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Abstract: In this paper, we demonstrate a method of measuring the flexural elastic modulus of
ceramics at an intermediate (~millimeter) scale at high temperatures. We used a picosecond laser to
precisely cut microbeams from the location of interest in a bulk ceramic. They had a cross-section
of approximately 100 µm × 300 µm and a length of ~1 cm. They were then tested in a thermal
mechanical analyzer at room temperature, 500 ◦C, 800 ◦C, and 1100 ◦C using the four-point flexural
testing method. We compared the elastic moduli of high-purity Al2O3 and AlN measured by our
method with the reported values in the literature and found that the difference was less than 5%
for both materials. This paper provides a new and accurate method of characterizing the high-
temperature elastic modulus of miniature samples extracted from representative/selected areas of
bulk materials.

Keywords: picosecond laser; micro-machining; high-temperature ceramics; flexural elastic modulus;
alumina; aluminum nitride

1. Introduction

Accurately measuring the elastic modulus is vitally important for understanding ma-
terial properties and engineering design [1]. Structural ceramics have high melting points,
chemical stability, and mechanical strength. They are often used in high-temperature,
corrosive environments and under substantial mechanical loads. Therefore, it is important
to accurately measure the elastic modulus at high temperatures. The flexural resonance
method [2–5] has been used to measure the elastic modulus up to 1600 ◦C. Based on the
specific cross-section dimensions of the bar sample, the elastic modulus can be determined
by the flexural and longitudinal mechanical resonance frequencies [6]. However, the reso-
nance method is conducted on bulk or large-scale samples. Therefore, it cannot be used
to measure the local elastic moduli of heterogeneous materials or composite materials
with a non-uniform structure. To study the elastic modulus at selective locations of a
product, researchers developed several microscale mechanical testing methods, including
nanoindentation [7–9], the bulge test [10], and the in situ TEM/SEM micropillar compres-
sion test [11,12]. The challenges associated with these methods are sample preparation,
handling, the application of small forces, stress and strain measurement, and conducting
tests at elevated temperatures [13]. In terms of length scale, there is a gap between the bulk
scale samples and the nano/micro samples. Thus, in this paper, we aim to demonstrate a
straightforward method for characterizing the high-temperature, flexural elastic modulus
of ceramics at selected locations for miniature samples at the millimeter scale.

The relationship between the elastic modulus and temperature is rather complicated.
It involves changes in the binding energy due to temperatures and the volume change [14].
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At very low temperatures, it is observed that the elastic constant changes with T4 [15]. At
high temperatures, a linear relationship is observed for the elastic modulus for refractory
oxides, including MgO, Al2O3, MgSiN2, Si3N4, and AlN [16–19]. The data can be fit to an
empirical relationship proposed by Wachtman [18]:

E = E0 − BT·exp
(
−T0

T

)
(1)

where E0 is the elastic modulus at 0 K; E is the elastic modulus at an elevated temperature
T; and B and T0 are both fitting parameters. For T ≫ T0, E ≈ E0 − B(T − T0), showing
a linear relationship [3]. However, above a critical temperature, the elastic modulus for
some ceramics has been found to decrease sharply with temperature due to grain boundary
sliding and internal friction [6,9].

2. Flexural Test for Measuring Elastic Modulus

Although it is possible to measure the high-quality modulus data of metallic materials
from the tensile test focusing on the low-strain part of the stress–strain curve [20], it is
generally not feasible to use the same method to achieve an accurate measurement for
ceramic materials due to their brittleness and the difficulty of making tensile samples and
attaching them to testing machines. Instead, the elastic modulus, for ceramics, is generally
measured using the flexural test (static methods) or dynamic methods (sound velocity).
Compared with tensile tests, flexural testing in three- or four-point bending is able to
achieve much larger displacement with smaller forces [21,22].

In a four-point flexural test (Figure 1), the deflection w0 in the center of the beam is
given by [23]:

w0 =
Fl
(
3L2 − 4l2)
48EI

(2)

where F/2 is the force applied symmetrically at two locations of the test beam; L is the
distance between two outer supports; l is the distance between the inner loading point and
the outer support; and I is the geometrical moment of inertia of the beam’s cross-section.
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Figure 1. Four-point bending test geometry.

With the dimensions of the sample and test set-up, the elastic modulus of the test
sample can then be calculated as [23]:

E =
Fl
(
3L2 − 4l2)
48w0 I

(3)

In this paper, we describe a method for measuring the elastic modulus of miniature
ceramic samples. The test is based on a four-point flexural test, uses a thermal mechanical
analyzer (TMA, Seko TMA SS6000, Hitachi High-Tech Analytical Science, Westford, MA,
USA), and laser machining to make miniature samples from bulk samples. Using the
picosecond laser, ceramics can be cut into microbeams with cross-sectional dimensions
in the range of ~100 µm. Due to the small dimensions, TMA, which has a relatively low
load capability, can be used to perform the flexural test at high temperatures. This process
allows the measurement of the elastic modulus for miniature samples and also the local



Materials 2024, 17, 4636 3 of 12

modulus of samples extracted from a large part, in which the structural variations are in
the range of the sample size. It therefore bridges a relevant length scale—between bulk
samples and local measurements at the scale probed by nanoindentation.

3. Experimental Procedure
3.1. Experimental Set-Up

The experimental set-up is shown in Figure 2. The key factor in obtaining the elastic
modulus successfully was the location of the microbeam in the center of the furnace and
the placement of the probe symmetrically in the center of the microbeam. The supporting
ring was made of high-purity alumina with an inner diameter of L = 8.8 mm. The diameter
of the loading probe was 3.4 mm.
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Figure 2. Elastic modulus measurement set-up for microbeam in TMA.

High-purity alumina (>99.6%, MTI Cooperation, Richmond, CA, USA) substrates with
dimensions of 2′′ × 2′′ × 0.5 mm were purchased. The grain size and surface roughness
were reported by the supplier to be less than 1 µm and 25 nm, respectively. A high-purity
aluminum nitride substrate with dimensions of 1′′ × 1′′ × 0.5 mm (>99%, MTI Cooperation,
Richmond, CA, USA) was also purchased. The surface roughness was reported by the
supplier to be less than 10 nm.

For laser machining, the ceramic substrates were attached to a 3D moving stage
(Figure 3). The distance between the lens and the sample substrate was adjusted to ensure
the picosecond laser was focused on the top surface of the substrate to start with. The sam-
ple substrate moved at a controlled programmed speed to make the cut. Two parallel cuts
were performed at the same time to ensure the uniformity of the microbeam. Depending
on the laser power and substrate, repeating the procedure 20 or more times was needed
before the focal point of the picosecond laser moved deeper into the substrate. The laser
focal step along the z axis also depends on the laser power and substrate. A typical value in
our set-up was 100 µm. Using this set-up, the dimensions of a laser-machined microbeam
can be controlled. For our sample, the typical dimensions are shown in Figure 4, where
h is the thickness of the starting substrate. It is important to note that the cross-section
of the beam is trapezoidal due to the interaction of the laser with the sample and beam
divergence. Figure 5a is an optical image of the top view of the laser-machined microbeam
showing a uniform thickness microbeam. Figure 5b is an SEM image of the cross-section
clearly showing the trapezoidal cross-section of the beam.
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3.2. Laser-Machined Microbeam and Moment of Inertia

The loading geometry and the sample geometry are shown in Figure 6. The second mo-
ment of inertia of the trapezoidal cross-section beam sample for the x and y axis (Figure 6b)
can be calculated by [24]:

Ix =
h3(a2 + 4ab + b2)

36
(4)

Iy =
h(a + b)

(
a2 + b2)

48
(5)
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Considering the axes’ rotation (Figure 6b), the moment of inertia needs to be modified
by the relation [24]:

Iv =
Ix + Iy

2
−

Ix − Iy

2
cos 2φ + Ixysin 2φ (6)

In an isosceles trapezoid, with known dimensions of a, b, and h, the rotation angle φ
can be calculated [25]:

φ = arctan
b − a

2h
(7)

If we assume the trapezoid is symmetrical, Ixy = 0. Then, the moment of inertia of the
beam sample for the v axis can be calculated using Equation (6).

Here, we need to mention that the vertical deflection measured by TMA is the de-
flection wl at the contact point at the edge of the probe (Figure 2). The maximum vertical
deflection w0 in the center of the beam can be calculated based on the deflection profile
along the beam [24] and the deflection detected by TMA, wl , using the geometric parameters
shown in Figure 6a:

wl
w0

=
12lL − 16l2

3L2 − 4l2 (8)

3.3. Load and Temperature Program

Measurements were made at room temperature, 500 ◦C, 800 ◦C, and 1100 ◦C. The
microbeam was placed in the center of the supporting ring, with the TMA probe applying
a pre-load of −40 mN (the negative sign means the loading was compressive) on the
microbeam. The supporting ring and the TMA probe were concentric. A target load of
−200 mN was realized by increasing the load at a rate of 200 mN/min. This target load was
applied by the probe of TMA and held. Then, the furnace temperature was raised to the
target temperature at 10 ◦C/min and held for 1 h (for temperature equilibration) before the
unloading–loading cycle started. A minimum of five loading and unloading cycles were
conducted (between a load of −200 mN and −40 mN). A typical load and temperature
profile is shown in Figure 7.
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4. Results and Discussion

The dimensions of the microbeams, as shown in Table 1, were precisely measured
using an optical microscope and SEM at multiple points. These samples were fabricated
through the laser machining process described earlier. The observed variations in the
trapezoidal cross-sectional dimensions between samples result from both the material-
specific interactions with the laser and the setting of the gradual adjustments in the laser
focus during each cutting cycle, which correspond to the increasing depth of the cut.

Table 1. The geometrical dimensions of alumina and aluminum nitride samples.

Sample # L (mm) a (µm) b (µm) h (µm)

Alumina

1 8.80 97 ± 2 275 ± 6 500 ± 5
2 8.80 97 ± 2 290 ± 7 500 ± 5
3 8.80 71 ± 3 245 ± 6 500 ± 5
4 8.80 115 ± 4 255 ± 9 500 ± 5

Aluminum
nitride

5 8.80 157± 3 240 ± 6 500 ± 5
6 8.80 97 ± 2 228 ± 4 500 ± 5
7 8.80 89 ± 2 243 ± 2 500 ± 5

The elastic modulus was calculated using Equation (3), in which the center point
deflection, w0, is given by Equation (8) and the moment of inertia, Iv, is given by Equation (6).
The measured values of the elastic modulus are shown in Table 2 and Figures 8 and 9.
The measurement only focused on the initial portion of the stress–strain curve, where
the sample behaved more as a linear elastic solid. The temperature dependence of the
elastic modulus is almost linear for both alumina and aluminum nitride. This agrees with
Wachtman’s theory [18]. The elastic modulus at 1100 ◦C was about 82% of the modulus at
25 ◦C. The results for the elastic modulus also agree with the reported data [3,16] within
5%, though uncertainty values were not provided in the cited references.

Table 2. The comparison of elastic moduli measured in this work and in the literature.

Temperature (◦C) Alumina (GPa) Aluminum Nitride (GPa)

Report in
Ref. [16]

Report in
Ref. [16]

This
Paper

Report in
Ref. [3]

This
Paper

25 398 385 391 ± 17 310 304 ± 8
500 374 362 378 ± 5 300 290 ± 7
800 358 347 344 ± 14 294 282 ± 10

1100 342 331 324 ± 6 - 263 ± 8
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Figure 9. Comparison of the temperature dependence of elastic modulus for AlN between experi-
mental data and reported data in ref [3].

The unloading and loading cycles were set to start after the target temperature was
reached and held for 1 h. This was done to equilibrate the temperature and hence the
sample dimensions. The high loading rate reduced the TMA drift. Five loading/unloading
cycles were performed for each run to obtain multiple measurements. The first cycle
typically was not stable. This was caused by the “settling-in” of the test piece into the
support ring [1].
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Based on Equations (2) and (4)–(6), the magnitude of the deflection will decrease
sharply with an increase in the cross-section of the microbeam. When the values of a and b
are close, φ is close to one, and the deflection of the microbeam will be proportional to

1
h(a + b)(a2 + b2)

To introduce a high deflection of the sample for a given load, one needs to control the
dimension of the microbeam, especially the thicknesses a and b. Based on the limitation
of TMA and the high modulus of ceramic microbeams, typical dimensions of the beam,
which can lead to significant deflection (significantly above the displacement resolution)
are a =100 µm, b = 200 µm, and h = 500 µm. Because the measured elastic modulus is
very sensitive to the dimensions of the microbeam, extra attention needs to be paid to
carefully measuring the dimensions of the microbeam. Even though microbeams were
laser-machined into the same size under the same conditions, the dimensions of each
sample need to be determined individually. Using an optical microscope and SEM, the top
width a and bottom width b need to be checked along the entire length to ensure uniformity.

Before the test, a safe maximum testing load can be estimated based on the maximum
stress in the sample during the test and the strength of the material. The maximum load
during the test should be set high enough to introduce considerable deflection without
introducing any micro-cracks. For our microbeams, a maximum load of 200 mN was used.

This baseline drift w1 is caused by the system. It can be corrected by replacing the test
piece with a thick alumina plate. With the dimensions of the alumina plate, theoretically,
the deflection would be neglectable. Therefore, the measured deflection can then be used
to correct the baseline drift caused by the system. At high load (in the dotted rectangular
area in Figure 10), the deflection is proportional to the load. The elastic modulus needs to
be calculated in this region (the start of the unloading). In this load regime, the test piece is
still “settled-in” in the fixture. When the load is low (the end of the unloading stage), the
load and deflection are no longer proportional due to the movement of the microbeam.
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Since the loading probe and the support rings are of finite width, which is not negli-
gible compared to the beam length, the elastic modulus results, E4P, calculated based on
the four-point flexural geometry (Figure 1), were compared with E3P, the results of the
three-point geometry [24] (Figure 11a):
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E3P =
FL3

48Iw0
(9)

and EDL, the results of uniformly distributed-load beam [24] (Figure 11b):

EDL =
F(8L 3 − 4(L − 2l)2L + (L − 2l)3

)
384Iw0

(10)

Materials 2024, 17, x FOR PEER REVIEW 9 of 13 
 

 

be calculated in this region (the start of the unloading). In this load regime, the test piece 

is still “se�led-in” in the fixture. When the load is low (the end of the unloading stage), 

the load and deflection are no longer proportional due to the movement of the microbeam. 

 

Figure 10. Part of data used to calculate sample’s elastic modulus is marked in the blue rectangle. 

Since the loading probe and the support rings are of finite width, which is not negli-

gible compared to the beam length, the elastic modulus results, E4P, calculated based on 

the four-point flexural geometry (Figure 1), were compared with E3P, the results of the 

three-point geometry [24] (Figure 11a): 

E�� =
���

48���

 (9)

and EDL, the results of uniformly distributed-load beam [24] (Figure 11b): 

E�� =
�(8�� − 4(� − 2�)�� + (� − 2�)�)

384���

 (10)

 

 

(a) 

-77

-76

-75

-250

-210

-170

-130

-90

-50

-10

13.6 14.1 14.6

D
is

p
la

ce
m

en
t 

(μ
m

)

L
o

ad
 (

m
N

)

Time (min)

Load Displacement

L

F

Support Support

Materials 2024, 17, x FOR PEER REVIEW 10 of 13 
 

 

 

(b) 

Figure 11. (a) Three-point bending test geometry. (b) Beam bending test with evenly distributed 

load. 

The results of these three geometries are compared in Figure 12a for Al2O3 and Figure 

12b for AlN. These results clearly demonstrate that the four-point geometry best describes 

the start of the unloading process during which the measurements were made. The three-

point and distributed-load models resulted in higher Young’s modulus results, with an 

average factor of 1.24 times and 1.16 times compared to the values given by the four-point 

model, respectively (based on the specific dimensions of our set-up). This is because at the 

start of the unloading process, the microbeam had the highest displacement (w0). With the 

smooth surface of the microbeam processed by the picosecond laser, the TMA loading 

was only in contact with the microbeam at the perimeter of the probe of the TMA (Figure 

2). Therefore, at the early stage of the unloading, the geometry can be treated as a four-

point flexure test. 

 

(a) 

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Y
ou

ng
's

 M
od

ul
us

 (
G

P
a)

Temperature (°C)

4-point model 3-point model
Distributed load model Reported data 1
Reported data 2

Figure 11. (a) Three-point bending test geometry. (b) Beam bending test with evenly distributed load.

The results of these three geometries are compared in Figure 12a for Al2O3 and
Figure 12b for AlN. These results clearly demonstrate that the four-point geometry best
describes the start of the unloading process during which the measurements were made.
The three-point and distributed-load models resulted in higher Young’s modulus results,
with an average factor of 1.24 times and 1.16 times compared to the values given by the
four-point model, respectively (based on the specific dimensions of our set-up). This is
because at the start of the unloading process, the microbeam had the highest displacement
(w0). With the smooth surface of the microbeam processed by the picosecond laser, the
TMA loading was only in contact with the microbeam at the perimeter of the probe of the
TMA (Figure 2). Therefore, at the early stage of the unloading, the geometry can be treated
as a four-point flexure test.
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Figure 12. (a) Comparison of the temperature dependence of elastic modulus for Al2O3 between
experimental results, using 4-point, 3-point, and distributed-load geometry, and reported values
presented in Ref. [16]. (b) Comparison of the temperature dependence of elastic modulus for AlN
between experimental results, using 4-point, 3-point, and distributed-load geometry, and reported
values in Ref. [3].

Table 3 compares elastic modulus measurement methods, highlighting their principles,
advantages, and limitations. Traditional tests are easy but need bulk samples; resonance meth-
ods are non-destructive but sensitive to dimensions [1]. Nanoindentation and micropillar test-
ing offer micron-scale measurements but face surface and fabrication challenges [7–9,11,12].
The novel method here provides localized, high-temperature measurements.
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Table 3. Comparison of methods for measuring elastic modulus.

Method Principle Advantages Limitations

Tensile and flexure tests Measures deformation under
applied stress

Easy to prepare; standardized
and widely used Bulk or large-scale samples

Resonance and impact
excitation methods

Measures natural frequency or
response to impact

Non-destructive;
high-temperature capability

Bulk or large-scale samples;
dimensional sensitivity; high
surface finish requirement;
suspension and support issues at
high temperature

Nanoindentation
Measures indentation
hardness and modulus using
a sharp indenter

Localized measurements
(micron-scale)

Sensitive to surface conditions;
complexity in analysis

Micropillar testing
Measures compressing or
deforming of small,
cylindrical pillars

Localized measurements
(micron-scale)

Fabrication challenges; small
stress–strain measurement;
complexity in analysis; properties
may differ from those of
bulk materials

This work

Measures deformation of
laser-machined microbeam
under applied stress with
a TMA

Simple result analysis;
high-temperature testing; easy
control of inert atmosphere
Localized measurements
(millimeter-scale)

Requires precise set-up; requires
laser micro-machining capability

5. Conclusions

A new method of measuring the elastic modulus of ceramics at elevated temperatures
based on TMA and laser-machined miniature beams has been developed. The test requires
careful measurements of the geometry of the sample. The technique developed in this
paper allows the investigation of the elastic modulus at a length scale that is in between
the traditional macro-scale (sample sizes of cm and higher) and micro-techniques (sample
size of 10 to 100 microns) at high temperatures. The length scale used in this test allowed
us to both investigate the average properties of small samples and probe the localized
properties in materials where the inhomogeneity is at the length scale of relevance for
this test. The needed corrections to the raw data are discussed together with the different
potential loading geometries. A comparison of the experimental results for the reported
value of two ceramics shows very good agreement, giving a measure of confidence in the
use of this technique.
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