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Large-Scale Dense 3D Mapping Using Submaps
Derived From Orthogonal Imaging Sonars

John McConnell, Ivana Collado-Gonzalez, Paul Szenher, and Brendan Englot, Senior Member, IEEE

Abstract—3D situational awareness is critical for any au-
tonomous system. However, when operating underwater, envi-
ronmental conditions often dictate the use of acoustic sensors.
These acoustic sensors are plagued by high noise and a lack
of 3D information in sonar imagery, motivating the use of an
orthogonal pair of imaging sonars to recover 3D perceptual data.
Thus far, mapping systems in this area only use a subset of
the available data at discrete timesteps and rely on object-level
prior information in the environment to develop high-coverage
3D maps. Moreover, simple repeating objects must be present to
build high-coverage maps. In this work, we propose a submap-
based mapping system integrated with a simultaneous localization
and mapping (SLAM) system to produce dense, 3D maps of
complex unknown environments with varying densities of simple
repeating objects. We compare this submapping approach to
our previous works in this area, analyzing simple and highly
complex environments, such as submerged aircraft. We analyze
the tradeoffs between a submapping-based approach and our
previous work leveraging simple repeating objects. We show
where each method is well-motivated and where they fall short.
Importantly, our proposed use of submapping achieves an ad-
vance in underwater situational awareness with wide aperture
multi-beam imaging sonar, moving toward generalized large-
scale dense 3D mapping capability for fully unknown complex
environments.

Index Terms—Autonomous underwater vehicles (AUVs), simul-
taneous localization and mapping (SLAM), sonar imaging and
ranging.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) provide great
capability to various end users, including offshore oil and gas,
renewable energy, and defense. These users utilize AUVs for
inspection, environmental monitoring, and security.

Situational awareness is critical for any autonomous system
to complete any task. Autonomous systems use perceptual sen-
sors to interrogate the environment to build an understanding
of the vehicle state and the appearance of the environment.
However, underwater, these sensing systems are challenged
by the environment itself. Conditions such as high water
turbidity, low ambient lighting, and water absorption of light
make standard sensing systems challenging to apply. Sensing
systems such as cameras and LIDAR (Light Detection and
Ranging) require clear water conditions or high power re-
quirements, hindering their applicability. In contrast, acoustic
perceptual systems are robust to environmental conditions and
have comparably low power requirements. However, these
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acoustic systems have a low signal-to-noise ratio and low
resolution.

Acoustic perceptual systems come in wide varieties, includ-
ing sidescan sonar, profiling sonar, and wide aperture multi-
beam imaging sonar. Sidescan sonar is typically employed for
bottom imaging, especially when searching the seafloor for
targets such as shipwrecks or aircraft crash sites. Multibeam
profiling sonar is often employed in a downward-looking
modality to perform bathymetric mapping. Moreover, profiling
sonar can be placed in a forward-looking arrangement onboard
a vehicle to detect and avoid obstacles. Profiling sonars
are characterized by a narrow vertical beam width, making
them precise tools for geometry estimation but challenging to
leverage for panoramic situational awareness. In contrast, wide
aperture multibeam imaging sonar samples a large volume of
water. While imaging sonar has a large sensor volume, it only
provides a flattened 2D image of the observed 3D space. The
question then becomes, how can an autonomous underwater
vehicle (AUV) use wide aperture multibeam imaging sonar
to achieve the requisite situational awareness for autonomous
operation?

When considering situational awareness, we mainly con-
sider the concept of mapping, i.e., building a data structure
that allows the autonomous system to understand the geometry
of its environment and how to navigate safely. We focus on
building large-scale, low-resolution maps with dense cover-
age of the environment, supporting tasks like planning and
eventually interrogating certain areas with higher-resolution
tools. Consider an AUV building a low-resolution map of its
work area using acoustic sensors due to the environmental
conditions. Using the map, the AUV can plan a path to a goal
position, collecting high-resolution data with cameras at close
range, or even interrogating a structure with a non-destructive-
testing (NDT) probe.

This article builds on our previous work building 3D maps
using wide-aperture multibeam imaging sonars. To address the
lack of 3D information in a single sonar image, we use a
system that combines a pair of orthogonal sonars onboard
a small remotely operated vehicle (ROV), proposed in [1].
However, because 3D information is only recoverable where
the sonars overlap, we considered an inference-based mapping
system where simple, repeating objects in the environment
accelerate mapping and enhance situational awareness [2]. In
this evolutionary paper, we extend the work described in these
two prior conference papers, using pairs of wide aperture
multibeam imaging sonars to build large-scale dense 3D maps
of complex underwater environments, using a submapping
approach that has never previously been applied in this setting.
In the following sections, we will discuss related work, define
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the problem, discuss our system in detail, and compare the
newest mapping system to our previous work in this area. The
paper is structured as follows: Section II shows the related
work. Section III shows the problem definition. Section IV
introduces the simultaneous localization and mapping (SLAM)
formulation used throughout this work. Section V discusses
fusing orthogonal sonars as introduced in [1], [2]. Section
VI-D shows mapping using object-specific inference from [2].
Section VII shows the authors’ newest work, submapping. Sec-
tion VIII shows the experiments. Finally, Section IX concludes
this article.

II. RELATED WORK

A. 3D Reconstruction Using Wide Aperture Imaging Sonar

Wide aperture multibeam imaging sonars stand in contrast
to other sensors in this space; they have reasonable power
requirements and are robust to environmental conditions such
as water quality and ambient lighting. However, imaging sonar
has a critical issue that hinders its usability as a tool for
3D situational awareness, the lack of elevation angle in its
imagery. While the sonar observes a 3D volume of water, the
sensor only reports acoustic intensity, distance, and bearing
angle, leaving the elevation angle unknown.

The challenges associated with wide-aperture multi-beam
imaging sonars have inspired an impressive body of work to
address the fundamental limitations of their under-constrained
measurements. Firstly, work from Aykin [3], [4] estimates the
elevation angle of sonar image pixels in scenes where objects
are lying on the seafloor.

The work of Westman [5] extends the work of Aykin and
shows excellent results in a constrained nearshore pier environ-
ment. However, these methods rely on several assumptions that
may often be violated. Firstly, both [4] and [5] assume that all
objects in view have their range returns monotonically increase
or decrease with elevation angle. While this assumption may
hold true for some objects, it hinders the application of their
methods to arbitrary objects and scenes. Additionally, [4] re-
quires visibility of the leading and trailing edge of an observed
object; this is obtained by examining the shadow area behind a
segmentation created by the sonar’s downward grazing angle.
In contrast, [5] only needs to identify the leading or trailing
edge of the object; however, in the experiments shown, the
leading edge is always the closest return because of the sonar’s
downward grazing angle. Using a downward grazing angle
makes the problem significantly simpler to solve, but comes
at a price. By tilting the sonar downward, and making the
upper edge of the sonar beam parallel with the water plane, the
AUV’s situational awareness may be hampered. In cluttered
environments, an AUV would be unable to see above it before
transiting upward, and a safe navigation solution may not
always be possible. Moreover, if the vehicle is perturbed in
a way that violates this geometric assumption, the perception
system could be driven to inaccuracy.

We also note that a recent technique has employed deep
learning with convolutional neural networks to estimate the
elevation angle associated with imaging sonar observations
[6]. More recently, [7] uses a cost volume and multiple views

to perform training. Neural Radiance Fields (NeRFs) have
also been leveraged with imaging sonar [8]. NeRFs, however,
have yet to be extended to arbitrary scenes, rather than single
objects with imaging sonar. Lastly, when considering machine
learning, [9] uses a truncated signed distance function to
render a 3D polygon mesh. Further, a vehicle may lack
opportunities for prior training and exposure to the subsea
objects and scenes it may encounter in a given mission.

Another method proposed by Aykin [10] applies a space
carving approach to produce surface models from an image’s
low-intensity background, which outer-bound the objects of
interest. The min-filtering voxel grid modeling approach from
Guerneve [11] similarly removes voxels from an object model
based on observations of low-intensity pixels. Westman [12]
improves on space carving using Fermat paths. Westman [13]
proposes a volumetric framework for recovering 3D geometry,
testing with both wide and narrow aperture sonar. These
approaches require the objects of interest to be observed from
multiple vantage points to achieve accurate reconstructions.
Moreover, it is unclear how these methods would be applied
when the robot pose estimates evolve, changing as constraints
are introduced, resulting in significant pose estimate updates.

We also note that an alternative approach is to employ
a single sonar that scans in 3D. Mechanically scanning 3D
sonars are widely available, and utilized for underwater 3D
mapping applications, although they are typically mounted at
a static location on the seafloor, and are not designed to be
carried by mobile robots [14], [15]. Electronically scanning,
beam steering 3D sonars have been proposed and prototyped
[16], and can be implemented as forward looking sonars that
are portable aboard an underwater vehicle. However, such
sonars are presently high in cost, and require significant time
to sweep the desired 3D volume [17]. More compact 3D sonars
are emerging [18], but are presently severely limited in sensing
range.

Elevation angle recovery has also been addressed from a
simultaneous localization and mapping (SLAM) perspective.
Rather than trying to estimate the elevation of pixels in a single
frame, these works extract features from the imagery and use a
series of views combined with a pose graph optimization back-
end [19] to determine 3D structure. This concept was proposed
by Huang [20] in acoustic structure from motion (ASFM).
This initial implementation has limitations, the chief of which
is the reliance on manually extracted features. This work was
later built on by Wang [21], incorporating automated feature
extraction and tracking. [22] shows a SLAM-based approach
that recovers the geometry of a ship hull rather than focusing
on terrain reconstruction. The limitation of these methods for
AUVs in clutter is the perception system requiring a series of
frames to recover 3D information rather than a single timestep.

B. Fusing Multiple Wide Aperture Multi-beam Imaging Sonars

Combining a pair of imaging sonars to recover the missing
data at each vantage point provides unique advantages to an
underwater vehicle. First proposed in [23], [24] and later
implemented onboard an underwater vehicle in [1], [2], the
most recent performance analysis has been applied to specific
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classes of objects [25]. McConnell [1] associates the objects in
view, then extracts and matches pixel features using the object
associations as an optimization constraint. McConnell [2]
makes improvements to the orthogonal sonar fusion algorithm
by using sonar range as an optimization constraint, enhancing
performance in complex scenes.

These techniques require no assumptions about scene geom-
etry, removing any object-level geometric assumptions from a
reconstruction system and paving the way for mapping arbi-
trary scenes. Critically, when considering situational aware-
ness, a pair of orthogonal sensors provides a set of fully
defined 3D points at every timestep. However, using a pair of
orthogonal sensors yields 3D data only inside the overlapping
region of their fields of view. The hardware used in this paper
and [1], [2] gives an overlapping area of 20◦-by-20◦, making
large-scale mapping a potentially lengthy process. The crucial
challenge for these systems is integrating the 3D data they
generate into a complete mapping solution and accounting for
their limited field of view.

C. Inference Aided 3D Reconstruction and Mapping

A large body of work applies probabilistic inference to
enhance 3D mapping and reconstruction. Most closely related
are the methods that use inference to improve point cloud or
voxel mapping, which often use insights from large data sets or
object models provided a priori, which is not always available
in an underwater robotics setting.

The use of a variational auto-encoder to infer the 3D
distribution of an object given a single view from an RGB
camera is explored in [26], [27]. As mentioned above, this
work requires an extensive data set to pre-train the network
weights. Yang [28] explores synthetic data from a generative
adversarial network to avoid this requirement. Yang [28] uses
a single view voxel grid as the input for 3D reconstruction;
the focus is 3D-to-3D densification rather than the 2D-to-3D
inference considered in our work. A similar concept to our
work is explored in [29], where mapping is performed at an
object level. Here, object models are produced using high-
quality depth camera scans from a controlled setting. These
scans are used to improve a 6-DoF SLAM solution. Similar
to [26], [27], the applications of this approach in underwater
robotics are limited due to the need for object models a priori.
A notable use of inference in an underwater setting is [30],
where CAD (computer aided drawing) models of objects of
interest are provided a priori and are used to improve the map
output.

A related set of methods use probabilistic inference to
enhance occupancy grid maps [31], [32], [33], [34]. While
these methods are excellent at improving occupancy map cov-
erage, they solve mapping under sparse inputs by performing
gap-filling and semantic inference on a data structure of the
same dimensionality as those sparse inputs. In contrast, we
focus on 2D-to-3D inference to enhance the dimensionality of
inputs that are not directly observed in 3D, whose inference
is conditioned on prior 3D observations of the same class.

In our previous work, we propose using Bayesian inference
to accelerate the mapping process. We again note the limited

overlapping area for a pair of orthogonal wide aperture imag-
ing sonars, in our case 20◦-by-20◦. This limited overlapping
area, combined with a 130◦ horizontal field of view, motivates
our work in [2]. [2] leverages a pre-trained semantic classifi-
cation model and online estimation of specific object classes
in the environment, both simple and repeating objects (such as
pier pilings). Using these simple repeating objects, more of the
130◦ field-of-view sonar image is used for mapping, and the
density of map coverage is greatly enhanced. However, this
method requires two items for functionality and performance:
a trained model with known classes in the environment, and
the presence of those objects.

D. Submapping

In many robot mapping methods, discrete timesteps are
selected to perform pose estimation and enter data into a
map. However, it is often the case that when implementing
a system like this, the sensor data between discrete timesteps
is discarded. Conversely, submapping does not discard this
data between timesteps; instead, it is captured and leveraged.

A notable example of submapping in underwater robot map-
ping using imaging sonar is [35]. [36] exploits submapping to
create an updatable occupancy grid, enabling a grid structure
to be used when robot poses experience significant updates.
This submapping technique can be used to create dense 3D
maps, especially when input data may be sparse. In this paper,
we will utilize the submapping paradigm to enhance mapping
and dispense with the need for prior information.

III. PROBLEM DEFINITION

In this work, we consider 3D mapping using a pair of
orthogonal imaging sonars with an overlapping field of view.
A robot visits a series of poses xt, with transformations
T ∈ R4×4. Each pose has associated observations zt, with
two components: horizontal sonar observations zh and vertical
sonar observations zv . Each set of observations is defined as an
intensity image in spherical coordinates with range R ∈ R+,
bearing θ ∈ Θ, and elevation ϕ ∈ Φ, with Θ,Φ ⊆ [−π, π), and
an associated intensity value γ ∈ R+. These measurements can
be converted to Cartesian space:X

Y
Z

 = R

cosϕ cos θ
cosϕ sin θ

sinϕ

 . (1)

Each recorded measurement zh and zv is characterized by an
omitted degree-of-freedom (DoF), and in the robot frame, due
to the orthogonality of the two sonars, these DoFs differ:

zh = (Rh, θ, γh)⊤, zv = (Rv, ϕ, γv)⊤. (2)

We associate measurements across concurrent, orthogonal im-
ages to fully define the measurements in 3D, yielding Equation
(3):

zFused =

(
Rh +Rv

2
, θ(h), ϕ(v)

)⊤

. (3)
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We complete the 3D mapping problem by placing each set of
observations into a fixed frame I as in Eq. (4).

M = {ẑ(I)|ẑ(I) = TẑFused ∀ ẑ ∈ ẑ} (4)

We note that the lack of 3D information in the sonar imagery
introduces ambiguity into the application of Eqs. (1) and (4),
requiring the association of observations to determine their
location in 3D space as in Eq. (3).

IV. SIMULTANEOUS LOCALIZATION AND MAPPING
(SLAM)

In this section, we will describe our pose estimation system.
While not the focus of this work, nor a claim of novelty, this
module influences the system level design of the downstream
mapping pipeline. We utilize a pose SLAM formulation to
estimate our robot’s pose history through time. We restrict
our formulation to 3-DoF estimation in the plane to provide
an efficient and robust SLAM pipeline that prioritizes the DoFs
of greatest uncertainty (surge, sway, and yaw). In this section,
we will describe the handling of incoming sonar images, dead
reckoning data, and our keyframe-based SLAM system.

A. Processing Sonar Observations

While our vehicle has a dual sonar system, only the horizon-
tal sonar observations zh are used to support state estimation.
This horizontal sonar image is segmented as described in
Section V-A. The segmentation identifies which image pixels
correspond to structures in the environment. The sonar image
segmentation is converted to a planar point cloud by setting
the unknown elevation angle ϕ to zero. The following sections
will use this planar point cloud to support vehicle state
estimation.

B. Dead Reckoning

While our system uses sonar observations to perform state
estimation, it is built on a dead reckoning system to provide
initial estimates for robot poses, xt. We consider a robot with
an inertial measurement unit (IMU) and a doppler velocity log
(DVL). While specific sensor rates may vary, the IMU refresh
rate in our system is 200 Hz, and the DVL refresh rate is 5Hz,
with combined “dead reckoning“ data output at 5Hz.

The IMU provides an estimate of the rotation matrix be-
tween the vehicle frame V and I, denoted as RI

V ∈ R3×3.
Complimenting the IMU, the DVL provides velocity estimates
in the vehicle frame, in the surge, sway, and heave directions.
These sensors are combined to estimate the vehicle location
without perceptual observations, using dead reckoning only.
We denote the dead reckoning based pose estimate as ot. The
fusion of these two sensors is not at the core of this paper’s
discussion. However, we must note that we use this odometry
system as an initial guess for our keyframe-based SLAM
system. Moreover, when between keyframes, to provide live
pose estimates, we use the dead reckoning system to provide
pose estimates relative to the latest keyframe.

C. Keyframe Graph Based Pose SLAM

Our SLAM system follows the graph based pose SLAM
paradigm, where discrete time steps are selected, and mea-
surements are developed to support their estimation. These
discrete time steps known as keyframes have three relevant
quantities: a provided horizontal sonar image zh, a provided
dead reckoning pose estimate ot, and an unknown robot pose
xt. Upon receipt of zh, and ot, we check if a new keyframe
needs to be instantiated. Keyframes are added when the current
distance or rotation relative to the previous keyframe is large
enough per the dead reckoning system. Note that keyframes
are not added at a fixed rate, but are dependent on vehicle
velocity.

When a keyframe is instantiated, we add a node in the
SLAM graph to estimate the robot location xt. We then add a
series of measurements or edges in the graph structure. We use
two measurements: sequential scan matching (SSM) and non-
sequential scan matching (NSSM). First, we compute the SSM
factor using iterative closest point (ICP) using the dead reckon-
ing pose, ot, to provide ICP’s required initialization. Here we
compare the newest keyframe’s horizontal sonar observations
zht to the last keyframe’s zht−1. Recall that observations are
planar inside the SLAM system, as is the resultant transfor-
mation estimate from ICP. This transformation is formulated
as a factor in the factor graph, an SSM factor, fSSM. In the
event of an ICP failure, to preserve the graph connectivity, we
insert an odometry factor, which is simply the pose estimate
from dead reckoning relative to the last keyframe, fO.

Next, we consider NSSM factors, also known as loop
closures. We compare the most recent sonar observations zht to
the aggregated keyframes in the fixed frame I using ICP. This
transformation is between the current pose xt and another pose
in the graph, excluding the several previous frames. We denote
this loop closure factor as fNSSM. NSSM factors are subject
to a rigorous outlier rejection scheme, Pairwise Consistent
Measurement Set Maximization (PCM) [37]. NSSM factors
approved by PCM are entered into the pose graph, completed
below:

f(Θ) = f 0(Θ0)
∏
i

fO
i (Θi)

∏
j

fSSM
j (Θj)

∏
q

fNSSM
q (Θq).

This planar SLAM solution is used to provide estimates of
surge, sway and yaw; the remaining degrees of freedom come
from our vehicle’s pressure sensor and inertial measurement
unit (IMU). We enable this by operating our vehicle at a
fixed depth and noting that roll, pitch, and depth are directly
observable. The planar SLAM system performs inference over
relative measurements to estimate the degrees of freedom with
the most uncertainty, as they are not directly observable. This
combination yields a vehicle state estimate with 6 degrees of
freedom. We implement this system using the GTSAM [38]
implementation of iSAM2 [39]. We note that this system relies
on the features in view, and that in their absence, the system
relies solely on dead-reckoning.
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Fig. 1: Example sonar geometry. Sensor origin is shown at left, with
max range denoted. The sensor swath, or horizontal field of view is
shown as θ and the vertical aperture is shown as ϕ. We note that an
example θ and ϕ are shown to point p.

Fig. 2: SOCA-CFAR overview. Purple cells show training cells, blue
the guard cells, and red the cell under test.

V. FUSING ORTHOGONAL CONCURRENT WIDE APERTURE
SONAR IMAGES

This section will describe our method for recovering 3D
information from a pair of orthogonal sonar images [1]. Recall
that each sonar image, whose geometry is illustrated Fig. 1
contains partial 3D information, each image with a missing
angle. First, we will identify features in sonar imagery, then
associate those features. Next, we use an outlier rejection
system to cull low-quality feature associations. The output of
this subsystem will be a 3D point cloud used to support various
3D mapping systems.

A. Feature Extraction

The first step in our orthogonal sonar fusion system is to
identify which sonar image pixels correspond to contact with
the environment. This is done using the constant false alarm
rate (CFAR) algorithm, specifically smallest of cell averages
(SOCA-CFAR) [40]. SOCA-CFAR is selected as it alleviates
issues with CFAR when multiple targets are present in the
image.

SOCA-CFAR uses a simple threshold to determine whether
a pixel in the image is a contact; however, this threshold is
computed dynamically by characterizing the noise around the
image pixel. Consider the pixel shown in red in Figure 2.
Four averages are computed around the pixel; the average of
the training pixels is shown in purple in Figure 2. The average
is simply

µ =
1

N
ΣN

i=0pi, (5)

where N is the number of training pixels and the value of each
pixel is pi. We only record the minimum of the four averages,
µmin, the minimum of the areas shown in purple in Figure
2. Each pixel is wrapped in guard cells, shown as light blue
in Figure 2, to prevent the signal from leaking into the noise
estimate. Next, the detection constant, α, is computed:

α = N(P
−1/N
fa − 1), (6)

where N is the number of training pixels and Pfa is the user’s
false alarm rate. Lastly, β is computed and compared against
the user-set threshold as follows:

β = µminα. (7)

At this stage in the system, we have identified pixels in the
vertical and horizontal sonar images representing contact with
the environment. In the next section, we will address the
association of the image pixels across concurrent sonar images.

B. Sonar Fusion
After SOCA-CFAR is applied, our system now has a pair

of segmented sonar images, identifying contacts with the
environment. However, these images still lack 3D information,
with each image lacking a single angle. To fully define mea-
surements in 3D as denoted in Eq. (3), we need to associate
pixels across the images.

Here we divide the image-pixel matching problem into mul-
tiple smaller subproblems. Recall that range R is discretized
within a sonar image, and since associated pixels should be
at the same range, we use range to define these subproblems.
Each sonar image’s pixels at the same range are gathered and
processed using intensity-based association. The cost function
used here is defined as follows:

L(zhi , zvj ) = ||νh − νv||, (8)

where νh and νv are square patches of the sonar image
around the given pixel. Note that νv is rotated 90 degrees
to account for the orthogonality of the images. Moreover,
before this comparison is made, the images’ intensity values
are normalized at every timestep. The cost function in Eq. (8)
is used to find the solution that minimizes the sum of costs
between features for each subproblem.

To estimate our confidence in these matches, we compare
the two best solutions for each feature association [41]:

C =
L(zhi , zvj )min2 − L(zhi , zvj )min

Σi,j
0,0L(zhi , zvj )

. (9)

While we compute subproblem cost totals to find sets of
associated features in Eq. (8), confidence is evaluated on a
pixel-wise basis, comparing the costs for each pixel association
made in the given solution. This comparison gives us a simple
metric with which to cull uncertain associations. If a match has
confidence outside our set requirements, it is not retained. We
now have a set of fully defined points in 3D space, zFused,
and can map them into Cartesian space using Equation (1),
obtaining a 3D point cloud from a pair of orthogonal sonar
images.

C. Sonar Fusion Mapping
Once 3D point clouds are recovered from the sonar fusion

system, we need to place these clouds in a fixed frame to
build the map in Equation (4). Recall that our SLAM system
estimates robot poses at discrete time steps. Consequently,
we only perform mapping at these same time steps. In our
implementation, each keyframe in the SLAM system retains
zFused as a 3D point cloud, registering it to the fixed frame
I per Equation (4), denoted as sonar fusion mapping.
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Fig. 3: Mapping via object specific Bayesian inference block diagram. A pair of orthogonal sonar images is provided as input (black
lines bound the region of overlap between the two sonar fields-of-view). The images are processed according to Section V. The horizontal
image is segmented as in Section VI-A (colors denote different object classes - seawall in green, rectangular pilings in yellow, cylindrical
pilings in red). The resulting 3D points enrich each object’s model (Eq. (10)), while MAP inference is applied to 2D points (Eqs. (11), (12)).
We then use the planar SLAM solution to register the resulting point cloud. The synthetic sonar images shown here are sampled from the
virtual environment depicted in Fig. 4b.

VI. MAPPING VIA OBJECT SPECIFIC BAYESIAN
INFERENCE

In this section, we will briefly describe our object specific
Bayesian mapping system [2]. We note that only part of the
sonar images can be used to recover 3D information where
the sonars overlap. This part of our system aims to utilize the
remaining parts of the sonar images, not only the 20◦x20◦

overlapping area. First, we will identify and classify objects;
then, if an object is present inside the overlapping area, we
update our estimate of that object class’s geometry. If an object
is present outside the overlapping area, we will query the
object class’s geometry to fill in the missing dimension in
the sonar image. This object-specific mapping will be used on
objects that are both simple and repetitive to accelerate the
mapping process.

A. Object Identification and Classification

Our object-specific mapping system’s first step is to identify
and classify objects in the horizontal sonar images. We start
with the image pixels classified as contact from Section V-A.
These image pixels are clustered into object instances of
unknown classes using DBSCAN [42]. DBSCAN is used
because it is a density-based clustering algorithm that does not
require the number of clusters to be specified a priori. Once
each object is identified using DBSCAN, a bounding box is
developed around each object. This bounding box is cropped
from the original sonar image and fed to a convolutional neural
network (CNN) for semantic classification.

In this work, we use a simple neural network to perform
semantic labeling of object instances. Specifically, we use a
CNN that accepts a 40x40 pixel bounding box in grayscale
with two convolutional layers. Inputs are generated by fitting
a bounding box around each object identified in a sonar
image and resizing the bounding box into 40x40 pixels. We
utilize Monte-Carlo dropout in this CNN to reject outliers and
uncertain classifications by making m predictions for each
object. This way, we can assess the network’s confidence in
the predictions, as shown in [43]. Uncertain predictions are
simply provided with the label “unknown class.” This pipeline
in action is shown in Fig. 3.

To train this CNN, a small hand-annotated data set of
representative sonar imagery is used, which is not included
in the sequences used for validation in this work. For training

the simulation model we use 200 samples per class and for real
world data we use 300 samples per class. Generating sufficient
training samples to train the model properly requires data aug-
mentation. We augment our data by applying Gaussian noise,
random flips, and random rotations. Further augmentation is
not employed as satisfactory performance is achieved with the
above methods.

B. Bayesian Inference for Objects Observed in 3D

Each detected object in the horizontal sonar image is now
represented by a cluster of pixels with a class label. These
pixels have a range, bearing, and unknown elevation angle. At
this step, the dual sonar fusion system provides an elevation
angle for a subset of these pixels, which lie inside the small
region with overlapping fields of view. These are the pixels
we concern ourselves with in this subsection.

We assume objects of the same class will have similar ge-
ometries, as is typical in the humanmade littoral environments,
populated with piers, used to validate this algorithm. Semantic
classes are defined with this goal in mind, so that objects with
similar geometries are grouped together.

We use a Bayesian inference framework to estimate the
conditional distribution P(zhZ |zhR, zhθ ) for each object class
incrementally and online. Note that in this process, we estimate
Cartesian zZ and not elevation angle. zZ is a more accurate
indicator of the absolute, rather than relative, height at which
an object is observed, since in this work we consider scenarios
in which our robot maps the environment at a fixed depth,
employing planar SLAM. An object’s distribution is updated
for every measured 3D point per Bayes rule:

P (zhZ |zhR, zhθ ) =
P (zhR, z

h
θ |zhZ)P (zhZ)

P (zhR, z
h
θ )

. (10)

Elevation angles measured by the dual sonar fusion system are
treated as measurements of zhZ at the given range and bearing,
corrupted with zero-mean Gaussian noise, N (µ, σ2), forming
the measurement likelihood P (zhR, z

h
θ |zhZ). zhZ is different

from zZ in that it is specifically modeling the value from
the perspective of the horizontal sonar. The prior, P (zhZ),
is simply the existing distribution corresponding to the zhR
and zhθ of the newly observed 3D point. In practice, these
distributions are maintained as a discrete set of probabilities
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across the whole elevation bound. We note that these distri-
butions are maintained throughout the whole time-history of
the robot’s mission, so they incorporate observations from the
current frame and from all previous frames. An initial uniform
distribution is used if an update has never been performed
previously.

At times we may view an object class at different distances
and orientations; for this reason, we register each object to
a reference coordinate frame before we apply Bayes rule
in Eq. (10). The first time we see an object, we note its
minimum range and median bearing as the reference frame’s
origin. These object points are then maintained as a “reference
point cloud” to register the object class’s future instances
to this coordinate frame. When an object is detected, and
its distribution P(zhZ |zhR, zhθ ) is updated, the object is first
registered to the given object class’s reference coordinate
frame using ICP. The transformed points are evaluated via
Eq. (10) and are added to the points used to register future
object sightings to the reference frame. Our object-specific
distributions P(zhZ |zhR, zhθ ) will next allow us to predict the
height of the sonar returns observed only in 2D.

C. Predicting 3D Structure via MAP Estimation

At each time step, after the process detailed in Section
VI-B is completed for the objects measured in 3D, we again
consider all objects with class labels comprised of a minimum
number of pixels. We now use the posterior distribution of each
object’s geometry, P (zhZ |zhR, zhθ ), to predict the height of all
2D points lacking this information.

Suppose an object belongs to a class with a posterior
updated by at least one application of Eq. (10). In that case, we
first proceed with registration to the object class’s reference
frame as described above without adding new points to the
reference point cloud. Due to the sonar’s ambiguity, there may
be more than one true zhZ for a given range and bearing. For
this reason, we break maximum a posteriori (MAP) estimation
into two steps, as shown in Eqs. (11), (12).

zhZ = argmaxP (zhZ |zhR, zhθ ), zhZ ≤ 0 (11)

zhZ = argmaxP (zhZ |zhR, zhθ ), zhZ > 0 (12)

If one or both maxima correspond to confidence exceeding a
designated threshold, those values are adopted for inclusion in
the robot’s map. Eq. (1) is solved to provide an output in local
Cartesian coordinates, [X,Y, Z]T . This process is completed
for all objects in view – the result is a horizontal sonar image
with more observations fully defined in 3D, rather than just
the few observations inside the region of dual-sonar overlap.
The observations are converted to a point cloud and registered
to the global map frame per Eq. (4).

D. Inference Based Mapping

A 3D point cloud has been recovered at this stage in the
inference-based mapping system. In exactly the same way as
described in Section V-C, we can only add to an aggregate
3D map at the discrete timesteps in the SLAM solution. This
new inferred 3D point cloud is retained at the given keyframe
and registered to the fixed frame I per Equation (4).

VII. SUBMAPPING WITH ORTHOGONAL CONCURRENT
WIDE APERTURE SONAR IMAGES

This section will describe our newest contribution to 3D
mapping using orthogonal sonar images. As noted in Sections
V-C and VI-D, we only add to the 3D map from the SLAM
keyframe poses. These SLAM keyframes are only generated
when enough distance or rotation has accumulated to warrant
adding a new keyframe. However, sonar imagery is available
at 5 Hz, leaving most of the sonar image pairs unused in
the above 3D mapping systems. This motivates our newest
iteration on this system, building submaps. In this subsystem,
we will retain the sonar imagery between keyframes to build
denser, more detailed 3D maps without requiring the prior
information used by our inference based mapping system. We
note this key difference from our other versions of the system:
submapping retains the data at and between the keyframes,
rather than only at keyframes, as in the methods presented in
Sections V-C and VI-D.

A. Submap Construction

Constructing submaps is a simple process using the dead
reckoning pose ot and the fused sonar images zFused. We note
that keyframes are discrete steps in time, denoted by iterator
k. Once a keyframe is added, we log all the zFused and their
poses relative to the most recent keyframe. A submap at step
k, Sk, is defined as the set of observations between keyframes
registered in the local reference frame:

Sk = {T0
t ẑ

Fused
0 ,T1

t ẑ
Fused
1 ,T2

t ẑ
Fused
2 , ...,TN

t ẑFused
N }.

(13)

Note that the submap Sk contains the N fused sonar obser-
vations, ẑFused

i , where N is the number of observations until
the next keyframe is instantiated. Each of the N observations,
ẑFused
i , has an associated transformation, Ti

t, that registers
ẑFused
i into the keyframe’s local reference frame at step k,

derived from the dead reckoning system providing position.
When considering time synchronization issues, linear interpo-
lation is used to solve for a transform between dead reckoning
steps, if required. The robot map, M can be built from the
submaps:

M = {T0S0,T1S1,T2S2, ...,TtSt, } (14)

Where Tk is from the SLAM based pose estimate, x. The
key difference between submapping and the other mapping
techniques in this paper is the collection and use of sonar data
between the discrete SLAM keyframes. Note, this system does
require a source of accurate dead reckoning over the short term
between keyframes.

This sets up the tradeoffs to be examined in the Experiments
section of this paper. Is a semantic labeling model available
for the environment? Are repeating objects present? Does the
vehicle have an accurate dead reckoning system? We will
compare systems using these questions and their applicability
in varying use cases.
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System Semantic Model Repeating Objects for High Coverage Short Term Dead Reckoning

Sonar Fusion Mapping x x x
Inference Based Mapping ✓ ✓ x

Submapping x x ✓

TABLE I: Comparison of system requirements. We compare our three mapping systems, each with its operational requirements. A check
denotes the requirement of a category, while an x means it is not necessarily required.

VIII. EXPERIMENTS

In this section, we will perform experimental validation and
comparison of three versions of our mapping system. These
systems will be referred to as below:

1) Sonar fusion mapping: using only sonar image pairs
at discrete timesteps (Section V-C)

2) Inference Based Mapping: using only sonar image
pairs at discrete timesteps and inference on those
timesteps (Section VI-D)

3) Submapping: using sonar image pairs at and between
timesteps (Section VII-A)

We note that each method has its advantages, disadvantages,
and requirements for operation. Sonar fusion mapping may
provide inadequate detail due to its generally poor coverage.
Inference based mapping improves on this but requires a
trained model to segment sonar images. Moreover, inference
based mapping’s coverage rate is correlated with the number
of simple, repeating objects in the environment, for example,
circular pier pilings. Lastly, submapping will increase map
coverage by retaining the data between timesteps but requires
a dead reckoning system that is accurate between keyframes.
A summary of operational requirements is shown in Table I.

A. Hardware Overview

In order to perform real-world experiments and derive a
simulation environment for this work, we use our customized
BlueROV2-heavy robot, shown in Fig. 11a. This vehicle
is equipped with an onboard Pixhawk, Raspberry Pi, and
NVIDIA Jetson Nano for control and computation. We use a
Rowe SeaPilot doppler velocity log (DVL), VectorNav VN100
inertial measurement unit (IMU), KVH DSP-1760 3-axis fiber
optic gyroscope, and a Bar30 pressure sensor. We use a pair
of wide aperture multi-beam imaging sonars for perceptual
sensors, a Blueprint subsea Oculus M750d and M1200d. We
use the M750d as our horizontal sonar and the M1200d as the
vertical sonar. Note that the entirety of this work takes place
with these sonars and their simulated versions operating at a
range of 30 meters, with a 5cm range resolution.

In order to manage the BlueROV’s sensors, SLAM system,
and companion 3D mapping system, we use the Robot Op-
erating System [44], both for operating the vehicle and for
playback of its data. The 3D mapping algorithms are applied
to real-time playback of our data using a computer equipped
with an NVIDIA Titan RTX GPU and Intel i9 CPU. Note that
all experiments take place at a fixed depth.

B. Simulation Study

In this section, we study our three mapping systems using
simulated underwater environments. We utilize Gazebo [45]

with UUV Simulator [46] to simulate the environment, vehicle,
and sensors, including the wide aperture multi-beam imaging
sonar [47]. Simulated environments are selected to capture
variability in complex structures like ship hulls and aircraft
and the number of repeating simple objects, such as round
pier pilings. The four environments are described below:

1) Simulated Marina 1: A marina environment consisting
of floating docks and circular pier pilings. Note the
heavy presence of repeating objects; the circular pier
pilings. Designed to be similar in appearance to SUNY
Maritime college’s marina in The Bronx, NY. The sim-
ulation environment is shown in Figure 4a.

2) Simulated Marina 2: A marina environment consisting
of floating docks, small boats, circular pier pilings, and
corrugated seawall. Again, note the heavy presence of
repeating objects. Shown in Figure 4b.

3) Simulated Ships harbor: A harbor environment with
floating docks, a long corrugated seawall, and two large
vessels. One large sailing ship and a WWI-era cruiser.
This environment only has some repeating structures.
Designed to be similar in appearance to Penn’s Landing
Marina in Philadelphia, PA. The simulation environment
is shown in Figure 4d.

4) Simulated Aircraft Site: A single large aircraft on the
seafloor. Note that there are no repeating structures.
Moreover, this is the most complex geometry we have
examined to date. The simulation environment is shown
in Figure 4c.

Since our systems utilize discrete SLAM keyframes in one way
or another, which are added by distance/rotation threshold, we
vary this distance and rotation, denoted as keyframe density.
It is critical to vary keyframe density since this directly influ-
ences mapping coverage. In our work, we test combinations
of keyframe distance and rotation. Keyframe distances of
[1,2,3,4,5] meters and keyframe rotations of [30,60,90] degrees
are examined. Note that we test all 15 combinations of distance
and rotation.

To study the performance of each method, we consider
several metrics. Firstly we define a coverage metric, the total
number of voxels occupied when the point cloud map is
discretized. We use voxel count as a coverage metric to avoid
double-counting redundant data in the same location. Point
cloud maps are voxelized using a 0.1m voxel size. Next, we
can quantify point cloud map error using the environment
CAD model. Here we consider the absolute distance between a
point in the map and the CAD model. Accuracy is reported us-
ing mean-absolute-error (MAE) and root-mean-squared-error
(RMSE) to characterize the error distribution’s mean and size.

1) Simulated Marina 1: Firstly we consider simulated
marina 1. Recall that this environment contains floating docks
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(a) Simulated Marina 1 (b) Simulated Marina 2 (c) Simulated Plane

(d) Simulated harbor

Fig. 4: Simulation Environments.

(a) Simulated Marina 1

(b) Simulated Marina 2

(c) Simulated harbor

(d) Simulated Plane

Fig. 5: Simulation coverage results. Coverage in both table and color
format. Each cell reports voxel count, with color mapping from blue
to orange as low to high coverage. The vertical axis shows the varying
keyframe rotations in degrees, with the horizontal axis showing the
Euclidean distance between keyframes in meters. Each system type
is shown here, with sonar fusion mapping at left, inference based
mapping at center and submapping at right. Subfigure (a) shows the
results for simulated marina 1, (b) shows the results for simulated
marina 2, (c) shows the results for the simulated harbor and (d) shows
the results for the simulated plane. Note, the voxel count is colored
according to the scale bar given at the right of each subfigure.

and many repeating circular pier pilings, shown in Figure 4a.
Figure 5a shows a summary of coverage, measured in voxel
count. Qualitative sonar fusion results are shown in Figure 6a,

inference based mapping results are shown in Figure 6b, and
submapping is shown in Figure 6c. The trajectory followed
by the robot is shown in Fig. 7a. For sonar fusion mapping,
we note the lowest coverage of the three methods, with
coverage increasing as keyframe density increases, left and
up in Figure 5a. When considering inference based mapping,
the center of Figure 5a, we again note increased coverage with
increased keyframe density and generally improved coverage
compared to sonar fusion mapping, due to the prevalence of
simple, repeating objects. However, we also note that inference
based mapping has higher coverage than submapping when
the distance between keyframes is 1 meter. When considering
submapping, on the right of Figure 5a, coverage is generally
flat across keyframe density, and coverage is higher than other
methods, except when the inference based mapping system is
applied in the densest keyframe category.

Again, we consider mapping error by comparing the point
cloud map to the simulation environment CAD file. Mapping
error is reported in Table II. We note that mean mapping error
is similar across all three methods in simulated marina 1, with
submapping having a slightly smaller RMSE.

2) Simulated Marina 2: Next, we consider simulated ma-
rina 2, shown in Figure 4a. Recall that this environment
contains floating docks, small boats, many repeated circular
pilings, and corrugated seawalls. Coverage results for simu-
lated marina 2 are shown in Figure 5b. Qualitative results are
shown in Figures 6d, 6e and 6f. The trajectory followed by
the robot is shown in Fig. 7b. Again we see a similar trend;
sonar fusion mapping shows the least coverage, with inference
based mapping improving due to the repeating objects in
the environment. However, inference based mapping only
improves coverage over submapping when keyframes are two
or less meters apart. Submapping again shows a generally
flat performance in all keyframe densities. When considering
mapping accuracy, we note comparable MAE, with slight
RMSE change when moving to submapping. Simulated marina
2 accuracy results are shown in Table II.
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(a) Marina 1 Sonar Fusion Mapping (b) Marina 1 Inference Based Mapping (c) Marina 1 Submapping

(d) Marina 2 Sonar Fusion Mapping (e) Marina 2 Inference Based Mapping (f) Marina 2 Submapping

(g) Plane Sonar Fusion Mapping (h) Plane Inference Based Mapping (i) Plane Submapping

(j) harbor Sonar Fusion Mapping (k) harbor Inference Based Mapping (l) harbor Submapping

Fig. 6: Simulation Environment Mapping Results.

3) Simulated Ships harbor: This simulated ship’s harbor
contains only a few repeating objects, floating docks, a long
corrugated seawall, and two ships, shown in Figure 4d. Quali-
tative results are shown in Figures 6j, 6k and 6l. The trajectory
followed by the robot is shown in Fig. 7d. When considering
the coverage in this environment, shown in Figure 5c, we
note a smaller coverage gap between sonar fusion mapping
and inference-based mapping due to the reduced prevalence
of simple repeating objects for the inference based mapping
system to leverage. Additionally, we note that submapping
outperforms inference based mapping in all keyframe density
cases. The performance difference between submapping and
inference based mapping is likely a combination to two key
reasons—first, the lack of repeating objects in the environment.
Second, the complex geometry of ship hulls is difficult to
map using only keyframes; submapping uses the data at and
between the keyframes, enabling denser mapping of complex
structures. When considering the simulated harbor environ-
ment error reported in Table II we note similar means, with
submapping having a larger RMSE.

4) Simulated Aircraft Site: This environment consists of
one large structure, a WWII-era B-24 Liberator sitting on
the seafloor, shown in Figure 4c. We use this structure as
it presents highly complex geometry not previously analyzed
with our mapping systems. Further, it does contain any repeat-
ing objects, only one large structure, the aircraft. This specific
aircraft is selected due to its distinctive dual tail arrangement,
which, if mapped correctly, will be easily recognizable. Qual-
itative results are shown in Figures 6g, 6h and 6i. Coverage
results are shown in Figure 5d. The trajectory followed by the
robot is shown in Fig. 7c. Due to the total lack of repeating
objects in this environment, there is a negligible coverage
difference comparing the inference-based mapping system to
the sonar fusion map. When considering the submapping
system, Figure 5d shows a coverage improvement compared
to the other two systems. Most importantly though, when
considering the qualitative results in Figure 6i, there is a more
complete representation of the aircraft’s main wing and tail
section. Regarding map accuracy, shown in Table II, we note
similar means, with the submapping RMSE slightly larger.
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(a) Marina 1 Trajectory (b) Marina 2 Trajectory (c) Plane Trajectory

(d) Harbor Trajectory

Fig. 7: Simulation Environment Robot Trajectories. Blue lines indicate the robot path, black points indicate the sonar observations.

Environment
Marina 1 Marina 2 Harbor Plane

System MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Sonar Fusion Mapping 0.16 0.21 0.19 0.25 0.21 0.30 0.17 0.24
Inference Based Mapping 0.16 0.20 0.17 0.22 0.22 0.30 0.17 0.24

Submapping 0.14 0.17 0.16 0.19 0.26 0.37 0.21 0.28

TABLE II: Simulated mapping accuracy in meters. We report aggregated results for each system in each environment. MAE and RMSE
are both reported in meters.

Environment
Marina 1 Marina 2 Harbor Plane

System Mean SD Mean SD Mean SD Mean SD

Orthogonal Sensor Fusion 0.088 0.018 0.080 0.011 0.086 0.014 0.075 0.010
Mapping Inference 0.617 0.267 0.529 0.387 0.277 0.172 0.233 0.193

Submap Construction 0.005 0.009 0.001 0.003 0.006 0.010 0.001 0.003

TABLE III: Runtime in seconds. We report mean and standard deviation (SD) runtime for all experiments for a particular system in each
environment. Orthogonal sensor fusion refers to the process of fusing a single sonar image pair. Mapping inference is the time required
to apply the method in Section VI-D to a single keyframe. Submap construction is the time required to assemble a submap from a single
timestep once all the data is collected.

5) Summary of Simulation Results: The results of the
simulation study can be summarized as follows. Firstly the
sonar fusion mapping system provides accurate maps but
potentially low coverage, especially when keyframe density
is sparse. However, the sonar fusion mapping system has the
fewest system requirements of the three compared methods,
requiring no trained semantic model, no repeating objects to
enhance coverage, and no short term dead reckoning system.
Next, the inference based mapping system makes coverage
improvements in three out of four environments compared to
sonar fusion mapping. We note that this increased mapping
coverage is due to the presence of simple repeating objects to
perform object-specific inference using a trained semantic la-
beling model. Lastly, submapping only outperforms inference
based mapping when there are few, if any, repeating objects
in the environment. However, submapping recovers reasonably

accurate, high-coverage maps in cases where the structures are
complex. It is essential to note the value of submapping when
potentially deploying an autonomous system to an unknown
environment. Dense, 3D maps can be recovered with no prior
information regarding the environment. Moreover, in the case
of complex 3D geometry, parts of the structure can be mapped
that the other systems in this paper miss, such as the wing of
the airplane shown in Figure 6i.

When considering runtime, reported in Table III, we provide
both mean and standard deviation (SD) in seconds. In the row
marked “orthogonal sensor fusion” in Table III, we provide
the time required to fuse a single pair of sonar images, not
build a map. We note that this runtime is sufficient to keep
pace with the simulated sonar sensor, which runs at 5Hz
(generating new images every 0.2 seconds). The row marked
“Mapping inference” in Table III records the time required
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to apply the inference based mapping system in section VI-D
to a single keyframe. We note that runtime for this category
is slower when repeating objects are present. Moreover, a
key detail some readers may note is that we do not apply
the inference systems to data between keyframes. While the
runtime is sufficient to keep up with the addition of keyframes,
applying this method to the N sonar image pairs between
keyframes would be impractical. Lastly, when considering the
runtime of the “submap construction” row in Table III, this
is the required time to construct a submap once all the data
is collected between keyframes. We note that this process is
low in runtime and does not add undue computation to our
system.

C. Real World Study

This section will showcase three experiments with real-
world data collected with our robot. In this real-world case
study, ground truth data is unavailable, so we will analyze only
coverage and runtime using the same means as the simulation
study. The three environments are (1) SUNY Maritime Col-
lege’s marina in The Bronx, NY, (2) Penn’s Landing marina in
Philadelphia, PA, and (3) a marina adjacent to Norfolk Naval
base in Norfolk, VA. SUNY Maritime is shown in Figure 11a
and from satellite view in Figure 11b; note the heavy presence
of circular pilings, repeating simple objects. Penn’s landing is
shown in Figure 11c and from satellite view in Figure 11d;
note the presence of several large complex structures and few
repeating objects. Norfolk is shown in Figure 11e with satellite
view show in Figure 11f. Note that this environment has two
long edge structures, the concrete wall on the left of the marina
and the long floating dock on the bottom, with the rest of the
structures composed of repeating pier pilings.

1) SUNY Maritime Results: At SUNY Maritime college,
we see a coverage trend consistent with our simulation ex-
periments, shown in Figure 8a. Qualitative results are shown
in Figures 9a, 9b and 9c. The estimated trajectory followed
by the robot is shown in Fig. 10a. Inference based mapping
makes significant coverage improvements over fusion based
mapping. Moreover, submapping shows good coverage, better
than fusion based mapping. However, inference based mapping
shows better coverage results than submapping with its densest
set of keyframes. Note that SUNY Maritime has very few
complex structures and is characterized by many repeating pier
pilings, an excellent use case for inference based mapping.

2) Penns Landing Results: Penn’s Landing has very few
repeating objects but more complex structures, and our tra-
jectories include observations of a ship hull and barge. Qual-
itative results are shown in Figures 9d, 9e and 9f. Figure 8b
shows coverage results from Penn’s Landing. The estimated
trajectory followed by the robot is shown in Fig. 10b. We
note the small performance improvement in inference based
mapping compared to fusion based mapping, likely due to
the small number of repeating objects. Submapping shows the
highest coverage in this environment and is flat across varying
keyframe densities. Note the dense point clouds recovered
from the barge and ship in Figure 9f.

(a) SUNY Maritime College

(b) Penn’s Landing

(c) Norfolk

Fig. 8: Real world coverage results. Coverage in both table and
color format. Each cell reports voxel count, with color mapping
from blue to orange as low to high coverage. The vertical axis
shows the varying keyframe rotations in degrees with the horizontal
axis showing Euclidean distance between keyframes in meters. Each
system type is shown in this figure, with sonar fusion mapping at left,
inference based mapping at center and submapping at right. Note, the
voxel count is colored according to the scale bar given at the right
of each subfigure.

Environment
SUNY Maritime Penn’s Landing

System Mean SD Mean SD

Orthogonal Sensor Fusion 0.172 0.030 0.207 0.024
Mapping Inference 0.947 0.251 0.405 0.253

Submap Construction 0.003 0.005 0.003 0.003

TABLE IV: Real world runtime in seconds. We report mean and
standard deviation (SD) runtime for all experiments for a particular
system in each environment. Orthogonal sensor fusion refers to the
proccess of fusing a single sonar image pair. Mapping inference is
the time required to apply the method in section VI-D to a single
keyframe. Submap construction is the time required to assemble a
submap from a single timestep once all the data is collected.

3) Norfolk Results: Norfolk shows a similar trend to SUNY
Maritime college and our simulation experiments, as shown in
Figure 8c. The presence of repeating objects means inference
based mapping is able to recover the most dense version of
the map, but submapping is consistent across all parameter-
izations. We especially note the increase in coverage on the
concrete wall at the back of the map when using submapping,
shown in Figure 9i. The estimated trajectory followed by
the robot is shown in Fig. 10c. We do note some rotational
distortion, likely due to gyroscope error.

4) Real World Runtime: Table IV shows the runtime for
these real-world datasets. Submap construction again does
not add undue computational burden to our system, and
performing inference on keyframes takes time, making it clear
that inference should only be applied to keyframes. Orthogonal
sensor fusion time runs faster or near the sonar refresh rate of
5Hz.
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(a) SUNY Maritime Sonar Fusion Map (b) SUNY Maritime Inference Map (c) SUNY Maritime Submapping

(d) Penn’s Landing Sonar Fusion Map (e) Penn’s Landing Inference Map (f) Penn’s Landing Submapping

(g) Norfolk Sonar Fusion Map (h) Norfolk Inference Map (i) Norfolk Submapping

Fig. 9: Real World Results.

(a) SUNY Maritime Trajectory (b) Penn’s Landing Trajectory (c) Norfolk Trajectory

Fig. 10: Real Environment Robot Trajectories. Blue lines indicate the robot path, black points indicate the sonar observations.

5) Real World Results Summary: These real-world datasets
make the results of this study clear; when repeating objects
are present, and a semantic model can be provided to leverage
those objects, inference based mapping provides excellent
coverage. However, when a model is unavailable or when these
repeating objects are not prevalent, submapping provides better
coverage, especially when considering complex objects like
ship hulls. However, sonar fusion mapping provides adequate
results when neither a model nor a short-term dead reckoning
system is available.

IX. CONCLUSIONS

In this paper, we have presented an extension of our existing
3D underwater sonar mapping system. We have proposed uti-
lizing the data available between SLAM keyframes by building
submaps, moving toward a capability for densely mapping any

underwater environment using an orthogonal imaging sonar fu-
sion system. We have integrated this submapping system with
our existing, open-source SLAM system1 and demonstrated
its utility in two real-world environments, including building
a realistic ship map. We compared this new submapping
system to our previous work with orthogonal imaging sonars.
We have shown that when the environment contains many
simple repeating objects and a trained model is available,
inference based mapping is the tool of choice. However, when
reliable short-term dead reckoning is available, and structures
are highly complex, such as aircraft, submapping provides
the superior option. We have also shown that our most basic
system is adept at building reasonable maps with few system
requirements.

1https://github.com/jake3991/sonar-SLAM

https://github.com/jake3991/sonar-SLAM
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(a) (b)

(c) (d)

(e) (f)

Fig. 11: Real world environments. (a) shows our experimental setup at SUNY Maritime college. (b) shows a satellite image of (a). (c)
shows a ground level view of Penn’s landing with (d) showing a satellite view. (e) shows a ground level view of the marina in Norfolk, VA
with (f) showing a satellite image view.

However, there remain some open questions. Chief among
them is how to combine the value of submapping with that
of inference. If an environment has both complex structures
and simple repeating objects, how can the runtime limitations
of the inference system be overcome? We aim to explore this
question in future work.
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