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Abstract

The ability of multiple bat species to host zoonotic pathogens without often show-

ing disease has fostered a growing interest in bat immunology to discover the ways

immune systems may differ between bats and other vertebrates. However, interspe-

cific variation in immunological diversity among bats has only begun to be recognized.

The order Chiroptera accounts for over 20% of all mammalian species and shows

extreme diversity in a suite of correlated ecological traits, such that bats should not be

expected to be immunologically homogenous.We review the ecological and evolution-

ary diversity of chiropteran hosts and highlight case studies emphasizing the range of

immune strategies thus far observed across bat species, including responses to SARS-

CoV-2. Next, we synthesize and propose hypotheses to explain this immunological

diversity, focusing on pathogen exposure, biogeography, host energetics, and environ-

mental stability. We then analyze immunology-related citations across bat species to

motivate discussions of key research priorities. Broad sampling is needed to remedy

current biases, as only a fraction of bat species has been immunologically studied.

Such work should integrate methodological advancements, in vitro and in vivo stud-

ies, and phylogenetic comparative methods to robustly test evolutionary hypotheses

and understand the drivers and consequences of immunological diversity among bats.
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INTRODUCTION

Over the past decades, bats have been linked to numerous spillovers

of zoonotic pathogens, including viruses such as Hendra and Nipah

virus, SARS-like coronaviruses (CoVs), Marburg virus (MARV), and

MERS-like CoVs; bacteria such as Candidatus Bartonella mayotimo-

nensis, Candidatus Bartonella rousetti, and Candidatus Mycoplasma

haematohominis; and protozoa such as Trypanosoma cruzi.1–9 These

spillovers, alongside observations that bats often host such pathogens

without overt signs of disease, have generated substantial interest

in bat immunology and understanding mechanisms of host resis-

tance and tolerance.10–16 Bats are also exceptional among mammals

in other ways; they are the only mammals with powered flight, are

potentially resistant to cancer, and many have long lifespans for

their body size.17–21 The association of many bat species with mul-

tiple pathogens and their unique adaptations have led to hypotheses

about how bats, as an order, may differ in their immune system

from other mammals. The flight as fever hypothesis posits that the

elevated body temperatures bats reach during powered flight could

dampen viral replication or select for viruses able to withstand the

febrile responses of other mammals.22 However, this hypothesis has

received little support,23,24 with growing evidence suggesting that

flight has likely shaped bat immunity in other ways.25,26 For exam-

ple, metabolic demands of flight generate high oxidative stress,27

such that bats have evolved mechanisms to withstand subsequent

DNA damage while avoiding pathology by downregulating inflamma-

tory pathways.28,29 These adaptations have been proposed to explain

why bats often tolerate intracellular infections while also being sus-

ceptible to certain extracellular infections (e.g., Pseudogymnoascus

destructans, the fungus that causeswhite-nose syndrome [WNS], which

has decimated populations ofmultiple hibernatingNorthAmerican bat

species).14,23

Support for hypotheses about distinct immune adaptations of bats

largely stems from a small but growing number of model systems in

bat immunology.30–33 However, while multiple immune adaptations

are certainly present acrossbat species, immunological diversitywithin

the order Chiroptera is also becoming increasingly acknowledged and

characterized.19,29,34–36 In this review, we highlight the diversity of

immune systemsacross this hyperdiverse cladeofmammals, emphasiz-

ing that bats—as an order—are far from immunologically homogenous.

We also synthesize proposed evolutionary hypotheses underlying this

diversity and suggest future directions to test such hypotheses. We do

not exhaustively summarize the state of research on bat immunology

or the immune characteristics thatmake bats distinct fromothermam-

mals given previous reviews on these topics.37–39 Our objectives are

for this review to serve as an entry point for immunologists to con-

sider variationwithin this groupof flyingmammals aswell as a resource

for both field and comparative biologists to test central evolutionary

hypotheses.

ECOLOGICAL AND EVOLUTIONARY DIVERSITY
AMONG BATS

Bats are the second largest mammalian order (after rodents), account-

ing for over 20% of all mammalian species. The order Chiroptera

originated during the Cretaceous–Tertiary boundary, approximately

65 million years ago (mya), followed by a divergence into two mono-

phyletic suborders: Yinpterochiroptera and Yangochiroptera.40,41 This

divergence was followed by a rapid radiation event during the early

Eocene (56–47 mya), coinciding with global temperature rise and

concurrent expansion of plant and insect diversity.42–44 Multiple, sub-

sequent radiations, such as those of the Phyllostomidae in theWestern

Hemisphere (30mya) and thePteropodidae in the EasternHemisphere

(25 mya), were further driven by factors including niche partition-

ing, novel innovations (e.g., phytophagy), and geographic isolation.45,46

These evolutionary processes generated the remarkable diversity of

bats, resulting in 1487 extant species across 21 families.47 Underex-

plored tropical regions and unclear taxonomic boundaries (e.g., cryptic

species) are expected to only further increase bat global diversity.48,49

Bats inhabit a wide variety of terrestrial habitats on every continent

except for Antarctica, with some species occupying up to seven or

eight distinct habitat types (e.g., Rousettus aegyptiacus and Taphozous

nudiventris, respectively), as defined by the International Union for the

Conservation of Nature (IUCN).50

Bats accordingly exhibit a remarkable array of morphological (e.g.,

body mass), ecological (e.g., diet), and physiological adaptations (e.g.,

echolocation) that evolved to suit their ecological niches and life

history strategies (Figure 1).51 For example, body mass varies over

three orders of magnitude across bats, ranging from just a few grams

in small insectivores (e.g., Craseonycteris thonglongyai, which weighs

approximately 2 grams) to over a kilogram in larger frugivores (e.g.,

Acerodon jubatus).50 Frugivorous bats are generally largerwith broader

wingspans, while insectivorous bats tend to be smaller with shorter

wingspans to improve agility.52,53 The specialized facial morphologies

of bats also evolved as adaptations to their diverse dietary habits,

including nectarivory (e.g., Leptonycteris yerbabuenae), frugivory (e.g.,

Pteropus medius), insectivory (e.g.,Myotis myotis), carnivory (e.g.,Macro-

derma gigas), piscivory (e.g., Noctilio leporinus), and hematophagy (e.g.,

Desmodus rotundus).54,55

Morphology and foraging ecology are only two of the multiple axes

of variation among the Chiroptera. Physiological adaptations such as

metabolic rates, thermoregulation mechanisms, and sensory abilities

vary widely across species, allowing bats to inhabit diverse habitats
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F IGURE 1 Representative axes of ecological and epidemiological variation among bat species using themost recent mammal phylogeny (1287
bat species, colored by family).231 Bodymass, phytophagy, thermoregulation (i.e., torpor or hibernation; 1), andmaximum lifespanwere obtained
from the COalescedMammal dataBase of INtrinsic and Extrinsic traits (COMBINE) database of mammalian traits.50 Viral family richness data
were obtained from the Global Virome inOneNetwork (VIRION) database,75 simplified to only those records detected through sequencing or
isolation, resolved by NCBI, and aligned to the tree taxonomy.Missing data are shown in white.
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(Figure 1).50,56 For example, some bat species adjust their metabolic

rate (i.e., torpor) to allow matching their activity level to environ-

mental conditions.57 Hibernation, a more extreme drop in metabolic

rate, is used mostly by Neartic and Paleartic bats to avoid harsh

winter temperatures,58 but this adaptation also occurs in tropical

species and has evolved multiple times in bats.59,60 Other bat species

instead undertake long-distance latitudinal (e.g., Tadarida brasilien-

sis) or altitudinal (e.g., Miniopterus natalensis) migrations to escape

extreme temperatures.61–63 This metabolic flexibility is also one of

the evolutionary drivers for the exceptional longevity seen in bats as

compared to other small mammals.17 Although bats overall have a

slow life-history strategy, species do vary along the fast–slow con-

tinuum (Figure 1).50,64 For example, Myotis brandtii can live for up

to 41 years,65 in contrast to the average bat lifespan of 15 years.50

Similarly, while most bat species have one breeding cycle per year

with a single pup,50,66 some species are polyestrous (e.g., Tadarida

fulminans, multiple phyllostomids67,68) and/or polytocous (e.g., seen

mostly in the Vespertilionidae but also in other families such as the

Pteropodidae69,70).

While the order Chiroptera has been characterized as having high

pathogen richness,71 likely due to the speciose nature of this clade,72

bats also vary in their pathogen associations, withmost data on viruses

and bacteria.73–75 For the former, over one-quarter of bat species host

at least one virus, with infected species hosting an average of four and

up to 23 viral families (Figure 1).75 The propensity for some bats to

host typically virulent viruses has imposed extreme selection on bat

genomes for mechanisms of viral resistance (e.g., selection of antiviral

effector genes and complement genes) and tolerance (e.g., regula-

tion of inflammatory response).15,76 However, distinct coevolutionary

histories between bats and their viruses,77,78 coupled with substan-

tial variation in observed viral diversity among species,75 have likely

also shaped distinct defense strategies and corresponding immune

phenotypes across the chiropteran phylogeny.

BATS ARE NOT A MONOLITH: INTERSPECIFIC
VARIATION IN BAT IMMUNITY

Given the substantial diversity in morphological, ecological, and phys-

iological traits of bats; their long coevolutionary relationships with

pathogens; and variance in pathogen richness, bat immune systems

are expected to be equally heterogeneous. Recent in vivo and in vitro

studies have begun to reveal an array of species-specific immune

responses, shedding light on the distinct immune strategies that bat

species use against their viral pathogens. As one key example, in

the case of SARS-CoV-2 in vivo infections, both Eptesicus fuscus and

Myotis lucifugus were resistant, while Tadarida brasiliensis was suscep-

tible but likely not competent for onward transmission.79–82 Similarly,

Rousettus aegyptiacus challenged with SARS-CoV-2 were susceptible

but had transient infections, with limited bat–bat transmission.83,84

Other in vitro studies have shown thatMyotismyotis,Eptesicus serotinus,

Tadarida brasiliensis, andNyctalus noctulawing cellswere not permissive

to SARS-CoV-2 due to low expression of the angiotensin-converting

enzyme 2 (ACE2) receptor or to poor interactions between ACE2 and

the viral S protein.85 ACE2 receptor sequences and the selection act-

ing on them also vary between bat species, further shaping differences

in SARS-CoV-2 susceptibility.86 Additionally, intestinal organoids of

Rhinolophus sinicus were susceptible to SARS-CoV-2 and sustained

viral replication87,while fibroblasts ofRhinolophus ferrumequinumwere

resistant to infection.88 Intestinal organoids of Rousettus leschenaultii

and airway epithelial cells of Eonycteris spelaea were also resistant to

infection,89, 90 while both intestinal organoids and in vivo challenge

of Artibeus jamaicensis show this species is susceptible but does not

support SARS-CoV-2 replication.91,92 With the caveat that these cell

lines only represent select tissue types, and additional cell lines from

other organs could yield different results with SARS-CoV-2 challenge,

these in vivo and in vitro case studies highlight substantial species-

level heterogeneity in bat susceptibility and suitability for SARS-CoV-2

infection, even in species in the same genus (Figure 2). Importantly, the

bat species involved in these diverse challenges originate from both

hemispheres and include susceptible and resistant species in multi-

ple families. This suggests differences in susceptibility are unlikely to

stem only from coevolutionary history as the current repertoire of sar-

becoviruses and their known bat hosts are restricted to the Eastern

Hemisphere, largely in the Paleartic and Indomalayan regions.93

Interspecific differences in infection response have been observed

for other viruses. Eidolon helvum cells were refractory to Ebola virus

(EBOV) entry due to a single mutation in the filovirus receptor,

Niemann-Pick C1; species without this mutation are likely suscepti-

ble to filovirus entry.94 Further, Rousettus aegyptiacuswere susceptible

to MARV but resistant to EBOV, highlighting that even closely related

viruses (both within the Filoviridae) can have different outcomes in the

same species.95 In the case of rabies virus (RABV), outcomes can vary

both across and within species, highlighting the complex nature of the

relationshipsbetweenbat immunity and infection.96–98 WorkonRABV

has shown especially interesting differences in adaptive immunity. Fol-

lowing RABV infection, some Eptesicus fuscus failed to seroconvert

and succumbed to infection.99 In contrast, some Desmodus rotundus

vaccinated against and challenged with RABV survived despite not

producing detectable antibody titers.100

Given the logistical challenges of in vivo or in vitro experi-

ments using pathogens, the use of pathogen-associated molecu-

lar patterns (PAMPs) that instead stimulate a more general acute

phase response without true infection has suggested additional

interspecific differences in bat immune systems. For example, in

response to a lipopolysaccharide (LPS) challenge to mimic a bacte-

rial infection,Molossus molossus had no detectable inflammation, while

Desmodus rotundus experienced pronounced leukocytosis and behav-

ioral changes.101,102 In contrast, Carollia perspicillata challenged with

LPS also displayed no fever or leukocytosis but did show decreased

food intake and lost body mass.103 Importantly, these studies used

similar doses of LPS,101–103 facilitating interspecies comparisons—

although methodological differences can often vary substantially

across studies using PAMPs.104 Desmodus and Carollia are both in

the family Phyllostomidae, while Molossus is in the Molossidae, sug-

gesting evolutionary and intrafamily effects that could stem from
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F IGURE 2 Phylogeography of bat species shown to be susceptible or resistant to SARS-CoV-2 infection through in vivo or in vitro challenge
using themost recent mammal phylogeny,231 experimental data,79–85,87–92 and species distributions from the IUCN. Subgenera of the genus
Eptesicuswere recently elevated to full genus rank, such that species in the Eastern Hemisphere have been reclassified into the genus
Cnephaeus.279 We note that SARS-CoV-2 isolates used in these experimental studies were derived from humans and thus do not represent
interactions of bats or their cells with bona fide bat-derived SARS-CoV-2–like viruses, such as BANAL-236.280

species differences in ecology or life history. Similarly, while an in

vitro challenge with polyinosinic:polycytidylic acid (polyI:C) to mimic

an RNA virus infection upregulates similar genes related to cytokine

and inflammatory responses across phylogeographically diverse bats

(i.e., Rousettus aegyptiacus, Pipistrellus kuhlii, Eptesicus fuscus, Cnephaeus

nilsonii), species-specific differences were also observed (e.g., between

Rousettus aegyptiacusandPipistrellus kuhlii).105,106 Such challengeshave

also revealed intrafamily differences in the bat antiviral response. For

example, constitutive expression of interferon alpha (IFN-α) has been
observed in Pteropus alecto tissues but not in Rousettus leschenaultii kid-

ney cells, despite both species belonging to the family Pteropodidae;

stimulation with polyI:C increased IFN-α expression in the latter but

not the former species.31,107

Beyond viral and bacterial infections, bats also show varied suscep-

tibility to fungal pathogens, notably Pseudogymnoascus destructans. The

highly susceptible NearcticMyotis lucifugusmounts a substantial tran-

scriptomic response to infection, upregulating leukocyte activation

and inflammatory pathways, whereas the tolerant Palearctic Myotis

myotis has a nearly undetectable transcriptional response.108 The less-

susceptible Nearctic Eptesicus fuscus exhibits a similar gene expression

profile to Myotis lucifugus but instead mounts a localized, nonsys-

temic response. Across these three host–pathogen contexts, the fungal

transcriptome is notably consistent, highlighting bat species-level

differences that driveWNS outcomes.109

A larger body of work on immune profiles of wild bats at baseline

has also revealed immunological differences among species, although

such patterns aremore difficult to interpret given the unknowns about

pathogen exposure history.110 For example, white blood cell counts

varied substantially across a Neotropical bat community in Costa Rica,

with larger bat species and carnivorous bat species characterized by

more leukocytes.36 Similarly, in Belize, neutrophil counts of a frugi-

vore (Sturnira parvidens) decreased over time with land conversion,

whereas those of hematophagous bats (Desmodus rotundus) increased

and those of an insectivore bat (Pteronotus mesoamericanus) showed

no response.111 To compare cellular immunity at a finer resolution,

single-cell RNA-Seq has revealed different proportions of B cells in

bone marrow and natural killer cells in the spleen between Pteropus

alecto and Eonycteris spelaea.112,113 Functional assays applied to bat

sera samples have also found substantial interspecific differences in

complement activity, with higher rates of lysis from Eptesicus fuscus

than Pteropus vampyrus.114 Extensions of these baseline approaches

have also revealed immune differences within genera; among sym-

patric horseshoe bat species in China, RNA-Seq of organs found that

Rhinolophus siamensis andRhinolophus episcopusdiffer in the expression

of immunoregulatory genes.115

Lastly, comparative genomics have emphasized the genetic basis of

interspecific differences in bat immunity. Considering innate immunity,

the composition of the type I IFN locus varies across bats, with initial

work showing this locus is contracted in Pteropus alecto but expanded

in Pteropus vampyrus, Myotis lucifugus, and Rousettus aegyptiacus.31,116

Recent work has suggested IFN-ω in bats may play an expanded

antiviral role compared to other type I IFNs given that several bat

species have lost all IFN-α genes (i.e., Pipistrellus kuhlii, Myotis myotis,

and Pteronotus mesoamericanus).19 Considering adaptive immunity, the

immunoglobulin heavy chain (IGH) locus of bats is unusually variable

between species. IGHV gene number varies substantially, with 132

genes in Eptesicus fuscus, 66 in Rousettus aegyptiacus, 41 in Rhinolo-

phus ferrumequinum, 81 in Phyllostomus discolor, and 57 in Pipistrellus
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TABLE 1 Proposed hypotheses that predict interspecific differences in bat immunology.

Mechanism Driver Prediction

Pathogen exposure Coevolution Host immune genes will show signatures of positive selection in response to pathogen

pressure.

Pathogen richness Species with high pathogen diversity will invest more in adaptive immunity than those with

few pathogens.

Colony size Species with large colonies will invest more in adaptive immunity if pathogensmainly follow

density-dependent transmission.

Co-roosting Species that share roosts withmore bat and nonbat species will invest more in adaptive

immunity.

Diet Species that consume other animals should invest more in defense and have greater

immunogenetic diversity.

Habitat diversity Greater habitat diversity (including large geographic range size andmigratory distances) will

promote immunogenetic diversity due to pathogen exposure.

Longevity Long-lived species will invest more in adaptive immunity owing to accumulated pathogen

exposure.

Biogeography Speciation Speciation events will correlate with diversification in immune strategies in both innate and

adaptive arms.

Genetic drift Small and isolated populationswill show reduced immune diversity due to drift and inbreeding.

Host energetics Pace of life Fast-lived species will prioritize defenses with lower developmental costs (i.e., innate

immunity).

Diet Species with low-energy foodwill invest less in adaptive immunity than thosewith high-energy

food.

Environmental stability Food seasonality For species that do not hibernate or migrate, those withmore seasonal foodwill invest more in

innate defenses.

Hibernation Hibernating species will on average have lower baselinemeasures andweaker immune

responses to conserve energy.

Migration Species with longermigrations betweenwintering andmaternity grounds will showweaker

immune responses.

Note: We qualify that such hypotheses are not mutually exclusive nor necessarily exhaustive.

pipistrellus.117–119 In contrast, humans and mice possess 104 and 161

IGHV genes,120 respectively, and these species are over 60 million

years further diverged than the most related bat species above (i.e.,

Eptesicus fuscus and Pipistrellus pipistrellus).121 Most strikingly, bats

within the family Vespertilionidae possess two distinct and functional

IGH loci,117 an organization that has not been previously described in

mammals but bears similarity to amore limited duplication observed in

teleost fish.122,123

EVOLUTIONARY HYPOTHESES IN BAT
IMMUNOLOGY

As highlighted above, the pronounced diversity across bats is matched

by substantial interspecific variation in immunity, as revealed by both

experimental (e.g., Figure 2) and observational results. However, an

outstanding need remains to identify themechanisms underlying these

species-level differences. Here, we synthesize and propose hypothe-

ses about the interspecific drivers of bat immunity: pathogen exposure,

biogeography, host energetics, and environmental stability (Table 1).

For each hypothesis, we present supporting research and outline

potential directions for future studies. We note that while some

trait drivers may lend themselves to testing a single hypothesis (e.g.,

pathogen richness to test hypotheses about pathogen exposure), oth-

ers could shape immune diversity through multiple pathways (e.g.,

dietary diversity could test hypotheses about both pathogen exposure

and host energetics).

Pathogen exposure

One of the central hypotheses to explain immune variation among

bat species focuses on the long coevolutionary history between

chiropteran hosts and many of their pathogens. Across host taxa,

pathogens impose strong selection pressures that can shape immuno-

logical diversity.124,125 For example, pathogen richness is positively

associated with major histocompatibility complex (MHC) variability

across primate, ungulate, and a small number of bat species.126,127

Bat–virus associations show strong signals of phylogeography that

should also shape immune strategies. For example, henipaviruses are

highly diverse in Africa, suggesting their likely origin in this region,

and are primarily associated with pteropodid bats found only in Africa,

Asia, and Oceania128,129 (although serology has suggested henipa-

like viruses may circulate in select phyllostomids, restricted to the
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Americas130,131). Likewise, bat-associated filoviruses have only been

found in Africa, Asia, and Europe,132 despite potential favorable host

conditions in the Americas.133,134 As one case study of immune adap-

tations structured by viral phylogeography, bats in the genus Eidolon,

whose range includes the distribution of filoviruses, have a muta-

tion in their host receptor that prevents EBOV entry.94 Similarly,

influenza A viruses (IAVs) have been detected in diverse bats, including

H17N10 and H18N11 from Sturnira parvidens and Artibeus species in

the Neotropics as well as an H9N2-like IAV from Rousettus aegyptiacus

in Egypt.135–137 In the Afrotropical host, the H9N2-like IAV preferen-

tially binds to α2,3-sialic acid receptors, while the Neotropical IAVs

instead enter cells through the MHC class II DR protein;138 however,

we note that such phylogeographic differences are complicated by the

Neotropical IAVs originating from bat hosts, while the H9N2-like IAV

likely instead jumped from birds.137

Alongside expectations about coevolutionary histories shaping

immunogenetics across bat species, pathogen diversity should also

structure bat immune phenotypes. In other taxa such as birds, ener-

getic investment into immune function is often elevated in areas of

high pathogen richness (e.g., the tropics). For example, tropical bird

species have more leukocytes in blood and larger spleen sizes than

temperate bird species, with the latter indicating greater investment in

adaptive immunity.139 Indeed, as antigen exposure drives the selection

of specific cell populations and, in turn, the pool of B and T lympho-

cytes, greater exposure to pathogens should increase allocation to

adaptive immunity.140 Explicit tests of how immunity is associatedwith

pathogen richness across bats are needed to fully assess this hypoth-

esis, which can be facilitated by standardized species-level data on

pathogen-host status and diversity (e.g., VIRION; Figure 1).75

Multiple behavioral and life-history traits of bat species could

drive pathogen exposure, with subsequent effects on immune vari-

ation. For example, colony size varies several orders of magni-

tude across bats,141 with more colonial species possibly supporting

pathogen transmission and thus investment into adaptive immu-

nity. In birds, density-dependent pathogen transmission in colonial

species results in stronger B and T cell responses than in solitary

species.142 However, support for density dependence in bat–pathogen

systems is weak,143,144 with exposure more likely a function of social

and metapopulation structure or arthropod vectors.145,146 Social-

ity may thus possibly have stronger effects on immunity via this

exposure mechanism; in other mammals, more promiscuous species

show greater investment in white blood cells, likely driven through

increased exposure to sexually transmitted infections.147,148 However,

bat sociality is highly complex, with some species being character-

ized by seasonal maternity colonies149 or fission-fusion societies.150

This complexity in social behavior will thus likely complicate efforts to

understand how sociality drives species differences in immunity. Other

interspecific differences in bat behavior, such as co-roostingwith other

bat species, could also elevate pathogen exposure and have similar

effects on interspecific variation in immunity.151–154

The extremedietary diversity observed across bats could also shape

immune variation through pathogen exposure. Bat species that include

more animals in their diets, particularly other vertebrates (e.g., phyl-

lostomines including Trachops cirrhosus, Chrotopterus auritus, Phyllosto-

mus hastatus, and Vampyrum spectrum; both Noctilio species; all three

members of the Desmodontinae;Myotis vivesi; Cardioderma cor;Mega-

derma lyra; and Macroderma gigas155), could be exposed to pathogens

hosted by prey,156 selecting for greater investment in defense. Initial

support for this hypothesis has been foundwithinNeotropical bat com-

munities using data on the cellular immune system.36 Other foraging-

related behaviors, such as large geographic ranges or high habitat

breadth, as well as long-distance migration, could also expose bats to a

wider array of pathogens, as shown in birds157 and supported by select

bat case studies (e.g., extreme MHC class I diversity in the geograph-

ically widespread Carollia perspicillata158). In birds, migratory species

invest more in immune organ size than resident species, supporting

links between habitat diversity, pathogen exposure, and immunity;159

such comparisons have yet to be performed across bat species despite

known variation in migratory strategies.62 Hypotheses about habitat

breadth and geographic range more generally could be tested by com-

paring immunity among bat species in globally distributed taxa, such

as the genus Myotis or several families (e.g., Figure 3). Lastly, longer-

lived species can accumulate pathogen exposure across their lifespan,

as seen inbirds, bats, and some terrestrialmammals,160,161 which could

also increase adaptive investment.

Biogeography

Alongside coevolutionary history with pathogens, the distinct bio-

geography of many bats has likely contributed to their immunological

diversity. Prior work on bat–CoV interactions has shown that regions

withmore evolutionarily distinct host communities harbormore diver-

gent viral assemblages, which should likewise generate strong selec-

tive pressure for specialized immune adaptations.78 As one example,

the historical biogeography of the Phyllostomidae and Pteropodidae

resulted in their restriction to the Western and Eastern Hemispheres,

respectively. Multiple gene families underwent expansion or contrac-

tion within the Pteropodidae, including those related to immunity, and

this family has been characterized by the loss of the inflammasome

NLRP1 gene and attenuated Toll-like receptor 2 ability.162,163 Similarly,

genomic comparisons support theexpansionof thePRDM9 gene,which

governs meiotic recombination and can be upregulated during viral

infection in the Phyllostomidae compared to other bats.19 Further, the

sister family Mormoopidae (also only in theWestern Hemisphere) dis-

play major expansions of heat-shock protein genes compared to other

bats,19 indicating possibly unique adaptations involved in the stress

response as well as in both innate and adaptive immunity.164

Recent work on the phylogenetic distribution of viral virulence also

suggests biogeographic drivers in bat–pathogen interactions.Whereas

previous work has found bats are more likely than other mammalian

and avian orders to host viruses with high virulence in humans,165,166

phylogenetic analyses agnostic to taxonomic order suggest that the

Chiroptera do not emerge as a taxon more likely to harbor such

viruses than other mammalian clades.167 Notably, a subclade of the

Yangochiroptera consisting of the superfamilies Emballonuroidea and
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8 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 3 Geographic and behavioral distributions of global bat families: the Emballonuridae, Vespertilionidae, andMolossidae. Species
distributions were drawn from the IUCN andmerged per bat family using the rgeosR package. Inset plots show relationships between habitat
breadth and geographic range size (left) as well as between geographic range size and viral family richness (right) across 516 species (not all species
havematching trait data). Trait data are fromCOMBINE,50 PanTHERIA,281 and VIRION.75 Data are overlaid with the posterior mean slope and
95% credible interval (CI) band from each phylogenetic generalized linear model (PGLM) fit using the brms package,282 each using four chains
including 2000 iterations and 50% burn-in for a total 4000 samples (bothmodels converged, given inspection of traces and ̂R values).Within these
three bat families, habitat breadth predicts log10-geographic range size (β= 0.30, 95%CI: 0.21–0.39; PGLMwith Gaussian response), and
log10-geographic range size predicts viral diversity (β= 0.37, 95%CI: 0.18–0.56) after adjusting for log total citation counts via the easyPubMed
package (β= 0.93, 95%CI: 0.79–1.08; PGLMwith negative binomial response). Viral family richness is displayed using amodulus transformation
given the abundant zeroes.

Vespertilionoidea was more likely to host high-virulence viruses, with

most included families being cosmopolitan (i.e., Emballonuridae, Ves-

pertilionidae, and Molossidae; Figure 3). The shared ability to harbor

otherwise virulent viruses in bat families that span both the Western

and Eastern Hemisphere could suggest common immune adaptations

that evolved with geographic divergence. For example, the Molossi-

dae originated in the Paleocene, with Western (e.g., Eumops,Molossus)

and Eastern Hemisphere (e.g., Chaerephon, Mops) clades diverging

29 million years ago.168 Future comparisons between species in the

genus found globally (i.e., Tadarida) and between molossid genera

unique to each hemisphere could indicate which immune features are

basal to the family and which originated with the spread into the

Americas.168

Biogeography could also shape bat immune diversity via differ-

ences in geographic range size. A smaller geographic range is one

criterion used by the IUCN to delineate conservation risk since a

lowereffectivepopulation size can facilitate inbreedingdepressionand

reduce genetic diversity.169 Species with smaller geographic ranges

could, therefore, show less immunogenetic diversity (e.g., in MHC

loci). Island occupancy could help test this hypothesis; over 25% of

bat species are island endemic, and many have small population sizes

and face critical extinction risks.170,171 Immune comparisons of island

endemic and nonendemic species in select bat genera (e.g., Ptero-

pus, Natalus) or families (e.g., Pteropodidae) could thus be fruitful.

From a similar perspective, subspecies that occur exclusively in islands

could allow analogous comparisons among endemics and with main-
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ANNALSOF THENEWYORKACADEMYOF SCIENCES 9

land populations (e.g., within Pteropus medius, P. medius medius occurs

in mainland India and Sri Lanka, while P. medius ariel occurs in the

Maldives).172

Host energetics

Different strategies in energy acquisition and allocation among bat

species could affect immune investment, as developingandmaintaining

immune responses require substantial resources.173 Innate immunity

generally incurs low developmental but high maintenance costs, while

adaptive immunity can be more costly to develop but less expensive

to maintain.140,174 The pace-of-life hypothesis, therefore, posits that

species with faster life histories, allocating more energy into repro-

duction at the expense of lifespan, will invest less into immunity and

prioritize innate defenses.175,176 In contrast, species with slower life

histories and more likely to encounter similar pathogens multiple

times over their lifespan invest more in adaptive immunity. While this

hypothesis has been supported for some small mammals,177 it has yet

to be evaluated for bats. Explicit tests of trade-offs between innate

and adaptive immunity among bat species that vary along the fast–

slow axis are needed. Focusing such comparisons on females across

species would be especially informative178 given the energetic costs of

reproduction found in bats.179,180

Similarly, diet can impose significant energetic constraints on bat

species, influencing the trade-offs observed between arms of the

immune system.181,182 Across phyllostomid bat species, nectarivores

have a greater mass-independent basal metabolic rate than other

dietary guilds, although effects are sensitive when controlling for

phylogeny.183 Similarly, strictly phytophagous species (e.g., in the

Pteropodidae) have relatively less protein in their diet than other

species, including frugivores or nectarivores with more flexible forag-

ing strategies (e.g.,Glossophagamuticawill actively hunt insect prey184)

as well as strict insectivores or carnivores.185,186 Links between high-

protein diets and investment in adaptive immunity arewell-established

in model mammalian systems (i.e., humans and mice182) as well as in

both domestic and wild birds,181,187 although this has received lit-

tle attention in bats.188,189 Those bat species that rely on food with

lower energetic content (e.g., obligate nectarivores and frugivores) are

thus more likely to invest less in adaptive immunity when compared to

species with energetically dense food (e.g., insectivores). Although this

prediction mostly supports bat species at higher trophic levels invest-

ing more in adaptive defense, blood-feeding species (i.e., Desmodonti-

nae) could serve as an exception owing to their unique diet of blood,

which is high in protein but lacking in other macronutrients.190 The

low-fat content of blood likely led to the loss of genes governing fat

storage in vampire bats,191 such that these species lethally starve

within 72 h of feeding.192,193 The ability to invest in adaptive defenses

may thus be diminished in blood-feeding bats. Given the importance of

lipids in immune defense more generally,181,182,187 interspecific differ-

ences in fat reserves could serve as another useful source of dietary

variation to test energetic hypotheses.194

Environmental stability

Lastly, bat species inhabiting environments with more extreme sea-

sonality in resources or climate, such as temperate zones or high

elevations, could similarly differ in their ability to invest in immune

defense. Periods of limited food availability could weaken the acute

phase response195 as well as immune factors that control pathogen

shedding189, and thus manifesting in differences at the species level

among bats that have seasonally varying versus stable resources.

As one example relevant to immunity, seasonal patterns of corti-

sol concentrations differed between frugivorous Carollia perspicillata

and blood-feeding Desmodus rotundus, likely driven by differences in

resource stability.196 Yet, while seasonality in resources is particu-

larly evident in phytophagous and insectivorous bat species,197–199

food availability can vary temporally across dietary guilds,200 such

that these effects could be tested independently from foraging ecol-

ogy. Given the relative costs of the two primary immunological arms

noted above, bat species with more seasonal resources could also be

expected to thereby invest more in innate defenses.140,201

Prolonged torpor or hibernation function as other strategies that

bat species use to cope with environmental instability,202 which could

also generate interspecific variation in immune strategies. These pro-

nounced reductions in metabolic activity and body temperature allow

such species to conserve energy but at the cost of a dampened

innate and adaptive immune response.203,204 Impaired immunity dur-

ing hibernation can have important implications for susceptibility

and persistence of infection. For example, lowered body tempera-

ture during hibernation and downregulation of immune response can

extend the incubation period of RABV in North American bats205,206

and likely allows the virus to overwinter and persist in the spring

when bats emerge from hibernation.207 Similarly, Myotis myotis cell

lines challenged with the RABV-related European bat lyssavirus 1

showed an immune response under control conditions but no substan-

tial immune gene expression under conditions simulating torpor.208

Interspecific differences in torpor could thus serve as an important

axis for partitioning immune variation,57 with particular relevance for

susceptibility to and progression of WNS. Arousal from torpor con-

tributes to the depletion of fat stores and in turn the severity of

infection, although inflammatory responses during arousal also play

a role in pathology.209,210 Importantly, because immune responses to

fungal infectiondisplay variation amongbat species,211,212 futurework

evaluating how interspecific differences in torpor duration and body

temperature affect immune responses could be highly relevant for

both hypothesis testing and conservationmanagement.

Seasonal migrations offer select bat species another approach to

deal with seasonally varying temperatures or resources. Short- and

long-distance migrations occur across the bat phylogeny but are

especially concentrated within Vespertilionidae and Molossidae.61,62

Across taxa, migratory species often redistribute resources from their

immune systems to increase body fat and enhance metabolism prior

to these long-distance movements as these physiological changes sus-

tain endurance.213 Work in avian systems supports the suppression
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10 ANNALSOF THENEWYORKACADEMYOF SCIENCES

of immune function prior to, during, and/or following migration,214,215

with consequences for enhancing susceptibility to or reactivation of

infections.216,217 By contrast, research on the immunology of migra-

tory bat species is still in its infancy.218–220 Future work comparing

immune phenotypes of migratory and nonmigratory species, as well

as species varying in their migratory strategies (e.g., average distance

traveled), would test whether similar patterns of immunosuppression

are observed within bats. Similarly, comparisons among subspecies

that vary in their propensity tomigrate (e.g., partially or fullymigratory

Tadarida brasiliensis mexicana vs. resident T. brasiliensis cynocephala221)

would also be informative. Variation in mean migratory distance and

dispersion among bat species, measures commonly used in compar-

ative avian studies,222,223 could especially allow testing hypotheses

of energy allocation given that species with longer migrations should

display weaker immune responses.

FUTURE DIRECTIONS FOR ILLUMINATING
SPECIES-LEVEL DIFFERENCES IN BAT IMMUNITY

Current hypotheses on the drivers of interspecific variation in bat

immunity (Table 1) are supported by select case studies as well as

first principles in host–pathogen coevolution and ecological immunol-

ogy. To robustly test and differentiate these competing hypotheses,

the field of bat immunology must address outstanding data needs,

methodological advancements, expansion of experimental studies, and

phylogenetically informed statistical analyses.

First, broad sampling across bat species is essential to better charac-

terize the diversity of immune components, function, and response to

infection. To date, comparative tests of bat immunity have largely been

limited to genomic comparisons or to analyses of phenotypes within

single bat communities,25,36 with some exceptions.224 At the genomic

level, ongoing efforts are working to generate genome assemblies

across bat species (e.g., the Bat1K Project),225 and resulting compar-

ative analyses have provided important insights into bat evolution

(including the immune system).15,25,226–229 However, of the currently

recognized 1487 bat species, genome assemblies are currently pub-

licly available at the National Center for Biotechnology Information

(NCBI) for only 92 species (Table S1). Further, only 47 of these species

have chromosome-level assemblies, which are often required to prop-

erly characterize complex immune gene loci.117,230 Additionally, while

these genomes are invaluable resources, characterizing the diversity of

bat immune systems requires a more systematic evaluation of down-

stream phenotypes. For example, while genomic data indicate Pteropus

alecto has a small type I IFN locus, qRT-PCR data show IFN-α is instead
constitutively expressed.31 Similar tests are needed across more bat

species.

On a more general level, data syntheses of bat immunology as a

field are lacking, resulting in a limited understanding of how research

is distributed across the bat phylogeny. To provide an initial charac-

terization of immunological studies conducted across bats, we used

the easyPubMed package in R to obtain total and immunology-related

citation counts for the 1287 bat species in the recent mammalian

phylogeny;231 citation counts are a commonapproximationof research

effort in comparative analyses.232 Search strings contained either

bat genus and species (e.g., Desmodus AND rotundus) or bat genus,

species, and two stems to capture the immune system (i.e., immuni*

OR immunolog*); strings used Latin binomials from the phylogeny.231

Despite the fact that most bats have been studied to some degree (i.e.,

55% of species have greater than zero total citations), only 14% of bats

have immunology-related citations (Figure 4). To understand the tax-

onomic distribution of research effort, we next applied phylogenetic

factorization, a flexible graph-partitioning algorithm, to identify bat

cladeswithdistinct citation counts at varying taxonomic depths.233 We

used the phylofactor package to partition immunology-related citations

relative to total citations as a binomial response in a series of gener-

alized linear models for each edge in the bat phylogeny, determining

the number of significant clades usingHolm’s sequentially rejective 5%

cutoff for the family-wise error rate.233,234 We identified seven clades

with significantly different numbers of immunology-related citations,

of which six had more immunology citations compared to the remain-

der of the bat phylogeny (Figure 4). These clades included most of the

Pteropodidae; a subclade of the Rhinolophidae; most members of the

genus Tadarida and the Western Hemisphere molossids; a subclade of

the tribe Eptesicini; the whole genus Myotis; and the clade containing

the genera Artibeus and Dermanura. In contrast, Eastern Hemisphere

molossids (e.g., the genera Mops and Chaerephon) had relatively fewer

immunology citations. This assessment highlights the substantial gaps

in immunological characterization across bats as awhole, noting clades

that could be up- or down-prioritized for future immune profiling

(e.g., Afrotropical molossids and most pteropodids, respectively). In

contrast, the application of this algorithm to the presence of NCBI

genome assemblies showed no phylogenetic clustering (Figure 4), sug-

gesting that genomic characterization efforts to date have been evenly

distributed across bat species.

Second, methodological expansion is necessary to better charac-

terize immunological variation across bat species and fill these global

data gaps. In wild bats, relatively simple assays such as total and dif-

ferential white blood cell counts, bacterial killing ability of plasma,

and antibody titers have provided key starting points to profile bat

immunity.36,219,235,236 However, these assays requiremost of the small

blood volumes that can be safely obtained from the majority of bat

species (Figure 5), limiting the number of assays that can be per-

formedwhile yielding informationon single components of the immune

system. Further, the coarse nature of these measurements and the

lack of knowledge about prior or existing immune challenges in wild

bats also restrict mechanistic insights into immunity. Flow cytome-

try holds promise for quantifying many immune cell subsets beyond

that allowed by typical hematology, but analyses remain restricted by

the larger blood volumes required, the need to process samples rela-

tively soonafter collection, and the limited availability of cross-reactive

antibodies for bats.112,237–239 Alternatively, the increasing adoption

of -omics approaches can investigate hundreds or even thousands

of immune components at once (e.g., transcripts, proteins) without

species-specific or cross-reactive reagents. In particular, proteomics

can provide data on hundreds of proteins from very small volumes of
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F IGURE 4 Taxonomic patterns in the relative number of immunology-related citations and public availability of genome assemblies per bat
species (Table S1), as twomeasures of data coverage. The phylogeny (n= 1287 species)231 is presentedwith seven clades identified from
phylogenetic factorization of immunology citations, modeled with the phylofactor package in R as a binomial response to account for the total
citation count per species.233 Clades with proportionally greater or fewer immunology citations compared to the rest of the phylogeny are shown
in red and blue, respectively, with segments showing the raw counts of total citations (gray) and immunity citations (black). Asterisks are provided
for those species with an NCBI genome assembly.

plasma or sera, making the most of the limited samples nonlethally

obtained from wild bats.240-242 Single-cell RNA-Seq can facilitate flow

cytometry analyses through antibody-independent identification of

cell types and further facilitate the study of biological processes in het-

erogeneous cell populations. This method has been applied to several

bat species.76,113,239,243 However, costs can still be prohibitive depend-

ingon the scale of the experiment.244 Betweenmorehistoric andnewly

applied methodologies for characterizing the immunity of wild bats

especially, an outstanding need is the development of comparable and

accessible protocols for collecting and storing biological samples, con-

ducting assays, and analyzing raw data to standardize approaches and

enable comparisons among studies.

Third, the expansion of experimental studies will be central to

advance the tools used in bat immunology and to mechanistically test

evolutionary hypotheses. Increased representation of major bat fami-

lies in captive systems is needed to develop bat-specific immunological

tools,30 including but not limited to monoclonal antibodies.238 Such

captive systems will be especially important for better characteriz-

ing and comparing parts of bat immunity that remain elusive, such as

adaptive defense.10,117,245 Several studies have shown variation in the

B cell and antibody response among bat species,99,100 although the

drivers behind these differences remain poorly understood. Studies

have also focusedonneutralizing antibodies, such that our understand-

ing of other aspects of the humoral immune response, including the

role of non-neutralizing antibodies and Fc receptor functions, likewise

remains limited. However, given the challenges associated with main-

taining captive bat colonies,246,247 greater adoption of in vitro models

should especially enhance mechanistic insights into the patterns of

immunity and infection observed in the wild. For example, the persis-

tence of a novel α-CoV was observed in Myotis lucifugus for at least

4 months during hibernation without detectable pathology.248 Infec-

tion of cell lines derived from another vesper bat, Eptesicus fuscus, with

MERS-CoV recapitulated this duration of viral persistence but further

demonstrated that this phenomenon was associated with an IFN reg-

ulatory factor 3–dependent antiviral response.249 Organoid models in

particular could be especially informative given their ability to model

whole immunological tissue.87,90,92,250 Immunological differences in

wild bat species could then be interrogated with more focused, con-
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12 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 5 Distribution of average bodymass across bat species (n
= 1217).50,231 Overlaid are theminimum bodymasses for which
varying small blood volumes can be safely and nonlethally obtained
(representing approximately 0.5% bodymass as a highly conservative
limit).283,284

trolled tests in these in vivo and in vitromodels (e.g., via mock or actual

infection between bat species).251

Finally, the application of phylogenetic comparative methods and

other statistical tools are central to test support for the correlated evo-

lution of bat species traits and immunological outcomes. Phylogenetic

generalized linear models (PGLMs) or phylogenetic generalized linear

mixed models (PGLMMs) should be a primary approach to control for

evolutionary history, depending on the use of species-level (i.e., mean

or binary immune outcomes) or individual-level data, respectively. For

PGLMs,weighting strategies can account for variation in sample size or

levels of precision in speciesmeans and providemore robust estimates

of model coefficients and the ability to test hypotheses.252,253 For

PGLMMs, including both phylogenetic and nonphylogenetic species,

random effects can reduce bias and improve inference.254,255 Other

statistical methods, including but not limited to ancestral state recon-

struction, state-dependent diversification, and phylogenetic factoriza-

tion, would facilitate improved understanding of the evolution of bat

immune systems, their relation to speciation and extinction, and iden-

tify distinct lineages of immune strategies.167,222,256 Collectively, this

suite of analyses has been applied to comparative immunology studies

of other vertebrate taxa,222,257–264 and addressing immunological data

gaps across bat species (Figure 4) will enable greater adoption of these

methods to the Chiroptera. Study of understudied bat species will

also confront sparsity in and robustness of trait data,265–267 including

pathogen diversity and coevolutionary histories (e.g., via phylogenetic

dating).268,269

To statistically differentiate multiple, competing evolution-

ary hypotheses about the drivers of interspecific variation in bat

immunology, we suggest greater adoption of frameworks for causal

inference,270,271 such as causal mediation analysis (CMA).272 Similar

to structural equation modeling, CMA decomposes a hypothesized

F IGURE 6 Example of how causal mediation analysis (CMA) can
differentiate hypotheses about the drivers of interspecific variation in
bat immunology by considering alternativemechanisms of pathogen
exposure and host energetics. Here, CMA estimates the total indirect
relationship between a dietary trait and pathogen exposure (a) and
pathogen exposure and immunity (b) as well as the direct relationship
between a dietary trait and immunity (c’). The total effect (c) is then the
sum of the indirect effect (ab) and the direct effect (c’). The proportion
mediated by pathogen exposure (PM) is derived as the indirect effect
(ab) divided by the estimated total effect (c): ab/c. High estimates of PM
support the indirect relationship (i.e., pathogen-mediated selection),
whereas negligible PM estimates better support the direct relationship
between diet and immunity (i.e., host energetics).

causal relationship between a predictor and a response into the direct

effect and the indirect effect mediated through a third variable. This

approach could be especially useful in cases where a given trait driver

is hypothesized to affect immunity throughmultiple mechanisms, such

as for diet (Table 1). Here, CMA would estimate the direct effect of

diet on immunity (representing energetic hypotheses) as well as the

indirect effect of diet on pathogen exposure (Figure 6). Importantly,

PGLMs or PGLMMs can be used in these analyses, and both the

mediator and outcomemodels can adjust for relevant precision covari-

ates, such as citation counts (i.e., for species-level analyses) or time

between capture and blood collection (i.e., for individual-level anal-

yses). Controlling for such variables, especially those well-known to

introduce artifacts into immunology data,273,274 will more generally be

important for accurate estimation of effects when testing evolutionary

hypotheses.

CONCLUSION

A robust body of work has identified distinct mechanisms by which

the immune systems of bats differ from other mammals, with down-

stream consequences for how chiropteran hosts resist or tolerate
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virulent infections. Yet, as we have highlighted in this review, the order

Chiroptera is not a monolith. The pronounced ecological and evo-

lutionary diversity observed across bat species also corresponds to

notable heterogeneity in immune strategies. We have here proposed

multiple, nonmutually exclusive hypotheses to explain this interspe-

cific variation in bat immunity seen observed to date; testing and

differentiating these will require confronting key sampling gaps, cap-

italizing on methodological advancements, integrating in vitro and in

vivo studies, and adopting phylogenetically informed statistical anal-

yses. Ultimately, such work will advance our understanding of the

drivers and consequences of immunological diversity among bats. At

the same time, given theupwardmomentum in researchonbat immune

systems,10,30,275,276 the efforts we have proposed here could have

profound follow-on effects for studying and understanding the diver-

sity and evolution of immune systems across vertebrate hosts more

generally.125,277,278
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