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ABSTRACT

High-performance computing (HPC) resources are used for compute-demanding
calculations in various fields of science and engineering. They are large computational
facilities utilized by many users simultaneously. High utilization often leads to
high waiting times. Simulating users’ behavior on such a system can help with
future system design, develop user interventions, and ultimately improve the user’s
experience and resource utilization. Here, we present HPCMod, an Agent-Based
Modeling Framework for Modeling Users on HPC Resources. The key concept of the
framework is the representation of the user’s computational needs: the user project
is represented as a collection of possibly dependent compute tasks. Each task can
be executed as a single compute job or a series of jobs, depending on the task size.
Some tasks can be too big to be executed in one chunk; such a situation often occurs
during molecular dynamics simulation. There are multiple ways in which tasks can
be split into jobs, and users will make their decisions based on previous experience,
application parallel scalability, and available resources. For example, a user’s compute
task requires 32 node hours; it can be executed in multiple ways: a single 32-hour
job on one node, two sequential 16-hour jobs on one node, one 16-hour job on two
nodes, and so on. Inthe HPCMod, we implemented three models: 1) historical replay of
compute jobs, 2) simulation of reconstituted compute tasks using historical job sizes,
and 3) adaptive compute tasks splitting where users can modify jobs parameters given
available resources till the execution of the next job in line. The framework was tested
on a ten-node test system and a larger 1,736-node system modeled after a portion
of TACC Stampede-2. The HPC resource model implements a first in first out (FIFO)
scheduler with backfill scheduling. The initial results showed that on a tiny system,
adaptive task-splitting is beneficial for the user but leads to a larger number of jobs.
On a large system, the adaptive task-splitting was also very beneficial, decreasing
waiting times for users using this strategy almost two times; however, other users
got a 5% increase in their wait time. Further investigation is needed as the current
task reconstitution algorithm is deterministic and does not allow quantification of job
recombination uncertainties. The Julia-based implementation is fast: five years of
historic workflow consisting of a million jobs and a one-hour stepping took around
three minutes.
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INTRODUCTION

Cyber-infrastructure and high-performance computing (HPC) are
increasingly important in our digital society. It is hard to underestimate
the role of computational resources in numerous fields of science and
engineering. Thus, it is unsurprising that HPC resources are often
overutilized, resulting in high wait times and long queues. HPC resources
are expensive and require high electrical power. Given that, it is crucial that
such resources run optimally. Various optimizations and user interventions
can improve utilization, allowing more calculations on existing facilities,
enhancing user experience, and improving overall energy efficiency. HPC
resource simulators are essential tools for such optimizations. This work
presents our initial implementation of HPCMod, an Agent-Based Modeling
(ABM) Framework for Modeling Users on High-Performance Computing
Resources, and its usage to study how the knowledge of available resources
can affect resource utilization. HPCMod stands for HPC resources Modeling
framework.
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Figure 1: Representing a molecular dynamics study (A) as compute task workflow (B).

HPC resources typically consist of hundreds to thousands of compute
nodes. Each node can have tens to hundreds of CPU cores and multiple
GPUs. These resources are shared by multiple users, and their joint work is
done through batch computing: the user writes a job script that specifies the
needed resources (for example, two compute nodes for two days) and script
work to be done, then the user submit it to the resource manager (also known
as scheduler), and when resources become available the resource manager
allocate resources and execute the job script. The job can be finished before
the requested wall time, or the scheduler can terminate it if the job exceeds it.
The time between job submission and job script execution start time is called
wait time. It can be hours to days on busy systems.
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In the past, our group developed Slurm Simulator (Simakov et al., 2018a,
2018b; Simakov and Deleon, 2024), which is based on Slurm, the most
widely used HPC resource manager (Yoo et al., 2003). Built within the Slurm
code, the simulator can be used for very detailed and real resource-specific
simulation; however, such detailization comes with a price of relatively low
simulation speed. Our latest version allows the simulation of a 200-node
system with 500 times acceleration (that is, a month-long workload can be
simulated in 1.5 hours). This can be problematic for multi-year simulation
of larger resources and slow down the development of the user model
(Multiple simulation is required due to stochastic processes). The HPCMod
is a more coarse-grained simulator whose goal is to be fast to simulate
a multi-year workload of multiple large resources. This is important for
the rapid development of user models and quantifying parameterization
uncertainties. Later, the developed user model can be applied to the Slurm
simulator.

The key concept in this work is the user’s compute need representation.
The user research projects can be represented as multiple possibly dependent
compute tasks (see Figure 1-B for illustration). Each task can represent
multiple simulations with different initial conditions for statistical purposes
or a system of interest vs control. Each task is qualified by the number
of node hours it requires to be completed. It is up to the user how to
execute the task, that is, split it into batch jobs. The user can split a job
in multiple ways. For example, a ten-node-hour job can be done on one
node in ten hours, ten nodes in one hour, or two consecutive jobs on
one node for four hours followed by two nodes for three hours (here, we
assume the task can be scaled perfectly). The user can make a decision based
on past experience, colleague recommendations, and currently available
resources.

The compute task approach was inspired by the author’s experience
in Molecular Dynamics (MD) simulation of biomolecular systems
(Simakov et al., 2017; Simakov and Kurnikova, 2010; Volynsky et al.,
2005). MD is widely used to simulate biological macromolecules like
proteins, RNAs and DNAs (for reviews, see (Hollingsworth and Dror, 2018;
Karplus and Petsko, 1990). The MD simulation is one of the largest cycle
consumers on HPC resources. In ACCESS HPC resources, 5 to 15% of all
cycles were consumed by MD applications (as reported by XDMoD). In
MD, all atoms are represented as classical particles, and the second Newton
equations are solved to calculate atomic movements. During macromolecules
simulation, it is common to have a single simulation that requires days or
weeks of computation, while HPC resources typically enforce a one—
to three-wall time limit (for MD reviews, see). Thus, users must split
the overall simulation into a series of smaller jobs. One characteristic of
such a job is running all the way till the requested wall time. On TACC-
Stampede2 (Intel Skylake-X partition), the fraction of MD jobs exceeding
the requested wall time is 44% (by total core hours obtained from ACCESS
XDMoD), which is similar to 43% in all other applications. Thus, it is
highly likely that a large portion of MD jobs are resulting from splitting
larger compute tasks into a series of jobs. Furthermore, a similar process
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is observed in other applications, and thus, the compute task concept can
be generalized to other fields of science. Figure 1.A illustrates a typical
workflow for a multiple-group MD simulation study, and Figure 1.B shows
its computational task workflow representation. Other MD workflows,
like Free Energy Perturbation (FEP) and alchemical transformations,
can also be represented by similar computational task workflows. In
this work we concentrate on a specific application type and model a
particular workflow within this field which allow future model due to better
understanding of the domain. A good understanding of domain would allow
to have more accurate model and it can be later generalized to other fields
of science.

This work introduces and implements a compute task workflow
representation of users’ computational projects. The task splitting into
compute jobs is a function of users’ computing needs/characteristics,
available hardware, and imposed resource limits. We have implemented three
strategies: 1) historical replay - every compute job is its own task (user for
scheduler verification), 2) preferred task split — the reconstructed compute
tasks are split based on user’s preferred size (obtained from historic jobs of
the user) and 3) adaptive task splitting — user can modify the job’s nodes
and wall time request to fit into available resource slot. The strategies were
tested on a tiny ten-node system as well as a large, almost two-thousand-node
machine.

RELATED WORK

The analysis and modeling of the HPC workload are important for
understanding users’ needs and parts of the system (for example, the job
scheduler), as well as future systems design. Therefore, it is understandable
that it was a subject of study for a long time. One of the oldest related
studies describes the probability call distribution in telephone queues in the
early operator era of telephony (Erlang, 1909). The most comprehensive
review on HPC workload analysis and modeling is a book by Dror Feitelson
(Feitelson, 2015), specifically chapter 8 for modeling. Most workload
modeling approaches concentrate on users’ activity cycles (working hours
and days) and are job-centric and application-agnostic. For example, jobs
are drawn from distributions parameterized from historic workload (Cirne
and Berman, 2001a; Jann et al.,, 1997; Lublin and Feitelson, 2003).
Another approach is to resample jobs from historic workload (Zakay
and Feitelson, 2013). Finally, historical workloads can be used directly.
These approaches do not allow for job size change once it is drawn or
taken from the distribution. This complicates the modeling of the feature
system. Number of works are addressing it by allowing job size to change
(Cirne and Berman, 2001b; Downey, 1998). However, it is still job-
centric and assumes that the jobs are self-contained and independent.
Zhou and others (2024) use autoregressive regression to add dependencies
between jobs.

Most of the abovementioned work is batch job-centric, and in many
cases, the user is not modeled explicitly. In this work, we treat the batch
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jobs as a manifestation of the user’s computing needs, the performance of
the hardware, and the limits imposed by resource providers (max node
counts, max wall time, and so on). The user can take dynamic action on
the resources available. For example, they can reduce their calculation needs
or leave the system if the system is too busy, on the over side if the system
is empty, they can use larger job sizes (Alvarez et al., 2016) and increase
the compute needs by using more advanced methods or improved statistics.
Omitting user behavior can be a significant problem for HPC resource
modeling. Another important aspect is that the job from the same task is
automatically dependent: their size and wall time are similar or correlated.
The job correlation is often referred to as self-similarity (Feitelson, 2015) and
many job-generating approaches require separate handling.

METHODS

HPC resources typically utilize a batch jobs processing scheme, where the
users submit their calculations and resource request specifications (typically
written in a script file and called a batch job) to the HPC resource
workload manager (often called a scheduler). Then, the scheduler allocates
the requested resource and starts the calculations; if the resources are
unavailable, the scheduler postpones the batch job execution until resources
are available. The jobs that cannot be executed right away will pile up in the
queue, and it is up to the scheduler to determine which job will be executed
first.

The developed framework is implemented in Julia language and utilizes
Agent.js framework (Datseris et al., 2022) for Agent-Based Modeling. The
first-in-first out (FIFO, also called first-come-first-served, FCFS) scheduler
with simple backfilling was implemented. The backfill schedule schedules the
jobs, which does not affect the start time of the next job to be executed by the
FIFO scheduler. The implemented ABM utilizes a discrete stepping algorithm
and uses a one-hour step by default.

User’s workflow representation and compute tasks. The users’ computing
needs are represented as a collection of compute tasks described as a certain
number of node hours, and the user converts each compute project to a series
of compute jobs and submits them sequentially (the next job is submitted
after the previous one is completed) to the HPC resource schedule. The HPC
scheduler places jobs on the available compute node; if no resources are
available, the job is placed into the waiting queue until the resource becomes
available. For example, a user’s computing project requires 32 node hours; it
can be executed in multiple ways: a single 32-hour job on one node, two
sequential 16-hour jobs on one node, one 16-hour job on two nodes, and so
on. It is up to the user how to split the compute project; the user’s decision
can be based on previous experience, other users (from the same research
group), or currently available resources.

Compute tasks splitting strategies. In this work, we implemented three
schemas for computing task splitting into batch jobs. 1) In replay mode,
the user submits previously described jobs. This mode is good for replaying
historical workload, and here essentially, each job is its own task. 2) In the
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user’s preferred mode, the job size and duration are preset for a task and
represent what the user thinks is the appropriation size for a given problem
and HPC resource size (here, the user does not consider current resource
utilization). 3) In the adaptive mode, the user adjusts the node size within the
0.5 to 2.0 range of preferred value and wall time within the 0.25 to 4.0 range
of preferred value based on currently available resources. The preferred node
count and wall time were set to their quantile of jobs within the same task.
That results in overall closest wait time.

Parallel scaling. In the MD, different simulated systems will scale differently
on different hardware. In this work, we abstract from the scaling problem and
assume perfect scaling within a range of the user’s preferred value (obtained
from the historic workload). This is reasonable as we only allow the job size
to change from half of the preferred setting to double the preferred size.

Parameterization of thinking time. Thinking time is the time between the
end of the first job and the submission of the next job. The user needs this time
to realize that the job is completed and to write the next job script. It also
would include out-of-office time. For parameterization, TACC-Stampede2
historical workload was used. If there were multiple concurrent jobs in the
queue for a given user the thinking time was calculated between the last end
time of that job and the first next one. The thinking time distribution was fit
to gamma distribution using moment matching estimation and R fitdistrplus
library (Delignette-Muller and Dutang, 2015).

Compute task restoration from batch jobs. The compute task was
identified from the historic workload by combining jobs with the same node
count. The finished job is matched to the closest next one if it was submitted
after the first one, had the same node count, was submitted within one week,
and was not picked by a different compute task.

Table 1. A test four compute-tasks workload for a ten-node cluster.

TaskId UserId Submit Time, Compute- Preferred Preferred
Hours From  Required, Number of Requested
Start Node-Hours  Nodes Walltime,

Hours

1 1 1 140 4 48

2 2 2 140 4 48

3 3 3 140 4 48

4 4 4 140 4 48

Tiny, test, system. A small 10-node cluster with 4-compute tasks (see
Table 1 for task description) was developed for testing purposes and to
illustrate capabilities. It is also used for regression tests within the framework
of continuous integration (CI) tests.
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Large system. An Intel Skylake-X portion of the TACC-Stampede2 system.
It consists of 1,736 nodes. The data was obtained from the ACCESS instance
of XDMoD (Palmer et al., 2015). The five-year workload was rounded to the
nearest hour and included jobs that were at least one hour long. The resulting
workload consists of 967,388 jobs. For the task-splitting study, only users
utilizing Gromacs (Abraham et al., 2015) and NAMD (Phillips et al., 2020)
Applications (MD application) were used. The 36 selected MD users (1.3%
out of the total 2,600 users) are responsible for 4.1 % of all cycles consumed.

Hardware. All calculations were done on a laptop with an Intel Core i7-
11800H processor and 64GiB memory.

Source code, examples, and analysis scripts are available at:

https://github.com/ubccr-slurm-simulator/HPCMod.jl

https://github.com/ubccr-slurm-simulator/HPCMod_Article_ AHFE24

RESULTS AND DISCUSSIONS

Small 10-Node Cluster with 4-Compute Tasks. For testing purposes and
capabilities illustration, we used a small 10-node cluster with 4-Compute
Tasks (see Table 1 for task description). These four tasks would produce
four compute jobs with the default preferred node count and wall time
(Figure 1.A). Using compute tasks to describe the user’s computational needs
allows us to model different aspects of user interaction with an HPC resource.
For example, the system administrators might reduce the maximum allowed
wall time to 24 hours from 48 hours to improve server serviceability. This
results in a doubling of jobs and an increase in time-to-solution (time from
submit time to the completion time) for half of the tasks (Figure 1.B). With
computing tasks and a user-based modeling approach, we can also model
different user behaviors on the system. For example, user 4 (responsible
for task 4) can try to take advantage of the backfill scheduler and modify
the requested nodes and wall time based on the available spot till the next
job in the queue. In our toy test that resulted in having two jobs for task 4
(Figure 1.C). Task 4 finished faster overall, but the user needed two smaller
consecutive jobs instead of one big one. In this simulation, the second job
was submitted right after the completion of the first one. The actual user
would need some time after the first job was completed and before submitting
the second job. This time is often called think time and can include factors
like user working hours and job check frequency (often referred to as job
babysitting by graduate students). The results of the simulation with a more
realistic think time drawn from random distribution parametrized from
historic jobs are shown in Figure 1.D.

Certainly, we can not draw any conclusions from this toy system other
than that HPCMod can make such simulations, and we need to examine
more realistic systems further.
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Figure 2: A test workload of four compute tasks (see Table 1) on a ten-node cluster.
Colors highlight the task occupation, and black lines outline the job borders. A. All
users utilized the preferred node number and wall time for job requests. B. Same as
A, but the max allowed wall time was reduced to 24 hours. C. Similar to A, the fourth
user uses an adaptive strategy to select node count and wall time. D. Similar to C, the
fourth user uses an adaptive job specification strategy, and gamma distribution for
think time is used; note the gap between jobs 4 and 5.

Simulation of TACC Stampede-2 SKX (1,736 Node System). For a large-
scale test, we simulated a 5-year-long workload of large 1,736 node machines.
To validate the reasonability of our scheduler, we first compare the historical
workload replay to the actual historical realization (Table 2). The simulator
produces a total wait time 8 % higher than a historical realization. During the
simulation, only jobs longer than one hour were used, and a FIFO scheduler
instead of a priority-based scheduler was used. Therefore an 8% difference
is qualitatively reasonable.

Next, to validate our compute task restoration algorithm, we conducted
a base simulation in which the compute needs of selected MD users (36
out of 2,600 users) were represented as compute tasks. The compute jobs
were generated from these tasks using historic node count and the third
quantile of historic wall times (the third quantile produces the best outcome;
maximum, mean, medium, and first quantile were also tested). The wait time
for compute task users is 10% lower than in historical replay, which provides
reasonable qualitative agreement. This simulation is called “base” because
that is a starting point to compare different strategies.

In the adaptive simulation, the selected MD users were allowed to modify
their job requests based on the HPC resource occupation. The users were
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provided with currently available nodes and time availability until the first
job in the queue used them. Given this information, the user can modify the
requested node counts (from half to double the preferred value) and wall time
(from quarter to quadruple the preferred value). Interestingly unlike in our
synthetic 10-node system, the number of jobs decreased almost twice for the
compute task users. The total wait time also decreased almost twice (45%
decrease). However, this comes with a wait time increase of 4% for other
users.

A single simulation of the S-year-long workload takes 193 seconds to
complete, which is 800,000 times faster than real-time and much faster than
~500 times of the current version of UB Slurm Simulator (Simakov, 2024).
Due to stochastic processes in the HPCMod (currently only think time),
running the same simulation multiple times is important. In the future, adding
more random processes for addressing uncertainties in the parameterization
would further increase the need for multiple runs. That is another area where
a Julia language built-in multi-threaded and distributed computing capability
will be useful. In the future, we anticipate that a fast coarse-grain simulation
will be done with HPCMod, followed by a more detailed study will be done
with the Slurm Simulator.

Table 2. Results of Stampede 2-SKX simulation. MD users are users for which a
compute task schema was used (36 MD users).

Simulation  Total Wait  Jobs Jobs Number  Total Wait Total Wait
Time, Number for for MD Users  Time for Static Time for MD
Hours Static Users Users, Hours Users, Hours

Historical 17,554,045 955,025 12,362 16,941,928 612,117

realization

History 18,899,615 955,025 12,362 18,675,684 223,931

Replay

Base 19,176,135 955,025 12,946 18,975,528 200,607

Adaptive 19,755,326 955,025 6,576 19,643,311 112,015

CONCLUSION

We introduced a compute task workflow specification of the users’
computational project and implemented it within HPCMod, an HPC
resource modeling framework. The framework was tested on a small
ten-node cluster and a large 1,736-node system modeled after a portion
of the TACC-Stampede-2 system. A simple algorithm was used to
reconstruct the computing task from the historical workflow of MD users.
This allows the testing of different task-splitting techniques. The historical
replay was used for the job scheduler testing. This method was also used
for most of the users during the selected user’s alternative task-splitting
testing. The selected users (large MD users) were allowed to use preferred
task splitting; this validated the task reconstruction algorithm. Finally, the
selected MD users utilized an adaptive task-splitting strategy, where the user
can change job size and requested wall time to improve the odds of being
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scheduled by backfiller. In the toy cluster, such a strategy decreased the time
to a solution but increased the number of jobs. The strategy was extremely
successful in large systems, decreasing the wait time by 50%. However, all
other users got a 4 % increase in their wait time. This conclusion should be
taken with a grain of salt as it is done only for one realistic system and only for
a small selection of users, and further studies are needed. The implementation
is very fast, and we anticipate that with further development of the user
model, that will decrease a bit. We plan to improve the user model further
and incorporate the quantification of parameterization uncertainties.
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