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The speed of gravitational waves vg can be measured with the time delay between gravitational-
wave detectors. Our study provides a more precise measurement of vg using gravitational-wave
signals only, compared with previous studies. We select 52 gravitational-wave events that were
detected with high confidence by at least two detectors in the first three observing runs (O1, O2,
and O3) of Advanced LIGO and Advanced Virgo. We use Markov chain Monte Carlo and nested
sampling to estimate the vg posterior distribution for each of those events. We then combine their
posterior distributions to find the 90% credible interval of the combined vg distribution for which
we obtain 0.99+0.02

→0.02c without the use of more accurate sky localization from the electromagnetic
signal associated with GW170817. Restricting attention to the 50 binary black hole events gen-
erates the same result, while the use of the electromagnetic sky localization for GW170817 gives
a tighter constraint of 0.99+0.01

→0.02c. The abundance of gravitational wave events allows us to apply
hierarchical Bayesian inference on the posterior samples to simultaneously constrain all nine coef-
ficients for Lorentz violation in the nondispersive, nonbirefringent limit of the gravitational sector
of the Standard-Model Extension test framework. We compare the hierarchical Bayesian inference
method with other methods of combining limits on Lorentz violation in the gravity sector that are
found in the literature.

I. INTRODUCTION

The third observing run (O3) of Advanced LIGO [1]
and Advanced Virgo [2] was the first complete run in
which all three detectors were used [3, 4]. In total, O3
adds 79 gravitational-wave (GW) candidates, more than
seven times the 11 GW candidates from the first (O1)
and second (O2) observing runs combined [5]. With the
availability of many more GW events, it becomes possi-
ble to measure the speed of GWs vg more precisely than
previous works that used similar methods [6, 7]. Further-
more, it allows a direct and comprehensive exploration of
the isotropy of vg for the first time.

General relativity (GR) predicts that the speed of GWs
is the same as the vacuum speed of light c. The GWs
detected by Advanced LIGO and Advanced Virgo can
be used to make statistical inferences about vg, thereby
testing the theory of GR. The first measurement of vg
using the time delay between the GW detectors was per-
formed by Ref. [6]. By applying Bayesian inference, the
90% credible interval of vg distribution was constrained
to be (0.55c, 1.42c) [6]. Reference [7] further constrained
the 90% credible interval to (0.97c, 1.05c), by applying
similar methods to 11 events from O1 and O2. With a
total of 52 high-confidence multidetector GW events ac-
crued through the end of O3, we are able to perform a
similar analysis using more events, more robustly test-
ing the theory of GR. The method used here remains
much less sensitive than the multimessenger astronomy
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approach used in Ref. [8], which placed the constraint
+7 → 10↑16 ↑ vg↑c

c
↑ ↓3 → 10↑15. Rather an improved

precision, the present approach provides confirmation of
the basic conclusion of vg = c via an alternative ap-
proach. More significantly, the many events available
that come from di!erent sky directions permit the explo-
ration of the isotropy of vg.
The large body of events now available, which arrive

from a multitude of sky directions, allows for a complete
exploration of the isotropy of vg in the context of the
Lorentz invariance test framework provided by the grav-
itational Standard-Model Extension (SME).1 Reference
[7] simultaneously constrained the first four of nine co-
e”cients for Lorentz violation in the nondispersive, non-
birefringent limit of the gravity sector using four GW
events from O1 and O2. Other recent works [13–15] have
sought the e!ects of birefringence and dispersion using
the SME. Still others have sought the dependence of GW
speed on the motion of the source [16]. In this paper, we
use 24 of 52 high-significance multidetector GW events
to simultaneously constrain all nine coe”cients in the
nondispersive, nonbirefringent limit of the SME. While
our constraints are much weaker than previous works
such as Ref. [17], which have constrained the coe”cients
for Lorentz violation in the gravity sector down to the
order of 10↑15 to 10↑14 via multimessenger astronomy,
these constraints were obtained using models with only
one parameter each. Therefore, our work is the first to

1 For an annually updated review of observational and experimen-
tal results, see Ref. [9]. For early foundational work on the
SME, see Ref. [10]. For foundational gravity-sector work, see
Ref. [11, 12].
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provide direct limits from GW observations on all nine
coe”cients simultaneously.

The remainder of this paper is organized as follows.
In Sec. II, we discuss the methods used to extract vg es-
timates for each event and present the results. Section
III presents and compares a number of methods for ex-
tracting simultaneous limits on the nine coe”cients for
Lorentz violation before presenting our final estimate of
these coe”cients from the O1–O3 data.

II. SPEED OF GRAVITATIONAL WAVES

A. Bayesian inference methods

Here, we briefly describe our method for obtaining the
speed of GWs. Interested readers are invited to refer to
Ref. [7] for full details.

When a GW passes through Earth, if two or more de-
tectors detect the signal, we can use the relative locations
of the detectors and the di!erence in detection times from
those detectors to simultaneously estimate the sky loca-
tion of the GW event and vg. With only one detector, we
cannot find any vg information, as there is no di!erence
in detection times in this case. Therefore, we select those
events that are detected by at least two GW detectors.

Furthermore, we only consider those events whose me-
dian signal-to-noise ratios (SNR) are no smaller than
10.0, as reported in the GWTC-2 and GWTC-3 catalog
papers [3, 4]. In total, 41 O3 events meet our selection
criteria and are listed in Tables I and II. All O1 and O2
events meet these two selection criteria, so we include
their posterior distributions used in Ref. [7] in our anal-
ysis. Note that the SNR values used to select the O1
and O2 events (which are the same as what are used
in Ref. [7]) correspond to the network SNR with which
the events were found by the GstLAL search pipeline as
reported in Ref. [5].

The standard parameter estimation using GW data
from multiple detectors imposes the constraint that GWs
travel at the speed of light [18]. In this work, we re-
move this constraint such that vg becomes a parameter
to be estimated with all other signal parameters. This
causes wider distributions for certain parameter estima-
tions. For example, the calculated sky area is often larger
because a defined vg aids sky localization.

Gravitational wave data d, can be decomposed into a
pure GW signal h(t) plus random noise n(t),

d(t) = h(t) + n(t). (1)

Within the framework of Bayesian inference, the poste-
rior distribution of the parameters ωε characterizing a GW
signal is computed from the likelihood of obtaining GW
data given particular values of said parameters and the
a priori knowledge of what we expect those values to
be. The likelihood function is constructed by assuming
the noise n(t) to be stationary and Gaussian distributed.

For details regarding the exact forms of the likelihood
see Ref. [7]. Once obtained, the joint posterior distribu-
tion of the signal parameters can be used to compute the
marginalized posterior distribution of vg as in

p(vg|d) =
∫

p(ωε|d)dωε↓, (2)

where ωε↓ is the set of parameters in ωε except for vg [7].
To carry out parameter estimation for each event

that passes our selection criteria, we use public data
[19, 20] from GWTC-1 through GWTC-3. We
use lalinference mcmc [18, 21–23], which imple-
ments Markov chain Monte Carlo (MCMC) with the
Metropolis-Hastings algorithm and lalinference nest,
which implements nested sampling to run the Bayesian
parameter estimation [18, 24, 25]. For our purposes of
extracting vg distributions, these two algorithms gener-
ate comparable results. We use the publicly available
power spectral densities and calibration envelopes from
the LIGO Scientific, Virgo and KAGRA (LVK) Collab-
oration in our analysis. In this paper, we use a uni-
form prior in vg between 0.1c and 10c. When the vg
posterior rails against the prior, we increase the upper
limit of the prior by another 10c. The broadest prior
we use is from 0.1c to 30c, which we only use for one
event, GW190929 012149. For parameters such as bi-
nary masses and spins, we use the same uniform and
isotropic priors as those used by the LVK [3–5]. We
choose a distance prior that is proportional to luminos-
ity distance squared, similar to Ref. [5]. We do not use
the more complicated cosmological priors used by Refs.
[3, 4]. For O1 and O2 events, we use the posterior sam-
ples from Ref. [7], which used the IMRPhenomPv2 [26–28]
waveform for all events except for the binary neutron
star (BNS) event GW170817, which was analyzed with
the TaylorF2 waveform [29–34]. For most O3 events,
we use the IMRPhenomD waveform [26, 27], which is an
aligned spin waveform model for black-hole binaries. We
do not use the more sophisticated IMRPhenomPv2 model
for these events since in the context of our study, we
do not expect any significant change in vg measurements
to result from the additional intricacies of the more so-
phisticated model. We have verified this lack of change
for a subset of these events and hence chosen to stick
to the IMRPhenomD model consistently for all O3 events
except for GW190521. For additional discussion of this
point, see Appendix A. For the extremely high-mass bi-
nary black hole (BBH) event GW190521, we use the
NRSur7dq4 waveform [35], which is one of the waveform
models used by Ref. [36] for inferring this event’s source
properties. We note that IMRPhenomPv2, IMRPhenomD,
and NRSur7dq4 are all waveform models with inspiral,
merger, and ringdown.
We can achieve a more precise measurement of vg by

combining data from multiple GW events. By interpret-
ing each observation as an independent experiment, we
can multiply the marginalized likelihood as a function of
vg corresponding to each event and obtain the joint pos-
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terior distribution of vg given data from multiple events.
For a uniform prior on vg, the joint posterior can be ex-
pressed as a product of individual event posteriors.

Suppose the GW detectors observe n independent GW
events with data d1, d2, ..., dn. For a uniform prior dis-
tribution of vg, the combined posterior distribution of vg
is

p(vg|d1, d2, ..., dn) ↔ p(vg|d1)p(vg|d2) · · · p(vg|dn). (3)

The single event posterior distributions p(vg|di) are ob-
tained as a numerical function of vg from its parameter
estimation samples by means of Gaussian kernel density
estimation (KDE) [37, 38]. We use the package Scipy’s
implementation of Gaussian KDE to obtained the pos-
teriors [39]. The joint posterior distribution is then ob-
tained through Eq. (3).

Then, for individual and combined posteriors, we cal-
culate Bayes factors K, via the Savage-Dickey density
ratio

K =
p(vg = c | d1, d2, ...)

p(vg = c)
, (4)

where p(vg = c | d1, d2, ...) is the posterior probability of
vg = c and p(vg = c) is the prior probability of vg = c
[40]. Higher Bayes factors suggest stronger evidence for
vg = c.

B. Results

In Tables I and II, we show the vg estimates with
90% credible intervals, network SNRs, sky areas at 90%
credible level, and Bayes factors for the selected 41 O3
events. Also shown are the analogous quantities ob-
tained from their combined posteriors. Out of the 41
selected O3 events, 40 events are BBH candidate events.
GW200115 042309 is a neutron star–black hole (NSBH)
event, with masses of 5.9+2.0

↑2.5M↔ and 1.44+0.85
↑0.29M↔ at 90%

credible interval [4]. Here, by combining the 41 selected
O3 events, we constrain the 90% credible interval of vg
to be 0.99+0.02

↑0.03c, with a Bayes factor of 205.9.
We combine the O3 results with the O1 and O2 results

discussed in Ref. [7]. The 11 O1 and O2 events are run
with lalinference mcmc, which shows results that are
consistent with lalinference nest used for O3a runs
[3, 5, 7]. In Table III, we show the vg estimates with 90%
credible intervals, network SNRs, sky areas at 90% cred-
ible level, and Bayes factors for the 11 O1 and O2 events
and their combined posteriors. We use the same posterior
samples as used by Ref. [7], but Table III shows slightly
di!erent 90% credible intervals from those in Ref. [7] be-
cause we use Gaussian KDE smoothing in this study to
extract the credible intervals while Ref. [7] directly used
the posterior samples without KDE smoothing [7]. These
11 events were detected by at least two detectors and
had median GstLAL network SNR values greater than
10.0 [5]. GWTC-2.1 [41] shows network SNR values for

O1 and O2 events based on lalinference parameter
estimations, but we choose GstLAL SNR values to be
consistent with Ref. [7] from which we obtain the vg pos-
terior samples. GW170817 is a BNS event that was also
detected in the electromagnetic spectrum [17, 42]. The
“fixed” label means that the result uses the sky localiza-
tion from the electromagnetic detections, which is much
more precise than the localization generated by GW de-
tection pipelines.
Combining the 41 O3 events and 11 O1 and O2 events

without fixing GW170817’s sky localization at the de-
tected electromagnetic (EM) signal, we obtain the 90%
credible interval of vg to be 0.99+0.02

↑0.02c, with a Bayes fac-
tor of 291.9. With GW170817 sky localization fixed, vg
is 0.99+0.01

↑0.02c, with a Bayes factor of 249.0. For a total of
49 BBH events, i.e. excluding GW170817, GW190924,
and GW200115, vg is 0.99+0.02

↑0.02c, with a Bayes factor of
221.2. Figure 1 shows the combined posterior of vg.

FIG. 1. Posterior distributions of vg inferred jointly from all
41 events. The black solid line represents the joint posterior,
the thin purple lines represent individual event posteriors and
GR (vg = c) is marked by the yellow vertical line.

C. Discussion

In Ref. [7], with 11 O1 and O2 events and GW170817’s
sky localization unfixed, the combined posterior distribu-
tion of vg was measured to be 1.01+0.04

↑0.05c, while here we

measure vg to be 0.99+0.02
↑0.02c with the 52 selected events.

With GW170817’s localization fixed, in Ref. [7], the com-
bined posterior distribution of vg was measured to be
0.99+0.02

↑0.02c for 11 events, while here we find 0.99+0.02
↑0.01c for

the 52 events. Given that 1c is the GR prediction for
vg, the combined posterior distributions of vg measured
using 52 selected events show no evidence for a violation
of GR. All of these combined results have Bayes factors
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O3a Event vg(c) SNR !(deg2)
Bayes
factor

→GW190408 181802 1.66+0.72
↑0.89 15.3 1216 3.5

→GW190412 1.49+0.47
↑0.53 18.9 594 2.8

GW190421 213856 1.15+0.46
↑0.57 10.7 2837 11.9

→GW190503 185404 0.55+0.26
↑0.24 12.4 1237 0.5

→GW190512 180714 1.42+0.74
↑0.98 12.2 1637 4.9

→GW190513 205428 1.26+1.51
↑0.65 12.9 1075 7.6

GW190517 055101 0.88+0.67
↑0.38 10.7 2125 13.8

GW190519 153544 2.04+1.75
↑1.21 15.6 2070 3.7

GW190521 1.82+5.01
↑1.02 14.2 2279 3.4

GW190521 074359 1.20+0.64
↑0.44 25.8 2318 11.8

→GW190602 175927 0.98+0.17
↑0.65 12.8 1567 27.1

GW190630 185205 6.07+3.52
↑4.90 15.6 3983 0.5

→GW190701 203306 0.85+0.21
↑0.43 11.3 203 21.4

GW190706 222641 6.67+2.91
↑4.88 12.6 3726 0.3

GW190707 093326 2.77+5.01
↑1.69 13.3 5708 0.9

→GW190720 000836 1.54+0.13
↑0.37 11.0 388 1.3

→GW190727 060333 3.42+2.71
↑2.05 11.9 1521 0.6

→GW190728 064510 0.97+0.82
↑0.53 13.0 1873 14.9

→GW190814 1.33+0.43
↑0.28 24.9 334 4.1

GW190828 063405 6.11+3.41
↑4.90 16.2 2498 0.5

GW190828 065509 1.64+4.77
↑0.99 10.0 2917 4.0

→GW190915 235702 0.40+0.71
↑0.11 13.6 904 5.1

→GW190924 021846 0.92+0.32
↑0.32 11.5 918 21.1

GW190929 012149 6.08+3.53
↑4.90 10.1 5761 0.5

TABLE I. The 90% credible intervals of vg from individual
O3a events posteriors. Median network SNR values are
reported from GWTC-2 [3]. The 90% credible regions of the
sky localization (!) without fixing vg at c are calculated from
the individual posteriors [3]. The Bayes factor K indicates
how strong the posterior distributions support vg = c. The
asterisks (↑) in front of GW event names represent the GW
events chosen for obtaining constraints on all nine coe”cients
for Lorentz violation in Sec. III.

on the order of 102, providing strong evidence for vg = c.
Here, our measured distribution of vg is much narrower

than that measured with 11 O1 and O2 events in Ref. [7]
using GW signals alone. This is reasonable, given the
larger sample size of events included in this study. When
we assume that the vg distributions of individual events
are independent and identically distributed, we expect
that the measurement errors would decrease by 1/

↗
n.

In our calculations, we find that the combined vg dis-
tribution roughly follows such a pattern as more events
are added. For example, with 11 O1 and O2 events, the

O3b Event vg(c) SNR !(deg2)
Bayes
factor

GW191109 010717 1.80+1.20
↑0.93 17.3 4033 2.4

GW191129 134029 1.69+4.11
↑1.18 13.1 4891 4.2

GW191204 171526 1.18+1.26
↑0.99 17.5 3009 5.5

GW191215 223052 1.44+2.02
↑0.82 11.2 3280 5.9

GW191216 213338 1.31+0.59
↑0.37 18.6 2076 11.0

GW191222 033537 5.11+4.19
↑3.66 12.5 3206 0.4

GW191230 180458 1.42+1.07
↑0.91 10.4 2538 5.9

GW200115 042309 3.02+5.76
↑2.21 11.3 3271 1.2

GW200128 022011 5.57+3.79
↑3.90 10.6 8988 0.3

→GW200129 065458 0.99+0.08
↑0.38 26.8 149 53.7

→GW200202 154313 0.69+0.20
↑0.33 10.8 1551 0.7

→GW200208 130117 1.39+0.40
↑0.60 10.8 706 5.6

GW200219 094415 1.92+2.20
↑1.59 10.7 3114 3.2

→GW200224 222234 1.03+0.02
↑0.04 20.0 94 48.1

GW200225 060421 1.24+0.66
↑0.75 12.5 3583 8.0

→GW200311 115853 0.96+0.03
↑0.05 17.8 102 32.1

→GW200316 215756 3.76+5.26
↑2.76 10.3 1881 0.8

O3 combined (BBHs) 0.99+0.02
↑0.02 203.3

O3 combined 0.99+0.02
↑0.03 205.9

TABLE II. The 90% credible intervals of vg from individual
O3b events posteriors and combined posteriors using all
O3 events. Median network SNR values are reported from
GWTC-3 [4]. The 90% credible regions of the sky localization
(!) without fixing vg at c are calculated from the individual
posteriors [4]. The Bayes factor K indicates how strong the
posterior distributions support vg = c. The asterisks (↑) in
front of GW event names represent the GW events chosen
for obtaining constraints on all nine coe”cients for Lorentz
violation in Sec. III.

combined vg posterior had an error bar of 0.09c. With
52 events in total, the combined posterior had an error
bar of 0.04c, which follows 0.09c/

√
52/11 ↘ 0.04c. With

GW170817’s sky localization unfixed, we find that Bayes
factor more than doubles from the value of 149.0 obtained
from 11 O1 and O2 events to the value of 291.9 obtained
with all 52 events. This, in conjunction with the error
bar being reduced by half, implies that our measurement
with 52 GW events in total has provided approximately
twice stronger evidence for vg = c.

Interestingly, we find that the combined 90% vg cred-
ible interval using the 41 O3 events is approximately
the same as the 90% vg credible interval obtained by
only considering GW170817 with the fixed sky localiza-
tion. GW170817 had an SNR of 33.0, while only four
of the 41 O3 events had SNRs above 20.0, with the
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Event vg(c) SNR !(deg2)
Bayes
factor

GW150914 0.68+0.50
↑0.29 24.4 2385 7.0

GW151012 6.01+3.45
↑4.41 10.0 6607 0.4

GW151226 4.04+5.17
↑3.28 13.1 6515 1.3

GW170104 1.61+1.88
↑1.12 13.0 5313 4.3

→GW170608 1.14+0.22
↑0.26 14.9 1269 16.9

→GW170729 3.70+1.89
↑2.12 10.8 1287 0.3

GW170809 0.65+0.36
↑0.34 12.4 2252 8.6

→GW170814 1.00+0.09
↑0.28 15.9 250 68.0

GW170817 (unfixed) 1.01+0.04
↑0.06 33.0 53 111.9

→GW170817(fixed) 0.99+0.03
↑0.02 33.0 0 228.5

→GW170818 0.94+0.24
↑0.38 11.3 168 20.5

GW170823 3.90+4.95
↑3.00 11.5 6412 0.9

Combined (All BBHs) 0.99+0.02
↑0.02 221.2

Combined (All, fixed) 0.99+0.01
↑0.02 249.0

Combined (All, unfixed) 0.99+0.02
↑0.02 291.9

Combined (O1/2, fixed) 0.99+0.02
↑0.02 249.0

Combined (O1/2, unfixed) 1.01+0.04
↑0.05 149.0

TABLE III. The 90% credible intervals of vg from individual
O1 and O2 events posteriors. Combined posteriors are pre-
sented for all selected events (O1, O2, and O3) as well as for
O1 and O2 events. Network SNR values are reported from the
GstLAL search pipeline in GWTC-1 [5, 7]. The 90% credible
regions of the sky localization (!) without fixing vg at c are
calculated from the individual posteriors [5, 7]. The Bayes fac-
tor indicates how strongly the posterior distributions support
vg = c. The asterisks (↑) in front of GW event names rep-
resent the GW events chosen for obtaining constraints on all
nine coe”cients for Lorentz violation in Sec. III. The “fixed”
and “unfixed” labels represent whether we fixed the sky lo-
calization of GW170817 at the source of its EM counterpart.

highest being 26.8 for GW200129 065458. The similar-
ity between the vg posterior of GW170817 alone and the
41 O3 events combined suggests that some combination
of higher SNRs and better sky localization do help put
tighter constraints on vg. This shows that our decision
to exclude events with SNRs lower than 10.0 should not
have a high impact on the vg estimates.

Looking to the future, additional two- and three-
detector BBH events with SNRs typical of those above
will lead to a slow improvement in vg measurements as
improvements proceed as 1/

↗
n. However, as GW de-

tectors become more sensitive and the network of detec-
tors expands, we expect more high-SNR, multidetector
GW events that would likely lead to a more rapid pace
of progress in vg estimations via the methods used here.
Meanwhile, future multimessenger detections can provide

more precise sky localizations, which will likely improve
the error bars on the 90% vg credible interval further.

III. SIMULTANEOUS SME LIMITS

A. Basics

In the nonbirefringent, nondispersive limit of the SME
(mass dimension d = 4), using natural units and assum-
ing that the nongravitational sectors, including the pho-
ton sector, are Lorentz invariant, the di!erence between
the group velocities of gravity and light takes the form
[43]

#v = ↓
∑

lm

Ylm(n̂) 12 (↓1)1+ls̄lm, (5)

where the Ylm’s are the spherical harmonics with l ↑ 2.
Here the nine Lorentz-violating degrees of freedom are
characterized by the spherical coe”cients for Lorentz vi-
olation s̄lm, and n̂ is the sky location of the source of the
GWs. We can expand Eq.(5) over positive m to get its
equivalent expression:

#v =
∑

l

(↓1)l
(

1
2sl0Yl0 +

∑

m>0

[Re slmRe Ylm

↓Im slmIm Ylm]
)
. (6)

The SME is a broad and general test framework for
testing Lorentz invariance. Unlike models that attempt
to describe specific e!ects with a small number of pa-
rameters, test frameworks, because of their generality,
have a large number of undetermined coe”cients to be
explored in experimental data. While a number of stud-
ies have proceeded under a simplified approach, some-
times referred to as a maximum reach analysis [44], in
which only one coe”cient at a time is considered, it is
also common to study a family of coe”cients together in
what is sometimes referred to as a coe”cient separation
approach [44]. In the context of the maximum reach ap-
proach, many coe”cients can sometimes be constrained
one at a time using a single measurement, while a num-
ber of measurements that is greater than or equal to the
number of coe”cients considered is typically required to
simultaneously measure the entire family.
A number of approaches to simultaneously estimate

multiple coe”cients exist in the literature [7, 13, 45, 46].
One approach involves directly fitting a single data
stream to a model involving all of the coe”cients in the
family.2 This approach is well suited to experiments that
take data as the laboratory is boosted and rotated.

2 For a recent example of this approach in the gravity sector, see
Ref. [45].
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In the context of astrophysical observations, each in-
dividual event provides a measurement of a linear com-
bination of coe”cients for Lorentz violation. A system
of these inequalities must then be solved, or otherwise
disentangled, for estimates of the coe”cients for Lorentz
violation. Several methods of addressing this issue exist
in the literature. In this section, we will compare the
implications of several of these approaches in the context
of the speed of GW data, as well as introduce new meth-
ods based on hierarchical Bayesian inference. Our goal
is to consolidate information about these methods and
help illuminate their relative merits. We achieve that
goal by performing a mock data challenge (MDC), where
we generate synthetic data corresponding to a chosen set
of “true” values of the SME coe”cients and test the ef-
ficacy of each method in recovering the true values from
the synthetic data.

Given their performance in the MDC, along with other
considerations, we choose one of these methods whose
merits outweigh that of the others and use it to analyze
the real speed of gravity data from a subset of the events
analyzed in Sec. II to generate the final results of our
SME analysis. Because well-localized events are most
informative for the SME analysis, we choose the 24-event
subset of those considered in Sec. II with 90% credible
posterior sky areas under 2000 deg2 as obtained from our
parameter estimation with vg as a free parameter.

B. Linear programming method

A number of past studies that have performed an anal-
ysis using limits from astrophysical events have taken a
linear programming approach. See, for example, Refs.
[46–48]. The basic idea translated to the speed of GWs
problem proceeds as follows.

From a given event we have an upper and lower bound
on #v. If we suppose that we know an exact sky loca-
tion, as is e!ectively the case for GW170817 when the
electromagnetic signal’s localization is used, then Eq. (6)
can be understood as generating a pair of hyperplanes
in slm space that are the boundaries of the parameter
space excluded by the event. A subsequent event at a
di!erent sky location will generate a distinct pair of hy-
perplanes. Once a set of n events is collected at distinct
sky locations, where n is greater than or equal to the
dimensionality of the coe”cient space, then a finite max-
imum and minimum allowed value for each coe”cient can
be identified via a linear programming scheme such as the
simplex method.

In the applications of Refs. [46–48], the sky localiza-
tions were su”ciently well known that analysis could pro-
ceed directly via the above prescription. In the current
problem, for all events except GW170817, the sky local-
ization is comparatively poorly known. This makes the
slopes of the hyperplanes bounding the allowed region
poorly known.

To address our uncertainty in sky positions, the lin-

ear programming scheme can be adapted as follows. The
linear programming process can be applied with all pos-
sible hyperplanes generated by samples from our infer-
ence that fall within the 68% credible sky localization
bands. The worst-case limits generated by the set of lin-
ear programming analysis can then be taken as bounds.
As might be expected, this method generates very conser-
vative bounds relative to the methods to follow. Testing
this approach using four test events and a sky map resolu-
tion of Nside = 64, which corresponds to 12→642 = 49152
pixels on the celestial sphere [49, 50], we generate bounds
that are about an order of magnitude greater than the
1ϑ credible intervals found via the application of the ran-
dom draw method that we present in the next subsection.
Hence, we do not consider this approach further as a
method of extracting SME limits from the speed of GWs
data at this time.

C. Random draw method

In Ref. [7], the random draw method for extracting
simultaneous limits on coe”cients for Lorentz violation
was first used. In that work, simultaneous limits were
achieved for the set of four slm coe”cients with l ↑ 1
by using the four high-confidence, well-localized events
available at the time. In this section, we review this
method and discuss ways of extending it to cases in which
the number of events exceeds the number of coe”cients
to be estimated.
The result of the inference discussed in Sec. II A is

a set of samples with each sample consisting of values
for each of the parameters including the speed of GWs
and the sky localization. Hence distributions for each of
the sampled parameters are generated. If one randomly
draws one sample associated with each event, one can
then solve for the coe”cients for Lorentz violation that
are consistent with that set of samples using Eq. (6). The
process of randomly drawing one sample from each event
and solving for the coe”cients can be iterated to build up
a set of samples for the slm coe”cients. In other words,
a set of points in slm space is built up.
The process described above is straightforward when

the number of events observed is equal to the number of
coe”cients for Lorentz violation to be estimated. Fur-
thermore, in such a scenario, quantile ranges of slm com-
puted from the set of samples of slm, accurately represent
the uncertainty in our measurement of the SME coe”-
cients. This is because using one posterior sample of
(#v, ε,ϖ) from each event and exactly calculating slm
from them by solving a set of nondegenerate linear equa-
tions, is equivalent to computing and multiplying the pos-
terior distributions of slm for each event and then draw-
ing one sample from that joint posterior. However, in the
case where the number of GW observations exceeds the
number of SME coe”cients, the linear equations become
degenerate and hence no longer exactly solvable. While
one can be tempted to cherry-pick the top nine events
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with the highest SNRs and lowest sky areas from the set
of observations and perform random draw on those, such
an analysis will not be maximally informative given the
data we have. We can do better using Bayesian hierarchi-
cal inference techniques, which can combine information
from a large number of events, producing much more in-
formative bounds on the SME coe”cients with accurate
estimation of measurement uncertainties.

Before discussing our robust Bayesian methods we
show how the random draw method can be extended to
the case in which the number of observations exceeds the
number of coe”cients for Lorentz violation by means of
singular value decomposition (SVD). However, this ex-
tension of the random draw method is susceptible to
the limitations of the approximation used to perform
the SVD and hence cannot produce reliable uncertainty
estimates for the measured Lorentz violation parame-
ters. We elaborate more on this near the end of this
section while informing the reader beforehand that this
SVD-assisted random draw generalization is useful in the
present context only as a consistency check and an op-
timization tool for the hierarchical Bayesian methods on
which we rely for our final results.

With nSME coe”cients for Lorentz violation and NE

events, with nSME < NE , for each random draw, we need
to solve the degenerate system of linear equations:

A[s̄lm] = [!v]. (7)

Here A is an NE → nSME matrix in which each row cor-
responds to one of the NE events under consideration.
The entries in each of the nSME columns moving across
a given row consist of the coe”cients of s̄lm in Eq. (6),
computed for a random sample of ε,ϖ drawn from the
event corresponding to that row. The nSME SME coe”-
cients to be computed are organized into a column vector
denoted [s̄lm], while [!v] denotes a column vector of the
randomly drawn #v corresponding to the samples used
in constructing the rows of A. Before factorizing the
nonsquare matrix, we scale both sides of each line of Eq.
(7) by the standard deviation of the #v samples corre-
sponding to that event. We define [ω!v] to be a column
vector in which each element corresponds to the standard
deviation of the #v samples from that particular event;
then, we can write the scaled version of Eq. (7) as

A→[s̄lm] = [!v→], (8)

where

A→
ij

= Aij

[ω!v ]i
(9)

[!v→]
i
= [!v]i

[ω!v ]i
. (10)

The SVD factorizes the nonsquare matrix A→ into two
orthogonal square matrices U and V , that are NE →NE

and nSME→nSME respectively, and a diagonal NE→nSME

matrix ” with nonnegative entries:

A→ = U”V T , (11)

where $ has the form

” =

(
S 0
0 0

)
(12)

with

S = diagonal{ϑ1, ...,ϑnSME}. (13)

The nonnegative values ϑ1 > ϑ2 > ... > ϑnSME are known
as singular values and are estimated along with U and
V by a linear least squares algorithm [51]. The scaling
with the standard deviation of #v essentially transforms
a least-square minimized SVD on A into a Chi-square
minimized SVD on A→. This allows us to properly ac-
count for the fact that some events in our list are less
significant than others. Proceeding without this scaling
biases the SVD. Once computed, the singular values can
be used to solve for s̄lm in Eq. (7) :

[s̄lm]i =
1
ωi

nSME∑

k=1

Vik[U
T!v→]k (14)

for each draw. We can then estimate the densities of the
SME parameters from all draws and produce constraints
on them.
We note that despite being a computationally cheap

method for computing constraints on the SME coe”-
cients from multiple GW events, the SVD-assisted ran-
dom draw method has certain inadequacies. There is
ambiguity in the exact meaning and interpretation of the
uncertainty estimates produced by this method. In the
case where the number of events is larger than the num-
ber of SME coe”cients, this implementation of the ran-
dom draw method boils down to randomly choosing a
posterior sample of (#v, ε,ϖ) from each event and doing
a least chi-square fit for the SME parameters. This pro-
cedure is then repeated a large number of times, produc-
ing a least chi-square fit of the SME coe”cients for each
draw. However, this is not equivalent to the multipli-
cation of posterior probabilities of the SME coe”cients,
over all events, and drawing samples from that joint pos-
terior. Thus, the quantile ranges of the set of chi-square
fitted SME coe”cients do not hold the same meaning as
Bayesian credible intervals. While the Bayesian intervals
represent regions of the SME parameter space wherein
their true values lie with a particular posterior proba-
bility given the data, the SVD-based random draw con-
straints can be expected to have a di!erent meaning, the
exact nature of which remains ambiguous.
Because of these considerations, we conclude that the

weighted SVD-assisted random draw method produces
constraints that are unreliable and are likely to be un-
derestimates of the true uncertainties in the measure-
ment of SME coe”cients. We verify this claim by test-
ing this method against its Bayesian counterparts in a
MDC that we describe later in this work. The results
of the MDC show that the samples of SME parameters
produced by this method are concentrated in a narrow
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region around the true values of the parameters, which
also coincide with the peaks of the posterior distributions
inferred by the Bayesian methods. Therein lies the merit
of this method in the present context and its potential
to serve as a rapid consistency check for the Bayesian
methods. Furthermore, this method is extremely fast
and computationally cheap and hence can be used to
quickly find the narrow region in the parameter space
inside which the peak of the posteriors lies. The stochas-
tic MCMC sampling employed by our Bayesian methods
is expected to converge much faster if the MCMC chains
are initialized near the maxima of the posterior being
sampled. Thus the SVD-assisted random draw method
can be used to optimize the MCMC sampling used in our
Bayesian methods with significant speed-up gains for nar-
rowly peaked SME posteriors. Given the large number of
events expected to be observed in O4 and the width of the
Bayesian intervals we compute using our current set of
events, the posterior distributions of the SME coe”cients
can be expected to be very narrow post O4, and hence
lead to a drastic increase in the computational cost and
latency of the Bayesian methods being applied to such
a dataset. This will likely make the optimization of the
Bayesian methods as o!ered by the SVD-assisted random
draw method a necessary tool in the near future.

D. Hierarchical Bayesian inference

Since the SME coe”cients are properties that are ex-
pected to be the same for all events, one can perform
Bayesian hierarchical inference on them from the GW
data of multiple events. To do so, we can construct the
marginalized likelihood of GW data given a particular
value of the SME coe”cients, jointly from multiple events

L(s̄lm) =
∏

i↗{events}

∫
L(di|#v↓, ε,ϖ)%(#v↓, ε,ϖ|s̄lm)d#v↓dεdϖ,

(15)

where the SME sensitive part of the prior imposes the
relationship (6) on #v, ε,ϖ for a given value of the SME
coe”cients :

%(#v↓, ε,ϖ|s̄lm) = ϱ(#v↓ ↓#v(s̄lm, ε,ϖ))ς(ε)ς(ϖ).
(16)

Here, #v(s̄lm, ε,ϖ) is the right-hand side of Eq. (6). Note
that we have chosen to represent the deviation of the
speed of gravity from the speed of light by the dummy
variable #v↓ whenever a probabilistic quantity (such as
likelihood, posterior, prior, or detection fraction) is ex-
pressed as a function of it, so as to distinguish it from
the quantity #v(s̄lm, ε,ϖ). The presence of the delta
function in Eq. (16) is due to the deterministic nature of
Eq. (6).

By Bayes’ theorem, for a uniform prior on s̄lm, the
likelihood L(s̄lm) is proportional to the posterior of these

parameters given GW data. We can now sample this pos-
terior using MCMC to produce joint SME constraints
from multiple GW observations. However, this proce-
dure involves a very large number of evaluations of the
likelihoods L(di|#v↓, ε,ϖ), which is so computationally
expensive that it is practically infeasible.
To get around this problem, one can again use Bayes’

theorem to write the likelihood L(di|#v↓, ε,ϖ) as propor-
tional to the ratio of the posterior p(#v↓, ε,ϖ|di) to the
prior:

L(di|#v↓, ε,ϖ) ↔ p(#v↓, ε,ϖ|di)
ς(#v↓)ς(ε)ς(ϖ)

(17)

Substituting this into Eq. (15) gives us

L(s̄lm) ↔
∏

i↗{events}

∫
p(#v↓, ε,ϖ|di)ϱ(#v↓ ↓#v(s̄lm, ε,ϖ))

d#v↓dεdϖ.

(18)

We can now use the samples drawn from the posterior
p(#v↓, ε,ϖ|di) obtained using the parameter estimation
run described above to evaluate the integral in Eq. (18).
Note that we have ignored a factor of 1/ς(#v↓) in Eq.
(18) which is constant since we choose ς(#v↓) to be uni-
form in our parameter estimation runs. However, the
presence of the Dirac delta makes it slightly complicated
to evaluate this integral directly as a sum over posterior
samples. We describe shortly two approximation schemes
that can be used to smooth out the discrete sum of Dirac
deltas over posterior samples that would entail the eval-
uation of the integral in Eq. (18) and hence constrain the
SME coe”cients jointly from multiple GW observations.
Before that, we first describe why Bayesian inference of
this form is subject to selection biases and how we ac-
count for them.
Bayesian hierarchical inference from a set of GW

events selected based on a particular criterion introduces
selection biases into the inferred posterior distribution of
hyperparameters [52, 53]. Since we are selecting events
based on whether they were found with a SNR greater
than some threshold in at least three detectors, and since
each detector has an antenna pattern that makes it more
sensitive to certain sky directions than others at the
time of detection[54], our analysis might be biased to-
ward some values slm against others. Particularly, the
fact that GW search pipelines such as GstLAL only re-
port multidetector coincidences based on whether or not
the time delays between the detectors being triggered
are smaller than the light travel time between detectors
plus a 5 ms window, has the potential to bias our re-
sults greatly [55]. Furthermore, noncoincident events are
down-ranked in significance [55], making events even less
likely to be detectable for certain cases. Other pipelines
such as PyCBC use similar methods for identifying mul-
tidetector coincidences albeit with a di!erent value for
the timing error window (which is 2 ms for PyCBC [56]).
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The existence of this restriction for coincidence formation
in search pipelines implies that we are more likely to dis-
cover a multidetector event if the speed of GWs is greater
than or equal to c, as compared to if it were lower than
c. Thus, our speed of GW measurements may be biased
toward measuring #v ≃ 0 against #v < 0 along any
particular sky position.

To account for this bias, we must normalize our hierar-
chical likelihood over the true rate of events as opposed
to the detected rate, with the latter being di!erent from
the former, due to selection biases. The constant of nor-
malization is the fraction of events that are detectable
given a particular value of the hyperparameters and the
detection criteria,

L(s̄lm) ↔ 1
ε
N
det(s̄lm)

→
N∏

i↗{events}

∫
p(#v↓, ε,ϖ|di)ϱ(#v↓ ↓#v(s̄lm, ε,ϖ))

d#v↓dεdϖ,

(19)

where φdet(s̄lm) = Rdet(s̄lm)
Rtrue

, the fraction of detectable
events, is the ratio of the detectable rate of events to
the true rate of events [57]. To calculate the fraction
accurately, we must simulate a large number of events
whose parameters are drawn from broad enough distri-
butions, inject them into the detector noise realizations,
and see what fraction of them are recovered given our
selection criteria. To do that, we must first quantify our
selection criteria in terms of the parameters that charac-
terize the GW signal. Accurate modeling would require
us to recalculate the search pipeline’s ranking statistic
of a simulated event while allowing for nonzero #v and
to find the corresponding false alarm rate (FAR) of that
trigger from said ranking statistics. One can then apply
a threshold on the combined FAR of the event to clas-
sify them as detectable or nondetectable. However, such
a calculation would require a pipeline-specific analysis,
which is beyond the scope of this work. Instead, we use
an approximated selection criteria: for the ith event to
be detectable, its recovered parameters must satisfy:

det =⇐ {↼H ≃ ↼th, ↼L ≃ ↼th, ↼V ≃ ↼th, ↼net ≃ ↼net,th,

#tHL(#v) ↑ #tHL(0) + 5ms, tHV (#v) ↑
#tHV (0) + 5ms, tV L(#v) ↑ #tV L(0) + 5ms},

(20)

where ↼A is the SNR in detector A, ↼net is the network
SNR, #tAB(#v) is the timedelay of signal arrival be-
tween detectors A and B as a function of #v, and ↼th
is the SNR threshold used for selecting events. Even
though we do not select events depending on which search
pipeline found them, we use GstLAL’s timing error win-
dow to quantify our selection criteria, instead of, say,
PyCBC’s, due to the following reason. Among the
events that survive our three detector SNR thresholds,
most are found by both GstLAL and PyCBC except
for GW170818, GW190701, and GW190814, which are
found only by GstLAL. Hence, it is su”cient to model

the selection biases that might have appeared in this par-
ticular study based on GstLAL’s value of the timing er-
ror window. This would not have been possible if there
were events found by PyCBC and not GstLAL with
SNR greater than 10 in three detectors during O3. In
such a scenario, a more generalized treatment of selec-
tion biases would have been necessary, one that accounts
for the di!erence in timing errors allowed by GstLAL
and PyCBC.
Now that we have a quantifiable detection criterion, we

can carry out our simulations. Once the simulated events
are injected into detector noise realizations and classified
as detectable or nondetectable depending on their recov-
ered parameters, it is possible to compute the fraction of
events detectable given a choice of CBC parameters:

fdet(#v↓, ε,ϖ,ω↽) ↔ p(#v↓, ε,ϖ,ω↽|det)
%sim(#v↓, ε,ϖ,ω↽)

. (21)

Here, ω↽ are additional CBC parameters such as
masses, spins, etc. that characterize the waveform,
p(#v↓, ε,ϖ,ω↽|det) is the probability of detection, which
can be calculated from the set of simulated events that
are detectable, and %sim is the prior from which the sim-
ulations are drawn, which has to be broad enough so that
we have enough events in both the detectable and nonde-
tectable parts of the parameter space. We can marginal-
ize Eq. (21) over suitable priors to get

φdet(s̄lm) =

∫
fdet(#v↓, ε,ϖ,ω↽)%(#v↓, ε,ϖ|s̄lm)

→%(ω↽)d#v↓dεdϖdω↽.
(22)

If we choose %sim(#v↓, ε,ϖ,ω↽) = ς(#v↓)ς(ε)ς(ϖ)%(ω↽),
where ς(#v↓),ς, (ε),ς(ϖ) are the same as the ones de-
fined in Eqs. (16) and (17), then priors in the denomi-
nator and numerator of the integrand in (21) cancel out
and we can define the marginalized fraction of detectable
events (up to the factors that cancel out later):

fmarg
det (#v↓, ε,ϖ) ↔

∫
p(#v↓, ε,ϖ,ω↽|det)dω↽. (23)

As in the case of Eq. (18), we have ignored a factor of
1/ς(#v↓) in Eq. (23) for the same reason mentioned be-
fore. In terms of this marginalized fraction, φdet becomes

φdet(s̄lm) ↔
∫

fmarg
det (#v↓, ε,ϖ)ϱ(#v↓ ↓#v(ε,ϖ, s̄lm))

d#v↓dεdϖ.

(24)

To estimate p(#v↓, ε,ϖ,ω↽|det) and hence
fmarg
det (#v↓, ε,ϖ), we simulate a large number of events
whose parameters are drawn from a broad distribution.
We then inject the corresponding signals into detector
noise realizations and record their SNRs and arrival
times. We then apply our selection criteria to find
which of these simulated events are detectable given our
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criteria and estimate p(#v↓, ε,ϖ,ω↽|det). The estimation
schemes will depend on which of the two approximations
referred to before are used to smooth out the delta
function integral and are hence described in more detail
in the corresponding subsections below.

The priors we use to draw the simulated events are
truncated power law in the primary mass and mass ra-
tio, uniform in spin, sky position, orientation, comoving
volume, geocentric time, and speed of GWs. Particularly,
for each observing run, the mass distributions are chosen
to be consistent with corresponding population analy-
ses performed by the LVC such that the distributions
used have support in regions of the mass space where
the events being analyzed are found. For O2, we choose
p(m1) ↔ m↑1.6

1 , m1 ⇒ (7.9M↔, 42M↔), and p(q) ↔ q6.7,
where q = m2

m1
, which is consistent with Ref. [58] and is

identical to the mass distributions used for similar se-
lection function computations [54]. For O3, we choose
p(m1) ↔ m↑1.6

1 , m1 ⇒ (7M↔, 80M↔) and p(q) ↔ q6.7 ,
which is broad enough for the O3 events as evident from
Ref. [59]. In the next two subsections, we describe the
details of our smoothing approximations and the compu-
tation φdet in each approximation scheme.

1. Narrow Gaussian method

The approach introduced here involves estimating the
delta function in Eq. (18) as a narrow Gaussian distri-
bution. For each sample with measured speed di!erence
#v↓ and sky location ε and ϖ, we construct a Gaussian
distribution for the random variable #v↓ ↓#v(s̄lm, ε,ϖ)
with mean zero and standard deviation ϑ. Thus, Eq. (19)
becomes

L(s̄lm) =
1

φN

det(s̄lm)

N∏

i↗{events}

∫
p(#v↓, ε,ϖ|di)

→N (#v↓ ↓#v(s̄lm, ε,ϖ))d#v↓dεdϖ,
(25)

where N represents Gaussian distributions. Similarly, we
can also apply the narrow Gaussian approximation to the
computation of φdet in Eq. (24):

φdet(s̄lm) =

∫
fmarg
det (#v↓, ε,ϖ)N (#v↓ ↓#v(s̄lm, ε,ϖ))

→d#v↓dεdϖ. (26)

Since N is a smooth function of its arguments we can
evaluate the two integrals in Eqs. (25) and (26) as a
Monte Carlo sum over samples drawn from p(#v↓, ε,ϖ|di)
and fmarg

det (#v↓, ε,ϖ), respectively. Since we already have
posterior samples drawn from p(#v↓, ε,ϖ|di) for each
event during the vg inference described in Sec. II, and
since the samples drawn from fmarg

det (#v↓, ε,ϖ) are the
parameters of simulated events that survive our selection

criteria, we can compute the log-likelihood of s̄lm,

lnL(s̄lm) =
∑

i↗{events}

(27)

ln

∑
{j} N (#v↓

j
↓#v(s̄lm, εj ,ϖj))∑

k
N (#v↓

k
↓#v(s̄lm, εk,ϖk)

,

where the sum in the numerator is over posterior sam-
ples corresponding to the ith event while the one in the
denominator is over detectable samples. After choos-
ing a width ϑ for our Gaussian N appropriately, we can
thus use Eq. (27) for fast evaluation of the log-likelihood
lnL(s̄lm) as a numerical function of the SME coe”cients.
Hence, we can use MCMC algorithms to draw samples
from lnL(s̄lm) and interpret the quantile ranges of said
samples as Bayesian credible intervals of the SME coe”-
cients given GW data.
To determine the appropriate width of our Gaussian

distribution ϑ, we consider the e!ect of varying its size.
Because the Gaussian distribution is an estimation of the
delta distribution, theoretically, as the size of ϑ decreases,
the approximation should be more accurate. However,
because we sample the log-likelihood with a MCMC al-
gorithm, we encounter numerical di”culties when the ϑ
is too small. Thus our choice of ϑ has to be tuned in
accordance with how the MCMC is implemented numer-
ically.
In the MCMC process, the walkers only make use of

local information at each step. Thus, it is possible for
walkers to be trapped inside islands of high likelihood.
This is what happens when ϑ is set too small. Since most
samples have a high likelihood around zero, walkers can
explore freely the region near zero. However, at more
peripheral locations in the parameter space, the peaks
are usually scattered. Thus, when ϑ is too small, these
peripheral samples form isolated islands of high likeli-
hood. In this case, the walkers will not be able to explore
these isolated islands, resulting in false small constraints.
On the other hand, as ϑ gets larger, our approximation
becomes less accurate and distributions are artificially
broadened. Therefore, we aim to find a ϑ such that it is
big enough for the walkers to explore the sample space
fully and small enough such that it gives us useful results.
One way to determine the appropriate value of ϑ is by

applying both the random draw method and the narrow
Gaussian method on the same set of data and comparing
the results. We divide our list of events into subsets of
nine events and apply both methods to each subset us-
ing various sizes of ϑ. The solid lines in Fig. 2 represent
the average uncertainty of the resultant s̄lm’s against ϑ
for the nine O3 events from this paper with the small-
est sky areas. The average uncertainty is calculated by
taking the average of the absolute value of the upper
and lower one-standard-deviation value for each s̄lm. For
the same sets of events, the random draw method pro-
duces uncertainties on the order of 100–101, which cor-
responds to dashed lines in Fig. 2. To select a suitable
ϑ, we use superimposed plots such as Fig. 2 to select a ϑ
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such that each uncertainty produced by the narrow Gaus-
sian method is marginally larger than its counterpart
from the random draw method. In the example shown,
ϑ = 0.0005 is a good choice because every solid line lies
marginally above the corresponding dashed line in the
same color, which means that the choice ϑ does not arti-
ficially tighten the constraints. We perform such analysis
for every subset of events and produce a “good ϑ.” We
pick the largest of such “good ϑ’s” as the final choice.
Even though this final ϑ produces wider constraints for
each subset of events as compared to the random draw
method, because the narrow Gaussian method incorpo-
rates information from more than nine events, ideally we
could still produce tighter constraints than the random
draw method.

Another procedure for determining ϑ is to use infor-
mation directly from the distribution of #v↓ samples for
each event. One specific procedure is to sort the list of
#v↓ samples and compute the average di!erence between
adjacent values. Choosing ϑ as half this value produces
results that align well with the prior method for the spe-
cific distributions tested. That is, the value of ϑ for a
given event is half of the average of the di!erences be-
tween adjacent #v↓ samples for that event. This proce-
dure is used in the MDC shown in Fig. 3, and has the
advantage of not needing to construct plots to determine
ϑ. However, there still is subjectivity in choosing what
fraction of the average to use. Moreover, the distribution
and quantity of samples will impact the value of ϑ. Both
considerations will a!ect the final credible intervals for
s̄lm.

This method performs much better than the SVD-
assisted random draw in the MDC performed in
Sec. III F. However, we note that both processes
for choosing ϑ involve a significant amount of user-
controlled fine-tuning and can potentially lead to an over-
/underestimate of measurement uncertainties of the SME
coe”cients. For these reasons, we do not choose this
method for our final results. We instead choose a dif-
ferent smoothing approximation to the Bayesian method
by means of KDE, which can be shown to produce either
equally or more accurate results, while requiring almost
no user-controlled fine-tuning.

2. KDE methods

In this section we outline a di!erent approach from the
one in the previous section, to perform Bayesian hierar-
chical inference of the SME coe”cients from GW data.
In this method, instead of smearing out the delta func-
tion in %(#v↓, ε,ϖ|s̄lm) with a Gaussian, we approximate
the marginalized posterior of #v, ε,ϖ given GW data, for
each event, as a fast evaluating function of these quan-
tities, from their single event parameter estimation sam-
ples via Gaussian KDE.

The KDE approximation of the posterior is con-
structed by fitting a multivariate Gaussian around each

posterior sample and then writing the estimate of the
posterior as a sum of these individual Gaussians. The co-
variance matrix of each of the Gaussians is approximated
from the sample covariance matrix of the posterior sam-
ples themselves up to a constant of proportionality. The
constant of proportionality is known as the bandwidth of
the estimator and is computed, under reasonable assump-
tions regarding the true distribution being estimated(see
Ref. [38]). We use SciPy’s Gaussian KDE algorithm to
obtain our estimate of the marginalized posterior as a fast
evaluating function pKDE, i(#v↓ = #v(ε,ϖ, s̄lm), ε,ϖ) of
the relevant parameters [39]. We then perform the #v↓

integral of Eq. (18) analytically using the delta function
and compute the remaining two integrals (over ε,ϖ) nu-
merically using the trapezoidal rule. We loop over mul-
tiple events by multiplying the value of the integral ob-
tained using the KDE corresponding to each event, to
evaluate L(s̄lm) :

L(s̄lm) ↘
∏

iϑ{events}

∫
pKDE,i(#v↓ = #v(ε,ϖ, s̄lm), ε,ϖ)dεdϖ.

(28)

We then sample from it using the same MCMCmethod
described in the previous section to constrain the SME
coe”cients. To incorporate selection e!ects in the KDE
method, we estimate fmarg

det (#v↓, ε,ϖ|det) by performing
a KDE on the samples of (#v↓, ε,ϖ) for which the sim-
ulated events are detectable given our detection criteria.
By restricting our KDE to only these parameters and
ignoring other parameters that characterize a simulated
event, we e!ectively marginalize over those other param-
eters, thus implicitly performing the integral in Eq. (23),

fmarg
det ↘ pKDE, det(#v↓, ε,ϖ), (29)

where the subscript det in pKDE,det represents the fact
that this KDE was performed on only those samples for
which the simulated events are detectable given our de-
tection criteria. Substituting into Eq. (24), we get

φdet(s̄lm) ↘
∫

pKDE, det(#v↓ = #v(ε,ϖ, s̄lm), ε,ϖ)dεdϖ.

(30)

We note that the KDE’s bandwidth acts like a control
parameter with potential room for user-controlled fine-
tuning in the computation of its value, somewhat anal-
ogous to the ϑ of the narrow Gaussian method. How-
ever, unlike the narrow Gaussian method where ϑ can
in principle be chosen to be anything, the bandwidth of
the KDE is computed directly from the properties of the
samples (such as the number of samples and dimensional-
ity of the parameter space) under reasonable assumptions
regarding the true density. Thus, the user’s choice is re-
stricted to a number of discrete such assumptions (for
example, Scott’s rule [38], Silverman’s rule [37], etc.).
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FIG. 2. A portion of the superimposed plot of average uncertainties produced by the random draw method (dashed lines) and
the Bayesian method (solid lines). From this plot, we can see ω = 0.0005 is a potential choice for ω because every solid line is
marginally above the corresponding dashed line of the same color.

Furthermore, the e!ects of choosing a bandwidth on the
estimated density (and hence the remainder of the infer-
ence) is limited in the sense that the covariance matrix of
the Gaussians is determined from the samples themselves
with the bandwidth only acting as a scaling parameter
that is usually of order unity. This additionally restricts
the e!ects of user-controlled fine-tuning on the inference
as compared to the narrow Gaussian method wherein the
width of the Gaussian that approximates the delta func-
tion is completely determined by the user’s choice. A
more detailed discussion of this comparison between the
two methods in the context of the MDC can be found
in Sec. III F . For our chosen bandwidth approximation
scheme (Scott’s rule) the KDE method can be seen to
perform extremely well in the MDC. For these reasons,
we choose the KDE method for our final results on the
SME constraints.

We present the results of the KDE method upon its
use in the analysis of the events marked * listed in tables
I through III (except for GW170817 for which we do not
use the fixed posteriors due to the inability of the KDE
to estimate very narrow densities) in Fig. 4 as our final
result.

E. Discussion

The random draw method, which was originally pre-
sented in Ref. [7], is very time e”cient. However, the
number of events that can be used in the analysis is lim-
ited by the number of s̄lm to be estimated. Hence, it is
only useful in the scenario wherein we have exactly the
same number of events available to be used in the analy-
sis as the number of s̄lm coe”cients being simultaneously
measured. On the other hand, unlike any of the following
methods, this method does not involve any approxima-
tion of the delta distribution. Thus, this method can be
used as a quick feasibility test. For example, we used this
method to estimate the size of ϑ for the narrow Gaussian
approach.

With the use of SVD, we were able to take data from a
larger set of events. However, the presence of one “bad”
event, i.e., a low-significance event with biased posteriors,
can disturb the entire analysis since all events are given
equal weights. With the SVD chi-square method, this
problem is solved by weighting each event with its un-
certainty in the vg measurement. However, this leads to
artificially narrower bounds with ambiguity in the mean-
ing of those bounds.

The Bayesian methods are free of all aforementioned
pathologies that plague the other methods. They can ef-
ficiently handle a large number of events and is una!ected
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FIG. 3. Distribution of all nine s̄lm for the mock data. The exact Bayesian, KDE, narrow Gaussian, and SVD chi-square
methods are color coded blue, orange, green, and magenta respectively. The mock true values of s̄lm, which were chosen to
be either equal to or very close to zero, are marked by orange lines. Numbers above the plots show median values with 90%
equal tail credible intervals. The displayed constraints were obtained from the inferred s̄lm samples using the Python package
corner [60]. Note that these mock events are “zero noise” in the sense that the mean values of the Gaussian in Eq. (31) are
chosen to be equal to the true values and not perturbed by another random draw.

by a small number of bad events if any. Furthermore, the
Bayesian credible intervals have the clear and unambigu-
ous meaning of being regions of the parameter space that
contain the true value of said parameters with a certain
posterior probability given data.

Among the two approximate Bayesian techniques de-
scribed in this paper, the narrow Gaussian method has
the following issue. The process to find ϑ is cumbersome
and somewhat subjective as it involves partitioning the
set of events into subsets and estimating ϑ from plots,
or developing an algorithm that needs to be compared to
an independent method. On the other hand, the KDE
method has less user-controlled fine-tuning than the nar-
row Gaussian method as it estimates its control param-
eter, i.e. the bandwidth, quantitatively from properties
of the posterior samples themselves, with its variation
having a much more restrictive e!ect on the estimated
density. Hence, we claim that the Bayesian analysis im-

plemented by the KDE method produces the most trust-
worthy measurements of the SME coe”cients.

F. Mock data challenge and comparison of methods

In this section, we describe the MDC that was set up
to compare the di!erent methods of SME measurements
from GW data in order to verify our claims regarding
them that were made in the previous section. To con-
struct the MDC, we choose a fiducial value of the SME
coe”cients as their true values, say s̄lm,tr and generate
data for 15 mock events. The true sky positions of the
mock events are chosen to be the mean values of the (ε,ϖ)
samples of the real events.
We choose 15 of the “best” real events, i.e. the ones

with the most precise sky localizations and vg measure-
ments, to be represented by our mock events in the MDC.
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FIG. 4. Distribution of all nine s̄lm using the KDE method from the 24 chosen GW events in Tables I, II, and III. The numbers
above the plots show median values with 90% equal tail credible intervals. Each contour represents the two-dimensional 90%
credible interval marginalized over the other seven parameters while the discrete points represent posterior samples that lie
outside of the 90% contour. The grayscale inside the contour represents the two-dimensional marginalized posterior density in
the form of a histogram. The displayed constraints were obtained from the inferred s̄lm samples using the Python package
corner [60].

We then calculate the true value of #v for each mock
event from the true values of their sky positions and those
of the SME coe”cients. We then generate mock poste-
rior samples of (ε,ϖ,#v) by adding uncorrelated Gaus-
sian fluctuations to the true sky positions and true #v
values. The width of the fluctuations for each mock event
is chosen to be the standard deviations of the posterior
samples of the corresponding real event.

This allows us to create a controlled numerical exper-
iment wherein we know the true answer. For Gaussian
distributions of ε,ϖ,#v about known true values, one can
write down the exact functional form of the likelihood of
these parameters given mock data,

Lmdc(di|#v↓, ε,ϖ) = 1
(2ϖ)3/2ωω,iωε,iω!v,i

exp↓ 1
2{

(ϱ↑ϱtr,i)
2

ω
2
ω,i

+ (ς↑ςtr,i)
2

ω
2
ε,i

+ (”v
↓↑”vtr,i)

2

ω
2
!v,i

}, (31)

where (εtr,i,ϖtr,i) are the true values of the sky po-

sitions of the ith mock event; ϑϱ,i,ϑς,i,ϑ”v,i are the
widths of the Gaussian fluctuations used to generate
the mock posterior samples of the ith mock event; and
#vtr,i = #v(s̄lm,tr, εtr,i,ϖtr,i). Knowledge of these quan-
tities allows us to exactly write down and evaluate Eq.
(31) as a function of ε,ϖ without any smoothing approx-
imations.

We can then substitute Lmdc(di|#v↓, ε,ϖ) in place of
L(di|#v↓, ε,ϖ) in Eq. (15) and carry out the integral nu-
merically to obtain the “exact Bayesian” likelihood of our
mock data given the SME coe”cients:

Lmdc(s̄lm) =
∏

i

1
(2ϖ)3/2ωω,iωε,iω!v,i

∫
exp↓ 1

2{
(ϱ↑ϱtr,i)

2

ω
2
ω,i

+ (ς↑ςtr,i)
2

ω
2
ε,i

(32)

+ (”v(s̄lm,ϱ,ς)↑”v(s̄lm,tr,ϱtr,i,ςtr,i))
2

ω
2
!v,i

}dεdϖ.
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We can then sample the likelihood in Eq. (32), after
applying suitable priors on s̄lm, using the MCMC tech-
niques described above and obtain what can be thought
of as the true posterior distribution of the SME coe”-
cients given the mock data. We can then compute the
constraints obtained from the approximate methods be-
ing applied to the mock posterior samples and compare
those results with the true posterior.

The results of this comparison are displayed in Fig. 3.
We can see that the KDE method agrees remarkably well
with the exact Bayesian method, while the narrow Gaus-
sian method deviates from it slightly for some coe”cients.
We note that a di!erent choice of ϑ for the narrow Gaus-
sian method leading to better agreement with the exact
Bayesian result is possible. However, we conclude that
the KDE method’s agreement with the exact Bayesian
method, independent of any external fine-tuning, justi-
fies its use on the real data for producing our final re-
sult. We also note that our claim regarding the SVD chi-
square method producing artificially narrower bounds is
also verified by this comparison.

G. Final results

With the 24 chosen GW events in Tables I, II, and
III, we are able to constrain all nine s̄lm coe”cients. We
obtain the results shown in Fig. 4.

Note that the measurements of s̄lm shown in Fig.4 are
consistent with zero. Given that zero lies within the 90%
credible intervals for all coe”cients, we consider these
results to be consistent with existing constraints on s̄lm
[9].

These limits are considerably weaker than some found
in the literature. However, they are valuable as indepen-
dent tests. Moreover, this is also the first attempt to si-
multaneously constrain all slm using GW measurements,
thus putting direct limits on the full potential anisotropy
of the speed of GWs. Additionally, this method can theo-
retically incorporate as many events as available and thus
improve in precision as additional high-quality events be-
come available.

IV. CONCLUSION

In our study, we selected 52 high-SNR gravitational-
wave events that were detected by at least two detectors
from the first three observing runs of Advanced LIGO
and Advanced Virgo. We used lalinference nest and
lalinference mcmc to construct posterior distributions
of the speed of GWs for each event. We found the 90%
credible interval of the combined vg posterior distribu-
tion to be 0.99+0.01

↑0.02c. This interval is narrower than
the similar one constructed with O1 and O2 events in
previous studies, suggesting a more precise measurement
of vg [7]. However, even with the inclusion of a high-
SNR BNS event GW170817 with its pinpoint sky local-

ization, we were only able to narrow the 90% credible in-
terval to 0.99+0.01

↑0.02c. We then explored multiple methods
of extracting SME constraints from vg-like data. Based
on the conclusions of that investigation, we used hierar-
chical Bayesian inference implemented with KDE meth-
ods to simultaneously constrain all nine coe”cients for
Lorentz violation in the SME framework. The resultant
constraints did not exhibit evidence for Lorentz viola-
tion. We are optimistic about the possibility of further
improvements in speed of gravity and associated Lorentz
violation measurements in the future. The search is likely
to be aided by the combination of additional detectors at
additional locations around the Earth and by the possi-
bility of combining results achieved by the methods pre-
sented here with those from additional multimessenger
events.

Appendix A: Robustness against choice of waveform
approximants

In this section, we elaborate on the insensitivity of our
results to the choice of waveform approximants. All mea-
surements presented in this work rely on the posterior
samples of vg, ε,ϖ that are obtained from single-event
parameter estimation runs. Samples of these parame-
ters are implicitly computed from those of direct ob-
servables such as the time delay between the arrival of
signals at di!erent detectors (#tHL,#tHV ,#tLV ), the
e!ective distance to the source as measured by each
detector (Deff,H , Deff,L, Deff,V ), and the coalescence
phase (ϖ0). In Fig. 5, we show that parameter estimation
results for such observables are fully consistent between
di!erent choices of the waveform approximant for a ran-
domly chosen event in O3 (GW200115). The samples are
obtained from LVK’s public data release. We note that
fixing vg = c (as was done for the publicly released sam-
ples) or allowing it to vary does not a!ect these observ-
ables since vg is a derived quantity while the observables
are directly measurable.
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Phys. Lett. B 749, 551 (2015), arXiv:1508.07007 [gr-qc].

[47] J. S. Dı́az, V. A. Kostelecký, and M. Mewes, Test-
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