse divided by the total number of participants in each
year of service. The plot of the logit-transformed proportion by
years of service is overlaid with the fitted loess curve. The pro-
portion increases with the number of years in service. Figure 1b
is created similarly and shows a smooth association between the
logit-transformed sample inclusion propensity and years in ser-
vice. The logit-transformed sample inclusion probability has a
linear association with the number of years in service, increasing
from 0 to about 20 years, and then plateaus.

The data analysis includes three main steps. First, statisticians
who have access to the confidential OHARNG administrative
files, which contain the individual-level continuous years of
service variable, estimate the sample inclusion propensities.
For this analysis, a binary BART machine learning model is

utilized, incorporating all available auxiliary variables from the
administrative files as covariates, including both discrete and
continuous variables listed in Table 5. In the second step, a mod-
ified population data set is created for sharing with data users.
The continuous years of service variable in the administrative
files is replaced with its discretized version, categorized using
deciles of the population values, along with the estimated inclu-
sion propensities, #. Finally, data users who do not have access
to the confidential administrative files use the survey sample and
the modified population data to conduct survey inference. The
proportion of lifetime alcohol abuse in the OHARNG population
is estimated using several methods: unweighted sample mean,
eIPW, raking, eIPW + raking, MRP, and eGAMP. For raking,
all discrete covariates from Table 5 and the discretized version
of years in service using deciles are used for weighting. For
eGAMP, a GAM is fitted for the binary lifetime alcohol abuse
variable, including all discrete covariates from Table 5, a spline
of the deciles of the years of service variable, and a spline of
the estimated inclusion propensities. For comparison, we also
provide the GAM(x) estimator by fitting a GAM model regressing
on a spline of the original continuous years in service variable
and the other discrete auxiliary variables.

Figure 2 shows estimates and 95% ClIs for the proportion of life-
time alcohol abuse. The unweighted sample mean estimates a
higher proportion of lifetime alcohol abuse compared with the
weighted and predictive estimators. This is expected, given that
service members with more years of service were more likely
to be included in the sample and also had a higher propor-
tion of lifetime alcohol abuse (Figure 1). All the weighted and
predictive estimators yield similar point estimates for the pro-
portion of lifetime alcohol abuse. However, eGAMP produces a
wider 95% CI than the others. Due to the limited variation in
the estimated inclusion propensities among the sample units in
this application, we do not observe the typically wide confidence
intervals associated with the weighted estimators.

5 | Discussion

‘We consider finite population inference from a nonrepresentative
sample where a number of auxiliary variables, both continuous
and discrete, are measured in both the sample and the population
via administrative records. This auxiliary information can be used
to improve survey inference of population quantities through
weighting or predictive models. However, individual-level
continuous administrative records are often inaccessible due to
confidentiality concerns. The common practice is to discretize
the continuous auxiliary variables using percentiles or other
meaningful cutoffs, which can lead to a loss of information.
Motivated by this challenge, we develop a method for predictive
survey inference that makes the best use of continuous auxiliary
information in the administrative records without requiring the
release of individual-level continuous variables for the entire
population.

We propose a two-step strategy. In the first step, statistical
agencies with access to confidential population data estimate
probabilities of inclusion in the sample for all population units
using both continuous and discrete auxiliary variables. They then
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(A) Lifetime alcohol abuse by years of service, MHI sample

(B) Sample inclusion propensity by years of service, MHI sample

1 .
®© .
1]
g > . ¢ ® °
© . 3 -0.5 ® . .
,8 ® q:) o .
e Q oo
o o
T 0 . . g
£ 8
g ERK
= o
ks £
8 2
S -1 £
T b
° z-1.5
(=% o
- — -
o
o
-
-2 L4 .
0 10 20 30 40 0 10 20 30 40
Number of years of service Number of years of service
FIGURE1 | Associations of lifetime alcohol abuse and response propensity with years in service, Ohio National Guard Mental Health Initiative
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FIGURE 2 | Estimated proportion of lifetime alcohol abuse among all service members of the OHARNG between June 2008 and February 2009

using the Ohio National Guard Mental Health Initiative Study.

create a modified population data for data users by replacing the
continuous variables with their discretized versions, along with
the continuous estimated inclusion propensities. In the second
step, data users, who do not have access to the protected popula-
tion data, utilize the modified population dataset and the survey
sample for statistical inference of population quantities using the
proposed GAMP model. The GAMP model extends MRP by using
a hierarchical structure of discrete variables and spline functions
of continuous variables, incorporating discretized continuous
variables and estimated inclusion propensities. This approach
is inspired by Little and An [24], who included spline functions
of the logit-transformed response propensity score in the pre-
diction models, which yields robust estimates of sample means
even when the model is misspecified. Similarly, including the
logit-transformed estimated propensities in GAMP’s predictive
models can improve survey inference of population quantities
when discretized continuous variables do not fully capture the
associations between the original continuous variables and the
survey outcome of interest. We provide an R package, Aux-
Survey, for conducting analyses using our proposed GAMP
estimator.

We assess the performance of the proposed GAMP method and
compare it to existing weighting and prediction model-based
approaches through a simulation study. Our simulations confirm
established findings on the importance of appropriate statistical
analyses to adjust for nonsampling errors such as nonresponse
and undercoverage [4, 5, 35]. Both weighting and model-based
approaches yield more accurate population estimates than
unadjusted estimates across all simulation settings. Impor-
tantly, our proposed GAMP estimator outperforms the weighting
approaches using IPW, poststratification, or raking, providing less
biased and more efficient estimates with a 95% CI coverage rate
closer to the nominal level. GAMP also outperforms MRP when
continuous auxiliary variables have more complicated associa-
tions with both the outcome of interest and sample inclusion.
GAMP has a smaller bias and improved efficiency compared
with modeling the discretized continuous variables alone in MRP
(e.g., simulation setting three). When interactions exist between
continuous variables and a categorical variable in the outcome
model, omitting these interaction effects can lead to large bias and
RMSE in raking and MRP estimators. In contrast, the bias and
RMSE of GAMP are relatively small as long as the interactions
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between categorical variables and the logit-transformed propen-
sity scores are included, even if the interactions between categor-
ical variables and discretized continuous variables are omitted.
In cases where continuous auxiliary variables are not associated
with the outcome of interest but are associated with sample inclu-
sion (e.g., simulation setting two), the GAMP model, including
a spline of the estimated inclusion propensities, does not offer
additional benefits and incurs a slight increase in bias and RMSE
compared with MRP. Nevertheless, the GAMP estimator still out-
performs the weighted estimators in this setting.

In practice, the number of auxiliary variables available for the
entire finite population is often limited, so flexible paramet-
ric models are usually preferred. In this paper, we consider a
Bayesian GAM implemented using the stan_gamm4 () func-
tion in rstanarm. Using the hierarchical structure similar to
MRP, our GAM model partially pools estimates in multiple cat-
egories of discrete auxiliary covariates. Including spline func-
tions of the discretized continuous variables and the estimated
inclusion propensities, the model is flexible enough to catch their
potential nonlinear associations with the survey outcome of inter-
est. When there are interactions between the smooth splines and
discrete auxiliary variables, the model can also be easily modified
to reflect these interaction effects using stratified splines. Fur-
thermore, the Bayesian framework is straightforward for quan-
tification of uncertainty. In the settings where there exists a high
dimension of auxiliary variables, machine learning techniques,
such as BART, can be used instead.

It is crucial to balance data utility and confidentiality protection.
The two-step strategy we propose aims to ensure that continuous
auxiliary data in administrative records remain useful for sur-
vey inference while protecting confidentiality. Although we focus
on continuous auxiliary variables, the proposed method can also
be applied to settings with sensitive categorical covariates, such
as fine-level geographic identifiers. In such cases, the fine-level
geographic identifier is used to estimate the inclusion propen-
sity, which is then released along with coarse-level geographic
information for predictive survey inference. To avoid assigning
the exact same estimated propensity score to units with iden-
tical categorical predictors, a random draw from the posterior
distribution of the propensity score—rather than the posterior
mean—can be obtained from the binary BART model for inclu-
sion propensity.

The proposed GAMP method has several limitations. First,
like other predictive estimators, its effectiveness depends on
the inclusion of auxiliary variables that are predictive of the
outcomes. Additionally, these auxiliary variables in the sample
should have common support to those in the target population. If
important predictors of outcomes are not available in the admin-
istrative records, or if the ranges of the auxiliary variables in the
sample are narrower than those in the population, the model
predictions may not perform well. Second, the sample inclusion
propensity often requires estimation. Our simulation shows that
the performance of GAMP using the true versus BART-estimated
propensity scores is comparable, although the eGAMP estima-
tor (using the BART-estimated inclusion propensity) results in
larger bias but smaller RMSE compared with GAMP using the
true inclusion propensity. In the eGAMP estimator, we ignore
the uncertainty associated with z estimation. One way to address
the uncertainty from estimating x is obtaining multiple sets of

estimated propensity scores from their posterior distributions
and repeating the predictive models multiple times with these
sets of estimated 7 values. Third, estimating inclusion propensity
often involves linking the survey sample with administrative
records, which may be subject to record linkage errors and need
further correction.

In conclusion, our study advocates for a prediction model-based
approach that leverages continuous auxiliary information in
administrative records to improve survey inference while con-
trolling disclosure risk, thus eliminating the need to release
individual-level continuous auxiliary variables. When survey
inference is conducted by those with access to confidential
records, a predictive model using splines on the continuous vari-
ables can be directly applied. However, for data users without
such access, our two-step strategy offers an effective solution.
Although the use of predictive inferences, Bayesian hierarchical
models, and splines for propensity scores is not new, our major
contribution lies in combining these components to leverage
record-level continuous variables for improving survey inference
in nonrepresentative probability samples or nonprobability sam-
ples while maintaining confidentiality. This paper focuses on
model-based predictive inference that includes the propensity
score as a covariate. An alternative approach that combines
weighting and prediction is model-assisted estimation [36]. This
research also opens up several exciting directions for future inves-
tigation. For example, modeling two separate propensities—one
for undercoverage (noncontact) and one for response (responded
out of those contacted)—and including them as smoothed terms
in the prediction model could be explored. Another potential
extension is to model the unknown population distribution of
auxiliary variables and incorporate the uncertainty in estimating
this distribution for survey inference [37].
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