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ABSTRACT
Predicting materials’microstructure from the desired properties is critical for exploring new materials. Herein, a novel regression-

based prediction of scanning electron microscopy (SEM) images for the target hardness using generative adversarial networks

(GANs) is demonstrated. This article aims at generating realistic SEM micrographs, which contain rich features (e.g., grain and

neck shapes, tortuosity, spatial configurations of grain/pores). Together, these features affect material properties but are difficult

to predict. A high-performance GAN, named ‘Microstructure-GAN’ (or M-GAN), with residual blocks to significantly improve the

details of synthesized micrographs is established . This algorithm was trained with experimentally obtained SEM micrographs of

laser-sintered alumina. After training, the high-fidelity, feature-rich micrographs can be predicted for an arbitrary target hardness.

Microstructure details such as small pores and grain boundaries can be observed even at the nanometer scale (�50 nm) in the

predicted 1000× micrographs. A pretrained convolutional neural network (CNN) was used to evaluate the accuracy of the pre-

dicted micrographs with rich features for specific hardness. The relative bias of the CNN-evaluated value of the generated micro-

graphs was within 2.1%–2.7% from the values for experimental micrographs. This approach can potentially be applied to other

microscopy data, such as atomic force, optical, and transmission electron microscopy.

1 | Introduction

Predicting the required microstructure for specific properties
provides an important tool for designing novel materials.
Many materials’ properties are strongly influenced by micro-
structure [1–3]. For instance, the hardness and yield strength
of alloy increases with reducing grain size, following the Hall–
Petch relation [4]. The conductivity of ceramic electrolytes is
strongly affected by grain size distribution [5, 6]. The porosity

has dominant effects on the catalytical performance and conduc-
tivity of ceramic electrodes [7, 8] and the hardness and elastic
properties of ceramics [9, 10]. Thus, predicting the microstruc-
ture for the needed properties can significantly accelerate
material discovery.

In material science, machine-learning (ML) techniques have
been developed as a powerful tool in microstructure predictions
[11–14]. The typical ML-based microstructure prediction is
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focused on descriptors prediction [11, 12]. A descriptor distribu-
tion usually represents a certain aspect of manually extracted
microstructural features [15, 16]. After training, ML models
can directly generate end-to-end solutions. For example, the
microstructure features of cold-roll metal, such as volume ratios
of different steel phases, were used as descriptors and were
inversely predicted from the strain–stress curve. These descrip-
tors usually represent certain microstructural features. However,
it is difficult to construct or generate actual material microstruc-
ture inversely from descriptor distributions.

Microstructural images, usually experimentally obtained from
microscopy (e.g., scanning electron microscope (SEM)), are good
representations of actual microstructure. They contain visualiz-
able details, such as grain/pore shapes and sizes, tortuosity, local
surface topography, and shape information that cannot be easily
extracted. All these rich features can affect materials’ properties,
which are hard to completely describe by descriptors. Therefore,
generating micrographs from the target properties is crucial in
high-fidelity microstructure inverse prediction.

Recently, generative adversarial networks (GANs) [17] have
shown significant potential for generating realistic microstruc-
tural images [13–15, 18]. A typical GAN has two convolutional
neural networks (CNN): generator and discriminator. The gen-
erator is trained to mimic actual image samples, while the dis-
criminator is trained to distinguish the generated samples
from real ones. The generator can produce high-fidelity images
once this adversarial training process is completed.

Using GAN to predict microstructure or structure for the desired
properties has been limited due to the lack of experimental SEM
micrographs for training. In the available studies, physical mod-
els were used first to establish the training data of correlated
microstructure and properties [19–21]. In one study, the Cahn–
Hilliard microstructure was used to simulate the short-circuit
current density (Jsc) and fill factor (FF) of a solar cell [19]. In
another study, an invariance network (InvNet) was established
to achieve inverse microstructure prediction of organic photovol-
taic systems for target performance. InvNet was modified from
WGAN (GAN using Wasserstein distance) and owned one more
pretrained CNN, which outputs invariance constraint to the gen-
erator [20]. In another study, the training data for the microstruc-
ture was generated using a random boundary method. The
homogenized elastic modules of the microstructures were calcu-
lated using the homogenization method. The inverse microstruc-
ture prediction for target performance was achieved using a
conditional WGAN with gradient penalty [21].

In the aforementioned studies, the simulated microstructures
are often oversimplified and do not represent the rich features
of the actual microstructure obtained experimentally (e.g.,
SEM images). The properties of different microstructures are
usually calculated from physical models or the finite-element
method. Thus, this approach of using simulated data of micro-
structure and property for ML training cannot explore the rela-
tionship between property and microstructure without known
governing laws.

In this study, ML-based prediction of feature-rich realistic micro-
structures for desired properties, trained from the experimental

data, has been demonstrated. Based on the experimental dataset,
we established an ML-guided method to inversely predict realis-
tic SEM micrographs for targeted properties (i.e., hardness). The
data of SEM micrographs of laser-sintered alumina and corre-
sponding hardness were collected using our laser-based high-
throughput sample array fabrication and characterization [22].
The ML algorithm was based on our previously published
regression-based, conditionalWasserstein GANwith gradient pen-
alty (RCWGAN-GP) [18, 23], which achieved good microstructure
prediction for unknown processing parameters or sensing signals
for laser-sintered ceramics. In this study, we modified our net-
works with residual blocks to improve the synthesis quality and
named the new algorithm M-GAN (“M” refers to microstructure).
As a result, the realistic microstructure micrographs, which have a
similar quality to the experimental obtained SEM images, can be
predicted for the target hardness. Compared to RCWGAN-GP and
other classic GAN-based algorithms mentioned previously, the
microstructure micrographs with larger image sizes (256× 256
pixels) can be predicted with high fidelity in M-GAN. Smoother
and clearer grain features were observed, and the noise in synthe-
sized images was eliminated. Recognizable microstructure fea-
tures can be nanometer scale (�50 nm) in 12.8 × 12.8 μm
micrographs. The accuracy of predictions from M-GAN was eval-
uated by a pretrained CNN. The relative bias of all regenerated
images was within 4.9%. The relative bias of prediction for target
hardness was 2.1% for the high-hardness sample and 2.7% for the
low-hardness one. They all indicate high accuracy and good
robustness for the M-GAN prediction. Because the training of
M-GAN was only based on experimental datasets, the inverse
microstructure prediction can be easily achieved on other material
systems and for other microstructure-sensitive properties. As a
result, when applied to the unknown microstructure–properties
relationship in advanced materials, the M-GAN can create new
opportunities for inverse material design and advanced material
exploration.

2 | Results and Discussion

2.1 | The GAN-Based ML Algorithms and
Training Datasets

We compared the performances of three GAN-based ML algo-
rithms of inverse microstructure prediction for target hardness.
These algorithms all have a similar structure, shown in Figure 1.
These three ML algorithms are (1) RCWGAN-GP, (2) RCWGAN-
GP-W, and (3) M-GAN (or M-GAN). The RCWGAN-GP is
reported in our previous study, which refers to ‘regression-based
conditional generative adversarial network (CGAN) with
Wasserstein loss function and gradient penalty’ [18]. In this
article, we doubled the network width of both generator and
discriminator of RCWGAN-GP and named this network
‘RCWGAN-GP-W’ (‘W’ stands for wide). For the third ML algo-
rithm, we augmented the network structure of the RCWGAN-GP
algorithm with residual blocks. A residual block utilizes skip con-
nections to increase the depth of a neural network without
diminishing the backpropagating gradients. Literature shows
that residual blocks can improve the generated image quality
[24, 25]. We adjusted our new algorithm, especially for micro-
structure prediction. Thus, it is named ‘Microstructure-GAN’
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or ‘M-GAN.’ The detailed architectures of these three algorithms
and the training process are given in Section 4 (Experimental
Procedure and Methods).

A laser-selective, ultrafast, convergent manufacturing system,
described in our previous papers [22, 26], was used to fabricate
alumina specimens to build the training dataset for ML. A high-
throughput method was applied, which can fabricate several tens
of laser-sintered alumina micro-samples with various hardness at
once [22]. The microstructure and microhardness of these micro-
samples were then characterized by SEM and microhardness tes-
ter, respectively. Each SEM graph (1280 × 960) was segmented
into 256 × 256 pixels micrographs and enhanced contrast using
the adaptive equalization normalization method [27]. Seven
groups of various micrographs labeled with different hardness
values constructed the ML dataset. All the micrographs in one
group are labeled with the same hardness value. Detailed infor-
mation of the experiments is given in Section 4 (Experimental
Procedure and Methods).

In this study, hardness is chosen as the mechanical property for
microstructure prediction. For ceramics, hardness is strongly
controlled by microstructural features, specifically grain size
and porosity [28–30]. In our ML dataset, as shown in Figure 2,
the hardness increases as the relative density of laser-sintered
alumina increases. In Figure 2, three exemplar SEMmicrographs
with different microhardness are given: (a) the porous micro-
structure corresponding to low hardness; (b) the density micro-
structure corresponding to intermediate hardness; and (c)
the close-to-fully dense microstructure corresponding to high
hardness.

We chose a small number (seven) of datasets for study to test the
model’s generalization ability. Six datasets were randomly cho-
sen for training, and one dataset was left for validation. These
datasets were sparse and covered a wide range of hardness
(i.e., 665–2343 kgf/mm2). Thus, the micrographs were substan-
tially different. We wanted our GANmodels to learn the inherent
correlation between hardness and microstructure and predict the
significantly different micrographs from the training sets.

We also used a relatively small training data size. Each dataset
contained �1800 segmented micrographs (256 × 256 pixels)
generated from eight experimentally obtained SEM images
(1280 × 896 pixels) for each hardness. It is essential in this article
to demonstrate the optimal architecture of GAN models that can
achieve excellent performance with a relatively small number of
training data. It is also important to demonstrate that GAN can
be trained using experimentally obtained microstructure micro-
graphs with a reasonable workload. For example, collecting eight
SEM micrographs per sample can be achieved within a relatively
short time.

FIGURE 2 | Examples of experimental data that show the strong rela-

tionship between microstructure and microhardness of laser-sintered

Al2O3. For illustration, three microstructures were picked at different

hardness: (a) high porosity (hardness 665 kgf mm−2; (b) medium density

(hardness 1311 kgf mm−2); and (c) close to fully dense (hardness

2343 kgf mm−2).

FIGURE 1 | Illustration of GAN-based ML algorithms of microstructure prediction for target properties. In these algorithms, the property (i.e.,

hardness) is the condition.
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After training, GAN-based models can synthesize SEM micro-
graphs for target hardness. The generated microstructure image
can show various real microstructure features, like grain size,
grain distribution, tortuosity, porosity, and so on. To avoid con-
fusion in the rest of this article, the ML-synthesized micrographs
under the trained conditions are called “regenerated” micro-
graphs. The ML-generated micrographs under new or unexplored
hardness, not in the training dataset, are called “predicted”
micrographs.

2.2 | Comparison of the Performance of
RCWGAN-GP, RCWGAN-GP-W, and M-GAN in
Regeneration and Prediction of SEM Micrographs
from Hardness

We found that M-GAN had the best performance among the
three algorithms, while RCWGAN-GP had the worst perfor-
mance. Initially, we built the ML algorithm based on the
RCWGAN-GP algorithm, which showed powerful capabilities
in predicting 128 × 128 pixels (the real sample area was
6.4 × 6.4 μm2) micrographs for input laser powers during
laser-sintering experiments in our previous paper [23].
However, this micrograph size was sometimes too small to obtain
statistically meaningful features of microstructure (e.g., grain
size). As a result, there was a need to generate larger micro-
graphs. When we trained the RCWGAN-GP algorithm using

the 256× 256-pixel micrographs, the generated micrographs only
roughly captured the porosity and grain size of real SEM for both
low and high relative densities (Figure 3a-I and b-I). These regen-
erated images were noisy no matter how many training episodes
were used. Only micrometer-scale features were clear in these
images. This poor performance was caused by larger micrographs
(256× 256 pixels) compared to small micrographs (128× 128 pixels)
used in our previous paper [23]. The large SEM images contain
many microstructural details and features. For example, in the
real SEM of porous microstructure (Figure 3a-IV), the spatial dis-
tribution of grains is more intricate. Many grains are stacked on top
of each other. Grains and pores vary in different ways. These fea-
tures posed significant challenges for the ML algorithm to learn. As
for dense microstructure (Figure 3b-IV), the major features were
grain size and grain boundary, while pores were insignificant.
Compared to the contrast between grain and pores in porousmicro-
structure images, the contrast between grain and grain boundary
was very small in the dense microstructure images. As hardness
changed, the microstructure characteristics substantially varied.
This large variation also posed challenges for ML algorithms
to learn.

A common approach to capture detailed features in the
images for a GAN-based algorithm is by increasing the network
width or depth [31, 32]. We doubled the width of the network
in the generator and discriminator of RCWGAN-GP and
obtained RCWGAN-GP-W. Compared to RCWGAN-GP,

FIGURE 3 | Regenerated micrographs from RCWGAN-GP, RCWGAN-GP-W, and M-GAN with (a) low relative density (at 665 kgf mm−2) and (b)

high relative density (at 2343 kgf mm−2). (I) RCWGAN-GP generated low-resolution micrographs with random noises in grain areas. (II) RCWGAN-GP-

W generated better-quality images. However, random noises and unclear boundaries still existed. (III) M-GAN generated micrographs with clear grain,

grain boundary, and pores. The random noises were insignificant. (IV) As a reference, real SEM micrographs are presented on the right. The zoom-in

images of grain areas were marked using orange boxes.
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RCWGAN-GP-W-synthesized SEM micrographs have more
detailed features of grains and pores. For instance, in
Figure 3a-II and b-II, the porosity and grain size were very simi-
lar to the ones in the real SEM micrographs. The grain boundary
was much clearer and smoother in the regenerated images of the
porous sample (Figure 3a-II). Although less obvious, random
noises still existed for all image generations using RCWGAN-
GP-W, especially for high relative density samples. The grain
boundary was blurry and indistinguishable in the regenerated
micrographs of highly dense samples (Figure 3b-II). One chal-
lenge for RCWGAN-GP-W is that it requires much more comput-
ing resources than RCWGAN-GP in training and generation. In
RCWGAN-GP, both the discriminator and the generator had
about 3 million parameters. However, in RCWGAN-GP-W, the
discriminator had more than 12 million parameters, and the gen-
erator had about 7 million parameters. The RCWGAN-GP-W
doubles the time spent in training and image generation while
providing mediocre improvements in image quality.

Recently, residual blocks have been used in GAN-based algo-
rithms to improve the quality of generated images [25, 33].
The residual block structure was inspired by the famous
ResNet [34]. In ResNet, it has been shown that training can con-
verge much faster compared to similar structures without resid-
ual blocks. Thus, M-GAN training is also expected to converge
with relatively small training data size and epoch number.
The residual block leverages the technique of identity mapping
(also known as skip connection), where the input of the block is
added directly to the output, forming two streams of data, one
passing two convolutional layers and being processed and one
unchanged. During backpropagation, the gradient can skip some
blocks and significantly affect the shallower layers. This allows
the residual block-based network to combine the advantages of
both the deeper network’s capturing capability and the shallower
network’s training stability. As a result, the generated image from
the residual blocks modified algorithms can successfully capture
the details of the original images and achieve high image quality
[25, 32]. Therefore, we developed M-GAN with residual blocks to
improve the image generation quality. As shown in Figure 3a-III
and b-III, all M-GAN synthesized images showed high image
fidelity. Grain boundaries were clear and smooth compared to
the results generated using RCWGAN-GP and RCWGAN-GP-
W. The distinguishable microstructure features were as clear
as the ones in the real SEM images. It indicated that M-GAN syn-
thesized micrographs obtained a quality close to the real SEM
micrographs. As for the microstructure features, nano features
(�50 nm) can be distinguished in the M-GAN-generated images.
They showed grain size and porosity similar to the real SEM
images. Blurry noises in the area of the grains, which were often
found in CWGAN-GP-synthesized images, were eliminated.

Since a deeper structure was adopted in M-GAN, its training
efficiency was similar to that of the RCWGAN-GP-W and
lower than that of RCWGAN-GP. The discriminator had about
14 million parameters, and the generator had about 3 million.
However, the image generation time was significantly lower than
that of RCWGAN-GP-W because of a smaller generator with
fewer parameters. The reduction in the generator’s size and
significant improvement in image quality shows the efficacy of
M-GAN.

2.3 | Regeneration and Prediction of SEM
Micrographs Using M-GAN

After training, M-GAN not only regenerated microstructure
images corresponding to certain training labels (i.e., hardness
values) but also predicted the microstructure for an arbitrary
hardness input, which is not in the training set. The results
are shown in Figure 4. M-GAN regenerated microstruc-
ture images were highly realistic for both low hardness
(e.g., 665 kgf mm−2) and high hardness (e.g., 2343 kgf mm−2).
Furthermore, the micrographs predicted by M-GAN from the
input of 1711 kgf mm−2 hardness were also very similar to the
actual SEM images in terms of grain size, shape, and porosity.
The results show that the M-GAN can learn the trend of relative
density and grain size increasing as hardness increases. To
achieve such capability in predicting microstructures with an
arbitrarily unknown hardness, we only trained M-GAN with
six hardness-labeled micrographs data groups, i.e., 665, 882,
943, 1311, 1963, and 2343 kgf mm−2. After training, the M-
GAN can predict the SEM micrographs at 1711 kgf mm−2, which
is similar to the real SEM of the sample with this hardness
(Figure 4).

Another advantage of using M-GAN to predict microstructure is
that it can capture the stochastic features of microstructure.
Usually, the microstructure varies from position to position
within the material. One example of stochastic predictions from
M-GAN is given in Figure 5, side by side with experimentally
obtained SEM micrographs at various locations for comparison.
We found that the actual microstructure had slight spatial var-
iations in the laser-sintering experiments. The second column in
Figure 5 shows a tiny difference in porosity and grain size distri-
bution among these three locations. Remarkably, our M-GAN-
predicted microstructural images capture this variation in
corresponding real SEM micrographs. M-GAN captured impor-
tant stochastic features of the real microstructure, like grain size,
porosity distributions, and other microstructure features.

2.4 | Establishing a Pretrained CNN to Evaluate
the Performance of M-GAN

AlthoughM-GAN generates very realistic microstructure images,
we still need to develop metrics to evaluate the precision of

FIGURE 4 | Regenerated and predicted micrographs from M-GAN

using different hardness as the inputs. The experimental SEM micro-

graphs are given in the top row for comparison.
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M-GAN predictions. A pretrained CNN was established to eval-
uate the hardness for microstructure images and characterize the
accuracy of the M-GAN prediction for the target hardness. The
scope of this article is to demonstrate the effectiveness of M-GAN
in predicting detailed microstructure features based on the hard-
ness input. The microstructure features include both small-scale
(nanometer) features and global features (micrometer and
above). These features jointly affect the hardness. Thus, we used
a pretrained CNN to evaluate the difference between predicted
micrographs and experimentally obtained micrographs. The pre-
trained CNN can capture both localized features and global fea-
tures. The approach for evaluation is illustrated in Figure 6. This
evaluation method is very similar to the “inception score (IS)”
method, which is commonly used to evaluate the precision of
GANs [35]. Directly using other pretrained models like
Inception V3 does not work because they are trained on daily
images and are not capable of extracting microstructure features.
After training, M-GAN regenerated SEM micrographs for six

trained hardness and predicted one group for the target hardness.
Each group under one given hardness had 60 generated micro-
graphs. The pretrained CNN evaluated both M-GAN-synthesized
SEM micrographs and real ones under the same hardness labels
to obtain the corresponding hardness value, Hm and Hreal.
Here, Hm Stands for CNN-evaluated hardness from M-GAN-
synthesized micrographs and Hreal stands for CNN-evaluated
hardness from real SEMmicrographs. Finally, we compared those
two hardness and calculated bias betweenHm andHreal to validate
the M-GAN regeneration and prediction. The architecture of this
pretrained CNN is detailed in Section 4.3(Architecture of
Pretrained CNN and the Training Processing).

We evaluate the precision of the ‘pre-trained’ CNN. This CNN
was trained using the experimentally obtained SEMmicrographs
and corresponding hardness. The precision was validated by
comparing CNN-predicted and real hardness, as shown in
Figure 7. The relative root mean square error (RRMSE) was used
for each hardness prediction to quantify the accuracy of pre-
trained CNN evaluation. The RRMSE for each hardness data
group was calculated using the following equation:

FIGURE 5 | M-GAN predicted micrographs with high similarity to experimental SEM images. Three locations, marked as orange, were picked from

one SEM image of the sample with a hardness of 1711 kgf mm−2. Similar predicted images are presented in the first column on the left. Predicted images

successfully captured the subtle variation of microstructure captured in the real SEM image.

FIGURE 6 | The approach of evaluating the precision of M-GAN in

predicting hardness. A pretrained CNN was used to evaluate both M-

GAN-synthesized SEM micrographs and real ones. The bias of these

two evaluations (Hm, CNN-evaluated hardness from M-GAN synthesized

SEM; Hreal, CNN-evaluated hardness from real SEM) will be used as a

metric for validating the M-GAN predictions This CNN was trained from

the ML dataset with all the hardness.

FIGURE 7 | Boxplots of performance validation of pretrained CNN.

The X axis is the real hardness for each dataset. The Y axis is the CNN-

evaluated hardness for the validation dataset. The solid line represents

the expected relationship between CNN-evaluated and actual hardness.

6 of 13 Advanced Intelligent Discovery, 2025

 29439981, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aidi.202400022, W

iley O
nline Library on [22/09/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



RRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ×

P
n
i= 1 Hi

predict −Hexperimental

� �
2

r

Hexperimental
(1)

where n stands for the total amount of predictions for one specific
hardness; Hpredict is the predicted hardness via pretrained CNN;
Hexperimental is the experimentally measured hardness for one
group dataset.

As shown in Table 1, most of the predicted hardness matched
well with the real hardness. The relative RRMSE was within
6.1%, up to 1711 kgf mm−2. Larger deviation of CNN evaluation
was observed in high hardness samples (>1711 kgf mm−2). For
the highest hardness (i.e., 2343 kgf mm−2), CNN-predicted
hardness was much smaller than the real hardness, and the
RRMSE was 11.7%. This larger deviation may be caused by
a drastic increase in hardness with small changes in the micro-
structure. As we can see in Figure 8, the microstructure sub-
stantially changes as hardness increases from 665 to 1311 kg
mm−2, but slightly changes when hardness increases from
1711 to 2343 kg mm−2. This shows that CNN had difficulty
in accurately predicting hardness when the SEM micrographs
look similar.

2.5 | M-GAN Performance Evaluated Using the
Pretrained CNN

The difference between M-GAN-generated micrographs and
real ones at the same hardness was evaluated using the pre-
trained CNN. The plot of Hm versus Hreal is given in Figure 9.
Here, Hm stands for CNN-evaluated hardness from M-GAN

synthesized SEM for one data group. Hreal stands for average
CNN-evaluated hardness from real ones in the same data group.

The data points can be divided into two groups: (1) regenerated
SEM micrographs and (2) predicted ones. Two different target
hardnesses were evaluated to test the robustness of the
M-GAN prediction: 1711 and 943 kgf mm−2. As shown in
Figure 9a,b, all CNN-evaluated hardness from M-GAN synthe-
sized micrographs (Hm) had values close to the values from real

TABLE 1 | RRMSE of predicted hardness for each data group.

Hardness (kgf mm−2) 665 882 943 1311 1711 1963 2343

RRMSE 1.6% 1.4% 1.8% 3.1% 6.1% 3.9% 11.7%

FIGURE 8 | Examples of experimental SEM for (a) lower hardness

samples and (b) higher hardness samples. As the alumina samples were

sintered to close to fully dense, the hardness increased significantly with-

out significant change in microstructure.

FIGURE 9 | The pretrained-CNN-evaluated hardness from real SEM

(Hreal) and M-GAN synthesized SEM (Hm). Different prediction targets

were picked to test the robustness of M-GAN predictions: (a) at

1711 kgf mm−2; (b) at 943 kgf mm−2. M-GAN synthesized 60 μg at seven

different hardness. Next, the pretrained CNN evaluated the hardness of

each micrograph. The evaluated hardness of regenerated micrographs is

plotted in orange, while the predicted micrographs are plotted in purple.

Predicted SEM are also displayed for reference. The dashed line shows

equal values of Hreal and Hm. The standard deviation of each hardness

is also shown in the figure.
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SEM (Hreal). The dashed line indicated the equal values for Hm

and Hreal. For all regenerated micrographs, their Hm obtained
similar values to the corresponding Hreal, including the ones
at 2343 kgf mm−2.

The relative bias was used to show the difference between
M-GAN synthesized SEM and real SEM. It was defined as the
following equation:

Relative Bias=
����
Hm −Hreal

Hreal

���� (2)

Here, Hm is the average Hm and Hreal is the average Hreal.

The statistical data of the CNN evaluations and relative biases are
summarized in Table 2. The relative biases were all within 4.9%
for both cases. The M-GAN-regenerated SEM micrographs
matched well with the corresponding real ones. Although the
CNN showed large errors for evaluating high-hardness micro-
graphs (e.g., 2343 kgf mm−2, as shown in Figure 7), the CNN eval-
uation for M-GAN-regenerated micrographs was close to the
evaluation for real images in the hardness range from 1711 to
2342 kgf mm−2. This indicates that the pretrained CNN can
barely distinguish the M-GAN-generated micrographs and real
ones at the high hardness range.

For the M-GAN-predicted micrographs, the CNN evaluations
were very close to the evaluation of real images. The relative bias
for the prediction at 1711 and at 943 kgf mm−2 was 2.1% and
2.7%, respectively. This result indicated a high accuracy of
prediction from M-GAN. M-GAN showed good performance
in prediction both porous and dense microstructures.

3 | Conclusion

This study demonstrated a high-performance microstructure
image prediction model, M-GAN. Using target hardness as
an input, our ML algorithm can predict highly realistic
microstructure images. This M-GAN was built upon our previ-
ous algorithm (RCWGAN-GP). M-GAN showed significant
improvement from RCWGAN-GP in microstructure prediction
for large-area microstructure micrographs (256 × 256 pixels).
The M-GAN can synthesize high-fidelity, detailed, feature-rich
microstructure images indistinguishable from the experimen-
tally obtained SEM micrographs. The recognizable microstruc-
tural features are at different length scales, including
nanometer scale (�50 nm) in 12.8 × 12.8 μm micrographs.
The synthesized images successfully captured several important
features of laser-sintered alumina microstructure, like grain
size, porosity, grain surface features, and even local microstruc-
tural variation.

A pretrained CNN network was built to validate M-GAN
prediction and regeneration. The CNN can barely distinguish
between predicted/regenerated images and real ones. We tested
two prediction scenarios: 1711 and 943 kgf mm−2. The relative
biases of all regenerated and predicted images were within
4.9%. These results validate the accuracy of M-GAN for both
regeneration and prediction of microstructural images for a given
hardness.

In conclusion, M-GAN regenerated and predicted highly realistic
SEM micrographs for various hardnesses. This provides an
important tool for predicting microstructure for specific micro-
structure-sensitive properties, like hardness.

TABLE 2 | CNN-evaluated hardness for each data group with twodifferent prediction targets: (a) 1711 kgf mm−2 and (b) 943 kgf mm−2.

(a) Prediction target: 1711 kgf mm−2

CNN evaluation for real
images (kgf mm−2)

CNN evaluation for M-GAN-generated
images (kgf mm−2) Relative bias

Regeneration 659 ± 10 668 ± 13 1.4%

874 ± 9 900 ± 11 3.0%

927 ± 6 946 ± 18 2.0%

1293 ± 19 1356 ± 26 4.9%

Prediction 1752 ± 97 1789 ± 112 2.1%

Regeneration 1900 ± 42 1971 ± 66 3.7%

2082 ± 81 2055 ± 93 1.3%

(b) Prediction target: 943 kgf mm−2

Regeneration 659 ± 10 668 ± 12 1.3%

874 ± 9 894 ± 13 2.3%

Prediction 927 ± 6 901 ± 16 2.7%

Regeneration 1293 ± 19 1356 ± 20 4.6%

1752 ± 97 1738 ± 148 0.8%

1900 ± 42 1943 ± 78 2.2%

2082 ± 81 2157 ± 77 3.6%
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4 | Experimental Procedure and Methods

4.1 | ML Dataset Construction Using the
Laser-Based High-Throughput Method

To collect the data for the ML training, we prepared a sample
array containing approximately 80 sample units using the
laser-based high-throughput method [22], as shown in
Figure 10. Then, we characterized the microstructure and micro-
hardness of these sample units. The micro-sample unis with var-
ious microstructures were laser sintered in one scan. The SEM
micrographs and microhardnesses were characterized for each
sample unit. This study selected the material feature data (i.e.,
SEM micrographs and hardnesses) of 7 micro-samples due to
their apparent differences.

4.1.1 | Laser-Based High-Throughput Micro-Sample
Fabrication

Here, we summarize the experimental procedure. Full details are
in Ref. [22]. Alumina paste was prepared by mixing 79.75 wt.%
Al2O3 powder (Almatis A152SG, d50= 1.2 μm, purity: 99.8%) with
0.1 wt% dispersant (Darvan 821A), 20.0 wt% deionized water, and
0.15 wt% binder (hydroxypropyl) methyl cellulose, and ball-
milled for 48 h. And, �500 μm thickness alumina paste film
was deposited on a silica substrate. The green (unsintered) alu-
mina film was dried in a controlled environment and then micro-
machined using a picosecond laser (PXxxx-1, wavelength
1048μm, EdgeWave, Inc., San Diego, CA, USA) into square arrays
with each unit of 450 × 450 μm.

This micromachined green alumina sample array was sintered
using a CO2 laser (Firestar v20, wavelength 10.6 μm, SYNRAD,
Inc., Mukilteo, WA, USA), with a cylindrical lens (focal length
25.4mm, diameter 19.05mm, Laser Mechanisms, Inc., Novi,
MA, USA). The cylindrical lens resulted in a line-shaped laser
beam, such that the width of the laser beam (�8mm long) covered
the entire area of the sample array when the laser scanned along
the sample length of the array. The laser power was 64.5W, and
the laser scanning rate was 0.1mm/s. Due to the Gaussian distri-
bution of the laser power, this single scan generated sintered sam-
ples with a broad range of density, microstructure, and hardness.

4.1.2 | Microstructure and Hardness Characterization

The microstructure was characterized using the SEM (Hitachi
S4800, Hitachi, Ltd., Tokyo, Japan, and Hitachi S6600,

Hitachi, Ltd., Tokyo, Japan). The microhardness of laser-sintered
alumina arrays was characterized using a microhardness tester
(MHT-210 microhardness tester, LECO Corporation, St.
Joseph, MI, USA). Vickers indentation was introduced on the
sample surface, and its size was measured on SEM-generated
micrographs. The magnification of each SEM image is kept at
2000×. Each image had 1280 × 896 pixels. In total, 59 SEM
images with 7 different hardness were collected for the ML data-
set. A total of 59 different SEM images were labeled with their
corresponding hardness.

4.1.3 | Data Process for ML Training

To augment data for ML training, the SEM images were cropped
into smaller sub-micrographs of 256 × 256 pixels (corresponding
to a real area of 12.8 × 12.8 μm2). To further augment the dataset,
we rotate every image by 90°, 180°, and 270°. As a result, the
number of images quadrupled. As a result, 12,744 segmented
images were obtained.

All the images were contrast-enhanced using adaptive equaliza-
tion normalization [36]. This normalization eliminated the
brightness difference among different SEM images, resulting
in enhanced micro-images with similar brightness. In addition,
the contrast of each image was also enhanced, which is beneficial
for algorithm training.

4.2 | Architecture of RCWGAN-GP, RCWGAN-GP-
W, M-GAN, and the Training Processing

4.2.1 | RCWGAN-GP

Our previous papers demonstrated that RCWGAN-GP satisfacto-
rily predicts the material’s microstructure for arbitrary process-
ing conditions [18, 23]. The CGAN consists of a discriminator
and a generator and trains them to play a minimax game
described by the following objective function:

min
G

max
D

Exjy�Pr
D x, yð Þ½ �−Ez�pz D G z, yð Þ, yð Þ½ �

n o
(3)

where x represents a microstructure image, y is the processing
parameter or condition, xjy � Pr means the conditional distribu-
tion of xjy is Pr , resembled by the collected experimental data, z is
a random seed drawn from a multivariant Gaussian distribution,
Dðx, yÞ is the validity score produced by the discriminator using x

FIGURE 10 | ML database construction. Alumina micro-samples were fabricated using a laser-based high-throughput method. Then, each sample

was characterized using SEM and a microhardness tester.
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and y as inputs, and Gðz, yÞ is a generated microstructure image
produced by the generator from the random seed and the
condition.

Once the CGAN is well trained, the generated microstructural
images x̂jy follows a distribution Pg that is close to the real dis-
tribution Pr . Suppose a microstructure feature (e.g. porosity) can
be quantified from a microstructure image using a predefined
measurement f ð⋅Þ.

MF = f xð Þ (4)

MF is the microstructure feature.

The relationship between the microstructure feature and the
processing parameter y can be written as

MF yð Þ=Exjy�Pr
f xjyð Þ½ � (5)

Since the real microstructure distribution Pr can be well approxi-
mated using Pg, the relationship between the microstructure
feature and the processing parameter can also be approximated as

MF yð Þ � Ex̂jy�Pg
f x̂jyð Þ½ �=E z�pzð Þ f G z, yð Þð Þð Þ (6)

Or empirically

MF yð Þ= 1
N

XN
i

f G zi, yð Þð Þ (7)

This means that for an arbitrary processing parameter y, the
microstructure feature can be calculated by sampling N random
seeds, using the generator to produce N microstructural images,
and measuring them. Thus, we can call CGAN regression-based
CGAN (RCGAN) if we predict the microstructure from an
arbitrary condition.

We can improve the performance of RCGANwith theWasserstein
loss function [37]. The improved algorithm is known as regression-
based, conditional Wasserstein GAN (RCWGAN). Significant
improvement was found for RCWGAN in microstructure predic-
tions as shown in our previous study [18]. The microstructural fea-
tures of grains and pores can be observed in the synthesized SEM
micrographs. However, the grain boundaries and 3D configuration
of the grains were still unclear. The regenerated microstructures
had larger apparent average particle size than the real SEM. These
defects might originate from the weight-clipping technique used in
the RCWGAN [25]. Finally, we replaced weight clipping with
gradient penalty [38] and developed an RCWGAN-GP algorithm
for our simulation and prediction.

4.2.2 | Architecture of RCWGAN-GP and RCWGAN-GP-W

The architecture of the generator and discriminator in our
RCWGAN-GP algorithm is shown in Figure 11. The generator
had two inputs (Figure 11a). One was a random vector used
as a seed for image generation. The other was the conditioning
input, a single scalar value (e.g., normalized hardness value). In
the generator, the seed was expanded by a dense layer and then
reshaped into 8× 8 × 128. The condition was also expanded by a

dense layer and then reshaped into 8× 8 × 16. Then they were
concatenated together and reshaped to 256× 256 × 8 through
six convolutional layers (Conv). Finally, using another special con-
ventional layer with tanh as an activation function (Conv, tanh),
the input data was reshaped into 256× 256× 1. As a result, the
output was a 256× 256 pixels image. All the activation functions
used in normal convolution layers were LeakyReLUs defined as

f xð Þ= max αx, xð Þ (8)

where α was set to be 0.2. The architecture details are shown in
Figure 12a.

The discriminator also had two inputs. One is the 256 × 256 pix-
els image, and the other is the hardness label. Two inputs
concatenated together and reshaped to 4 × 4 × 256 via six convo-
lutional layers. Then, input data was flattened by a flatten layer
and expanded by two dense layers. The final output is a scaler.
The details of the architecture are shown in Figure 11b. The ker-
nel size, numbers of feature maps, and strides used in the con-
volutional layer were marked as k, n, and s, respectively. In total,
the generator and discriminator in CWGAN-GP owned 2 842 785
parameters and 3 323 369 parameters, respectively.

For RCWGAN-GP-W (wide), the major structure was kept the
same as the one in RCWGAN-GP, but the number of feature
maps (n) in convolutional layers (conv) was doubled in both
the generator and discriminator. As a result, the generator
had 7 034 433 parameters, and the discriminator had
12 892 369 parameters.

4.2.3 | Architecture of M-GAN

The architecture of the generator and discriminator in the or
M-GAN algorithm developed in this study is shown in

FIGURE 11 | The architecture of (a) generator and (b) discriminator

network in RCWGAN-GP with corresponding kernel size (k), number of

feature maps (n), and stride (s) indicated for each convolutional layer.
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(Figure 12). Similar to RCWGAN-GP-W, in the generator, one
random vector (seed) and one single scalar (condition) were used
as input. In the generator, six residual blocks followed the
convolutional layer. One residual block was made of two same
convolutional layers. Its input was skip-connected to the output.
After six residual blocks, the feature map’s shape was still kept as
32 × 32 × 64. Using residual blocks, the depth of the network can
be greatly increased. As a result, it improves the training effi-
ciency and generation quality. Then, input data was reshaped
into 256 × 256 × 64, via three convolutional layers and two up-
sampling layers. The details of the architecture are shown in
Figure 12a.

Like RCWGAN-GP-W, the discriminator also had two inputs.
One was the 256 × 256 pixels image, and the other was the hard-
ness label. The image was reshaped by two convolutional layers
into 64 × 64 × 128. The hardness label was expanded by a dense
layer and reshaped into 64 × 64 × 20 via one convolutional layer.
Then, two inputs were concatenated together and reshaped to
16 × 16 × 64 via five convolutional layers and one residual block.
This residual block had the same structure as mentioned earlier.
Next, the input data was flattened by a flatten layer and expanded
by two dense layers. The final output is a scaler. The details of
the architecture are shown in Figure 12b.

4.2.4 | The Training Process

The same training process was applied in RCWGAN-GP,
RCWGAN-GP-W, and M-GAN. When training the generator,
the loss function was defined as

Lg = −Ex̃jy�Pg
D x̃, yð Þ½ � (9)

where x̃ is a generated image, y is the condition, and Pg repre-
sents the generator distribution. Dðx̃, yÞ is the output of the dis-
criminator. When training the discriminator, we used the loss
function, which was mentioned in our previous works [18, 23]:

Ld =Ex̃jy�Pg
D x̃, yð Þ½ �−Exjy�Pr

D x̃, yð Þ½ �
+ λEx̃jy�Px̂

k∇x̂D x̂, yð Þk2 − 1ð Þ2½ �
(10)

where x is a real image, x̃ is a generated image, y is the condition,
and Pg and Pr represent the generator distribution and the real
data distribution, respectively. The third term is the gradient pen-
alty term. Px̂ is uniformly sampling along the straight line
between x and x̃. Thus, x̂ is calculated as the following:

x̂ = ϵx + ð1− ϵÞx̃ (11)

where ϵ is a random number that is uniformly distributed on
[0,1]. λ is a hyperparameter that controls the weight of the
gradient penalty loss. In this article, it is set to be 1.

We used the Adam optimizer while training the generator and
the discriminator. The learning rate is 1E− 4 for the generator
and 2E− 5 for the discriminator. We used the mini-batch gradi-
ent descent method, where the size of one mini-batch is 128. We
trained the algorithm for 800 epochs on Palmetto, the high-
performance computing cluster of Clemson University. The M-
GAN results reported in this article took 68 h on 40 CPUs
and 2 GPUs (Nvidia V100).

4.3 | Architecture of Pretrained CNN and the
Training Processing

We use a pretrained CNN to validate the precision of GAN-based
models. The architecture of pretrained CNN, used for predicted
hardness, is shown in (Figure 13). This CNN’s network is similar
to our M-GAN’s discriminator, with seven convolutional layers,
one residual block, one flatten layer, and two dense layers. This
CNN only has one input, the 256 × 256 pixels image. The input
image went through seven convolutional layers and one residual
block. Then, it was flattened by a flatten layer and expanded by
two dense layers. The final output was a scaler, which is pre-
dicted hardness of the correlated microstructural image. Adam

FIGURE 12 | The architecture of (a) generator and (b) discriminator

network in Microstructure-GAN (M-GAN) with corresponding kernel

size (k), number of feature maps (n), and stride (s) indicated for each

convolutional layer.

FIGURE 13 | The architecture of CNNwith corresponding kernel size

(k), number of feature maps (n), and stride (s) indicated for each convolu-

tional layer.
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optimizer was used during CNN training. The learning rate is
1E− 4. We used mini-batch gradient descent method, where
the size of one mini-batch is 512.
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