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1. Background

In this work, we discuss an inevitable consequence of having a stable system in which many
explanatory variables have large effects: these variables must have large interactions which
will be unlikely to cancel either other out to the extent required for general stability or
predictability. We call this type of result a “piranha theorem” (Gelman, 2017), the analogy
being the folk belief that if one has a large number of piranhas (representing large effects)

in a single fish tank, then one will soon be left with far fewer piranhas. If there is some
outcome for which studies find large and consistent effects of many different inputs, then we
can conclude that some of these effects are smaller than claimed or that multiple explanatory
variables are essentially measuring the same phenomenon.

Identifying and measuring the effects of explanatory variables are central problems in
statistics and drive much of the world’s scientific research. Despite the substantial effort
spent on these tasks, there has been comparatively little work on addressing a related
question: how many explanatory variables can have large effects on an outcome? The
present work follows up on Cornfield et al. (1959) and Ding and Vanderweele (2014),
considering quantitative constraints in the effects of additional variables.

Consider, for example, the problem of explaining voters’ behaviors and choices. Researchers
have identified and tested the effects of internal factors such as fear, hope, pride, anger,
anxiety, depression, and menstrual cycles, as well as external factors such as droughts,

shark attacks, and the performance of local college football teams. Many of these findings
have been questioned on methodological grounds, but they remain in the public discourse.
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Beyond the details of these particular studies, it is natural to ask if all of these effects can be
real in the sense of representing patterns that will consistently appear in the future.

The implication of the published and well-publicized claims regarding ovulation and voting,
shark attacks and voting, college football and voting, etc., is not merely that some voters are
superficial and fickle. No, this literature claims that seemingly trivial or irrelevant factors
have Jarge and consistent effects, and this runs into the problem of interactions. For example,
the effect on your vote of the local college football team losing could depend crucially

on whether there’s been a shark attack lately, or on what’s up with your hormones on
election day. Or the effect could be positive in an election with a female candidate and
negative in an election with a male candidate. Or the effect could interact with your parents’
socioeconomic status, or whether your child is a boy or a girl, or the latest campaign ad,

or any of the many other factors that have been studied in the evolutionary psychology

and political psychology literatures. If such effects are large, it is necessary to consider
their interactions, because the average effect of a factor in any particular study will depend
on the levels of all the other factors in that environment. Similarly, Mellon (2020) has
argued against naive assumptions of causal identification in economics, where there is

a large literature considering rainfall as an instrumental variable, without accounting for

the implication that these many hypothesized causal pathways would, if taken seriously,
represent violations of the assumptions of the model. Even if a particular experiment or
observational study analyzes only one causal factor, the existence of potential interactions
(as indeed are implied if one were to take the social science literature at face value) destroys
the implicit assumption that an effect measured under some particular set of conditions can
be interpreted as a general or persistent effect.

These concerns are particularly relevant in social science, where the search for potential
causes is open-ended. Our work here is partly motivated by the replication crisis, which
refers to the difficulties that many have had in trying to independently verify established
findings in social and biological sciences. Many of the explanations for the crisis have
focused on various methodological issues, such as low power and unrecognized researcher
degrees of freedom (Simmons et al., 2011). Beyond the criticisms of practice and suggested
fixes, these works have also provided much needed statistical intuition. Groups of studies
that claim to have found a variety of important explanatory variables for a single outcome
should be scrutinized, particularly when the dependencies among the explanatory variables
have not been investigated.

This article collects several mathematical results regarding the distributions of correlations
or coefficients, with the aim of fostering further work on statistical models for environments
with a multiplicity of effects. What is novel in this paper is not the theorems themselves but
rather viewing them in the context of trying to make sense of clusters of research studies that
claim to have found large effects.

There are many ways to capture the dependence among random variables, and thus we
should expect there to be a correspondingly large collection of piranha theorems. We
formalize and prove piranha theorems for correlation, regression, and mutual information
in Section 4. These theorems illustrate the general phenomena at work in any setting with
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multiple causal or explanatory variables, with implications for the replication crisis in social

science.

2. Piranhas and butterflies

A fundamental tenet of social psychology and behavioral economics, at least how it is
presented in the news media, and taught and practiced in many business schools, is that
small “nudges,” often the sorts of things that we might not think would affect us at all, can

have big effects on behavior.

The model of the world underlying these claims is not just the “butterfly effect” that small
changes can have big effects; rather, it’s that small changes can have big and predictable
effects, a sort of “button-pushing” model of social science, the idea that if you do A, you can

expect to see B.

In response to this attitude, we present the piranha argument, which states that there can be
some large and predictable effects on behavior, but not a lot, because, if there were, then
these different effects would interfere with each other, a “hall of mirrors” of interactions
(Cronbach, 1975) that would make it hard to detect any consistent effects of anything in
observational data.

In a similar vein, Cook (2018) writes:

“The butterfly effect is the semi-serious claim that a butterfly flapping its wings can
cause a tornado half way around the world. It’s a poetic way of saying that some
systems show sensitive dependence on initial conditions, that the slightest change
now can make an enormous difference later ... Once you think about these things
for a while, you start to see nonlinearity and potential butterfly effects everywhere.

There are tipping points everywhere waiting to be tipped!”
But, Cook continues, it’s not so simple:

“A butterfly flapping its wings usually has no effect, even in sensitive or chaotic
systems. You might even say especially in sensitive or chaotic systems. Sensitive
systems are not always and everywhere sensitive to everything. They are sensitive
in particular ways under particular circumstances and can otherwise be resistant to
influence.... The lesson that many people draw from their first exposure to complex
systems is that there are high-leverage points, if only you can find them and
manipulate them. They want to insert a butterfly tat just the right time and place to
bring about a desired outcome. Instead, we should humbly evaluate to what extent
it is possible to steer complex systems at all. We should evaluate what aspects can
be steered and how well they can be steered. The most effective intervention may
not come from tweaking the inputs but from changing the structure of the system.”

Effects in social science vary across people and scenarios and over time, and they can
be represented by probability distributions. Cook’s advice to think about “the structure of
the system” echoes recommendations from the literature on statistical quality control that
system-level variation puts a limit on what can be learned about the average effects of
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particular interventions. In the presence of possible interactions, there is no reason to expect
stability of treatment effects.

3. Example: hypothesized effect sizes in social priming

We demonstrate the possibility of quantitative analysis of the piranha problem using

the example of an influential experiment from 1996 in which participants were given a
scrambled-sentence task and then were surreptitiously timed when walking away from the
lab. Students whose sentences included elderly-related words such as “worried,” “Florida,”
“old,” and “lonely” walked an average of 13% more slowly than students in the control

condition, and the difference was statistically significant.

This experimental claim is of historical interest in psychology in that, despite its
implausibility, it was taken seriously for many years and received thousands of citations,

but it failed to replicate and is no longer generally believed to represent a real effect;

for background see Wagenmakers et al. (2015). Now we understand such apparently
statistically-significant findings as the result of selection with many researcher degrees of
freedom (Simmons et al., 2011). Here, though, we will take the published claim at face value
and also work within its larger theoretical structure, under which weak indirect stimuli can
produce large effects.

An effect of 13% on walking speed is not in itself huge; the difficulty comes when
considering elderly-related words as just one of many potential stimuli. Here are just some
of the factors that have been published in the social priming and related literatures as having
large effects on attitudes and behavior: hormones, subliminal images, news of football
games and shark attacks, a chance encounter with a stranger, parental socioeconomic status,
weather, the last digit of one’s age, the sex of a hurricane name, the sexes of siblings, the
position in which a person is sitting, and many others. See Gelman (2023) for references

to these claims, along with other papers criticizing or refuting them. A common feature of
these examples is that the stimuli have no clear direct effect on the measured outcomes,
and in many cases the experimental subject is not even aware of the manipulation. Based
on these examples, one can come up with dozens of other potential stimuli that fit the
pattern. In addition to walking speed being affected by elderly-related words, one could
also consider word lengths (with longer words corresponding to slower movement), sounds
of words (with smooth sibilance motivating faster walking), subject matter (sports-related
words as compared to sedentary words), affect (happy compared to sad words, or calm
compared to angry), words related to travel (inducing faster walking) or invoking adhesives
such as tape or glue (inducing slower walking), and so on. Similarly, one can consider
different sorts of incidental events, not just encounters with strangers but also a ringing
phone or knocking at the door, the presence of a male or female lab assistant (which could
have a main effect or interact with the participant’s sex), a newspaper or magazine on a
nearby table, ad infinitum.

Now we can invoke the piranha principle. Imagine 100 possible stimuli, each with an
effect of 13% on walking speed, all of which could arise in a real-world setting where
we encounter many sources of text, news, and internal and external stimuli. If each

Not Am Math Soc. Author manuscript; available in PMC 2025 July 31.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Tosh et al.

Page 5

stimulus corresponds to two equally probable states with effects of 0.5 log(1.13) on log
walking speed, and these effects are independent in the wild, then the sum of these will

be approximately normally distributed with standard deviation 0.5,/100log(1.13) = 0.61, thus
walking speed could easily be multiplied or divided by ¢! = 1.8 based on a collection of
arbitrary stimuli that are imperceptible to the person being affected. And this factor of 1.8
could be made arbitrarily large by simply increasing the number of potential primes.

It is outrageous to think that walking speed could be doubled or halved based on a random
collection of unnoticed and essentially irrelevant stimuli—but that is the implication of
the embodied cognition literature. It is basically a Brownian motion model in which the
individual inputs are too large to work out.

We can think of five ways to avoid the ridiculous conclusion. The first possibility is that

the different factors could interact or interfere in some way so that the variance of the

total effect is less than the sum of the variances of the individual components, or multiple
explanatory variables could be essentially measuring the same phenomenon. Second, effects
could be much smaller. Change those 13% effects to 1% effects and you can get to more
plausible totals, in the same way that real-world Brownian oscillations are tolerable because
the impact of each individual molecule in the liquid is so small. Third, one could reduce the
total number of possible influences. If there were only 10 possible stimuli rather than 100 or
1000 or more, then the total effect could fall within the range of plausibility. Fourth, there
could be a distribution of effects with a few large influences and a long tail of relatively
unimportant factors, so that, when correctly translated to standardized population effect
sizes, most treatment effects are already small, and the infinite sum has a reasonable bound.
Fifth, multiple explanatory variables could be essentially measuring the same phenomenon.

All these options have major implications for the study of social priming and, more
generally, for causal inference in an open-ended setting with large numbers of potential
influences. If large interactions are possible, this suggests that stable individual treatment
effects might be impossible to find: a 13% effect of a particular intervention in one particular
experiment might be —18% in another context or +2% in the presence of some other
unnoticed factor, and this in turn raises questions about the relevance of any particular study.
If effects are much smaller than reported, this suggests that existing studies are extremely
underpowered, so that published estimates are drastically overestimated and often in the
wrong direction (Gelman and Carlin, 2014), thus essentially noise. At the same time, a
restriction of the universe of potential stimuli would require an overhaul of the underlying
theoretical framework in which just about any stimulus can cause a noticeable change. For
example, if we think there cannot be more than five or ten large effects on walking speed,

it would seem a stretch that unnoticed words in a sentence scrambling test would be one

of these special factors. Finally, if the distribution of average effects is represented by a

long series, most of whose elements are tiny (either because of small individual effects or
because any large effects occur infrequently in the general population, as with rare diseases
or short-term interventions with rapidly decaying effects), this implies a prior distribution on
average effect sizes with a spike near zero, which in turn would result in near-zero estimated
population effect sizes in most cases. Our point is not that all effects are zero but rather that
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in a world of essentially infinitely many possible causal factors, some external structure must
be applied in order to identify stable effects from finite samples.

4. Piranha theorems

In this section, we present piranha theorems for linear and nonlinear effects. We consider
two different ways of measuring linear effects. We first show that it is impossible for a

large number of explanatory variables to be correlated with some outcome variable unless
they are highly correlated with each other. Second, we show that if a set of explanatory
random variables is plugged into a linear regression, the 4-norm || g|| of the least-squares
coefficient vector S can be bounded above in terms of the eigenvalues of the second-moment
matrix of the predictors. Thus, there can only be so many individual coefficients with

a large magnitude. Finally, we consider a general nonlinear form of dependency, mutual
information, and present a corresponding piranha theorem for that measure.

4.1. Correlation

The first type of pattern we consider is correlation. In particular, we will show that if all the
covariates are highly correlated with some outcome variable, then there must be a reasonable
amount of correlation among the covariates themselves. This is formalized in the following
theorem, which is known as Van der Corput’s inequality (Tao, 2014). We offer a proof here

for completeness.

Theorem 1 (Van der Corput’s inequality). If X,, ..., X,, y are real-valued random variables

with finite nonzero variance, then

p
E [corr(X,, y)| < [p+ E [corr(X;, X))|.
=1 " F

In particular, if |corr(X,,y)| > = foreachi=1,....p, then ¥ ; . jlcorr(X,, X )| > p(z*p — 1).

Proof. Without loss of generality, we may assume that X, ..., X,, y have mean zero and unit

variance. Define Z,, ..., Z, by

i

X, if E(yX;) >0,
- —X; else.

Thus E(yZ) = [E(yX,)| and E(Z) = E(X) for each i = 1, ..., p. By Cauchy-Schwarz,

Therefore,
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p

y4
[EGX) = D E(vZ) < \/ E(Z)+ D E(ZZ) < [p+ D EXX).
i=1 i=1 i=1 e iEj

Rearranging gives us the theorem statement. O

]

A direct consequence of Theorem 1 is that if X, ..., X, are independent (or uncorrelated)

random variables and each has correlation at least r with y, then 7 < I/JE.

In some situations, the outcome may change from study to study, for example a program
evaluation in economics might look at employment, income, or savings; a political
intervention might target turnout or vote choice; or an education experiment might look

at several tests. Although the different outcomes in a study are not exactly the same, we
might reasonably expect them to be highly correlated. However, if we have mean-zero and
unit-variance random variables x, y, z satisfying E(xy) > r and E(yz) > | — ¢, then

E(xz) = E(x(z—y+ ) 2 7+ EXx(z - y)),

and, by Cauchy-Schwarz,

E(x(z — y)? < [E(x2)[E((z - y)2) <2-2(1-¢.

Thus, E(xz) > 7 — 2¢. This gives the following corollary of Theorem 1.

Corollary 2. Suppose X,,Y,, ..., X,, Y, are real-valued random variables with finite

nonzero variance. If corr(Y,,Y;) > 1 — € and|corr(X,,Y,)| > = fori,j=1, ..., p, then

Y 2 jleort(X, X)) 2 p((r = \2e)°p — 1).

The bound in Theorem 1 is essentially tight for large p. To see this, pick any 0 < 7 < 1 and
take X, ..., X, to be mean-zero random variables with covariance matrix  given by

1 ifi=j,

22 0f i #j.

ij

Ify= Zf: 1 X, then foreachi=1,...,p,

E{X; I'J— X; —_ 12 N
corr(X;, y) = ( 21_1 )= l+(p-Dr 211 0
VEZ) 6 XX \p+pp—ye

One drawback of Theorem 1 is that the upper bound depends on a coarse measure
of interdependence of the covariates, namely the sum of all pairwise correlations
Y, jlcorr(X;, X,)|. One might hope that if we have a finer-grained control on the correlation

matrix, we should be able to get a stronger result. This is accomplished by the following
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piranha theorem, which shows that we can instead get an upper bound that depends on the
largest eigenvalue of the correlation matrix. However, this comes at the expense of bounding

the sum of squared correlations |corr(X, Y)|2, rather than the sum of their absolute values.

Theorem 3. If X, ..., X,, y are real-valued random variables with finite nonzero variance,
then

]

leort(X,, ) < A
i=1

where A 1s the maximum eigenvalue of the correlation matrix ¥, ; = corr(X,, X ;).

Consider again the case where X, ..., X, are uncorrelated, and each has correlation at least
= with y. In this case, the correlation matrix will be the identity matrix, whose largest
eigenvalue is 1, and Theorem 3 implies that = < 1/,/p, which was the same conclusion
provided by Theorem 1. However, in general Theorems 1 and 3 are incomparable since

p 2 p
< .
Y?_ leorr(X, y)* < Y7 [eorr(X,, y)], but

R < Dfeor(Xi, X)> < D feorr(X,, X))
i,j i,j

As an example of when these theorems can produce different conclusions, one can give
a randomized construction of a correlation matrix £ = AT A, where the columns of A are

drawn from the uniform distribution over the hypersphere S” ~ I In this case, if each

covariate has correlation at least = with y, then with high probability the conclusion of

Theorem 1 is that 7 is bounded above on the order of 1/%, while Theorem 3 gives a much

tighter bound on the order of 1/4/p.

The proof of Theorem 3 relies on the following technical lemma, essentially a consequence
of orthogonality.

Lemma 4. IfU,,...,U,, y are real-valued random variables with mean zero and unit variance

such that E(UU,) = 0 for all i # j, then Zf’z 1([Eu,.y)2 < L

Proof: Denote the covariance matrix of the random vector (U,, ..., U,, y)T as

where g, = E(U,y) for i = 1, ..., p. Define the vector v = (—aT, ||a||)T e R?* 1 Then

2
vz = 2(1 = flalDllall” = O,

Not Am Math Soc. Author manuscript; available in PMC 2025 July 31.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Tosh et al.

Page 9

where the inequality follows from the fact that X is a covariance matrix and hence positive
semi-definite. We conclude that ||q|| < 1.0

With the above in hand, we turn to the proof of Theorem 3.

Proof of Theorem 3. Assume without loss of generality that X, ..., X,, y have mean
zero and unit variance. Denote the eigendecomposition of £ as Qdiag(,, ..., }\p)QT, where

M > - > ), > 0and Q is orthogonal.

Let X = 07 X, where X = (X,,....X,). Then X = (X......X,) is a mean-zero random vector
whose covariance matrix is diag(h, ..., ). For j € {1, ..., p} with A, = var(X ) = 0, we have

X, = 0 almost surely. We then apply Lemma 4 to get

)4
IEGRN? = DTEGX) = > S hEQTNR) <0 > SEGR AR <.
j=1 Jjih>0 jir >0

Then,

)4
2 — —
leorr(X,, y)? = IEGX)11% = leoTEGx)l|” = 10EGT)I? = IEGDI? < A,
1

where we have used the fact that Q is orthogonal. O

4.2. Linear regression

We next turn to showing that least squares linear regression solutions cannot have too many
large coefficients. Specifically, letting g = (B,, ..., ﬁ,,)T € R? denote the regression coefficients

of least squared error,

f= argmin [E((ale + et X, - Y)Z)s
a = (a, ...,ap)T eRr?

(1)
we bound the number of s that can have large magnitude. This is formalized in our next
piranha theorem.

Theorem 5. Suppose X,, ..., X,, y are real-valued random variables with mean zero and unit

variance. If f € R? satisties equation (1), then the squared ¢, norm of p satisfies

where M\, Is the minimum eigenvalue of the second-moment matrix [E(X X T) of

-
X=(X,...X,) .
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Consider again the setting where X, ..., X, are standardized and uncorrelated. In this case,
the second-moment matrix [E(X X T) will be the identity matrix, and its minimum eigenvalue

Amin Will be 1. Thus, Theorem 5 states for independent covariates, there may be at most
1/x2 regression coefficients g, with magnitude larger than «. In general, A,,, cannot get small

without the explanatory variables having sizeable correlations with each other.

Proof of Theorem 5. The case where A, = 0 is trivial. Thus, assume A,;, > 0. In this case, the
second-moment matrix [E(X X T) is invertible, its inverse has eigenvalues bounded above by

1/ N, and
f= ([E(XXT))_ 'Eox).

— -1/2 _ = —\T. . .
Define X = ([E(X X T)) X, S0 X = (X b eens X,,)T is a vector of mean-zero and unit-variance

random variables with E(XX,) = 0 for all i # j. By Lemma 4,

p
IEGRI? = X}E(y’)?,)z <1.
J =

Therefore,

1
Min”

1 = |(E(xx ) 2e0m)| = e T(E(xx T E0T) < 5 1EGTIR <

where the first inequality uses the upper bound of 1/),,, on the eigenvalues of ([E(X X T))_ 1. O

4.3. Mutual information

Though many statistical analyses hinge on discovering linear relations among variables,

not all do. Thus, we turn to a more general form of dependency for random variables,

mutual information. Our mutual information piranha theorem will be of a similar form as the
previous results, namely that if many covariates share information with a common variable,
then they must share information among themselves.

To simplify our analysis, we assume that all the random variables we consider in this section
take values in discrete spaces. For two random variables x and y, their mutual information is

defined as

IGx;y) =H(x) - H(x | y) = H(y) - H(y | x),
where H(-)and H(- | -) denote entropy and conditional entropy, respectively. These are
defined as

Not Am Math Soc. Author manuscript; available in PMC 2025 July 31.
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Hx = Y pexlog——

xeX Py’
&)
Hylo= Y peylog P2
xedyey p(x,y)

where 2 (resp. %) is the range of x (resp. y), p(x, y) is the joint probability mass function of
x and y, and p(x) is the marginal probability mass function of x.

We use the following facts about entropy and conditional entropy.

Fact (Chain rule of entropy). For random variables X,, ..., X,

p
0< H(X,, ... X)) = D HX | Xpyoos X ).
=1

Moreover, for any other random variable y,

sl

OSH(Xl,m,XpU’): H(X: |y, X1,.... Xi_1).
i=1

Fact (Conditioning reduces entropy). For random variables x, y, z,

H(x|y,z) < H(x | y) £ H(x).

Using these facts, we can prove the following piranha theorem about mutual information.

Theorem 6. Given random variables X,, ..., X, and y, we have

4 4
D oI(Xsy) < HO+ D I(X: X)),
i=1

i=1 i=

where X ;= (Xy ... Xio 1, Xiv 1y o 0r X))-

Proof. Using the definition of mutual information, we have

H(Xi | X—i) > H(Xr) - I(Xi; X—r)-

Since conditioning reduces entropy, this implies

H(X;| Xy,....X;—1) > HX; | X_,)) = HX,)) - I(X;X_).
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Then, by the chain rule of entropy,

p p
H(X,...X,) = E HX; | Xi,....Xi—1) > H(X)-I(X;X_).
i=1 i=1

@
The chain rule of entropy combined with the fact that conditioning reduces entropy implies

p
H(X,, ... X,|y) < E JH(X ).
i=1

3

Plugging equations (2) and (3) into our formula for I(X,, ..., X,; y) gives

IX, ... Xpy) = HX,, ... X)) - HX,, ... X, | »)

)4
> Y H(X) - I(X;X_) - H(X, | y)
i=1

I(X;;y) = 1(Xi; X))
1

||'M-u I

1

Now we can also write,

(X1, ... X3 9)= Hy) — H(y | X,,...,X,) < H(®y).

Rearranging yields the theorem. [J

One corollary of Theorem 6 is that for any random variable y, there can be at most
p < H(y)/y random variables X, ..., X, that (a) are mutually independent and (b) satisfy
I(X;;y) > 7.

5. Correlations in a finite sample

We now turn our focus back to correlations, this time in a finite sample. Suppose we conduct
a survey with data on p predictors X and one outcome of interest y on a random sample
of npeople, and then we evaluate the correlations between the outcome and each of the

predictors.

We collect the data in an n x p matrix X with n > p, where each of the columns
X, ..., X, € R" of X has mean zero and unit £, norm, and we will use corr(x, y) for x,y € R"

(neither in the span of the all-ones vector 1) to denote the sample correlation:

2:’= l(xi - Mx)(yl - ”Y)

\/Z:lz l(x[ - ﬂx)ZE;l: 1()’1’ - lly)z’

corr(x,y) =

Not Am Math Soc. Author manuscript; available in PMC 2025 July 31.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Tosh et al.

Page 13

n n
where y, = lz_ X and u, = %E Vi
1=

n i=1

An application of Theorem 3 tells us that any non-constant vector y € R" satisfies

D
0< D [eorr(X,, y)> < o,
=1

where ¢, > -+ > ¢, > 0 denote the singular values of X. Moreover, it is not hard to see there

exists a vector that achieves the upper bound, namely the top singular vector of X.

This analysis shows a worst-case piranha theorem: a bound on the number of large
correlations with all possible response vectors. Stronger results can be obtained if we
consider average behavior. Here, we consider a stochastic piranha theorem in which we
assume that y is uniformly distributed on the unit sphere in R”. Our result will hold for any
choice of radially symmetric random vector y that is independent of X, but we state it for the
uniform distribution over the unit sphere for concreteness. We choose a radially symmetric
distribution because we have no reason to give preference to one direction over another.
Recall the value of studying average as well as worst-case behavior in areas such as random
matrix theory.

The following theorem demonstrates this principle, showing that the maximum sum of
squared correlations, an O(1) quantity in n, is generally much larger than the expected sum
of square correlations. Specifically, the following theorem shows that the expected sum of

squared correlations decays like 1/n.

Theorem 7. Let y be uniformly distributed on the unit sphere in R". Then

- 2
IE(ZCOIT(X,,y) ) = %

i=1

If y is uniformly distributed on the unit sphere in R", then for large », the distribution of y

is well approximated by (Z,, ..., Z,) the n-dimensional multivariate Gaussian with mean zero

and covariance %I . In particular, (Z,, ..., Z,) is spherically symmetric, and

E(Zi+-+Z)=1 and var(Z}+ -+ Z}) = O(1/n?).

As a consequence, for large n, the distribution of sum of squared correlations is well

approximated by a linear combination of independent y2 random variables, each with one

degree of freedom: n—il(ﬁél + o+ 8.

Combining this observation with Theorems 3 and 7, for any »n x p matrix (or sample of
data) X, if a vector y is distributed according to a spherically symmetric distribution, then
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Zf a 1corr(X,-, y)2 is supported on [0, o7 |, has expectation p/(n — 1), and for large n has O(l/nz)

variance.

6. Discussion and directions for future work

The piranha problem is a practical issue: as discussed in the references in Sections 1

and 3, it has interfered with research in fields including social priming, evolutionary
psychology, economics, and voting behavior. An understanding of the piranha problem can
be a helpful step in recognizing fundamental limitations of research in these fields along
with related areas of application such as marketing and policy nudges (Szszi et al., 2022).
We suspect that a naive interpretation of the butterfly effect has led many researchers and
policymakers to believe that there can be many large and persistent effects; thus, there is
value in exploring the statistical reasons why this is not likely. In this way, the piranha
problem resembles certain other statistical phenomena such as regression to the mean and
the birthday coincidence problem, in that there is a regularity in the world that surprises
people, and this regularity can be understood as a mathematical result. This motivates us to
seek theorems that capture some of this regularity in a rigorous way. We are not all the way
there, but this seems to us to be a valuable research direction.

6.1. Bridging between deterministic and probabilistic piranha theorems

Are there connections between the worst-case bounds in Section 4, constraints on main
effects and interactions (Rogers, 2002), the probabilistic bounds in Section 5, priors for
the effective number of nonzero coefficients, and models such as the R? parameterization
of linear regression as proposed by Zhang et al. (2020)? We can consider two directions.
The first is to consider departures from parametric models such as the multivariate normal
and zand work out their implications for correlations and regression coefficients. The
second approach is to obtain limiting results in high dimensions (that is, large numbers of
predictors), by analogy to central limit theorems of random matrices. The idea here would
be to consider a n x (p+ 1) matrix and then pull out one of the columns at random and
consider it as the outcome, y, with the other p columns being the predictors, X. One should
also be able to connect this with work such as Frank (2002) and Knaeble et al. (2020) on
how regression coefficients change when new predictors are added to a model.

6.2. Regularization, sparsity, and Bayesian prior distributions

There has been research from many directions on regularization methods that provide soft
constraints on models with large numbers of parameters. By “soft constraints,” we mean that
the parameters are not literally constrained to fall within any finite range, but the estimates
are pulled toward zero and can only take on large values if the data provide strong evidence

in that direction.

Examples of regularization in non-Bayesian statistics include wavelet shrinkage, lasso
regression, estimates for overparameterized image analysis and deep learning networks,
and models that grow in complexity with increasing sample size. In a Bayesian context,
regularization can be implemented using weakly informative prior distributions (e.g.,
Greenland and Mansournia, 2015) or more informative priors that can encode the
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assumed sparsity (e.g., Carvalho et al., 2010). Classical regularization is motivated by

the goal of optimizing long-run frequency performance, and Bayesian priors represent
additional information about parameters, coded as probability distributions. The various
piranha theorems correspond to different constraints on these priors and thus even weakly
informative priors should start by encoding these constraints.

From a different direction is the idea that any given data might allow only some small
number of effects or, more generally, a low-dimensional structure, to be reliably learned.
More generally, models such as the horseshoe (Carvalho et al., 2010) assume a distribution
of effect sizes with a sharp peak near zero and a long tail, which represent a solution to the
piranha problem by allowing a large number of predictors without overflowing variance.

6.3. Nonlinear models

6.4.

So far we have discussed linear regression, with theorems capturing different aspects of the
constraint that the total B2 cannot exceed 1 (or some bound less than 1, if some of the
variation is by its nature unexplainable because it comes from a random process). We can

make similar arguments for nonlinear regression.

For example, consider a model of binary data with 20 causal inputs, each of which is
supposed to have an independent effect of 0.5 on the logistic scale. Aligning these factors
in the same direction would give an effect of 10, enough to change the probability from
0.01 to 0.99, which would be unrealistic in applied fields ranging from marketing to voting
where no individual behavior can be predicted to that level of accuracy. One way to avoid
these sorts of extreme probabilities would be to suppose the predictors are highly negatively
correlated with each other, but in practice, input variables in social science tend to be
positively, not negatively correlated (consider, for example, conservative political ideology,
Republican party identification, and various issue attitudes that predict Republican vote
choice and have positive correlations among the population of voters). The only other
alternative that allows one to keep the large number of large effects is for the model to
include strong negative interactions, but then the effects of the individual inputs would

no longer be stable, and any effect would depend very strongly on the conditions of the
experiment in which it is studied. It should be possible to express this reasoning more
formally, perhaps in a way similar to long-range dependence models in time series and

spatial processes.

Implications for social science research

Although we cannot directly apply these piranha theorems to data, we see them as providing
some relevance to social science reasoning.

As noted at the beginning of this article, there has been a crisis in psychology, economics,
and other areas of social science, with prominent findings and apparently strong effects

that do not appear in attempted replications by outside research groups; see, for example,
Gordon et al. (2020). The replication crisis involves many challenges, including estimating
its scale and scope, identifying the statistical errors and questionable research practices that
have led researchers to systematically overestimate effect sizes and be overconfident in their
findings, and studying the incentives of the scientific publication process that can allow
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entire subfields to get lost in the interpretation of noise. Even when individual effects are
large, they can apply just to a small subset of the population or just for a short period of
time, not leaving persistent effects.

The research reviewed in the present article is related to, but different from, the cluster

of ideas corresponding to multiple comparisons, false discovery rates, and multilevel
models. Those theories correspond to statistical inference in the presence of some specified
distribution of effects, possibly very few nonzero effects (the needle-in-a-haystack problem)
or possibly an entire continuous distribution, but without necessarily any concern about how
these effects interact.

The present article goes in a different direction, asking the theoretical question: under what
conditions is it possible for many large and persistent effects to coexist in a multivariate
system? In different ways, our results rule out or make extremely unlikely the possibility
of multiple large effects or “piranhas” among a set of random variables. These theoretical
findings do not directly call into question any particular claimed effect, but they raise
suspicions about a model of social interactions in which many large effects are swimming
around, just waiting to be captured by researchers who cast out the net of a quantitative
study.

To more directly connect our theorems with social science would require modeling predictor
and outcome variables in a subfield, similar to multiverse analysis (Steegen et al., 2016).
Bounds can be strengthened with reference to empirical correlations among predictors being
considered. When conducting systematic reviews of evidence, it could be appropriate to
consider the potential interactions among various hypothesized causal factors, rather than
attempting to combine separate estimates using meta-analysis. Any general implications for
social science would only become clear after consideration of particular research areas.
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A.: Proof of Theorem 7

For any x = (x, ..., xn)T € R” such that x # Al for all A € R (i.e., x is not in the span of 1), we
write x* € R" to denote the “standardized” vector given by the formula,

x—%(x-rﬂ)ﬂ x_(%2?= lxj)ﬂ

* = —

L

i=1

The unit vector x* in R" is orthogonal to 1. Using this notation, we have
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corr(x, y) = (x*)T(y*)
“
for any x, y € R" not in the span of 1.

Write the singular value decomposition of X as

4
X= D Ui,

k=1
()

where U,, ...,U, € R" are orthonormal left singular vectors of X,V,,...,V, € R are

orthonormal right singular vectors of X, and 6, > -+ > ¢, > 0 are the singular values of X.

Recall that we assume X, ..., X, satisfy 17X, =0and || X;|| =1foralli=1,..., p. This implies

the following lemma.
Lemma 8.X, = X, foralli=1,...,p, andU,=U, forallk =1, ..., p.

Proof. The assumption on X, implies that X; = X, for each i. Moreover, the assumptions
imply that the all-ones vector 1 is orthogonal to the range of X, which is spanned by
U, ...,U,. Hence U, = U, for each k as well. O

We then take advantage of the following lemma for expressing the sum of squared

correlations.

Lemma 9. For any vectory € R" such thaty # M\ forallx € R,

<

2 L 2
corr(X,, y)” = E ki(U,Iy*) .
i=1 k=1

Proof: By direct computation:

S 2 & T 2
2 corr(X;, y)© = Z (X)) ") (by equation 4)
i=1 i=1
L 2
= z (XTy*) (by Lemma 8)
i=1
X Ty
p 2
= Z MV ULy (by equation 5)
k=1
4 2
= Z MUy (by Pythagorean theorem) . 0
k=1
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Proof of Theorem 7. By Lemma 8, the vectors U,, ..., U, are orthogonal to the unit vector
%1]. We extend the collection of orthonormal vectors U, ..., U,, %1] with orthonormal unit

n n
vectors U, ,, ..., U,_, to obtain an orthonormal basis for R”. With probability 1, the random
vector y is not in the span of 1. Hence, y* is well defined and can be written uniquely as a
linear combination of the aforementioned basis vectors:
y¢ =alU++a,_ U, + ani“’
\n

where

Uly*if 1<k<n-1,

a, =
““lo ifk= n(since 1Tyx= 0),
and
1= alz + e ta,
(since y* is a unit vector). In particular, 1 = E(a7) + -+ + E(a; ), which by symmetry implies
that E(a;) = ﬁ foreach k = 1,...,n — 1. Then, by Lemma 9,
p ) p 5 p i
[E( corr(X;, y)°| = [E(Zki(UkTJ’*) ] = Z}\i[E(af) =u= 12}‘i
i=1 k=1 k=1 k=1
Since ); are the eigenvalues of X' X and the columns of X have unit 2, norm,
1 2 p
2 _
n—1 Z}Lk “n-1
k=1
because the trace of X'X is equal to the sum of its eigenvalues. O]
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