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Abstract

Although an established model organism, Tetrahymena thermophila remains comparatively inaccessible to high throughput screens, and alter
native bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating
RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene
associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously
studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the
genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be
mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also
found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature.
We present the Tetrahymena Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation
in this organism and as a framework for building similar tools for other systems.
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Introduction

Gene co-expression, particularly in response to an experimen-
tal perturbation, has long been used as evidence for the func-
tional association of genes that are otherwise uncharacterized
[1]. The transcriptome is an intermediary between genotype
and phenotype, and transcriptomics is often cheaper, faster,
and higher throughput than using biochemistry or genetic en-
gineering to functionally associate a given gene with a bio-
logical pathway or process [2]. The number of transcriptomic
datasets has grown dramatically over the past two decades,
raising deep questions such as: how well do co-expression pat-
terns translate from one set of experimental conditions to an-
other? How many cellular processes are driven by genetic co-
expression, and does this change under different growth or en-
vironmental conditions? These questions point to the impor-
tance and challenge of using the wealth of publicly available
data to pursue new hypotheses, rather than treating whole-
transcriptome experiments as either purely descriptive or one-
and-done assays to study a single organism- or condition-
specific problem. Answering these questions requires appro-
priate model systems and principled approaches.

The ciliate Tetrabymena thermophila is a unicellu-
lar eukaryote that has featured in groundbreaking dis-
coveries regarding programmed genome rearrangements,
telomeres/telomerase, and cytoskeletal motor proteins [3].
However, some features of T. thermophila present challenges
to its use in uncovering new biology broadly. Ciliates are over
a billion years diverged from better studied organisms such
as fungi and animals [4], an evolutionary distance that fre-
quently creates obstacles to identifying gene orthologs and
thereby inferring conserved functions. Moreover, interesting
novel mechanisms may have arisen over that large evolution-
ary distance, such as the recently discovered unique secretory
apparatus that ciliates share only with the related apicomplex-
ans and dinoflagellates [5]. One way to address these issues
would be a forward genetic approach, using random muta-
genesis to identify phenotypes of interest and then associate
them with causative mutations [6-8]. However, ciliate nuclear
organization makes it challenging to undertake high through-
put forward genetic approaches in these organisms [9]. Due to
all these factors, high throughput bioinformatic studies offer a
potential breakthrough for interrogating both the evolution-
arily conserved and novel biology in T. thermophila. Previ-
ous research has indicated that protein expression in T. ther-
mophila tends to be regulated on the level of transcription as
opposed to transcript degradation or translation rates, which
is in line with observations in yeast [10, 11]. Thus, gene co-
expression studies promise to be informative for the analysis
of gene functions.

T. thermophila has distinct vegetative and sexual life
stages. Consequently, many genes are tuned for differen-
tial expression during stages of vegetative growth/mitosis
or conjugation/meiosis, previously explored in microarray-
based experiments and co-expression analyses [12-15]. Strik-
ingly, we found that many characterized genes involved in
the biosynthesis and secretion of a particular secretory or-
ganelle, called the mucocyst, are co-expressed across growth,
starvation, and conjugation [16-18]. This allowed us to sub-
sequently identify multiple other co-expressed genes. A large
subset of these were then verified as involved in mucocyst bio-
genesis or secretion [16—18]. This success led us to develop
a tool we called the Co-regulation Data Harvester (CDH),

which scraped the available co-expression data for T. ther-
mophila and performed reciprocal-best-BLAST queries to in-
dicate potential functional annotations based on orthologous
genes in other organisms [19]. This tool also allowed us to
identify candidates for genes involved in the secretion of ho-
mologous organelles in the apicomplexan Toxoplasma gondii,
which were then experimentally verified [20].

However, the CDH became obsolete as new algorithms
for identifying gene co-expression, as well as new databases
for orthology searches, became available after our publica-
tion [21-24]. Additionally, extensive new revisions of the T.
thermophila genome model were published, as well as an
RNA-seq dataset from cell cycle-synchronized cultures [25—
27]. These developments prompted us to align the original
microarray data with the newest genome model, while also
bridging insights from the different transcriptomic datasets,
to develop a stable, accessible tool for the research commu-
nity. Here, we report the Tetrabymena Gene Network Ex-
plorer (TGNE), an interactive tool for revealing co-expression
patterns, by taking advantage of the gene annotations and ex-
pression data that have only recently become available [21,
22,28]. One important aspect of the expanded datasets is that
the microarray and RNA-seq expression profiles are indepen-
dent from each other, the former covering bulk growth, star-
vation, and sexual conjugation, and the latter covering a syn-
chronized mitotic cell cycle. Using the TGNE, we found that
co-expression of many mucocyst-related genes is a feature of
both datasets. We further found that these genes are also up-
regulated during experimentally induced mucocyst biosynthe-
sis, implying that their co-expression in “untargeted” experi-
ments reflects functional association. This demonstrates that
the TGNE can be used to generate experimentally verifiable
hypotheses and provides a direct insight into the dynamics of
functionally associated genes in T. thermophila. A similar pat-
tern emerges from TGNE analysis with regard to other cellu-
lar processes in T. thermophila, such as regulation of histone,
ribosomal, and proteasomal subunits.

Beyond drawing insights specific to T. thermophila biology,
our approach to developing the TGNE provides a framework
for revitalizing microarray data and integrating it with RNA-
seq results. We leverage computational negative controls to
support our choice of (dis)similarity metric for co-expression
profiles and our optimization of parameters for partitioning
the profiles into clusters. We also compare different normal-
ization strategies to show the degree to which gene expression
pattern shape and magnitude differently affect the clustering
results. Approaches to computational negative controls, dis-
tance metrics, normalization, and clustering algorithms have
all been detailed in prior work [1, 24, 29-32]. However, to our
knowledge, these strategies have not been previously brought
together to unite bioinformatic insights from different exper-
iments. Our results indicate that there are more testable hy-
potheses to be found and more insights to glean from the
troves of publicly available bioinformatic data, even for evo-
lutionary distant and experimentally challenging organisms.

Materials and methods

Microarray data preprocessing

The microarray data analyzed in this study were sourced from
the NCBI Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) under accession numbers GSE11300,
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GSE26650, GSE26384, and GSE26385. Experimental probes
were aligned to the June 28, 2024 release of the Tetrabymena
thermophila genome model CDS using HISAT2 with default
parameters [27, 33]. In the NimbleGen Design File (NDF), the
SEQ_ID of each singly aligned probe was replaced with the
TTHERM_ID of the corresponding sequence. Probes that did
not align to a single gene coding sequence were discarded with
the exception of RANDOM probes. All raw microarray data
files were converted to XYS format. All XYS files were com-
piled to create an expression set and RMA normalized with
oligo and pdInfoBuilder in R [34, 35].

Microarray chip quality control

Chips were removed if they met the following three criteria: (i)
had a 25th percentile NUSE (normalized unscaled standard er-
ror) > 1, (ii) had a relatively large NUSE interquartile range,
and (iii) had expression intensity autocorrelation on recon-
structed pseudo-images of the original chips [36]. After this
quality control, if there remained only one replicate for a given
time point, it was also excluded from the analysis. The mi-
croarray chips were hierarchically clustered with hclust in R
to observe any clustering biases. All microarray chips from
GEO Accession GSE26385 were removed, as they clustered
away from other replicates for their respective conditions and
were collected by a specific individual, which is indicative of

a batch effect [13].

Microarray gene filtering

Genes were filtered to remove ones that had too low expres-
sion or variance to be informative in the analysis. All genes
were subjected to two filters: one based on the distribution of
their respective expression statistics and one based on likeli-
hood of differential expression. The first filter required that:

e The gene’s geometric mean expression was greater than
or equal to the 25th percentile of the geometric means of
expression for all genes.

e The gene’s geometric coefficient of variation of expres-
sion was greater than or equal to the median geometric
coefficient of variation for all genes.

e The gene’s maximum fold-change of expression was
greater than or equal to the median maximum fold-
change of expression for all genes.

e The gene’s ratio of its median absolute deviation to its
median expression was greater than or equal to the me-
dian ratio for all genes.

To identify genes that have robust differential expression
patterns that may have been lost to the above filter, we used
MaSigPro parametrized to a false discovery rate, g = 0.001 by
the Benjamini-Hochberg correction for multiple hypothesis
testing [37]. The genes identified by MaSigPro were added to
the ones that passed the first filter, and this total gene set was
used for subsequent analysis.

RNA-seq analysis

The sequencing data used in this study was downloaded from
the Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.
gov/sra/) under the BioProject PRJNA861835. Adapter se-
quences and low-quality reads were removed with Trimmo-
matic [38] with default parameters. The quality of the reads
in each sample before and after trimming was accessed with
FastQC [39] and MultiQC [40]. The transcript abundance for
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each gene was computed with Kallisto [41] using the trimmed
reads and the T. thermophila genome model CDS. Transcripts
per million (TPM) and counts per million (CPM) were com-
puted from transcript abundance and the effective length of
each transcript.

RNA-seq gene filtering

Jaccard filtering was applied to the RNA-seq gene expression
data to remove genes with noisy and unreplicated expression
patterns [42]. We determined the maximum Jaccard similar-
ity index between replicate gene measurements to be 0.9422,
which corresponded to a CPM of 0.0802. Only genes with
a maximum CPM measurement >0.0802 were kept for the
subsequent analyses. After filtering, the TPM values for ex-
pression were used to compute co-expression clustering.

Orthology-based annotation

eggINOG-mapper v2.1.12 was applied to the T. thermophila
genome model protein sequences to mine annotations of
orthologs using the following parameters: the HMMER
database with 2759 as the taxID, tax scope constrained to eu-
karyota, 2759 selected for the target taxa, report orthologs
enabled, nonelectronic GO terms only, the HMM database,
and no PFAM realignment [21, 22, 43]. The exact com-
mand was: -m hmmer -d 2759 —no_annot —tax_scope Eukary-
ota —target_taxa 2759 -report_orthologs —report_no_hits —
go_evidence non-electronic —pfam_realign none —dbtype hm-
mdb. Interproscan 5.68-100.0 was applied to the T. ther-
mophila genome model protein sequences to mine annota-
tions of orthologs using the default parameters [28, 44].

Enrichment analysis

The modified two-tailed Fisher’s exact test with a Bonferroni
correction for multiple hypothesis testing, as implemented
in the DAVID database, was used to determine if any GO,
COG, EC, KEGG_ko, PFAM, and/or InterPro annotation
terms were enriched in each cluster relative to the genome
background [435, 46].

Clustering

The raw microarray and RNA-seq expression datasets were
preprocessed and clustered using the same approach. Two dif-
ferent preprocessing pipelines were applied to each dataset:
(i) each gene expression profile was log-transformed elemen-
twise and subsequently z-score normalized; (ii) each gene ex-
pression profile was min—max normalized. All four prepro-
cessed datasets were subject to the same clustering pipeline.
The arithmetic mean of the normalized expression values was
computed for each gene across replicates at each time point.
A high-dimensional Manhattan distance matrix was precom-
puted with scikit-learn [47]. The nearest neighbors for each
gene expression profile in the high-dimensional space were
computed using a modified scikit-learn function. By default,
scikit-learn does not include a point as its own nearest neigh-
bor. The scikit-learn function was used to compute the eleven
nearest neighbors, and the point itself was added manually to
the set of nearest neighbors and distances to complete the set
of 12. A graph of the high-dimensional space was built with
umap-learn [23] with a varying number of nearest neighbors.
Genes were clustered via community detection of networks
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with leidenalg [24] using the Constant Potts Model [48] qual-
ity function with a varying linear resolution parameter.

Parameter optimization and partition quality
validation

Partitions were computed with a varying number of near-
est neighbors for UMAP graph generation (range=[2, 12],
step = 1) and Leiden linear resolution parameters (range=[0,
1], step = 0.005). The modularity of each partition was com-
puted using the graph and the clusters generated by the par-
tition with networkx [49]. The number of enriched clusters
was counted, and the fraction of enriched clusters was com-
puted as the number of enriched clusters divided by the total
number of clusters in the partition. The interquartile range
among all of the cluster sizes was computed for each par-
tition. Pareto-efficient partitions were computed in a three-
dimensional space defined by the fraction of enriched clus-
ters, modularity, and the interquartile range of cluster sizes.
For a partition to be considered optimal, we required a mod-
ularity >0.7 and an interquartile range of cluster sizes >10.
Computational negative control partitions were used to assess
the statistical significance of each of the four optimal parti-
tions. Scrambled negative control partitions were generated by
randomly swapping raw expression values within each gene’s
expression profile before preprocessing and clustering. Simu-
lated negative control partitions were generated by creating
a uniformly distributed Latin hypercube with SciPy [50] with
the same dimensionality as the dataset. The hypercube val-
ues were then scaled to match the range of values within the
dataset and used as raw input for preprocessing and cluster-
ing. One thousand computational negative control partitions
of each type were computed with the optimal parameteriza-
tions for each of the microarray and RNA-seq datasets. A two-
tailed one-sample #-test was used to assess the difference be-
tween the modularity of each optimal partition and each of
the corresponding negative control modularity distributions.

Differential expression analysis of induced
mucocyst replacement dataset

To distinguish between genes upregulated due to demands of
mucocyst synthesis versus genes upregulated in response to
the exocytic stimulus per se, we exploited a mutant cell line,
MN173, that does not secrete its mucocysts upon stimulation
[51]. Using biological triplicates, total RNA was isolated from
wild-type cells (strain CU428) prior to stimulation of exocy-
tosis, and then 60-min post stimulation. In parallel, cells from
the MN173 mutant line were treated and processed equiva-
lently. Cells were grown in 1% proteose peptone, 0.2% dex-
trose, 0.1% yeast extract, and 0.003 % ferric EDTA. Cells were
grown to 150,000-200,000 cells/ml and pelleted in 50 ml
conical tubes for 45 s at 800 x g. They were washed once
and suspended in Dryl’s medium with added magnesium and
calcium (DMC) (0.1 mM Na,HPOy4, 0.1 mM NaH,;PO4, 0.65
mM CaCly, 0.1 mM MgCl,, pH 7.1) for 16 h at room tem-
perature with shaking. Fifty milliliters of aliquots were stim-
ulated by pelleting as above, and resuspension in 5 ml. 2%
Alcian Blue was added to 0.05% and the tube contents were
mixed by inversion, and then diluted immediately by addition
of 45 ml of 0.25% proteose peptone, 0.5 mM CaCl,. Cells
were then washed once in DMC and resuspended for recov-
ery in DMC at room temperature with shaking. Pelleted cells
were lysed with 5§ M guanidinium thiocyanate, 10 mM EDTA,

50 mM Tris-HCI pH 7.5, and 8 mM 2-mercaptoethanol.
RNA was precipitated with seven volumes cold 4 M LiCl,
and the pellet was washed once with 3 M LiCl and suspended
in 0.5% N-lauroyl-sarkosine, 1 mM EDTA, 10 mM Tris pH
7.5. RNA was then phenol/chloroform extracted and ethanol
precipitated.

The complementary DNA (cDNA) synthesis and Cy3 la-
beling were done by Roche NimbleGen Systems, as described
in [52]. Hybridization and staining of arrays were carried
out by Roche NimbleGen Systems as described in [53]. Ar-
rays were scanned by Roche NimbleGen using a GenePix
4000B (Molecular Devices, Sunnyvale, CA), and the data were
extracted using NimbleScan software. Array normalization
was performed using the quantile normalization method [54].
Normalized expression values for the individual probes were
used to obtain the expression values for a given open reading
frame by using the multiarray average (RMA) procedure [55].
Data were analyzed based on the RMA-processed expression
values.

The microarray data from the mucocyst replacement ex-
periments were processed the same way as the untargeted co-
expression microarray dataset up to and including the RMA
normalization step. The RMA normalized expression set was
analyzed with limma [56] to determine the differential ex-
pression data for each gene over 1 h in the MN173 mutant
relative to the wild type T. thermophbila. Genes which had a
fold-change of >1.5x, a Benjamini and Hochberg’s adjusted
false discovery rate (q-value) <0.01, and a B-statistic >1 (i.e.a
Bayesian posterior probability >73.1% chance of being differ-
entially expressed) were classified as differentially expressed
genes.

Cross-validation of untargeted co-expression
analyses against targeted mucocyst replacement
experiment

We identified co-expression clusters that were statistically
significantly enriched for the 33 genes that are experi-
mentally validated to be involved in mucocyst biogenesis
(Supplementary File S1) in both the microarray and RNA-seq
datasets. This was done by a Fisher’s exact test relative to the
background genome as in [45]. For each respective normaliza-
tion framework, these sets of genes and the set of genes that
are upregulated during mucocyst replacement were then com-
pared to determine their mutual agreement. A Venn diagram
was generated to display the intersections of the three sets. To
assess whether the intersections between these sets are more
likely to include experimentally validated genes than the genes
excluded from the intersections, we again employed a Fisher’s
exact test, this time looking at the background of the union of
the three sets, rather than the entire genome.

Macronuclear knockouts of candidate genes

Genes of interest (TTHERM_00141040, TTHERM_001
93465, TTHERM_01213910, TTHERM_00047330, TTHE
RM_00317390, TTHERM_00283800, TTHERM_0024179
0, TTHERM_01332070, TTHERM_00059370, and TTHE
RM_00227750) were knocked out via a standard biolis-
tic bombardment, homologous recombination, and selection
protocol [57]. In brief, Polymerase Chain Reaction (PCR) was
used to amplify the 5" and 3’ flanking regions (1.5-2 kb each)
for each gene. These amplicons were subsequently subcloned
into the Sacl and Xhol sites that flank a neomycin resistance
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cassette (Neo4), thus granting the cassette homology arms to
replace the endogenous gene. These vectors were linearized
by Kpnl and Sapl and transformed into CU428 cells by bi-
olistic transformation. Biolistic transformations were as de-
scribed previously [58], with the following modifications: gold
particles were prepared as recommended with 15 ug of to-
tal linearized plasmid DNA. To select positive transformants,
paromomycin was added 4 h after bombardment to cultures
that had been shaking at 30°C. Transformants were selected
in 120 ug/ml paromomycin, and CdCl, was added at 1 pg/ml
to induce Neo4 expression. Putative transformants were iden-
tified after 3 days of selection. These were then serially trans-
ferred daily in increasing amounts of paromomycin for at least
4 weeks before further testing.

Dibucaine mucocyst secretion assay to
experimentally validate new mucocyst gene
knockouts

T. thermophila cells (wild-type or knockout) were grown to
a density between 4 x 10% and 6 x 10° cells/ml and washed
once with 10 mM Na-HEPES (pH 7.2) after being pelleted for
30 s at 400 x g in a clinical centrifuge. Loose cell pellets (con-
centrated ~10-fold relative to the initial culture) were stimu-
lated for 30 s by addition of 2.5 mM dibucaine (final concen-
tration). The cells were then diluted at least five-fold with 10
mM Na-HEPES (pH 7.2) and centrifuged at 1200 x g for 1
min in 15 ml conical tubes. After the centrifugation, we im-
aged the two-layer pellet, with cells overlaid by flocculent ex-
truded mucocyst contents, to determine the strains’ relative
capability to secrete mucocysts.

Results

Uniting insights from microarray and RNA-seq
datasets

In order to draw comparisons between gene expression pat-
terns in the disparate microarray and RNA-seq datasets, we
processed them into a lingua franca of normalized gene ex-
pression. The microarray expression dataset covered bulk
growth, starvation, and conjugation conditions [12, 13, 15],
and the RNA-seq expression dataset covered 1.5 cell cycle-
synchronized mitotic cycles [26]. We filtered both datasets, re-
moving batch effects, noisy expression, and unreplicated sam-
ples (Supplementary Figs S1 and S2). After the quality con-
trol steps, 20,428 genes remained in the microarray dataset
and 23,113 genes remained in the RNA-seq dataset (the to-
tal gene number in T. thermophila is 27,494) [27] (Table 1).
After normalization, we scanned over five different distance
metrics [Euclidean, Manhattan, context likelihood of relat-
edness (CLR), angular, and linear correlation [13, 32, 59]],
nearest neighbors ranging from 2 to 12, and scanning the
Leiden clustering resolution parameter between zero and one
(Supplementary Figs S3-S7) [24]. Using Pareto optimization
[30], we settled on Manhattan distance, three nearest neigh-
bors, and resolution parameter (r = 0.005) as the most effec-
tive (Supplementary Fig. S3). The Pareto optimization checked
for modularity [60], fraction of clusters with significantly en-
riched functional terms, and cluster size interquartile range
(Supplementary Figs S3-S7). To determine the functional term
enrichment, we first used eggNOG and InterProScan to anno-
tate all the genes in our dataset based on orthologous groups
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Table 1. Annotation statistics of the microarray and RNA-seq datasets

Microarray RNA-seq
Total number of genes 20,428 23,113
Fraction genes with COG category terms 0.55 0.52
Fraction genes with GO terms 0.08 0.07
Fraction genes with KEGG KO terms 0.32 0.29
Fraction genes with EC terms 0.14 0.13
Fraction genes with PFAM terms 0.49 0.45
Fraction genes with InterPro terms 0.65 0.63

Table 2. Normalization specific cluster and enrichment statistics of the
optimal microarray and RNA-seq partitions

Microarray full RNA-seq

Normalization min-max z-score min-max  Zz-score

Modularity 0.77 0.76 0.79 0.79
Number of clusters 636 636 731 740
Mean cluster size 32.12 32.12 31.62 31.23
Median cluster size 30.0 30.0 31.0 29.0
Standard deviation of cluster size 12.65 13.58 11.45 11.23
Minimum cluster size 3 3 3 3
Maximum cluster size 82 98 76 80
Number of enriched clusters 250 255 199 219
Mean enriched cluster size 34.57 35.10 35.00 34.25
Median enriched cluster size 32.0 32.0 34.0 33.0
Standard deviation of enriched 14.37 15.09 11.55 11.07
cluster size

Maximum enriched cluster size 82 98 76 66
Minimum enriched cluster size 3 3 9 14
Number of genes in enriched 8643 8950 6965 7501
clusters

and protein domains [21, 22, 28] (Table 1). In each cluster,
the enrichment of each functional term was calculated against
its background abundance in the genome using a modified
Fisher’s exact test and Bonferroni correction against multiple
hypothesis testing [45, 46] (Table 2).

After all these steps, we simulated the null hypothesis that
each gene expression profile was completely unrelated to other
gene expression profiles with two methods: (i) expression
value scrambling within each gene, or (ii) generating simu-
lated expression profiles each gene that supported an evenly
distributed hypercube of values (Fig. 1). For each method, we
ran 1000 independent simulations and found that the nor-
mally distributed modularity values corresponding to the null
hypothesis were statistically significantly lower than the parti-
tion modularity for the chosen optimal partitions (P < 0.005
by two-tailed #-test), which indicated that our parametrization
identified significant gene co-expression modules (Fig. 1A-
D). For both the microarray and RNA-seq datasets, and for
both normalization strategies, we hierarchically clustered the
co-expression modules around their centroids, allowing us to
plot gene co-expression modules by their relative similarity
(Fig. 1TE-H). These heatmaps reveal a whole-transcriptome
view of gene expression across all the assayed conditions,
and each condition has a corresponding co-expression module
that reaches either its minimum or maximum at that point.

Mucocyst biogenesis genes are recovered in
untargeted bioinformatic analysis

With the gene co-expression being normalized and com-
puted in the same way for the two datasets, we were able
to test the degree of their agreement. We focused on mu-
cocyst biogenesis, a cellular process that we have previ-
ously studied, including with the use of inferences from
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Figure 1 Optimal parameterization significance testing for each dataset/normalization scheme and illustrations of optimal experimental partitions.
Histograms illustrating modularity distributions for computational negative control (NC) partitions compared to the experimental partition created from
the optimal parameterization. The computational negative controls based on scrambled data are in black, the computational negative controls based on a
simulated hypercube with uniform data distribution are in purple, and the modularity value for the optimized partitions are indicated by the dashed green
line. (A) The computational negative control comparison for the min-max normalized microarray dataset. (B) The computational negative control
comparison for the min—-max normalized RNA-seq dataset. (C) The computational negative control comparison for the zscore normalized microarray
dataset. (D) The computational negative control comparison for the zscore normalized RNA-seq dataset. In each case, the modularity for the optimized
clustering of the real data was statistically significantly greater than in either negative control (P < 0.005). Heatmaps illustrating the optimal partitions
generated from (E) the min-max normalized microarray dataset, (F) the min-max normalized RNA-seq, (G), the z-score normalized microarray, and (H)
the zscore normalized RNA-seq datasets. Modules of gene expression profiles are ordered by hierarchical clustering of the module centroids using
average linkage. Each row of a given heat map corresponds to one gene’s expression. In panels (E) and (G), the x-axis denotes the different phases of
the T thermophila life cycle: low density logarithmic growth (LI), medium density logarithmic growth (Lm), high density logarithmic growth (Lh), 0-24 h
of starvation (S0-S24), and 0-18 h of conjugation (CO-C18) [12]. In panels (F) and (H), the x-axis denotes the stages of the mitotic cell cycle and
corresponding timepoints for sampling.
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gene co-expression [16, 18, 20]. For our current analysis,
we determined which clusters in both the microarray and
RNA-seq datasets were enriched for 33 genes that have been
previously experimentally verified to be involved in muco-
cyst biogenesis or secretion (Supplementary File S1). Using
the min—-max normalized data, we found clusters that are en-
riched for these experimentally verified genes: six in the mi-
croarray co-expression dataset (m002, m003, m004, m003,
m006, and m378, totaling 182 genes, Fig. 2A) and four in
the RNA-seq co-expression dataset (m040, m194, m219, and
m294, totaling 104 genes, Fig. 2B). Using the z-score normal-
ized data, we found four such clusters in the microarray co-
expression dataset (m169, m171, m172, and m424, totaling
172 genes, Supplementary Fig. S9A) and four in the RNA-seq
co-expression dataset (m632, m634, m636, and m679, total-
ing 144 genes, Supplementary Fig. S9B).

To determine whether this agreement between the two
datasets has biological significance, we experimentally as-
sessed which genes are upregulated after we stimulated mas-
sive mucocyst secretion, when the cells are induced to syn-
thesize a large cohort of these organelles. For this analy-
sis, we compared a wild-type strain (CU428) to a mutant
(MN173) that produces mucocysts but is incapable of re-
leasing them, and which therefore does not induce new mu-
cocyst synthesis upon stimulation [61]. This was a microar-
ray assay that we processed in the same way as described
above (Supplementary Fig. S8). Focusing on min-max nor-
malized data, of the 3220 genes that were differentially up-
regulated in this experiment (Fig. 2E), 112 are shared with
the co-expressed clusters in the microarray dataset alone
and five are shared with the ones in the RNA-seq dataset
alone (Fig. 2F-H). Thirty-three genes are shared across the
differential upregulation and the two co-expression datasets
(Fig. 2F).

In Fig. 2F, the 33 gene intersection of the three datasets in-
cludes 13 experimentally verified genes (Supplementary File
S1, “min-max triple agreement” tab), which is a statistically
significant enrichment of experimentally verified genes relative
to the background of all genes in Fig. 2F (p < 1 x 107® by a
two-tailed Fisher’s exact test). The five gene intersection of the
RNA-seq co-expression and differential upregulation alone
contains no experimentally verified genes (Supplementary
File S1, “min-max upreg & RNA-seq” tab; p = 1). The 112
gene intersection of the microarray co-expression and differ-
ential upregulation alone contains eighty experimentally ver-
ified genes (Supplementary File S1, “mix—max upreg & mi-
croarray” tab; p < 1 x 107°). The eight gene intersection
of the microarray and RNA-seq co-expression alone contains
seven experimentally verified genes (Supplementary File S1,
“min-max microarray & RNA-seq” tab; p < 1 x 1076). Thus,
28 of the 33 genes (84%) that were experimentally verified
to be involved in mucocyst biogenesis prior to this analysis
were recovered, all of which are found in the microarray co-
expression dataset and shared agreed upon by at least one of
the two other datasets. We obtained analogous results when
starting with z-score normalized data (Supplementary Fig. S9
and Supplementary File S1, “z-score” tabs).

Figure 2G and H shows the expression profiles of the eight
genes at the intersection of the microarray and RNA-seq co-
expression datasets. This list includes GRL1, 3, 4, 5, 7, and 8
and GRT1, which are all known to be mucocyst cargo proteins
[58, 62—-64]. The other gene is TTHERM_00537380, which
is unnamed, unannotated, and lacks any orthologs or pro-
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tein domains that were identified by eggNOG or InterProScan
(Supplementary File S1).

For 10 of the genes that are co-expressed with the 33
previously verified genes, we performed new knockout ex-
periments confirming their role in mucocyst biogenesis (Fig.
3). Six of these genes have been previously implicated to be
part of the mucocyst docking and discharge complex by co-
immunoprecipitation but have not been genetically assayed
(Fig. 3A) [5]. The remaining four had not been previously
studied, but we selected them based on their co-expression
clusters and for their putative annotations as proton-pumping
pyrophosphotases, which have been implicated in mucocyst
and trichocyst biogenesis (Fig. 3B) [65-67]. In our knockout
experiments, the loss of each of these ten genes resulted in a
mucocyst secretion defect, as evidenced by the loss of the mu-
cosal layer over the cell pellets after dibucaine treatment.

The topology of the T. thermophila gene network
reveals other functionally enriched modules

The previous two studies of the T. thermophila gene co-
expression landscape identified relatively large modules with
significantly enriched functional terms: the RNA-seq study
identified 3032 genes as cell cycle-regulated that were di-
vided into 10 clusters, only four of which had significantly
enriched functional terms [26]. The microarray study reported
55 co-expression clusters for the full genome, but did not re-
port a statistical analysis of functional enrichment [13]. How-
ever, both studies found functionally associated genes cluster-
ing together—-most prominently histone-, proteasome-, and
ribosome-associated genes. We set out to assess whether our
new analysis reproduces or expands on these findings (Fig. 4).

In the case of histone-associated genes, the min—-max
microarray co-expression analysis identified one cluster of
18 genes (module m179), and the min-max RNA-seq co-
expression analysis identified one cluster of 15 genes (mod-
ule m721) (Fig. 4A and B). The intersection of these two
gene sets comprises six genes, five of which were pre-
viously annotated as histone components: TTHERM_007
90792 (HTA1), TTHERM_00633360 (HTB1), TTHERM
00498190 (HHF1), TTHERM_00316500 (HTA2), TTHE
RM_00283180 (HTB2), and TTHERM_00143660 (HTA3)
(Supplementary File S2, “AB overlap”). Additionally, the mi-
croarray co-expression cluster identifies five members of the
MCM helicase and a chromatin-associated protein: TTHE
RM_00554270 (MCM2), TTHERM_00092850 (MCM3),
TTHERM_00277550 (MCM4), and TTHERM_00448570
(MCMS6), TTHERM_00011750 (putative MCM7), and TT
HERM_00729230 (IBD1) (Supplementary File S2 and “Fig.
4A”). The RNA-seq co-expression cluster also includes more
histone- and chromatin-associated genes, such as: TTHERM
_00823720 (HHO1), TTHERM_00660180 (HMGT1), TTHE
RM_00257230 (HMGB2), TTHERM_00189170 (HHF2),
and TTHERM_00571055 (HHT1) (Supplementary File S2
and “Fig. 4B”).

For the ribosome-associated genes, the microarray co-
expression analysis identified two clusters with functional en-
richment, modules m601 and m602, comprising 105 genes
(Fig. 4C). The RNA-seq analysis also identified two clusters,
modules m458 and m460, comprising 82 genes (Fig. 4D). The
overlap between the two consists of 49 genes, each one of
which is annotated as a ribosomal gene (Supplementary File
S2, “CD overlap”). Similarly, the proteasome-associated genes
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Figure 2 Enrichment, differential expression, and overlap of experimentally validated mucocyst-associated and differentially expressed, upregulated
genes. Min—-max normalized expression profiles for genes in (A) the six microarray and (B) the four RNA-seq clusters significantly enriched for
experimentally validated mucocyst-associated genes as well as the 33 genes overlapping between the upregulated, enriched microarray clusters, and
enriched RNA-seq clusters in (C) the microarray and (D) the RNA-seq datasets. (E) Volcano plot illustrating differential expression of each gene
represented in the microarray dataset over one hour in the MN173 mutant relative to the wild type T thermophila. Thresholds are represented by blue
dashed lines (g < 0.01 and fold-change > 1.5). All genes that passed the thresholds have a Bayesian posterior probability of differential expression
>80%. (F) Venn diagram describing the overlapping genes in the enriched microarray clusters, enriched RNA-seq clusters, and the set of upregulated
genes with min-max normalization. Min-max normalized expression profiles for genes that are co-expressed in the microarray and RNA-seq datasets,
but not detected in the upregulated dataset: (G) gene expression in the microarray profiles and (H) gene expression in the RNA-seq profiles.
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TTHERM_00141040 TTHERM_00193465

TTHERM_00227750
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B TTHERM_00283800 TTHERM_00241790

Figure 3. Experimental validation of ten genes that are suggested to be mucocyst-associated by our co-expression analysis. (A) Genes that
co-immunoprecipitated as members of the mucocyst docking and discharge protein complex (TTHERM_00141040, TTHERM_00193465,
TTHERM_01213910, TTHERM_00047330, TTHERM_00317390, and TTHERM_00227750) [5]. (B) Four genes that were knocked out solely on the basis
of our co-expression inference (TTHERM_00283800, TTHERM_00241790, TTHERM_01332070, and TTHERM_00059370). For each gene, the left tube
shows the wild-type response to dibucaine as evidenced by a flocculent layer of mucus overlying the cell pellet after centrifugation. The boundary of the
cell pellet is denoted by the solid line, and the boundary of the mucus layer is denoted by the dotted line. The right tube in each panel displays the
phenotype of strains with the respective genes genetically knocked out. Each has a defect in mucocyst release in response to the dibucaine treatment.

separate into three co-expression profiles in both the microar-
ray analysis (modules m374, m375, and m453; 102 genes to-
tal) and the RNA-seq analysis (m467, m470, and m473; 87
genes total) (Fig. 4E and F). The intersection between these
gene sets contains 22 genes, 21 of which are annotated as
proteasomal components (Supplementary File S2, “EF over-
lap”). The exception is TTHERM_00600110 (TTN1), which
is a nuclease [68]. Curiously, the ribosomal co-expression pro-
files do not follow the periodicity of the mitotic cell cycle (Fig.
4D), unlike the histone (Fig. 4B) and proteasome (Fig. 4F) co-
expression profiles.

The Interactive Tetrahymena Gene Network
Explorer (TGNE)

Given that our analysis appears to be broadly informative
for T. thermophila cell biology, we developed an interactive
tool for reproducing our investigations for any gene or path-
way of interest (Fig. 5). The TGNE is a standalone HTML
file that contains all the data, making it portable and requir-
ing no maintenance. The microarray version is 292.1 MB,
and the RNA-seq version is 106.2 MB. The TGNE works
in any web browser that supports webGL 2.0 (e.g. Chrome
56+, Firefox 51+, Safari 15+, and Opera 43+), and every plot
in the tool is interactive. The annotation table with the se-
lected genes, as well as the functional term enrichment data
for the corresponding modules, can be downloaded using
the buttons at the upper right corner (Fig. SH). The func-
tional term enrichment data for each module in each variant
of the TGNE is available in Supplementary File S3. The in-
teractive dashboards for the microarray and RNA-seq vari-
ants of the TGNE are available as Supplementary File S4
(microarray version) and Supplementary File S5 (RNA-seq
version).

Discussion

Our results show that, at least in the four cases we explored,
there is significant agreement between co-expression patterns
in two disparate experiments: one measuring gene expres-
sion using microarrays across growth, starvation, and con-
jugation and one measuring gene expression using RNA-seq
in cell cycle-synchronized cells, which were generated fifteen
years apart in different laboratories [12, 26]. The fact that
we were able to bring the data into a shared framework
that bridges these experimental and temporal differences is
an indication that old data do not need to lie fallow. Cru-
cially, our approach relies on careful quality filtering, nor-
malization, systematic parameter optimization, and compu-
tational negative controls. The basis for our reanalysis was
to align the probes/reads against the newest model of the
genome and then normalize the expression data such that the
resulting co-expression clusters would be translatable between
datasets. Each dataset was filtered to remove batch effects, un-
replicated gene expression, and noise (Supplementary Figs S1
and S2). We normalized each dataset in two ways to satisfy
two different perspectives on the data. Min-max normaliza-
tion linearly scales the data between zero and one, empha-
sizing only the shape of the given expression profile. In con-
trast, z-score normalization incorporates both the shape and
the magnitude of expression within each profile. The min-
max normalization thus primarily serves to provide a coarser-
grained separation between co-expression clusters, while the
z-score normalization distinguishes between genes that may
have highly correlated expression patterns but distinctly dif-
ferent variance in expression levels across conditions. For ex-
ample, this is evidenced in a comparison between Fig. 4H
and Supplementary Fig. SO9H, where in the former (the min—
max normalization) the genes are grouped into only one clus-
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Figure 4 Min—max normalized expression profiles of clusters significantly enriched for (A and B) histone, (C and D) ribosome, and (E and F) proteasome
functional annotation terms in the microarray (left column) and RNA-seq (right column) analyses. In each case, the same number of clusters come up in
the two datasets: one for histone-associated profiles, two for ribosome-associated profiles, and three for proteasome-associated profiles. The
histone-associated profiles are characterized by low expression during starvation and high expression during growth and conjugation (A) and high
expression during the S-phase of the cell cycle (B). Ribosome-associated profiles are characterized by high expression during growth or starvation and
low expression during conjugation (C). In the RNA-seq expression dataset, the ribosome-associated profiles appear to be at a minimum during the first
G1 phase and at a maximum at the second G1 phase, indicating that in this experiment they are not following the cyclicity of the mitotic cell cycle (D).
The main characteristics of the proteasome-associated co-expression pattern are a sharp loss of expression at the beginning of conjugation (E) and a

peak of expression during mitotic division (F).

ter and in the latter (the z-score normalization) the genes are
grouped into two. Consequently, we recommend users of the
TGNE to start by interrogating their pathways of interest
using min—-max normalization and then further explore the
subtleties of gene expression using the z-score normalization.
For example, the consideration of variance in gene expres-
sion in the z-score normalization schema may separate tran-
scription factors from their downstream regulated genes. We
hope that our work can be a roadmap for using co-expression
data to identify functionally associated genes in other
systems.

Our comparison of metrics for difference (or similarity) be-
tween gene expression profiles showed that the Manhattan
distance (also termed the L; Norm) performs as well or bet-
ter than the other metrics, which is in line with prior literature
on overcoming the “curse of dimensionality” (Supplementary
Figs S3-S7) [69, 70]. For all distance metrics except CLR,
three nearest neighbors was the best parametrization for Lei-
den clustering (Supplementary Figs S3-S7) [24]. Notably, the
CLR distance metric worked significantly differently for the
microarray and RNA-seq expression datasets, unlike any of
the other metrics (Supplementary Fig. S5A and B), which
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Figure 5. A labeled diagram of the TGNE dashboard showing the zscore normalized data for the gene module enriched for histone methyltransferase
genes. (A) The “Conditions Selection Tabs" are exclusive to the microarray dashboard and allow the user to specify which life cycle phases are included
within the input data to the clustering pipeline: the entire profile, just the vegetative conditions, or just the conjugative conditions. The “Normalization
Selection Tabs” allow the user to select which normalization technique should be used on the input data: zscore or min-max. (B) The search bars are
text fields that can be used to select genes based on their modules, annotations, or functional term codes. The left search bar allows searches for
specific modules; the middle search bar is for TTHERM_ID, common names, descriptions, and module number; and the right search bar allows searches
for functional annotation terms or codes, specifically: PFAM names or GO/KEGG/InterPro/E.C. alphanumeric codes. Here, “m270" was used as the
search term to select the entire module that is enriched for histone-methyltransferases. The Boolean logic operators between the search bars allow for
more complex searches, e.g. genes in module X AND genes with annotation Y. The Boolean logic between the middle and righthand search bars is
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indicates that it would be inappropriate for bridging the two
datasets. The previous Tetrahymena gene network landscape
employed CLR to detect co-expression clusters, so our anal-
ysis is fundamentally distinct [13]. The other four distance
metrics appear to be largely equivalent in terms of the result-
ing modularity, fraction of clusters with enriched functional
terms, and interquartile range for cluster size (Supplementary
Figs S3, S4, S6, and S7). We chose the Manhattan distance
for our subsequent analyses because it gave the most sim-
ilar clustering statistics between the microarray and RNA-
seq datasets, but it is possible that the other distance metrics
could reveal subtle differences in the detected co-expression
patterns.

The Leiden algorithm generates flat clusters, as opposed to
hierarchical ones. Consequently, we do not report the rela-
tive pairwise relatedness of genes, unlike the previous Tetrahy-
mena gene network analysis [13]. This approach allowed us
to calculate statistically significantly enriched terms for ~40%
of clusters (Table 2). However, the interactive TGNE dash-
board can be used to glean inter-cluster relatedness based
on the heatmap, which is hierarchically sorted based on
each cluster’s centroid in geometrical space, as well as the
UMAP embeddings and shared annotation enrichment terms
(Fig. SC-E).

We specifically chose to incorporate modularity and the
fraction of enriched clusters in the three-dimensional Pareto
optimization to optimize for both mathematical and biologi-
cal significance, respectively. A higher relative modularity indi-
cates that there are more intra-cluster paths (i.e. more related-
ness between gene expression profiles in the same cluster) and
fewer inter-cluster paths (i.e. less relatedness between genes in
different clusters) [60]. The fraction of enriched clusters cor-
responds to the proportion of clusters that have statistically
significantly enriched functional annotations relative to the
distribution of annotation terms in the genome. Modularity
and functional enrichment fraction are not sufficient to avoid
partitions where there are either several large clusters contain-
ing all genes or where the majority of clusters are tiny, neither
of which would be biologically informative. Optimizing the
interquartile range for cluster size allowed us to avoid param-
eter settings that resulted in either of these situations. From
the Pareto optimal set of partitions, the first optimal partition
with an interquartile range of cluster sizes greater than ten
was chosen, as this was the point where cluster sizes were still
small enough to be manually verified.

Our approach enabled us to perform computational neg-
ative controls to assess whether our clustering performs bet-

ter than the null hypothesis—-that there is no co-expression
network in the data (Fig. 1). This methodology allowed us
to analyze all the datasets in the same way and ensure the
validity of our chosen partitions. Interestingly, the two vari-
ants of the negative control distributions for each dataset
were never completely superimposed. The min—-max normal-
ized datasets illustrated scrambled negative control distribu-
tions which had a higher average modularity than the sim-
ulated distributions. The opposite was true for the z-score
normalized datasets. While the use of computational nega-
tive controls in co-expression studies has previously been em-
ployed qualitatively or propounded on theoretical grounds [1,
29-31], our treatment of these T. thermophila datasets is the
most systematic that we are aware of. Furthermore, the consis-
tent modularity scores of our Pareto-optimized partitions and
the performance of the negative controls gave us confidence to
draw comparisons between the co-expression patterns in the
microarray and RNA-seq datasets.

Our primary goal for the TGNE was to develop a tool
for generating testable hypotheses about T. thermophila cell
biology. To evaluate its effectiveness, we used it to revisit
the biogenesis of an organelle in Tetrabymena that we have
previously studied: the mucocyst (Fig. 2). Using the TGNE,
we found clusters which were enriched for the 33 genes
that are experimentally known to be associated with mu-
cocysts (i.e. genes that either are required for mucocyst
biogenesis/secretion, localize to mucocysts, or both) in both
the RNA-seq and microarray datasets (Fig. 2A and B). We
compared these genes against our differential upregulation
experiment, which assessed gene expression in wild-type or
secretion-null mutant cultures after stimulating mucocyst re-
lease. The degree of agreement between co-expression and dif-
ferential upregulation patterns, as displayed in the intersec-
tions of the Venn diagrams in Fig. 2F and Supplementary Fig.
S9F, gave us confidence that our co-expression clusters contain
novel genes that are important for mucocyst biogenesis. We
generated new knockouts for 10 genes (Fig. 3): six were previ-
ously co-immunoprecipitated with the Mucocyst Docking and
Discharge complex (Fig. 3A) [5]; four were unstudied but had
putative annotations as proton-pumping pyrophosphotases,
which have been implicated in ciliate membrane trafficking
(Fig. 3B) [65—-67]. Each knockout had a mucocyst secretion de-
fect, and after this initial confirmation, these genes will be the
subject of detailed future studies. The agreement between co-
immunoprecipitation and co-expression data is not limited to
mucocyst biogenesis. We found that the histone methyltrans-
ferase complex components that co-immunoprecipitate with

always performed first, as indicated by the parentheses. (C) The download buttons. The annotation table, functional enrichment information, and
normalized gene expression values for the selected genes/modules can be downloaded as tab-separated files using these three buttons. (D) The
heatmap representation of the normalized expression of all genes across all conditions, as in Fig. 2E. The selected module is highlighted, and the
unselected genes are grayed out. (E) This plot shows all modules with significantly enriched functional terms, which are the same terms as those that
can be searched using the right-hand search bar. As with the heatmap, when a certain module is selected, the others are grayed out. Here, the y-axis is
zoomed in to focus on modules 270 and 271. Moving the cursor over any of the circles in the plot displays the enriched term, its fold-change relative to
the genome background, and the Bonferroni-corrected P-value. Here, the indicated circle represents the PFAM term “DNA_Pol_E_B,” which
corresponds to “DNA polymerase alpha/epsilon subunit B.” This term is 306.7 times overrepresented in this cluster relative to the genome background,
with a Bonferroni-corrected P-value of ~1.4 x 10=2. (F) An interactive UMAP representation of the gene expression with one tab showing the UMAP
embedding of each cluster and the other tab showing the UMAP embedding of each gene. Selected genes and modules are highlighted, while
unselected ones are grayed out. Clicking on any circle or selecting them with one of the tools to the right of the plot selects those module(s) or gene(s)
for display. (G) The graph for displaying the expression profiles of the selected genes. This is an equivalent representation of the data in the heatmap. (H)
The annotation table. When genes are selected, their annotation information based on the published T. thermophila genome, eggNOG, and InterProScan
is populated into this table. Columns after the eggNOG preferred names are not displayed in this figure. When rows of the annotation table are clicked,
the corresponding genes’ expression patterns are highlighted in panel (G). Here, we selected the histone methyltransferase genes to be highlighted.
Each graphical panel of this figure is presented in more detail in Supplementary Figs S11 and S12.
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AMT1 (AMT6, AMT7, AMTP1, and AMTP2) also cluster
together in the z-score normalization of the microarray data
(Fig. 5) [71].

Importantly, each intersection in the Venn diagram in Fig.
2F and Supplementary Fig. S9F indicates other clear candi-
dates for genes involved in mucocyst biogenesis that have not
been previously studied (Supplementary File S1). These inter-
sections include four orthologs to the Paramecium tetraurelia
trichocyst cargo proteins (TTHERM_00321725, TTHERM
_00773710, TTHERM_00697290, and TTHERM_0077370
0) and eight members of an expanded gene family that shares
a beta/gamma crystallin domain with known mucocyst cargo
genes (TTHERM_00585170, TTHERM_00471040, TTHE
RM_00038880, TTHERM_00558350, TTHERM_0057055
0, TTHERM_01002860, TTHERM_01002870, and TTHE
RM_00989430) |72-74]. There are also two genes that are
known to be essential for trichocyst secretion: ND6 (TTHE
RM_00410160) and ND9 (TTHERM_00938850) [75, 76].

Furthermore, eight genes which were co-expressed in both
the microarray and RNA-seq datasets but were not induced
upon regranulation (Fig. 2F) include GRL1 (TTHERM_005
27180), GRL3 (TTHERM_00624730), GRL4 (TTHERM_0
0624720), GRLS (TTHERM_00378890), GRL7 (TTHERM
_00522600), GRL8 (TTHERM_01055600), GRT1 (TTHE
RM_00221120), and TTHERM_00537380 (which has no
annotation or clear orthologs outside the ciliates available)
(Supplementary File S1). Of these, the GRLs and GRT1 are
known mucocyst cargo genes [51, 58, 62, 63, 72, 73]. Every
gene in this set has an average log2 intensity >15.5 on the
microarray, apart from the unnamed gene, which is >14.9.
Given the 16-bit detection camera of the system that was used
for the microarray-based experiments, there was not enough
dynamic range to detect further upregulation of these genes
(Supplementary File S6). However, we have previously de-
tected upregulation of GRL1, GRL3, and GRL4 during re-
granulation by qPCR and northern blot in the same exper-
imental framework [77]. Thus, we expect that if the differ-
ential upregulation experiment were performed using RNA-
seq instead of microarrays, the majority of these genes would
also be in the triple-intersection of the Venn diagram. Of note,
the completely unannotated TTHERM_00537380 was over-
represented in the constitutive secretome of the T. thermophila
SB281 mutant, which is also the case for mucocyst cargo pro-
teins (Supplementary File S1) [51, 78, 79]. The fact that it
shares a strong co-expression profile with verified cargo genes
and is in this secretome makes TTHERM_00537380 a prime
candidate for future study.

A consequence of our clustering approach is that it high-
lights statistically significant, but qualitatively subtle, differ-
ences in expression patterns among well-characterized com-
plexes or functionally related genes. One intriguing example
of this phenomenon is found within the nine-member gene
family called GRL, for Granule Lattice. All GRL products are
structurally related secretory proteins that are co-packaged
within mucocysts, and early analyses of transcriptomic data
revealed that the GRL genes are highly co-regulated. However,
while most GRL proteins are likely to be required to form the
physical core of the mucocyst, GRL6 appears to play a dis-
tinct regulatory role, as yet poorly understood [62]. Remark-
ably, in our current analysis GRL6 partitions into a different
cluster from the other GRL genes, potentially reflecting this
functional divergence (Supplementary Fig. S10). We posit that,

The Tetrahymena gene network explorer 13

even in the absence of any other data, the separate clustering of
closely related genes may provide hints of functional diversi-
fication. More broadly, in cases where specialized cell biologi-
cal structures or pathways in T. thermophila were co-inherited
by other ciliates or the relatively closely related dinoflagellates
and apicomplexans, the transcriptional clusters detected in the
TGNE may help to uncover novel features within this deep
lineage.

The efficacy of bioinformatic approaches like ours is nec-
essarily limited by the input datasets. Even though we were
able to “modernize” the microarray data by aligning it to the
newest genome model and applying more quality control, mi-
croarray datasets are inherently limited by both maximum
and minimum signal intensities. This results in a plateau ef-
fect in gene expression profiles in which high expression levels
reach a signal ceiling and low expression levels fall below de-
tection thresholds. These limitations reduce the resolution and
detail in affected expression profiles and, consequently, restrict
the amount of variance available for clustering genes algo-
rithmically. RNA-seq datasets do not suffer from the plateau
effect, but the RNA-seq dataset analyzed in this study was
limited in that it was only performed in duplicate and only
during the growth phase of the Tetrabymena life cycle. Addi-
tionally, despite the samples being synchronized, many gene
expression observations were not repeated in the duplicated
G1 and S phases, such as in Fig. 4D. This was likely due to
cell cycle synchronization diminishing over time. Overall, the
tool would benefit from a new RNA-seq dataset that covers
both the growth and conjugation phases with highly repli-
cated samples collected at smaller time intervals. This would
enhance both the precision and accuracy of the expression
profiles and clustering algorithm’s ability to accurately parti-
tion genes. Naturally, more replicates in all conditions would
further help to reduce the noise and improve clustering.

We highlighted only four biological functions in this re-
port (mucocyst biogenesis and histone, ribosome, or protea-
some processes), each with up to six associated co-expression
clusters. However, our analysis produced hundreds of co-
expression clusters that are enriched for biological functions
(Table 2). These include metabolism, membrane trafficking,
cytoskeletal organization, DNA replication, and many oth-
ers (Supplementary File S3). A detailed analysis of all these
gene modaules is outside the scope of the present work, but it
suggests the opportunity to target the study of many genes
of interest in Tetrabymena thermophila. However, it is im-
portant to note that new transcriptomic datasets may un-
cover co-expression patterns that might be absent from our
present analysis. Every new set of experiments that studies T.
thermophila cell biology from a categorically new perspec-
tive (e.g. temperature stress, antibiotic treatment, co-culture
with predators or prey, etc.) may reveal co-expression clus-
ters that are impossible to identify using the currently avail-
able data. Such datasets may be well suited for use in under-
graduate laboratory courses: by searching for genes that are
co-expressed with known transcription factors or other regu-
latory elements, a group of students can arrive at lists of can-
didate genes to analyze (e.g. knock out or tag) in a timeframe
that is appropriate for an academic term.

One exciting extension of approaches like the TGNE will
lie in their ability to elucidate cell biological pathways that
evolved in specific lineages. As an example, we have pre-
viously found that co-expression analysis in T. thermophila
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could be leveraged to identify genes involved in a secretory
protein complex that appears unique to the Alveolata lineage,
which includes Tetrabymena and the apicomplexan Toxo-
plasma gondii [20]. This indicates that signatures of functional
association, as evidenced by co-expression patterns, persist
and can therefore be informative through evolutionary time
and speciation. In future work, tools like the TGNE for or-
ganisms that are chosen for their phylogenetic diversity, rather
than for their experimental accessibility, could provide op-
portunities for translating experimental results between evo-
lutionarily distant model systems, as well as for identifying
lineage-specific cellular innovations.
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Supplementary Figure 1. Quality control of the microarray co-expression dataset. (A) Effect of RMA normalization
on expression intensity distributions of all the microarray chips. Top: probability density of raw log2 expression
intensities for each chip. Bottom: probability density of RMA normalized log2 expression intensities for each chip. (B)
Box-and-whisker plots for the normalized unscaled standard error (NUSE) score of each chip. If NUSE = 1 is below
the 25th percentile, the chip may be faulty. (C) A pseudo-image of a representative faulty chip that was identified by a
high NUSE score, confirmed visually, and subsequently removed from the analysis. This chip, one of the replicates
for the 12th hour starvation shows evidence of physical warping. Each probe is colored according to its rank of
intensity with blue being lowest and red being highest. There should be no autocorrelation in the chip. (D) A
hierarchical clustering of all chips that passed the quality control from (B) and (C). Two pairs of chips
S0_GSM647651/S0_GSM647652 and S9_GSM647653/S9_GSM647654 are more similar to each other than to the
other replicates for their respective experimental conditions. This is evidence of a batch effect, and this is supported
by the fact that these chips were the only ones collected by a specific individual (Xiong et al., 2011). These four chips
were removed from subsequent analysis. (E) The coefficient of variation versus the geometric mean of log2
expression for each gene in the final microarray dataset. Top: the unfiltered genes. Bottom: the genes that passed
the expression filters. These filtered genes are the ones that were used for all subsequent analysis.
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Supplementary Figure 2. Quality control of the RNA-seq co-expression dataset. (A) The relationship between the
average Jaccard similarity of replicates and the CPM filtering threshold. This filter removes any gene that does not
have a maximum CPM value above the threshold. The maximum Jaccard similarity is indicated by the red line,

corresponding to a threshold of 0.802. (B) The effect of the threshold filter on the CPM distributions for every gene in
every replicate condition. Genes that are retained are in blue, and genes that are filtered out are in red. The rightmost
column displays the maximum CPM values for each gene across all replicates. (C) The average TPM values for each
gene relative to its coefficient of variation before Jaccard filtering. (D) The average TPM values for each gene relative
to its coefficient of variation after Jaccard filtering. Effectively, genes with a very low expression and a very high
coefficient of variation are removed.
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Supplementary Figure 3. 3D clustering parameter optimization plots for the Manhattan distance metric. (A) Min-max
normalized microarray dataset. (B) Z-score normalized microarray dataset. (C) Min-max normalized RNA-seq
dataset. (D) Z-score normalized RNA-seq dataset. We optimized for maximal modularity, maximal fraction of clusters
with enriched functional terms, and minimal interquartile range for cluster size. Each curve corresponds to a different
number of nearest neighbors, and each x along the curve scans across the Leiden clustering resolution parameter.
Here, we are showing only the clustering based on Manhattan distance. The optimized partitions are circled in green,

each corresponding to using three nearest neighbors and a resolution parameter of r = 0.005.



a [+E}
N 5
uy e
| I
L T
2 Iz
n w
2 =2
(=] o
n_l I_I
= (=2
] L
= r
1.0 @ &
oo
o ai
R} N
u e
ol ol
[ Pl
ds =
Ly [
= =
UI L]
& B
Il T
B P
P 0 &

Supplementary Figure 4. 3D clustering parameter optimization plots for the Euclidean distance metric. (A) Min-max
normalized microarray dataset. (B) Z-score normalized microarray dataset. (C) Min-max normalized RNA-seq
dataset. (D) Z-score normalized RNA-seq dataset. We optimized for maximal modularity, maximal fraction of clusters
with enriched functional terms, and minimal interquartile range for cluster size. Each curve corresponds to a different
number of nearest neighbors, and each x along the curve scans across the Leiden clustering resolution parameter.
Here, we are showing only the clustering based on Manhattan distance. The optimized partitions are circled in green,

each corresponding to using three nearest neighbors and a resolution parameter of r = 0.005.
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Supplementary Figure 5. 3D clustering parameter optimization plots for the CLR distance metric. (A) Min-max
normalized microarray dataset. (B) Z-score normalized microarray dataset. (C) Min-max normalized RNA-seq
dataset. (D) Z-score normalized RNA-seq dataset. We optimized for maximal modularity, maximal fraction of clusters
with enriched functional terms, and minimal interquartile range for cluster size. Each curve corresponds to a different
number of nearest neighbors, and each x along the curve scans across the Leiden clustering resolution parameter.
Here, we are showing only the clustering based on Manhattan distance. The optimized partitions are circled in green,

each corresponding to using four nearest neighbors and a resolution parameter of r = 0.005.
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Supplementary Figure 6. 3D clustering parameter optimization plots for the angular distance metric. (A) Min-max
normalized microarray dataset. (B) Z-score normalized microarray dataset. (C) Min-max normalized RNA-seq
dataset. (D) Z-score normalized RNA-seq dataset. We optimized for maximal modularity, maximal fraction of clusters
with enriched functional terms, and minimal interquartile range for cluster size. Each curve corresponds to a different
number of nearest neighbors, and each x along the curve scans across the Leiden clustering resolution parameter.
Here, we are showing only the clustering based on Manhattan distance. The optimized partitions are circled in green,

each corresponding to using three nearest neighbors and a resolution parameter of r = 0.005.



a
8 &
i M
i ]
L] [
] o
=l -
1n w0
= =
2, [}
| -
=z =
Il i
] 4]
> D
i
a 1]
.N ]
@, a
= I_I
E 2z
I )
= =
(=) vy
I_I e
= =
Il N
~ L]
ha I

Supplementary Figure 7. 3D clustering parameter optimization plots for the linear correlation distance metric. (A)
Min-max normalized microarray dataset. (B) Z-score normalized microarray dataset. (C) Min-max normalized RNA-
seq dataset. (D) Z-score normalized RNA-seq dataset. We optimized for maximal modularity, maximal fraction of
clusters with enriched functional terms, and minimal interquartile range for cluster size. Each curve corresponds to a
different number of nearest neighbors, and each x along the curve scans across the Leiden clustering resolution
parameter. Here, we are showing only the clustering based on Manhattan distance. The optimized partitions are
circled in green, each corresponding to using three nearest neighbors and a resolution parameter of r = 0.005.
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Supplementary Figure 8. Quality control of mucocyst replacement experiment. (A) Pseudo-images of the microarray
chips, colored by rank of probe intensity (red is high, blue is low). (B) Box-and-whisker plots of the normalized
unscaled standard error (NUSE) for each chip. The seventh chip was removed from the subsequent analysis
because its 25% percentile for the NUSE score was significantly above 1.
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Supplementary Figure 9. Enrichment, differential expression, and overlap of experimentally validated mucocyst-
associated and differentially expressed, upregulated genes. Z-score normalized expression profiles for genes in (A)
the four microarray and (B) the four RNA-seq clusters significantly enriched for experimentally validated mucocyst-
associated genes as well as the 33 genes overlapping between the upregulated, enriched microarray clusters, and
enriched RNA-seq clusters in (C) the microarray and (D) the RNA-seq datasets. (E) Volcano plot illustrating
differential expression of each gene represented in the microarray dataset over one hour in the MN173 mutant
relative to the wild type T. thermophila. This is the same plot as panel Figure 2E. Thresholds are represented by blue
dashed lines (q < 0.01 and fold-change > 1.5). All genes that passed the thresholds have a Bayesian posterior
probability of differential expression greater than 80%. (F) Venn diagram describing the overlapping genes in the
enriched microarray clusters, enriched RNA-seq clusters, and the set of upregulated genes with min-max
normalization. Min-max normalized expression profiles for genes that are co-expressed in the microarray and RNA-
seq datasets, but not detected in the upregulated dataset: (G) gene expression in the microarray profiles and (H)
gene expression in the RNA-seq profiles.
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Supplementary Figure 10. Comparison of GRL expression profiles and clustering. (A) Z-score normalized GRL
expression profiles in the microarray dataset. There are two major clusters—GRL3,5,7,8 and GRL1,2,4—and GRL6
and GRL9 do not conform to either one. The distinction between the two major clusters indicates that the cluster
containing GRL3,5,7,8 begins to lose expression one time point later during the starvation and conjugation conditions
than does the one containing GRL1,2,4. (B) Z-score normalized GRL expression profiles in the RNA-seq dataset.
During the mitotic cell cycle, GRL1,3,4,5,7,8 cluster together and GRL2,9 cluster together. GRL6 presents a very
different expression profile from the other GRLs.
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Supplementary Figure 11. Detail of panels D (expression heatmap) and E (functional term enrichment)
of Figure 5.
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Supplementary Figure 12. Detail of panels F (UMAP embedding) and G (normalized expression profiles)
for Figure 5.



