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Abstract

The ability of multiple bat species to host zoonotic pathogens without often show-
ing disease has fostered a growing interest in bat immunology to discover the ways
immune systems may differ between bats and other vertebrates. However, interspe-
cific variation in immunological diversity among bats has only begun to be recognized.
The order Chiroptera accounts for over 20% of all mammalian species and shows
extreme diversity in a suite of correlated ecological traits, such that bats should not be
expected to be immunologically homogenous. We review the ecological and evolution-
ary diversity of chiropteran hosts and highlight case studies emphasizing the range of
immune strategies thus far observed across bat species, including responses to SARS-
CoV-2. Next, we synthesize and propose hypotheses to explain this immunological
diversity, focusing on pathogen exposure, biogeography, host energetics, and environ-
mental stability. We then analyze immunology-related citations across bat species to
motivate discussions of key research priorities. Broad sampling is needed to remedy
current biases, as only a fraction of bat species has been immunologically studied.
Such work should integrate methodological advancements, in vitro and in vivo stud-
ies, and phylogenetic comparative methods to robustly test evolutionary hypotheses
and understand the drivers and consequences of immunological diversity among bats.
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INTRODUCTION for both field and comparative biologists to test central evolutionary

Over the past decades, bats have been linked to numerous spillovers
of zoonotic pathogens, including viruses such as Hendra and Nipah
virus, SARS-like coronaviruses (CoVs), Marburg virus (MARV), and
MERS-like CoVs; bacteria such as Candidatus Bartonella mayotimo-
nensis, Candidatus Bartonella rousetti, and Candidatus Mycoplasma
haematohominis; and protozoa such as Trypanosoma cruzi.)~? These
spillovers, alongside observations that bats often host such pathogens
without overt signs of disease, have generated substantial interest
in bat immunology and understanding mechanisms of host resis-
tance and tolerance.’0-16 Bats are also exceptional among mammals
in other ways; they are the only mammals with powered flight, are
potentially resistant to cancer, and many have long lifespans for
their body size.17-21 The association of many bat species with mul-
tiple pathogens and their unique adaptations have led to hypotheses
about how bats, as an order, may differ in their immune system
from other mammals. The flight as fever hypothesis posits that the
elevated body temperatures bats reach during powered flight could
dampen viral replication or select for viruses able to withstand the
febrile responses of other mammals.22 However, this hypothesis has
received little support,232* with growing evidence suggesting that
flight has likely shaped bat immunity in other ways.2>2% For exam-
ple, metabolic demands of flight generate high oxidative stress,2’
such that bats have evolved mechanisms to withstand subsequent
DNA damage while avoiding pathology by downregulating inflamma-
tory pathways.282? These adaptations have been proposed to explain
why bats often tolerate intracellular infections while also being sus-
ceptible to certain extracellular infections (e.g., Pseudogymnoascus
destructans, the fungus that causes white-nose syndrome [WNS], which
has decimated populations of multiple hibernating North American bat
species).1423

Support for hypotheses about distinct immune adaptations of bats
largely stems from a small but growing number of model systems in
bat immunology.?9-3% However, while multiple immune adaptations
are certainly present across bat species, immunological diversity within
the order Chiroptera is also becoming increasingly acknowledged and
characterized.1729.34-3¢ |n this review, we highlight the diversity of
immune systems across this hyperdiverse clade of mammals, emphasiz-
ing that bats—as an order—are far from immunologically homogenous.
We also synthesize proposed evolutionary hypotheses underlying this
diversity and suggest future directions to test such hypotheses. We do
not exhaustively summarize the state of research on bat immunology
or the immune characteristics that make bats distinct from other mam-
mals given previous reviews on these topics.3’~3? Our objectives are
for this review to serve as an entry point for immunologists to con-

sider variation within this group of flying mammals as well as a resource

hypotheses.

ECOLOGICAL AND EVOLUTIONARY DIVERSITY
AMONG BATS

Bats are the second largest mammalian order (after rodents), account-
ing for over 20% of all mammalian species. The order Chiroptera
originated during the Cretaceous-Tertiary boundary, approximately
65 million years ago (mya), followed by a divergence into two mono-
phyletic suborders: Yinpterochiroptera and Yangochiroptera.*%#1 This
divergence was followed by a rapid radiation event during the early
Eocene (56-47 mya), coinciding with global temperature rise and
concurrent expansion of plant and insect diversity.*2-44 Multiple, sub-
sequent radiations, such as those of the Phyllostomidae in the Western
Hemisphere (30 mya) and the Pteropodidae in the Eastern Hemisphere
(25 mya), were further driven by factors including niche partition-
ing, novel innovations (e.g., phytophagy), and geographic isolation.*>4¢
These evolutionary processes generated the remarkable diversity of
bats, resulting in 1487 extant species across 21 families.*” Underex-
plored tropical regions and unclear taxonomic boundaries (e.g., cryptic
species) are expected to only further increase bat global diversity.#84?
Bats inhabit a wide variety of terrestrial habitats on every continent
except for Antarctica, with some species occupying up to seven or
eight distinct habitat types (e.g., Rousettus aegyptiacus and Taphozous
nudiventris, respectively), as defined by the International Union for the
Conservation of Nature (IUCN).50

Bats accordingly exhibit a remarkable array of morphological (e.g.,
body mass), ecological (e.g., diet), and physiological adaptations (e.g.,
echolocation) that evolved to suit their ecological niches and life
history strategies (Figure 1).°! For example, body mass varies over
three orders of magnitude across bats, ranging from just a few grams
in small insectivores (e.g., Craseonycteris thonglongyai, which weighs
approximately 2 grams) to over a kilogram in larger frugivores (e.g.,
Acerodon jubatus).’© Frugivorous bats are generally larger with broader
wingspans, while insectivorous bats tend to be smaller with shorter
wingspans to improve agility.>2>3 The specialized facial morphologies
of bats also evolved as adaptations to their diverse dietary habits,
including nectarivory (e.g., Leptonycteris yerbabuenae), frugivory (e.g.,
Pteropus medius), insectivory (e.g., Myotis myotis), carnivory (e.g., Macro-
derma gigas), piscivory (e.g., Noctilio leporinus), and hematophagy (e.g.,
Desmodus rotundus).>*>>

Morphology and foraging ecology are only two of the multiple axes
of variation among the Chiroptera. Physiological adaptations such as
metabolic rates, thermoregulation mechanisms, and sensory abilities
vary widely across species, allowing bats to inhabit diverse habitats
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FIGURE 1 Representative axes of ecological and epidemiological variation among bat species using the most recent mammal phylogeny (1287
bat species, colored by family).23! Body mass, phytophagy, thermoregulation (i.e., torpor or hibernation; 1), and maximum lifespan were obtained
from the COalesced Mammal dataBase of INtrinsic and Extrinsic traits (COMBINE) database of mammalian traits.> Viral family richness data
were obtained from the Global Virome in One Network (VIRION) database,”” simplified to only those records detected through sequencing or
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(Figure 1).°%¢ For example, some bat species adjust their metabolic
rate (i.e., torpor) to allow matching their activity level to environ-
mental conditions.”” Hibernation, a more extreme drop in metabolic
rate, is used mostly by Neartic and Paleartic bats to avoid harsh
winter temperatures,®® but this adaptation also occurs in tropical
species and has evolved multiple times in bats.??¢? Other bat species
instead undertake long-distance latitudinal (e.g., Tadarida brasilien-
sis) or altitudinal (e.g., Miniopterus natalensis) migrations to escape
extreme temperatures.®1-¢3 This metabolic flexibility is also one of
the evolutionary drivers for the exceptional longevity seen in bats as
compared to other small mammals.!” Although bats overall have a
slow life-history strategy, species do vary along the fast-slow con-
tinuum (Figure 1).°%%* For example, Myotis brandtii can live for up
to 41 years,®® in contrast to the average bat lifespan of 15 years.>°
Similarly, while most bat species have one breeding cycle per year
with a single pup,>®%¢ some species are polyestrous (e.g., Tadarida

67,68)

fulminans, multiple phyllostomids and/or polytocous (e.g., seen

mostly in the Vespertilionidae but also in other families such as the
Pteropodidae®?79).

While the order Chiroptera has been characterized as having high
pathogen richness,”? likely due to the speciose nature of this clade,’?
bats also vary in their pathogen associations, with most data on viruses
and bacteria.”3~7> For the former, over one-quarter of bat species host
at least one virus, with infected species hosting an average of four and
up to 23 viral families (Figure 1).”> The propensity for some bats to
host typically virulent viruses has imposed extreme selection on bat
genomes for mechanisms of viral resistance (e.g., selection of antiviral
effector genes and complement genes) and tolerance (e.g., regula-
tion of inflammatory response).1>7¢ However, distinct coevolutionary
histories between bats and their viruses,’””8 coupled with substan-
tial variation in observed viral diversity among species,”> have likely
also shaped distinct defense strategies and corresponding immune
phenotypes across the chiropteran phylogeny.

BATS ARE NOT A MONOLITH: INTERSPECIFIC
VARIATION IN BAT IMMUNITY

Given the substantial diversity in morphological, ecological, and phys-
iological traits of bats; their long coevolutionary relationships with
pathogens; and variance in pathogen richness, bat immune systems
are expected to be equally heterogeneous. Recent in vivo and in vitro
studies have begun to reveal an array of species-specific immune
responses, shedding light on the distinct immune strategies that bat
species use against their viral pathogens. As one key example, in
the case of SARS-CoV-2 in vivo infections, both Eptesicus fuscus and
Myotis lucifugus were resistant, while Tadarida brasiliensis was suscep-
tible but likely not competent for onward transmission.”?-82 Similarly,
Rousettus aegyptiacus challenged with SARS-CoV-2 were susceptible
but had transient infections, with limited bat-bat transmission.8384
Other invitro studies have shown that Myotis myotis, Eptesicus serotinus,
Tadarida brasiliensis, and Nyctalus noctula wing cells were not permissive

to SARS-CoV-2 due to low expression of the angiotensin-converting

enzyme 2 (ACE2) receptor or to poor interactions between ACE2 and
the viral S protein.8> ACE2 receptor sequences and the selection act-
ing on them also vary between bat species, further shaping differences
in SARS-CoV-2 susceptibility.8¢ Additionally, intestinal organoids of
Rhinolophus sinicus were susceptible to SARS-CoV-2 and sustained
viral replication®”, while fibroblasts of Rhinolophus ferrumequinum were
resistant to infection.8® Intestinal organoids of Rousettus leschenaultii
and airway epithelial cells of Eonycteris spelaea were also resistant to

infection,8? 70

while both intestinal organoids and in vivo challenge
of Artibeus jamaicensis show this species is susceptible but does not
support SARS-CoV-2 replication.”?2 With the caveat that these cell
lines only represent select tissue types, and additional cell lines from
other organs could yield different results with SARS-CoV-2 challenge,
these in vivo and in vitro case studies highlight substantial species-
level heterogeneity in bat susceptibility and suitability for SARS-CoV-2
infection, even in species in the same genus (Figure 2). Importantly, the
bat species involved in these diverse challenges originate from both
hemispheres and include susceptible and resistant species in multi-
ple families. This suggests differences in susceptibility are unlikely to
stem only from coevolutionary history as the current repertoire of sar-
becoviruses and their known bat hosts are restricted to the Eastern
Hemisphere, largely in the Paleartic and Indomalayan regions.”®

Interspecific differences in infection response have been observed
for other viruses. Eidolon helvum cells were refractory to Ebola virus
(EBOV) entry due to a single mutation in the filovirus receptor,
Niemann-Pick C1; species without this mutation are likely suscepti-
ble to filovirus entry.?* Further, Rousettus aegyptiacus were susceptible
to MARYV but resistant to EBOV, highlighting that even closely related
viruses (both within the Filoviridae) can have different outcomes in the
same species.”” In the case of rabies virus (RABV), outcomes can vary
both across and within species, highlighting the complex nature of the
relationships between bat immunity and infection.?~?8 Work on RABV
has shown especially interesting differences in adaptive immunity. Fol-
lowing RABV infection, some Eptesicus fuscus failed to seroconvert
and succumbed to infection.”” In contrast, some Desmodus rotundus
vaccinated against and challenged with RABV survived despite not
producing detectable antibody titers.1%°

Given the logistical challenges of in vivo or in vitro experi-
ments using pathogens, the use of pathogen-associated molecu-
lar patterns (PAMPs) that instead stimulate a more general acute
phase response without true infection has suggested additional
interspecific differences in bat immune systems. For example, in
response to a lipopolysaccharide (LPS) challenge to mimic a bacte-
rial infection, Molossus molossus had no detectable inflammation, while
Desmodus rotundus experienced pronounced leukocytosis and behav-
joral changes.191:192 |n contrast, Carollia perspicillata challenged with
LPS also displayed no fever or leukocytosis but did show decreased
food intake and lost body mass.1%3 Importantly, these studies used
similar doses of LPS,101-103 facilitating interspecies comparisons—
although methodological differences can often vary substantially
across studies using PAMPs.1%% Desmodus and Carollia are both in
the family Phyllostomidae, while Molossus is in the Molossidae, sug-

gesting evolutionary and intrafamily effects that could stem from
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FIGURE 2 Phylogeography of bat species shown to be susceptible or resistant to SARS-CoV-2 infection through in vivo or in vitro challenge

231

using the most recent mammal phylogeny,“>* experimental data,

79-85 87-92

and species distributions from the IUCN. Subgenera of the genus

Eptesicus were recently elevated to full genus rank, such that species in the Eastern Hemisphere have been reclassified into the genus
Cnephaeus.?”? We note that SARS-CoV-2 isolates used in these experimental studies were derived from humans and thus do not represent
interactions of bats or their cells with bona fide bat-derived SARS-CoV-2-like viruses, such as BANAL-236.280

species differences in ecology or life history. Similarly, while an in
vitro challenge with polyinosinic:polycytidylic acid (polyl:C) to mimic
an RNA virus infection upregulates similar genes related to cytokine
and inflammatory responses across phylogeographically diverse bats
(i.e., Rousettus aegyptiacus, Pipistrellus kuhlii, Eptesicus fuscus, Cnephaeus
nilsonii), species-specific differences were also observed (e.g., between
Rousettus aegyptiacus and Pipistrellus kuhlii).19>:19¢ Such challenges have
also revealed intrafamily differences in the bat antiviral response. For
example, constitutive expression of interferon alpha (IFN-«) has been
observed in Pteropus alecto tissues but not in Rousettus leschenaultii kid-
ney cells, despite both species belonging to the family Pteropodidae;
stimulation with polyl:C increased IFN-a expression in the latter but
not the former species.3-107

Beyond viral and bacterial infections, bats also show varied suscep-
tibility to fungal pathogens, notably Pseudogymnoascus destructans. The
highly susceptible Nearctic Myotis lucifugus mounts a substantial tran-
scriptomic response to infection, upregulating leukocyte activation
and inflammatory pathways, whereas the tolerant Palearctic Myotis
myotis has a nearly undetectable transcriptional response.'8 The less-
susceptible Nearctic Eptesicus fuscus exhibits a similar gene expression
profile to Myotis lucifugus but instead mounts a localized, nonsys-
temic response. Across these three host-pathogen contexts, the fungal
transcriptome is notably consistent, highlighting bat species-level
differences that drive WNS outcomes.0?

A larger body of work on immune profiles of wild bats at baseline
has also revealed immunological differences among species, although
such patterns are more difficult to interpret given the unknowns about
pathogen exposure history.11° For example, white blood cell counts

varied substantially across a Neotropical bat community in Costa Rica,

with larger bat species and carnivorous bat species characterized by
more leukocytes.?® Similarly, in Belize, neutrophil counts of a frugi-
vore (Sturnira parvidens) decreased over time with land conversion,
whereas those of hematophagous bats (Desmodus rotundus) increased
and those of an insectivore bat (Pteronotus mesoamericanus) showed
no response.’! To compare cellular immunity at a finer resolution,
single-cell RNA-Seq has revealed different proportions of B cells in
bone marrow and natural killer cells in the spleen between Pteropus
alecto and Eonycteris spelaea.X1?113 Functional assays applied to bat
sera samples have also found substantial interspecific differences in
complement activity, with higher rates of lysis from Eptesicus fuscus
than Pteropus vampyrus.14 Extensions of these baseline approaches
have also revealed immune differences within genera; among sym-
patric horseshoe bat species in China, RNA-Seq of organs found that
Rhinolophus siamensis and Rhinolophus episcopus differ in the expression
of immunoregulatory genes.1°

Lastly, comparative genomics have emphasized the genetic basis of
interspecific differences in bat immunity. Considering innate immunity,
the composition of the type | IFN locus varies across bats, with initial
work showing this locus is contracted in Pteropus alecto but expanded
in Pteropus vampyrus, Myotis lucifugus, and Rousettus aegyptiacus.31116
Recent work has suggested IFN-w in bats may play an expanded
antiviral role compared to other type | IFNs given that several bat
species have lost all IFN-a genes (i.e., Pipistrellus kuhlii, Myotis myotis,
and Pteronotus mesoamericanus).1? Considering adaptive immunity, the
immunoglobulin heavy chain (IGH) locus of bats is unusually variable
between species. IGHV gene number varies substantially, with 132
genes in Eptesicus fuscus, 66 in Rousettus aegyptiacus, 41 in Rhinolo-

phus ferrumequinum, 81 in Phyllostomus discolor, and 57 in Pipistrellus
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TABLE 1 Proposed hypotheses that predict interspecific differences in bat immunology.
Mechanism Driver Prediction
Pathogen exposure Coevolution Host immune genes will show signatures of positive selection in response to pathogen

Pathogen richness

pressure.

Species with high pathogen diversity will invest more in adaptive immunity than those with
few pathogens.

Colony size Species with large colonies will invest more in adaptive immunity if pathogens mainly follow
density-dependent transmission.
Co-roosting Species that share roosts with more bat and nonbat species will invest more in adaptive
immunity.
Diet Species that consume other animals should invest more in defense and have greater
immunogenetic diversity.
Habitat diversity Greater habitat diversity (including large geographic range size and migratory distances) will
promote immunogenetic diversity due to pathogen exposure.
Longevity Long-lived species will invest more in adaptive immunity owing to accumulated pathogen
exposure.
Biogeography Speciation Speciation events will correlate with diversification in immune strategies in both innate and
adaptive arms.
Genetic drift Small and isolated populations will show reduced immune diversity due to drift and inbreeding.
Host energetics Pace of life Fast-lived species will prioritize defenses with lower developmental costs (i.e., innate
immunity).
Diet Species with low-energy food will invest less in adaptive immunity than those with high-energy

Environmental stability

Food seasonality

food.

For species that do not hibernate or migrate, those with more seasonal food will invest more in
innate defenses.

Hibernation Hibernating species will on average have lower baseline measures and weaker immune
responses to conserve energy.
Migration Species with longer migrations between wintering and maternity grounds will show weaker

immune responses.

Note: We qualify that such hypotheses are not mutually exclusive nor necessarily exhaustive.

pipistrellus.2*7-119 |n contrast, humans and mice possess 104 and 161
IGHV genes,'20 respectively, and these species are over 60 million
years further diverged than the most related bat species above (i.e.,
Eptesicus fuscus and Pipistrellus pipistrellus).'21 Most strikingly, bats
within the family Vespertilionidae possess two distinct and functional
IGH loci,'1” an organization that has not been previously described in
mammals but bears similarity to a more limited duplication observed in

teleost fish.122123

EVOLUTIONARY HYPOTHESES IN BAT
IMMUNOLOGY

As highlighted above, the pronounced diversity across bats is matched
by substantial interspecific variation in immunity, as revealed by both
experimental (e.g., Figure 2) and observational results. However, an
outstanding need remains to identify the mechanisms underlying these
species-level differences. Here, we synthesize and propose hypothe-
ses about the interspecific drivers of bat immunity: pathogen exposure,
biogeography, host energetics, and environmental stability (Table 1).
For each hypothesis, we present supporting research and outline
potential directions for future studies. We note that while some

trait drivers may lend themselves to testing a single hypothesis (e.g.,
pathogen richness to test hypotheses about pathogen exposure), oth-
ers could shape immune diversity through multiple pathways (e.g.,
dietary diversity could test hypotheses about both pathogen exposure

and host energetics).

Pathogen exposure

One of the central hypotheses to explain immune variation among
bat species focuses on the long coevolutionary history between
chiropteran hosts and many of their pathogens. Across host taxa,
pathogens impose strong selection pressures that can shape immuno-
logical diversity.124125 For example, pathogen richness is positively
associated with major histocompatibility complex (MHC) variability
across primate, ungulate, and a small number of bat species.126:127
Bat-virus associations show strong signals of phylogeography that
should also shape immune strategies. For example, henipaviruses are
highly diverse in Africa, suggesting their likely origin in this region,
and are primarily associated with pteropodid bats found only in Africa,
Asia, and Oceanial?812? (although serology has suggested henipa-
like viruses may circulate in select phyllostomids, restricted to the
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Americas!30.131) Likewise, bat-associated filoviruses have only been
found in Africa, Asia, and Europe,'3? despite potential favorable host
conditions in the Americas.?33134 As one case study of immune adap-
tations structured by viral phylogeography, bats in the genus Eidolon,
whose range includes the distribution of filoviruses, have a muta-
tion in their host receptor that prevents EBOV entry.”* Similarly,
influenza A viruses (IAVs) have been detected in diverse bats, including
H17N10 and H18N11 from Sturnira parvidens and Artibeus species in
the Neotropics as well as an HIN2-like IAV from Rousettus aegyptiacus
in Egypt.135-137 |n the Afrotropical host, the H9N2-like IAV preferen-
tially binds to a2,3-sialic acid receptors, while the Neotropical 1AVs
instead enter cells through the MHC class Il DR protein; 138 however,
we note that such phylogeographic differences are complicated by the
Neotropical IAVs originating from bat hosts, while the HIN2-like 1AV
likely instead jumped from birds.13”

Alongside expectations about coevolutionary histories shaping
immunogenetics across bat species, pathogen diversity should also
structure bat immune phenotypes. In other taxa such as birds, ener-
getic investment into immune function is often elevated in areas of
high pathogen richness (e.g., the tropics). For example, tropical bird
species have more leukocytes in blood and larger spleen sizes than
temperate bird species, with the latter indicating greater investment in
adaptive immunity.13? Indeed, as antigen exposure drives the selection
of specific cell populations and, in turn, the pool of B and T lympho-
cytes, greater exposure to pathogens should increase allocation to
adaptive immunity. 240 Explicit tests of how immunity is associated with
pathogen richness across bats are needed to fully assess this hypoth-
esis, which can be facilitated by standardized species-level data on
pathogen-host status and diversity (e.g., VIRION; Figure 1).”>

Multiple behavioral and life-history traits of bat species could
drive pathogen exposure, with subsequent effects on immune vari-
ation. For example, colony size varies several orders of magni-

tude across bats, 14!

with more colonial species possibly supporting
pathogen transmission and thus investment into adaptive immu-
nity. In birds, density-dependent pathogen transmission in colonial
species results in stronger B and T cell responses than in solitary
species.'*2 However, support for density dependence in bat-pathogen
systems is weak, 143144 with exposure more likely a function of social
and metapopulation structure or arthropod vectors.!#514¢ Social-
ity may thus possibly have stronger effects on immunity via this
exposure mechanism; in other mammals, more promiscuous species
show greater investment in white blood cells, likely driven through
increased exposure to sexually transmitted infections.**7-148 However,
bat sociality is highly complex, with some species being character-

149 or fission-fusion societies.>°

ized by seasonal maternity colonies
This complexity in social behavior will thus likely complicate efforts to
understand how sociality drives species differences in immunity. Other
interspecific differences in bat behavior, such as co-roosting with other
bat species, could also elevate pathogen exposure and have similar
effects on interspecific variation in immunity. 151154

The extreme dietary diversity observed across bats could also shape
immune variation through pathogen exposure. Bat species that include

more animals in their diets, particularly other vertebrates (e.g., phyl-

lostomines including Trachops cirrhosus, Chrotopterus auritus, Phyllosto-
mus hastatus, and Vampyrum spectrum; both Noctilio species; all three
members of the Desmodontinae; Myotis vivesi; Cardioderma cor; Mega-
derma lyra; and Macroderma gigas>>), could be exposed to pathogens
hosted by prey,1¢ selecting for greater investment in defense. Initial
support for this hypothesis has been found within Neotropical bat com-
munities using data on the cellular immune system.3¢ Other foraging-
related behaviors, such as large geographic ranges or high habitat
breadth, as well as long-distance migration, could also expose bats to a

157 and supported by select

wider array of pathogens, as shown in birds
bat case studies (e.g., extreme MHC class | diversity in the geograph-
ically widespread Carollia perspicillata'®8). In birds, migratory species
invest more in immune organ size than resident species, supporting
links between habitat diversity, pathogen exposure, and immunity;1>?
such comparisons have yet to be performed across bat species despite
known variation in migratory strategies.®? Hypotheses about habitat
breadth and geographic range more generally could be tested by com-
paring immunity among bat species in globally distributed taxa, such
as the genus Myotis or several families (e.g., Figure 3). Lastly, longer-
lived species can accumulate pathogen exposure across their lifespan,
as seen in birds, bats, and some terrestrial mammals, 169161 which could

also increase adaptive investment.

Biogeography

Alongside coevolutionary history with pathogens, the distinct bio-
geography of many bats has likely contributed to their immunological
diversity. Prior work on bat-CoV interactions has shown that regions
with more evolutionarily distinct host communities harbor more diver-
gent viral assemblages, which should likewise generate strong selec-
tive pressure for specialized immune adaptations.”® As one example,
the historical biogeography of the Phyllostomidae and Pteropodidae
resulted in their restriction to the Western and Eastern Hemispheres,
respectively. Multiple gene families underwent expansion or contrac-
tion within the Pteropodidae, including those related to immunity, and
this family has been characterized by the loss of the inflammasome
NLRP1 gene and attenuated Toll-like receptor 2 ability. 62163 Similarly,
genomic comparisons support the expansion of the PRDM9 gene, which
governs meiotic recombination and can be upregulated during viral
infection in the Phyllostomidae compared to other bats.'? Further, the
sister family Mormoopidae (also only in the Western Hemisphere) dis-
play major expansions of heat-shock protein genes compared to other
bats,? indicating possibly unique adaptations involved in the stress
response as well as in both innate and adaptive immunity.16*

Recent work on the phylogenetic distribution of viral virulence also
suggests biogeographic drivers in bat-pathogen interactions. Whereas
previous work has found bats are more likely than other mammalian
and avian orders to host viruses with high virulence in humans,165:16¢
phylogenetic analyses agnostic to taxonomic order suggest that the
Chiroptera do not emerge as a taxon more likely to harbor such
viruses than other mammalian clades.’®” Notably, a subclade of the

Yangochiroptera consisting of the superfamilies Emballonuroidea and
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FIGURE 3 Geographic and behavioral distributions of global bat families: the Emballonuridae, Vespertilionidae, and Molossidae. Species
distributions were drawn from the IUCN and merged per bat family using the rgeos R package. Inset plots show relationships between habitat
breadth and geographic range size (left) as well as between geographic range size and viral family richness (right) across 516 species (not all species
have matching trait data). Trait data are from COMBINE,*® PanTHERIA,%8! and VIRION.”> Data are overlaid with the posterior mean slope and
95% credible interval (Cl) band from each phylogenetic generalized linear model (PGLM) fit using the brms package, 282 each using four chains
including 2000 iterations and 50% burn-in for a total 4000 samples (both models converged, given inspection of traces and R values). Within these
three bat families, habitat breadth predicts log,o-geographic range size (8= 0.30, 95% Cl: 0.21-0.39; PGLM with Gaussian response), and
log1o-geographic range size predicts viral diversity (3= 0.37, 95% Cl: 0.18-0.56) after adjusting for log total citation counts via the easyPubMed
package (8 =0.93,95% Cl: 0.79-1.08; PGLM with negative binomial response). Viral family richness is displayed using a modulus transformation

given the abundant zeroes.

Vespertilionoidea was more likely to host high-virulence viruses, with
most included families being cosmopolitan (i.e., Emballonuridae, Ves-
pertilionidae, and Molossidae; Figure 3). The shared ability to harbor
otherwise virulent viruses in bat families that span both the Western
and Eastern Hemisphere could suggest common immune adaptations
that evolved with geographic divergence. For example, the Molossi-
dae originated in the Paleocene, with Western (e.g., Eumops, Molossus)
and Eastern Hemisphere (e.g., Chaerephon, Mops) clades diverging
29 million years ago.1%® Future comparisons between species in the
genus found globally (i.e., Tadarida) and between molossid genera
unique to each hemisphere could indicate which immune features are
basal to the family and which originated with the spread into the

Americas.18

Biogeography could also shape bat immune diversity via differ-
ences in geographic range size. A smaller geographic range is one
criterion used by the IUCN to delineate conservation risk since a
lower effective population size can facilitate inbreeding depression and
reduce genetic diversity.1%? Species with smaller geographic ranges
could, therefore, show less immunogenetic diversity (e.g., in MHC
loci). Island occupancy could help test this hypothesis; over 25% of
bat species are island endemic, and many have small population sizes
and face critical extinction risks.2’%171 |mmune comparisons of island
endemic and nonendemic species in select bat genera (e.g., Ptero-
pus, Natalus) or families (e.g., Pteropodidae) could thus be fruitful.
From a similar perspective, subspecies that occur exclusively in islands

could allow analogous comparisons among endemics and with main-
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land populations (e.g., within Pteropus medius, P. medius medius occurs
in mainland India and Sri Lanka, while P. medius ariel occurs in the
Maldives).172

Host energetics

Different strategies in energy acquisition and allocation among bat
species could affect immune investment, as developing and maintaining
immune responses require substantial resources.’3 Innate immunity
generally incurs low developmental but high maintenance costs, while
adaptive immunity can be more costly to develop but less expensive
to maintain.24%174 The pace-of-life hypothesis, therefore, posits that
species with faster life histories, allocating more energy into repro-
duction at the expense of lifespan, will invest less into immunity and
prioritize innate defenses.1’>17¢ |n contrast, species with slower life
histories and more likely to encounter similar pathogens multiple
times over their lifespan invest more in adaptive immunity. While this

177 it has yet

hypothesis has been supported for some small mammals,
to be evaluated for bats. Explicit tests of trade-offs between innate
and adaptive immunity among bat species that vary along the fast-
slow axis are needed. Focusing such comparisons on females across
species would be especially informativel”8 given the energetic costs of
reproduction found in bats.17%180

Similarly, diet can impose significant energetic constraints on bat
species, influencing the trade-offs observed between arms of the
immune system.'81182 Across phyllostomid bat species, nectarivores
have a greater mass-independent basal metabolic rate than other
dietary guilds, although effects are sensitive when controlling for
phylogeny.'83 Similarly, strictly phytophagous species (e.g., in the
Pteropodidae) have relatively less protein in their diet than other
species, including frugivores or nectarivores with more flexible forag-
ing strategies (e.g., Glossophaga mutica will actively hunt insect prey'84)
as well as strict insectivores or carnivores.8>186 | inks between high-
protein diets and investment in adaptive immunity are well-established
in model mammalian systems (i.e., humans and mice'82) as well as in
both domestic and wild birds,81:187 although this has received lit-
tle attention in bats.188.187 Those bat species that rely on food with
lower energetic content (e.g., obligate nectarivores and frugivores) are
thus more likely to invest less in adaptive immunity when compared to
species with energetically dense food (e.g., insectivores). Although this
prediction mostly supports bat species at higher trophic levels invest-
ing more in adaptive defense, blood-feeding species (i.e., Desmodonti-
nae) could serve as an exception owing to their unique diet of blood,
which is high in protein but lacking in other macronutrients.2?° The
low-fat content of blood likely led to the loss of genes governing fat

191

storage in vampire bats, such that these species lethally starve

within 72 h of feeding.1?21%3 The ability to invest in adaptive defenses

may thus be diminished in blood-feeding bats. Given the importance of

181,182,187

lipids in immune defense more generally, interspecific differ-

ences in fat reserves could serve as another useful source of dietary

variation to test energetic hypotheses.?*

Environmental stability

Lastly, bat species inhabiting environments with more extreme sea-
sonality in resources or climate, such as temperate zones or high
elevations, could similarly differ in their ability to invest in immune
defense. Periods of limited food availability could weaken the acute

195 as well as immune factors that control pathogen

phase response
shedding?8?, and thus manifesting in differences at the species level
among bats that have seasonally varying versus stable resources.
As one example relevant to immunity, seasonal patterns of corti-
sol concentrations differed between frugivorous Carollia perspicillata
and blood-feeding Desmodus rotundus, likely driven by differences in
resource stability.1?¢ Yet, while seasonality in resources is particu-

larly evident in phytophagous and insectivorous bat species,?7-197

200 sych

food availability can vary temporally across dietary guilds,
that these effects could be tested independently from foraging ecol-
ogy. Given the relative costs of the two primary immunological arms
noted above, bat species with more seasonal resources could also be
expected to thereby invest more in innate defenses. 140201

Prolonged torpor or hibernation function as other strategies that

202 which could

bat species use to cope with environmental instability,
also generate interspecific variation in immune strategies. These pro-
nounced reductions in metabolic activity and body temperature allow
such species to conserve energy but at the cost of a dampened
innate and adaptive immune response.293204 |mpaired immunity dur-
ing hibernation can have important implications for susceptibility
and persistence of infection. For example, lowered body tempera-
ture during hibernation and downregulation of immune response can
extend the incubation period of RABV in North American bats205-20¢
and likely allows the virus to overwinter and persist in the spring
when bats emerge from hibernation.2%’ Similarly, Myotis myotis cell
lines challenged with the RABV-related European bat lyssavirus 1
showed an immune response under control conditions but no substan-
tial immune gene expression under conditions simulating torpor.2°8
Interspecific differences in torpor could thus serve as an important
axis for partitioning immune variation,?” with particular relevance for
susceptibility to and progression of WNS. Arousal from torpor con-
tributes to the depletion of fat stores and in turn the severity of
infection, although inflammatory responses during arousal also play
a role in pathology.29?210 |mportantly, because immune responses to
fungal infection display variation among bat species,211212 future work
evaluating how interspecific differences in torpor duration and body
temperature affect immune responses could be highly relevant for
both hypothesis testing and conservation management.

Seasonal migrations offer select bat species another approach to
deal with seasonally varying temperatures or resources. Short- and
long-distance migrations occur across the bat phylogeny but are
especially concentrated within Vespertilionidae and Molossidae.61:62
Across taxa, migratory species often redistribute resources from their
immune systems to increase body fat and enhance metabolism prior
to these long-distance movements as these physiological changes sus-

tain endurance.?1® Work in avian systems supports the suppression
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of immune function prior to, during, and/or following migration,21421>
with consequences for enhancing susceptibility to or reactivation of
infections.214217 By contrast, research on the immunology of migra-
tory bat species is still in its infancy.218-220 Future work comparing
immune phenotypes of migratory and nonmigratory species, as well
as species varying in their migratory strategies (e.g., average distance
traveled), would test whether similar patterns of immunosuppression
are observed within bats. Similarly, comparisons among subspecies
that vary in their propensity to migrate (e.g., partially or fully migratory
Tadarida brasiliensis mexicana vs. resident T. brasiliensis cynocephala®?*)
would also be informative. Variation in mean migratory distance and
dispersion among bat species, measures commonly used in compar-
ative avian studies,?22223 could especially allow testing hypotheses
of energy allocation given that species with longer migrations should

display weaker immune responses.

FUTURE DIRECTIONS FOR ILLUMINATING
SPECIES-LEVEL DIFFERENCES IN BAT IMMUNITY

Current hypotheses on the drivers of interspecific variation in bat
immunity (Table 1) are supported by select case studies as well as
first principles in host-pathogen coevolution and ecological immunol-
ogy. To robustly test and differentiate these competing hypotheses,
the field of bat immunology must address outstanding data needs,
methodological advancements, expansion of experimental studies, and
phylogenetically informed statistical analyses.

First, broad sampling across bat species is essential to better charac-
terize the diversity of immune components, function, and response to
infection. To date, comparative tests of bat immunity have largely been
limited to genomic comparisons or to analyses of phenotypes within
single bat communities,?>3¢ with some exceptions.?2* At the genomic
level, ongoing efforts are working to generate genome assemblies
across bat species (e.g., the Bat1K Project),?2°> and resulting compar-
ative analyses have provided important insights into bat evolution
(including the immune system).1%:25226-229 However, of the currently
recognized 1487 bat species, genome assemblies are currently pub-
licly available at the National Center for Biotechnology Information
(NCBI) for only 92 species (Table S1). Further, only 47 of these species
have chromosome-level assemblies, which are often required to prop-
erly characterize complex immune gene loci.117230 Additionally, while
these genomes are invaluable resources, characterizing the diversity of
bat immune systems requires a more systematic evaluation of down-
stream phenotypes. For example, while genomic data indicate Pteropus
alecto has a small type | IFN locus, gRT-PCR data show IFN-« is instead
constitutively expressed.3! Similar tests are needed across more bat
species.

On a more general level, data syntheses of bat immunology as a
field are lacking, resulting in a limited understanding of how research
is distributed across the bat phylogeny. To provide an initial charac-
terization of immunological studies conducted across bats, we used
the easyPubMed package in R to obtain total and immunology-related

citation counts for the 1287 bat species in the recent mammalian

phylogeny;231 citation counts are acommon approximation of research
effort in comparative analyses.?32 Search strings contained either
bat genus and species (e.g., Desmodus AND rotundus) or bat genus,
species, and two stems to capture the immune system (i.e., immuni*
OR immunolog*); strings used Latin binomials from the phylogeny.23!
Despite the fact that most bats have been studied to some degree (i.e.,
55% of species have greater than zero total citations), only 14% of bats
have immunology-related citations (Figure 4). To understand the tax-
onomic distribution of research effort, we next applied phylogenetic
factorization, a flexible graph-partitioning algorithm, to identify bat
clades with distinct citation counts at varying taxonomic depths.233 We
used the phylofactor package to partition immunology-related citations
relative to total citations as a binomial response in a series of gener-
alized linear models for each edge in the bat phylogeny, determining
the number of significant clades using Holm'’s sequentially rejective 5%
cutoff for the family-wise error rate.233234 We identified seven clades
with significantly different numbers of immunology-related citations,
of which six had more immunology citations compared to the remain-
der of the bat phylogeny (Figure 4). These clades included most of the
Pteropodidae; a subclade of the Rhinolophidae; most members of the
genus Tadarida and the Western Hemisphere molossids; a subclade of
the tribe Eptesicini; the whole genus Myotis; and the clade containing
the genera Artibeus and Dermanura. In contrast, Eastern Hemisphere
molossids (e.g., the genera Mops and Chaerephon) had relatively fewer
immunology citations. This assessment highlights the substantial gaps
inimmunological characterization across bats as a whole, noting clades
that could be up- or down-prioritized for future immune profiling
(e.g., Afrotropical molossids and most pteropodids, respectively). In
contrast, the application of this algorithm to the presence of NCBI
genome assemblies showed no phylogenetic clustering (Figure 4), sug-
gesting that genomic characterization efforts to date have been evenly
distributed across bat species.

Second, methodological expansion is necessary to better charac-
terize immunological variation across bat species and fill these global
data gaps. In wild bats, relatively simple assays such as total and dif-
ferential white blood cell counts, bacterial killing ability of plasma,
and antibody titers have provided key starting points to profile bat
immunity.36:219.235.236 However, these assays require most of the small
blood volumes that can be safely obtained from the majority of bat
species (Figure 5), limiting the number of assays that can be per-
formed while yielding information on single components of the immune
system. Further, the coarse nature of these measurements and the
lack of knowledge about prior or existing immune challenges in wild
bats also restrict mechanistic insights into immunity. Flow cytome-
try holds promise for quantifying many immune cell subsets beyond
that allowed by typical hematology, but analyses remain restricted by
the larger blood volumes required, the need to process samples rela-
tively soon after collection, and the limited availability of cross-reactive
antibodies for bats.112237-239 Alternatively, the increasing adoption
of -omics approaches can investigate hundreds or even thousands
of immune components at once (e.g., transcripts, proteins) without
species-specific or cross-reactive reagents. In particular, proteomics

can provide data on hundreds of proteins from very small volumes of
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FIGURE 4 Taxonomic patterns in the relative number of immunology-related citations and public availability of genome assemblies per bat

species (Table S1), as two measures of data coverage. The phylogeny (n = 1287 species)

231 js presented with seven clades identified from

phylogenetic factorization of immunology citations, modeled with the phylofactor package in R as a binomial response to account for the total
citation count per species.233 Clades with proportionally greater or fewer immunology citations compared to the rest of the phylogeny are shown
in red and blue, respectively, with segments showing the raw counts of total citations (gray) and immunity citations (black). Asterisks are provided

for those species with an NCBI genome assembly.

plasma or sera, making the most of the limited samples nonlethally
obtained from wild bats.249-242 Single-cell RNA-Seq can facilitate flow
cytometry analyses through antibody-independent identification of
cell types and further facilitate the study of biological processes in het-
erogeneous cell populations. This method has been applied to several
bat species.”:113.239.243 However, costs can still be prohibitive depend-
ing on the scale of the experiment.244 Between more historic and newly
applied methodologies for characterizing the immunity of wild bats
especially, an outstanding need is the development of comparable and
accessible protocols for collecting and storing biological samples, con-
ducting assays, and analyzing raw data to standardize approaches and
enable comparisons among studies.

Third, the expansion of experimental studies will be central to
advance the tools used in bat immunology and to mechanistically test
evolutionary hypotheses. Increased representation of major bat fami-
lies in captive systems is needed to develop bat-specific immunological
tools,3° including but not limited to monoclonal antibodies.?3¢ Such
captive systems will be especially important for better characteriz-

ing and comparing parts of bat immunity that remain elusive, such as

adaptive defense.10:117.245 Several studies have shown variation in the
B cell and antibody response among bat species,”?1%0 although the
drivers behind these differences remain poorly understood. Studies
have also focused on neutralizing antibodies, such that our understand-
ing of other aspects of the humoral immune response, including the
role of non-neutralizing antibodies and Fc receptor functions, likewise
remains limited. However, given the challenges associated with main-

taining captive bat colonies,246:247

greater adoption of in vitro models
should especially enhance mechanistic insights into the patterns of
immunity and infection observed in the wild. For example, the persis-
tence of a novel a-CoV was observed in Myotis lucifugus for at least
4 months during hibernation without detectable pathology.?*8 Infec-
tion of cell lines derived from another vesper bat, Eptesicus fuscus, with
MERS-CoV recapitulated this duration of viral persistence but further
demonstrated that this phenomenon was associated with an IFN reg-
ulatory factor 3-dependent antiviral response.2*? Organoid models in
particular could be especially informative given their ability to model
whole immunological tissue.87-70:92250 |mmunological differences in

wild bat species could then be interrogated with more focused, con-
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FIGURE 5 Distribution of average body mass across bat species (n
=1217).°9231 Qverlaid are the minimum body masses for which
varying small blood volumes can be safely and nonlethally obtained

(representing approximately 0.5% body mass as a highly conservative
|imit).283*284

trolled tests in these in vivo and in vitro models (e.g., via mock or actual
infection between bat species).?>1

Finally, the application of phylogenetic comparative methods and
other statistical tools are central to test support for the correlated evo-
lution of bat species traits and immunological outcomes. Phylogenetic
generalized linear models (PGLMs) or phylogenetic generalized linear
mixed models (PGLMMs) should be a primary approach to control for
evolutionary history, depending on the use of species-level (i.e., mean
or binary immune outcomes) or individual-level data, respectively. For
PGLMs, weighting strategies can account for variation in sample size or
levels of precision in species means and provide more robust estimates
of model coefficients and the ability to test hypotheses.252253 For
PGLMMs, including both phylogenetic and nonphylogenetic species,
random effects can reduce bias and improve inference.2°4255 Other
statistical methods, including but not limited to ancestral state recon-
struction, state-dependent diversification, and phylogenetic factoriza-
tion, would facilitate improved understanding of the evolution of bat
immune systems, their relation to speciation and extinction, and iden-
tify distinct lineages of immune strategies.1¢7:222256 Collectively, this
suite of analyses has been applied to comparative immunology studies
of other vertebrate taxa, 222257264 and addressing immunological data
gaps across bat species (Figure 4) will enable greater adoption of these
methods to the Chiroptera. Study of understudied bat species will
also confront sparsity in and robustness of trait data,26>=2¢” including
pathogen diversity and coevolutionary histories (e.g., via phylogenetic
dating).268:269

To statistically differentiate multiple, competing evolution-
ary hypotheses about the drivers of interspecific variation in bat
immunology, we suggest greater adoption of frameworks for causal

270,271

inference, such as causal mediation analysis (CMA).272 Similar

to structural equation modeling, CMA decomposes a hypothesized

direct effect
total effect (c)=ab +c'

FIGURE 6 Example of how causal mediation analysis (CMA) can
differentiate hypotheses about the drivers of interspecific variation in
bat immunology by considering alternative mechanisms of pathogen
exposure and host energetics. Here, CMA estimates the total indirect
relationship between a dietary trait and pathogen exposure (a) and
pathogen exposure and immunity (b) as well as the direct relationship
between a dietary trait and immunity (c¢). The total effect (c) is then the
sum of the indirect effect (ab) and the direct effect (c’). The proportion
mediated by pathogen exposure (Py) is derived as the indirect effect
(ab) divided by the estimated total effect (c): ab/c. High estimates of Py
support the indirect relationship (i.e., pathogen-mediated selection),
whereas negligible Py, estimates better support the direct relationship
between diet and immunity (i.e., host energetics).

causal relationship between a predictor and a response into the direct
effect and the indirect effect mediated through a third variable. This
approach could be especially useful in cases where a given trait driver
is hypothesized to affect immunity through multiple mechanisms, such
as for diet (Table 1). Here, CMA would estimate the direct effect of
diet on immunity (representing energetic hypotheses) as well as the
indirect effect of diet on pathogen exposure (Figure 6). Importantly,
PGLMs or PGLMMs can be used in these analyses, and both the
mediator and outcome models can adjust for relevant precision covari-
ates, such as citation counts (i.e., for species-level analyses) or time
between capture and blood collection (i.e., for individual-level anal-
yses). Controlling for such variables, especially those well-known to
introduce artifacts into immunology data,?’3274 will more generally be
important for accurate estimation of effects when testing evolutionary
hypotheses.

CONCLUSION

A robust body of work has identified distinct mechanisms by which
the immune systems of bats differ from other mammals, with down-

stream consequences for how chiropteran hosts resist or tolerate
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virulent infections. Yet, as we have highlighted in this review, the order
Chiroptera is not a monolith. The pronounced ecological and evo-
lutionary diversity observed across bat species also corresponds to
notable heterogeneity in immune strategies. We have here proposed
multiple, nonmutually exclusive hypotheses to explain this interspe-
cific variation in bat immunity seen observed to date; testing and
differentiating these will require confronting key sampling gaps, cap-
italizing on methodological advancements, integrating in vitro and in
vivo studies, and adopting phylogenetically informed statistical anal-
yses. Ultimately, such work will advance our understanding of the
drivers and consequences of immunological diversity among bats. At
the same time, given the upward momentumin research on batimmune
systems,10:30.275.276 the efforts we have proposed here could have
profound follow-on effects for studying and understanding the diver-
sity and evolution of immune systems across vertebrate hosts more

general |y.125,277,278
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