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1. Background

In this work, we discuss an inevitable consequence of having a stable system in which many 

explanatory variables have large effects: these variables must have large interactions which 

will be unlikely to cancel either other out to the extent required for general stability or 

predictability. We call this type of result a “piranha theorem” (Gelman, 2017), the analogy 

being the folk belief that if one has a large number of piranhas (representing large effects) 

in a single fish tank, then one will soon be left with far fewer piranhas. If there is some 

outcome for which studies find large and consistent effects of many different inputs, then we 

can conclude that some of these effects are smaller than claimed or that multiple explanatory 

variables are essentially measuring the same phenomenon.

Identifying and measuring the effects of explanatory variables are central problems in 

statistics and drive much of the world’s scientific research. Despite the substantial effort 

spent on these tasks, there has been comparatively little work on addressing a related 

question: how many explanatory variables can have large effects on an outcome? The 

present work follows up on Cornfield et al. (1959) and Ding and Vanderweele (2014), 

considering quantitative constraints in the effects of additional variables.

Consider, for example, the problem of explaining voters’ behaviors and choices. Researchers 

have identified and tested the effects of internal factors such as fear, hope, pride, anger, 

anxiety, depression, and menstrual cycles, as well as external factors such as droughts, 

shark attacks, and the performance of local college football teams. Many of these findings 

have been questioned on methodological grounds, but they remain in the public discourse. 
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Beyond the details of these particular studies, it is natural to ask if all of these effects can be 

real in the sense of representing patterns that will consistently appear in the future.

The implication of the published and well-publicized claims regarding ovulation and voting, 

shark attacks and voting, college football and voting, etc., is not merely that some voters are 

superficial and fickle. No, this literature claims that seemingly trivial or irrelevant factors 

have large and consistent effects, and this runs into the problem of interactions. For example, 

the effect on your vote of the local college football team losing could depend crucially 

on whether there’s been a shark attack lately, or on what’s up with your hormones on 

election day. Or the effect could be positive in an election with a female candidate and 

negative in an election with a male candidate. Or the effect could interact with your parents’ 

socioeconomic status, or whether your child is a boy or a girl, or the latest campaign ad, 

or any of the many other factors that have been studied in the evolutionary psychology 

and political psychology literatures. If such effects are large, it is necessary to consider 

their interactions, because the average effect of a factor in any particular study will depend 

on the levels of all the other factors in that environment. Similarly, Mellon (2020) has 

argued against naive assumptions of causal identification in economics, where there is 

a large literature considering rainfall as an instrumental variable, without accounting for 

the implication that these many hypothesized causal pathways would, if taken seriously, 

represent violations of the assumptions of the model. Even if a particular experiment or 

observational study analyzes only one causal factor, the existence of potential interactions 

(as indeed are implied if one were to take the social science literature at face value) destroys 

the implicit assumption that an effect measured under some particular set of conditions can 

be interpreted as a general or persistent effect.

These concerns are particularly relevant in social science, where the search for potential 

causes is open-ended. Our work here is partly motivated by the replication crisis, which 

refers to the difficulties that many have had in trying to independently verify established 

findings in social and biological sciences. Many of the explanations for the crisis have 

focused on various methodological issues, such as low power and unrecognized researcher 

degrees of freedom (Simmons et al., 2011). Beyond the criticisms of practice and suggested 

fixes, these works have also provided much needed statistical intuition. Groups of studies 

that claim to have found a variety of important explanatory variables for a single outcome 

should be scrutinized, particularly when the dependencies among the explanatory variables 

have not been investigated.

This article collects several mathematical results regarding the distributions of correlations 

or coefficients, with the aim of fostering further work on statistical models for environments 

with a multiplicity of effects. What is novel in this paper is not the theorems themselves but 

rather viewing them in the context of trying to make sense of clusters of research studies that 

claim to have found large effects.

There are many ways to capture the dependence among random variables, and thus we 

should expect there to be a correspondingly large collection of piranha theorems. We 

formalize and prove piranha theorems for correlation, regression, and mutual information 

in Section 4. These theorems illustrate the general phenomena at work in any setting with 
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multiple causal or explanatory variables, with implications for the replication crisis in social 

science.

2. Piranhas and butterflies

A fundamental tenet of social psychology and behavioral economics, at least how it is 

presented in the news media, and taught and practiced in many business schools, is that 

small “nudges,” often the sorts of things that we might not think would affect us at all, can 

have big effects on behavior.

The model of the world underlying these claims is not just the “butterfly effect” that small 

changes can have big effects; rather, it’s that small changes can have big and predictable 

effects, a sort of “button-pushing” model of social science, the idea that if you do A, you can 

expect to see B.

In response to this attitude, we present the piranha argument, which states that there can be 

some large and predictable effects on behavior, but not a lot, because, if there were, then 

these different effects would interfere with each other, a “hall of mirrors” of interactions 

(Cronbach, 1975) that would make it hard to detect any consistent effects of anything in 

observational data.

In a similar vein, Cook (2018) writes:

“The butterfly effect is the semi-serious claim that a butterfly flapping its wings can 

cause a tornado half way around the world. It’s a poetic way of saying that some 

systems show sensitive dependence on initial conditions, that the slightest change 

now can make an enormous difference later … Once you think about these things 

for a while, you start to see nonlinearity and potential butterfly effects everywhere. 

There are tipping points everywhere waiting to be tipped!”

But, Cook continues, it’s not so simple:

“A butterfly flapping its wings usually has no effect, even in sensitive or chaotic 

systems. You might even say especially in sensitive or chaotic systems. Sensitive 

systems are not always and everywhere sensitive to everything. They are sensitive 

in particular ways under particular circumstances and can otherwise be resistant to 

influence…. The lesson that many people draw from their first exposure to complex 

systems is that there are high-leverage points, if only you can find them and 

manipulate them. They want to insert a butterfly tat just the right time and place to 

bring about a desired outcome. Instead, we should humbly evaluate to what extent 

it is possible to steer complex systems at all. We should evaluate what aspects can 

be steered and how well they can be steered. The most effective intervention may 

not come from tweaking the inputs but from changing the structure of the system.”

Effects in social science vary across people and scenarios and over time, and they can 

be represented by probability distributions. Cook’s advice to think about “the structure of 

the system” echoes recommendations from the literature on statistical quality control that 

system-level variation puts a limit on what can be learned about the average effects of 
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particular interventions. In the presence of possible interactions, there is no reason to expect 

stability of treatment effects.

3. Example: hypothesized effect sizes in social priming

We demonstrate the possibility of quantitative analysis of the piranha problem using 

the example of an influential experiment from 1996 in which participants were given a 

scrambled-sentence task and then were surreptitiously timed when walking away from the 

lab. Students whose sentences included elderly-related words such as “worried,” “Florida,” 

“old,” and “lonely” walked an average of 13% more slowly than students in the control 

condition, and the difference was statistically significant.

This experimental claim is of historical interest in psychology in that, despite its 

implausibility, it was taken seriously for many years and received thousands of citations, 

but it failed to replicate and is no longer generally believed to represent a real effect; 

for background see Wagenmakers et al. (2015). Now we understand such apparently 

statistically-significant findings as the result of selection with many researcher degrees of 

freedom (Simmons et al., 2011). Here, though, we will take the published claim at face value 

and also work within its larger theoretical structure, under which weak indirect stimuli can 

produce large effects.

An effect of 13% on walking speed is not in itself huge; the difficulty comes when 

considering elderly-related words as just one of many potential stimuli. Here are just some 

of the factors that have been published in the social priming and related literatures as having 

large effects on attitudes and behavior: hormones, subliminal images, news of football 

games and shark attacks, a chance encounter with a stranger, parental socioeconomic status, 

weather, the last digit of one’s age, the sex of a hurricane name, the sexes of siblings, the 

position in which a person is sitting, and many others. See Gelman (2023) for references 

to these claims, along with other papers criticizing or refuting them. A common feature of 

these examples is that the stimuli have no clear direct effect on the measured outcomes, 

and in many cases the experimental subject is not even aware of the manipulation. Based 

on these examples, one can come up with dozens of other potential stimuli that fit the 

pattern. In addition to walking speed being affected by elderly-related words, one could 

also consider word lengths (with longer words corresponding to slower movement), sounds 

of words (with smooth sibilance motivating faster walking), subject matter (sports-related 

words as compared to sedentary words), affect (happy compared to sad words, or calm 

compared to angry), words related to travel (inducing faster walking) or invoking adhesives 

such as tape or glue (inducing slower walking), and so on. Similarly, one can consider 

different sorts of incidental events, not just encounters with strangers but also a ringing 

phone or knocking at the door, the presence of a male or female lab assistant (which could 

have a main effect or interact with the participant’s sex), a newspaper or magazine on a 

nearby table, ad infinitum.

Now we can invoke the piranha principle. Imagine 100 possible stimuli, each with an 

effect of 13% on walking speed, all of which could arise in a real-world setting where 

we encounter many sources of text, news, and internal and external stimuli. If each 
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stimulus corresponds to two equally probable states with effects of ±0.5 log(1.13) on log 

walking speed, and these effects are independent in the wild, then the sum of these will 

be approximately normally distributed with standard deviation 0.5 100log(1.13) = 0.61, thus 

walking speed could easily be multiplied or divided by e0.61 = 1.8 based on a collection of 

arbitrary stimuli that are imperceptible to the person being affected. And this factor of 1.8 

could be made arbitrarily large by simply increasing the number of potential primes.

It is outrageous to think that walking speed could be doubled or halved based on a random 

collection of unnoticed and essentially irrelevant stimuli—but that is the implication of 

the embodied cognition literature. It is basically a Brownian motion model in which the 

individual inputs are too large to work out.

We can think of five ways to avoid the ridiculous conclusion. The first possibility is that 

the different factors could interact or interfere in some way so that the variance of the 

total effect is less than the sum of the variances of the individual components, or multiple 

explanatory variables could be essentially measuring the same phenomenon. Second, effects 

could be much smaller. Change those 13% effects to 1% effects and you can get to more 

plausible totals, in the same way that real-world Brownian oscillations are tolerable because 

the impact of each individual molecule in the liquid is so small. Third, one could reduce the 

total number of possible influences. If there were only 10 possible stimuli rather than 100 or 

1000 or more, then the total effect could fall within the range of plausibility. Fourth, there 

could be a distribution of effects with a few large influences and a long tail of relatively 

unimportant factors, so that, when correctly translated to standardized population effect 

sizes, most treatment effects are already small, and the infinite sum has a reasonable bound. 

Fifth, multiple explanatory variables could be essentially measuring the same phenomenon.

All these options have major implications for the study of social priming and, more 

generally, for causal inference in an open-ended setting with large numbers of potential 

influences. If large interactions are possible, this suggests that stable individual treatment 

effects might be impossible to find: a 13% effect of a particular intervention in one particular 

experiment might be −18% in another context or +2% in the presence of some other 

unnoticed factor, and this in turn raises questions about the relevance of any particular study. 

If effects are much smaller than reported, this suggests that existing studies are extremely 

underpowered, so that published estimates are drastically overestimated and often in the 

wrong direction (Gelman and Carlin, 2014), thus essentially noise. At the same time, a 

restriction of the universe of potential stimuli would require an overhaul of the underlying 

theoretical framework in which just about any stimulus can cause a noticeable change. For 

example, if we think there cannot be more than five or ten large effects on walking speed, 

it would seem a stretch that unnoticed words in a sentence scrambling test would be one 

of these special factors. Finally, if the distribution of average effects is represented by a 

long series, most of whose elements are tiny (either because of small individual effects or 

because any large effects occur infrequently in the general population, as with rare diseases 

or short-term interventions with rapidly decaying effects), this implies a prior distribution on 

average effect sizes with a spike near zero, which in turn would result in near-zero estimated 

population effect sizes in most cases. Our point is not that all effects are zero but rather that 
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in a world of essentially infinitely many possible causal factors, some external structure must 

be applied in order to identify stable effects from finite samples.

4. Piranha theorems

In this section, we present piranha theorems for linear and nonlinear effects. We consider 

two different ways of measuring linear effects. We first show that it is impossible for a 

large number of explanatory variables to be correlated with some outcome variable unless 

they are highly correlated with each other. Second, we show that if a set of explanatory 

random variables is plugged into a linear regression, the ℓ2-norm ‖β‖ of the least-squares 

coefficient vector β can be bounded above in terms of the eigenvalues of the second-moment 

matrix of the predictors. Thus, there can only be so many individual coefficients with 

a large magnitude. Finally, we consider a general nonlinear form of dependency, mutual 

information, and present a corresponding piranha theorem for that measure.

4.1. Correlation

The first type of pattern we consider is correlation. In particular, we will show that if all the 

covariates are highly correlated with some outcome variable, then there must be a reasonable 

amount of correlation among the covariates themselves. This is formalized in the following 

theorem, which is known as Van der Corput’s inequality (Tao, 2014). We offer a proof here 

for completeness.

Theorem 1 (Van der Corput’s inequality). If X1, …, Xp, y are real-valued random variables 

with finite nonzero variance, then

i = 1

p

corr Xi, y ≤ p +
i ≠ j

corr Xi, Xj .

In particular, if corr Xi, y ≥ τ for each i = 1, …, p, then i ≠ j corr Xi, Xj ≥ p τ2p − 1 .

Proof. Without loss of generality, we may assume that X1, …, Xp, y have mean zero and unit 

variance. Define Z1, …, Zp by

Zi =
Xi if E yXi > 0,

−Xi else.

Thus E yZi = E yXi  and E Zi
2 = E Xi

2  for each i = 1, …, p. By Cauchy-Schwarz,

i = 1

p

E yZi = E y
i = 1

p

Zi ≤ E
i = 1

p

Zi

2

.

Therefore,
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i = 1

p

E yXi =
i = 1

p

E yZi ≤
i = 1

p

E Zi
2 +

i ≠ j
E ZiZj ≤ p +

i ≠ j
E XiXj .

Rearranging gives us the theorem statement. □

A direct consequence of Theorem 1 is that if X1, …, Xp are independent (or uncorrelated) 

random variables and each has correlation at least τ with y, then τ ≤ 1/ p.

In some situations, the outcome may change from study to study, for example a program 

evaluation in economics might look at employment, income, or savings; a political 

intervention might target turnout or vote choice; or an education experiment might look 

at several tests. Although the different outcomes in a study are not exactly the same, we 

might reasonably expect them to be highly correlated. However, if we have mean-zero and 

unit-variance random variables x, y, z satisfying E(xy) ≥ τ and E(yz) ≥ 1 − ϵ, then

E(xz) = E(x(z − y + y)) ≥ τ + E(x(z − y)),

and, by Cauchy-Schwarz,

E(x(z − y))2 ≤ E x2 E (z − y)2 ≤ 2 − 2(1 − ϵ) .

Thus, E(xz) ≥ τ − 2ϵ. This gives the following corollary of Theorem 1.

Corollary 2. Suppose X1, Y 1, …, Xp, Y p are real-valued random variables with finite 

nonzero variance. If corr Y i, Y j ≥ 1 − ϵ and corr Xi, Y i ≥ τ for i, j = 1, …, p, then 

i ≠ j corr Xi, Xj ≥ p (τ − 2ϵ)2p − 1 .

The bound in Theorem 1 is essentially tight for large p. To see this, pick any 0 ≤ τ ≤ 1 and 

take X1, …, Xp to be mean-zero random variables with covariance matrix Σ given by

Σij =
1 if i = j,

τ2 if i ≠ j .

If y = j = 1
p

Xj, then for each i = 1, …, p,

corr Xi, y =
E Xi j = 1

p
Xj

E j, kXjXk

=
1 + (p − 1)τ2

p + p(p − 1)τ2

p ∞
τ .

One drawback of Theorem 1 is that the upper bound depends on a coarse measure 

of interdependence of the covariates, namely the sum of all pairwise correlations 

i, j corr Xi, Xj . One might hope that if we have a finer-grained control on the correlation 

matrix, we should be able to get a stronger result. This is accomplished by the following 
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piranha theorem, which shows that we can instead get an upper bound that depends on the 

largest eigenvalue of the correlation matrix. However, this comes at the expense of bounding 

the sum of squared correlations corr Xi, Y
2, rather than the sum of their absolute values.

Theorem 3. If X1, …, Xp, y are real-valued random variables with finite nonzero variance, 

then

i = 1

p

corr Xi, y
2 ≤ λmax,

where λmax is the maximum eigenvalue of the correlation matrix Σi, j = corr Xi, Xj .

Consider again the case where X1, …, Xp are uncorrelated, and each has correlation at least 

τ with y. In this case, the correlation matrix will be the identity matrix, whose largest 

eigenvalue is 1, and Theorem 3 implies that τ ≤ 1/ p, which was the same conclusion 

provided by Theorem 1. However, in general Theorems 1 and 3 are incomparable since 

i = 1

p
corr Xi, y

2 ≤
i = 1

p
corr Xi, y , but

λmax
2 ≤

i, j
corr Xi, Xj

2
≤

i, j
corr Xi, Xj .

As an example of when these theorems can produce different conclusions, one can give 

a randomized construction of a correlation matrix Σ = AT A, where the columns of A are 

drawn from the uniform distribution over the hypersphere Sp − 1. In this case, if each 

covariate has correlation at least τ with y, then with high probability the conclusion of 

Theorem 1 is that τ is bounded above on the order of 1/ p
4 , while Theorem 3 gives a much 

tighter bound on the order of 1/ p.

The proof of Theorem 3 relies on the following technical lemma, essentially a consequence 

of orthogonality.

Lemma 4. If U1, …, Up, y are real-valued random variables with mean zero and unit variance 

such that E UiUj = 0 for all i ≠ j, then 
i = 1

p
EUiy

2 ≤ 1.

Proof. Denote the covariance matrix of the random vector U1, …, Up, y
⊤ as

Σ =
I a

a⊤ 1
,

where ai = E Uiy  for i = 1, …, p. Define the vector v = −a⊤, ‖a‖
⊤

∈ ℝp + 1. Then

v⊤Σv = 2(1 − ‖a‖)‖a‖2 ≥ 0,
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where the inequality follows from the fact that Σ is a covariance matrix and hence positive 

semi-definite. We conclude that ‖a‖ ≤ 1. □

With the above in hand, we turn to the proof of Theorem 3.

Proof of Theorem 3. Assume without loss of generality that X1, …, Xp, y have mean 

zero and unit variance. Denote the eigendecomposition of Σ as Qdiag λ1, …, λp QT , where 

λ1 ≥ ⋯ ≥ λp ≥ 0 and Q is orthogonal.

Let X = QT X, where X = X1, …, Xp . Then X = X1, …, Xp  is a mean-zero random vector 

whose covariance matrix is diag λ1, …, λp . For j ∈ {1, …, p} with λj = var Xj = 0, we have 

Xj = 0 almost surely. We then apply Lemma 4 to get

‖E(yX)‖2 =
j = 1

p

E yXj

2
=

j:λj > 0
λjE yXj/ λj

2
≤ λ1

j:λj > 0
E yXj/ λj

2
≤ λ1 .

Then,

i = 1

p

corr Xi, y
2 = ‖E(yX)‖2 = QQTE(yX)

2
= ‖QE(yX)‖2 = ‖E(yX)‖2 ≤ λ1,

where we have used the fact that Q is orthogonal. □

4.2. Linear regression

We next turn to showing that least squares linear regression solutions cannot have too many 

large coefficients. Specifically, letting β = β1, …, βp

⊤ ∈ ℝp denote the regression coefficients 

of least squared error,

β = argmin

α = α1, …, αp
⊤ ∈ ℝp

E α1X1 + ⋯ + αpXp − y
2 ,

(1)

we bound the number of βi’s that can have large magnitude. This is formalized in our next 

piranha theorem.

Theorem 5. Suppose X1, …, Xp, y are real-valued random variables with mean zero and unit 

variance. If β ∈ ℝp satisfies equation (1), then the squared ℓ2 norm of β satisfies

‖β‖2 ≤
1

λmin
,

where λmin is the minimum eigenvalue of the second-moment matrix E XX⊤  of 

X = X1, …, Xp

⊤.
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Consider again the setting where X1, …, Xp are standardized and uncorrelated. In this case, 

the second-moment matrix E XX⊤  will be the identity matrix, and its minimum eigenvalue 

λmin will be 1. Thus, Theorem 5 states for independent covariates, there may be at most 

1/κ2 regression coefficients βi with magnitude larger than κ. In general, λmin cannot get small 

without the explanatory variables having sizeable correlations with each other.

Proof of Theorem 5. The case where λmin = 0 is trivial. Thus, assume λmin > 0. In this case, the 

second-moment matrix E XX⊤  is invertible, its inverse has eigenvalues bounded above by 

1/λmin, and

β = E XX⊤ −1
E(yX) .

Define X = E XX⊤ −1/2
X, so X = X1, …, Xp

⊤
 is a vector of mean-zero and unit-variance 

random variables with E XiXj = 0 for all i ≠ j. By Lemma 4,

‖E(yX)‖2 =
j = 1

p

E yXj

2
≤ 1 .

Therefore,

‖β‖2 = E XX⊤ −1/2
E(yX)

2
= E(yX)⊤ E XX⊤ −1

E(yX) ≤
1

λmin
‖E(yX)‖2 ≤

1
λmin

,

where the first inequality uses the upper bound of 1/λmin on the eigenvalues of E XX⊤ −1
. □

4.3. Mutual information

Though many statistical analyses hinge on discovering linear relations among variables, 

not all do. Thus, we turn to a more general form of dependency for random variables, 

mutual information. Our mutual information piranha theorem will be of a similar form as the 

previous results, namely that if many covariates share information with a common variable, 

then they must share information among themselves.

To simplify our analysis, we assume that all the random variables we consider in this section 

take values in discrete spaces. For two random variables x and y, their mutual information is 

defined as

I(x; y) = H(x) − H(x ∣ y) = H(y) − H(y ∣ x),

where H( ⋅ ) and H( ⋅ ∣ ⋅ ) denote entropy and conditional entropy, respectively. These are 

defined as
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H(x) = ∑
x ∈ X

p(x)log
1

p(x)
,

H(y ∣ x) = ∑
x ∈ X, y ∈ Y

p(x, y)log
p(x)

p(x, y)
,

where X (resp. Y) is the range of x (resp. y), p(x, y) is the joint probability mass function of 

x and y, and p(x) is the marginal probability mass function of x.

We use the following facts about entropy and conditional entropy.

Fact (Chain rule of entropy). For random variables X1, …, Xp,

0 ≤ H X1, …, Xp =
i = 1

p

H Xi ∣ X1, …, Xi − 1 .

Moreover, for any other random variable y,

0 ≤ H X1, …, Xp ∣ y =
i = 1

p

H Xi ∣ y, X1, …, Xi − 1 .

Fact (Conditioning reduces entropy). For random variables x, y, z,

H(x ∣ y, z) ≤ H(x ∣ y) ≤ H(x) .

Using these facts, we can prove the following piranha theorem about mutual information.

Theorem 6. Given random variables X1, …, Xp and y, we have

i = 1

p

I Xi; y ≤ H(y) +
i = 1

p

I Xi; X−i ,

where X−i = X1, …, Xi − 1, Xi + 1, …, Xp .

Proof. Using the definition of mutual information, we have

H Xi ∣ X−i ≥ H Xi − I Xi; X−i .

Since conditioning reduces entropy, this implies

H Xi ∣ X1, …, Xi − 1 ≥ H Xi ∣ X−i = H Xi − I Xi; X−i .
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Then, by the chain rule of entropy,

H X1, …, Xp =
i = 1

p

H Xi ∣ X1, …, Xi − 1 ≥
i = 1

p

H Xi − I Xi; X−i .

(2)

The chain rule of entropy combined with the fact that conditioning reduces entropy implies

H X1, …, Xp ∣ y ≤
i = 1

p

H Xi ∣ y .

(3)

Plugging equations (2) and (3) into our formula for I X1, …, Xp; y  gives

I(X1, …, Xp; y) = H(X1, …, Xp) − H(X1, …, Xp ∣ y)

≥ ∑
i = 1

p

H(Xi) − I(Xi; X−i) − H(Xi ∣ y)

= ∑
i = 1

p

I(Xi; y) − I(Xi; X−i) .

Now we can also write,

I X1, …, Xp; y = H(y) − H y ∣ X1, …, Xp ≤ H(y) .

Rearranging yields the theorem. □

One corollary of Theorem 6 is that for any random variable y, there can be at most 

p ≤ H(y)/γ random variables X1, …, Xp that (a) are mutually independent and (b) satisfy 

I Xi; y ≥ γ.

5. Correlations in a finite sample

We now turn our focus back to correlations, this time in a finite sample. Suppose we conduct 

a survey with data on p predictors X and one outcome of interest y on a random sample 

of n people, and then we evaluate the correlations between the outcome and each of the 

predictors.

We collect the data in an n × p matrix X with n > p, where each of the columns 

X1, …, Xp ∈ ℝn of X has mean zero and unit ℓ2 norm, and we will use corr(x, y) for x, y ∈ ℝn

(neither in the span of the all-ones vector 1) to denote the sample correlation:

corr(x, y) =
i = 1
n

xi − μx yi − μy

i = 1

n
xi − μx

2
i = 1

n
yi − μy

2
,
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where μx =
1
n i = 1

n
xi and μy =

1
n i = 1

n
yi.

An application of Theorem 3 tells us that any non-constant vector y ∈ ℝn satisfies

0 ≤
j = 1

p

corr Xi, y
2 ≤ σ1

2,

where σ1 ≥ ⋯ ≥ σp ≥ 0 denote the singular values of X. Moreover, it is not hard to see there 

exists a vector that achieves the upper bound, namely the top singular vector of X.

This analysis shows a worst-case piranha theorem: a bound on the number of large 

correlations with all possible response vectors. Stronger results can be obtained if we 

consider average behavior. Here, we consider a stochastic piranha theorem in which we 

assume that y is uniformly distributed on the unit sphere in ℝn. Our result will hold for any 

choice of radially symmetric random vector y that is independent of X, but we state it for the 

uniform distribution over the unit sphere for concreteness. We choose a radially symmetric 

distribution because we have no reason to give preference to one direction over another. 

Recall the value of studying average as well as worst-case behavior in areas such as random 

matrix theory.

The following theorem demonstrates this principle, showing that the maximum sum of 

squared correlations, an O(1) quantity in n, is generally much larger than the expected sum 

of square correlations. Specifically, the following theorem shows that the expected sum of 

squared correlations decays like 1/n.

Theorem 7. Let y be uniformly distributed on the unit sphere in ℝn. Then

E
i = 1

p

corr Xi, y
2 =

p

n − 1
.

If y is uniformly distributed on the unit sphere in ℝn, then for large n, the distribution of y

is well approximated by Z1, …, Zn  the n-dimensional multivariate Gaussian with mean zero 

and covariance 
1
n

I. In particular, Z1, …, Zn  is spherically symmetric, and

E Z1
2 + ⋯ + Zn

2 = 1 and var Z1
2 + ⋯ + Zn

2 = O 1/n2 .

As a consequence, for large n, the distribution of sum of squared correlations is well 

approximated by a linear combination of independent χ2 random variables, each with one 

degree of freedom: 
1

n − 1
λ1

2
ξ1 + ⋯ + λp

2
ξp .

Combining this observation with Theorems 3 and 7, for any n × p matrix (or sample of 

data) X, if a vector y is distributed according to a spherically symmetric distribution, then 
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i = 1

p
corr Xi, y

2 is supported on 0, σ1
2 , has expectation p/(n − 1), and for large n has O 1/n2

variance.

6. Discussion and directions for future work

The piranha problem is a practical issue: as discussed in the references in Sections 1 

and 3, it has interfered with research in fields including social priming, evolutionary 

psychology, economics, and voting behavior. An understanding of the piranha problem can 

be a helpful step in recognizing fundamental limitations of research in these fields along 

with related areas of application such as marketing and policy nudges (Szszi et al., 2022). 

We suspect that a naive interpretation of the butterfly effect has led many researchers and 

policymakers to believe that there can be many large and persistent effects; thus, there is 

value in exploring the statistical reasons why this is not likely. In this way, the piranha 

problem resembles certain other statistical phenomena such as regression to the mean and 

the birthday coincidence problem, in that there is a regularity in the world that surprises 

people, and this regularity can be understood as a mathematical result. This motivates us to 

seek theorems that capture some of this regularity in a rigorous way. We are not all the way 

there, but this seems to us to be a valuable research direction.

6.1. Bridging between deterministic and probabilistic piranha theorems

Are there connections between the worst-case bounds in Section 4, constraints on main 

effects and interactions (Rogers, 2002), the probabilistic bounds in Section 5, priors for 

the effective number of nonzero coefficients, and models such as the R2 parameterization 

of linear regression as proposed by Zhang et al. (2020)? We can consider two directions. 

The first is to consider departures from parametric models such as the multivariate normal 

and t and work out their implications for correlations and regression coefficients. The 

second approach is to obtain limiting results in high dimensions (that is, large numbers of 

predictors), by analogy to central limit theorems of random matrices. The idea here would 

be to consider a n × (p + 1) matrix and then pull out one of the columns at random and 

consider it as the outcome, y, with the other p columns being the predictors, X. One should 

also be able to connect this with work such as Frank (2002) and Knaeble et al. (2020) on 

how regression coefficients change when new predictors are added to a model.

6.2. Regularization, sparsity, and Bayesian prior distributions

There has been research from many directions on regularization methods that provide soft 

constraints on models with large numbers of parameters. By “soft constraints,” we mean that 

the parameters are not literally constrained to fall within any finite range, but the estimates 

are pulled toward zero and can only take on large values if the data provide strong evidence 

in that direction.

Examples of regularization in non-Bayesian statistics include wavelet shrinkage, lasso 

regression, estimates for overparameterized image analysis and deep learning networks, 

and models that grow in complexity with increasing sample size. In a Bayesian context, 

regularization can be implemented using weakly informative prior distributions (e.g., 

Greenland and Mansournia, 2015) or more informative priors that can encode the 
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assumed sparsity (e.g., Carvalho et al., 2010). Classical regularization is motivated by 

the goal of optimizing long-run frequency performance, and Bayesian priors represent 

additional information about parameters, coded as probability distributions. The various 

piranha theorems correspond to different constraints on these priors and thus even weakly 

informative priors should start by encoding these constraints.

From a different direction is the idea that any given data might allow only some small 

number of effects or, more generally, a low-dimensional structure, to be reliably learned. 

More generally, models such as the horseshoe (Carvalho et al., 2010) assume a distribution 

of effect sizes with a sharp peak near zero and a long tail, which represent a solution to the 

piranha problem by allowing a large number of predictors without overflowing variance.

6.3. Nonlinear models

So far we have discussed linear regression, with theorems capturing different aspects of the 

constraint that the total R2 cannot exceed 1 (or some bound less than 1, if some of the 

variation is by its nature unexplainable because it comes from a random process). We can 

make similar arguments for nonlinear regression.

For example, consider a model of binary data with 20 causal inputs, each of which is 

supposed to have an independent effect of 0.5 on the logistic scale. Aligning these factors 

in the same direction would give an effect of 10, enough to change the probability from 

0.01 to 0.99, which would be unrealistic in applied fields ranging from marketing to voting 

where no individual behavior can be predicted to that level of accuracy. One way to avoid 

these sorts of extreme probabilities would be to suppose the predictors are highly negatively 

correlated with each other, but in practice, input variables in social science tend to be 

positively, not negatively correlated (consider, for example, conservative political ideology, 

Republican party identification, and various issue attitudes that predict Republican vote 

choice and have positive correlations among the population of voters). The only other 

alternative that allows one to keep the large number of large effects is for the model to 

include strong negative interactions, but then the effects of the individual inputs would 

no longer be stable, and any effect would depend very strongly on the conditions of the 

experiment in which it is studied. It should be possible to express this reasoning more 

formally, perhaps in a way similar to long-range dependence models in time series and 

spatial processes.

6.4. Implications for social science research

Although we cannot directly apply these piranha theorems to data, we see them as providing 

some relevance to social science reasoning.

As noted at the beginning of this article, there has been a crisis in psychology, economics, 

and other areas of social science, with prominent findings and apparently strong effects 

that do not appear in attempted replications by outside research groups; see, for example, 

Gordon et al. (2020). The replication crisis involves many challenges, including estimating 

its scale and scope, identifying the statistical errors and questionable research practices that 

have led researchers to systematically overestimate effect sizes and be overconfident in their 

findings, and studying the incentives of the scientific publication process that can allow 
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entire subfields to get lost in the interpretation of noise. Even when individual effects are 

large, they can apply just to a small subset of the population or just for a short period of 

time, not leaving persistent effects.

The research reviewed in the present article is related to, but different from, the cluster 

of ideas corresponding to multiple comparisons, false discovery rates, and multilevel 

models. Those theories correspond to statistical inference in the presence of some specified 

distribution of effects, possibly very few nonzero effects (the needle-in-a-haystack problem) 

or possibly an entire continuous distribution, but without necessarily any concern about how 

these effects interact.

The present article goes in a different direction, asking the theoretical question: under what 

conditions is it possible for many large and persistent effects to coexist in a multivariate 

system? In different ways, our results rule out or make extremely unlikely the possibility 

of multiple large effects or “piranhas” among a set of random variables. These theoretical 

findings do not directly call into question any particular claimed effect, but they raise 

suspicions about a model of social interactions in which many large effects are swimming 

around, just waiting to be captured by researchers who cast out the net of a quantitative 

study.

To more directly connect our theorems with social science would require modeling predictor 

and outcome variables in a subfield, similar to multiverse analysis (Steegen et al., 2016). 

Bounds can be strengthened with reference to empirical correlations among predictors being 

considered. When conducting systematic reviews of evidence, it could be appropriate to 

consider the potential interactions among various hypothesized causal factors, rather than 

attempting to combine separate estimates using meta-analysis. Any general implications for 

social science would only become clear after consideration of particular research areas.
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A.: Proof of Theorem 7

For any x = x1, …, xn

⊤ ∈ ℝn such that x ≠ λ1 for all λ ∈ ℝ (i.e., x is not in the span of 1), we 

write x* ∈ ℝn to denote the “standardized” vector given by the formula,

x* =
x −

1
n

x⊤1 1

x −
1
n

x⊤1 1

=
x −

1
n j = 1

n
xj 1

i = 1

n

xi −
1
n j = 1

n
xj

2
.

The unit vector x* in ℝn is orthogonal to 1. Using this notation, we have
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corr(x, y) = x* ⊤
y*

(4)

for any x, y ∈ ℝn not in the span of 1.

Write the singular value decomposition of X as

X =
k = 1

p

σkUkV k
⊤,

(5)

where U1, …, Up ∈ ℝn are orthonormal left singular vectors of X, V 1, …, V p ∈ ℝp are 

orthonormal right singular vectors of X, and σ1 ≥ ⋯ ≥ σp ≥ 0 are the singular values of X.

Recall that we assume X1, …, Xp satisfy 1⊤
Xi = 0 and Xi = 1 for all i = 1, …, p. This implies 

the following lemma.

Lemma 8.Xi = Xi
* for all i = 1, …, p, and Uk = Uk

* for all k = 1, …, p.

Proof. The assumption on Xi implies that Xi
* = Xi for each i. Moreover, the assumptions 

imply that the all-ones vector 1 is orthogonal to the range of X, which is spanned by 

U1, …, Up. Hence Uk = Uk
* for each k as well. □

We then take advantage of the following lemma for expressing the sum of squared 

correlations.

Lemma 9. For any vector y ∈ ℝn such that y ≠ λ1 for all λ ∈ ℝ,

i = 1

p

corr Xi, y
2 =

k = 1

p

λk
2

Uk
⊤y*

2
.

Proof. By direct computation:

∑
i = 1

p

corr(Xi, y)2 = ∑
i = 1

p

((Xi
*)

⊤
(y*))

2
(by equation 4)

= ∑
i = 1

p

(Xi
⊤y*)

2
(by Lemma 8)

= ‖X⊤y*‖
2

= ∑
k = 1

p

λkV kUk
⊤y*

2

(by equation 5)

= ∑
k = 1

p

λk
2(Uk

⊤y*)
2

(by Pythagorean theorem) . □
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Proof of Theorem 7. By Lemma 8, the vectors U1, …, Up are orthogonal to the unit vector 

1

n
1. We extend the collection of orthonormal vectors U1, …, Up,

1

n
1 with orthonormal unit 

vectors Up + 1, …, Un − 1 to obtain an orthonormal basis for ℝn. With probability 1, the random 

vector y is not in the span of 1. Hence, y* is well defined and can be written uniquely as a 

linear combination of the aforementioned basis vectors:

y* = a1U1 + ⋯ + an − 1Un − 1 + an

1

n
1,

where

ak =
Uk

⊤y* if 1 ≤ k ≤ n − 1,

0 if k = n since 1
⊤

y* = 0 ,

and

1 = a1
2 + ⋯ + an − 1

2

(since y* is a unit vector). In particular, 1 = E a1
2 + ⋯ + E an − 1

2 , which by symmetry implies 

that E ak
2 =

1
n − 1

 for each k = 1, …, n − 1. Then, by Lemma 9,

E
i = 1

p

corr Xi, y
2 = E

k = 1

p

λk
2

Uk
⊤y*

2
=

k = 1

p

λk
2
E ak

2 =
1

n − 1
k = 1

p

λk
2

Since λi
2 are the eigenvalues of XtX and the columns of X have unit ℓ2 norm,

1
n − 1

k = 1

p

λk
2 =

p

n − 1

because the trace of XtX is equal to the sum of its eigenvalues. □
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