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We present an enhanced method for the application of Gaussian Mixture Modelling (GMM) to
the coherent WaveBurst (cWB) algorithm in the search for short-duration gravitational wave (GW)
transients. The supervised Machine Learning method of GMM allows for the multi-dimensional
distributions of noise and signal to be modelled over a set of representative attributes, which aids
in the classification of GW signals against noise transients (glitches) in the data. We demonstrate
that updating the approach to model construction eliminates bias previously seen in the GMM
analysis, increasing the robustness and sensitivity of the analysis over a wider range of burst source
populations. The enhanced methodology is applied to the generic burst all-sky short search in the
LIGO-Virgo full third observing run (O3), marking the first application of GMM to the 3 detector
Livingston-Hanford-Virgo network. For both 2- and 3- detector networks, we observe comparable
sensitivities to an array of generic signal morphologies, with significant sensitivity improvements
to waveforms in the low Quality factor parameter space at false alarm rates of 1 per 100 years.
This proves that GMM can e!ectively mitigate blip glitches, which are one of the most problematic
sources of noise for un-modelled GW searches. The cWB-GMM search recovers similar numbers of
compact binary coalescence (CBC) events as other cWB post-production methods, and concludes
on no new gravitational wave detection after known CBC events are removed.

I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
in 2015 [1], the LIGO-Virgo-KAGRA (LVK) collabora-
tion have detected approximately 90 gravitational wave
events over three observing runs [2–5]. These signals have
all occurred due to compact binary coalescences (CBC)
involving black holes and neutron stars, with detections
including binary black hole mergers, binary neutron star
systems [6–8], neutron star - black hole systems [9], and
even the possibility of an intermediate mass black hole
system [10–12]. There are other potential sources of grav-
itational waves that have yet to be discovered. One such
source are generic GW transients (Bursts). The search
for burst signals from short duration GW transients,
known as the all-sky short search, aims to detect GW
events with duration upto 10 seconds in the advanced
ground based detectors. Some of the predicted sources in
this search are core-collapse supernovae (CCSN) [13–18],
cosmic strings [19, 20], hyperbolic black hole encounters
[21–24], radiation driven parabolic capture [25, 26], non-
linear memory e!ects [27, 28], and neutron star glitches
[29–31]. Many of the astrophysical sources mentioned do
not have well-known waveform structure or have wave-
forms which are too computationally expensive to use in
typical matched filtering searches [32]. This, along with
the requirement of being sensitive to a wide variety of
sources, requires burst searches to employ un-modelled
techniques with little assumptions made on source wave-
forms. Such techniques are crucial for ensuring that any

source of GW signals are not overlooked, however also
present challenges in di!erentiating such events from de-
tector noise transients.

One particular burst analysis algorithm is coherent
WaveBurst (cWB) [33–36], which is one of the main
pipelines used to search for short duration transients in
previous LVK observing runs [37–39], and has also con-
tributed to the detection of CBC events in previous grav-
itational wave transient catalogs [2, 3, 5]. cWB bases the
detection of a GW signal on excess coherent power within
a network of GW detectors, assuming very little on signal
morphology. Because of this, the algorithm is susceptible
to non-stationary noise transients in the detector data,
commonly referred to as ‘glitches’. Of particular con-
cern are blip glitches [40] which mimic the morphology
of short-duration astrophysical signals, thereby hinder-
ing the optimisation of search sensitivity. Previously it
was attempted to overcome this manually through vi-
sual inspection of the algorithm’s response to simulated
signals, however it has recently been thought that Ma-
chine Learning (ML) approaches can be utilized to dis-
tinguish GW signals from noisy glitches in a more e”-
cient way. In this paper we will focus on the supervised
ML method of Gaussian Mixture Modelling (GMM) as a
post-production to the cWB algorithm.

The GMM methodology models cWB attributes in
multi-dimensional space as a superposition of Gaussians,
allowing for the signal and noise populations to be mod-
elled separately and thus aiding in the classification of
GW signals while preserving the un-modelled nature of
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the search algorithm. The benefit of this has been out-
lined by previous studies in [41, 42], however in this work
we present new alterations to the GMM post-production
methodology, including new training data, updated trig-
ger attributes and approach for obtaining optimal num-
ber of Gaussians in the models. Through this, we remove
a bias that was previously present within the models due
to the choice of signal model training data, thus improv-
ing the robustness of our analysis to the wide GW burst
parameter space. We focus particularly on the sensitiv-
ities for the all-sky short search in the third observing
run (O3), comparing sensitivities from the first half of
the third observing run (O3a) to previous GMM studies
in [42], and presenting results for the full O3 search with
GMM post-production for the first time with both 2- and
3-detector networks.

Recent work has seen the application of a di!erent
ML-based approach as post-production to the cWB al-
gorithm [43], in which the authors used the decision tree
method, XGBoost, to improve the classification of sig-
nal and noise transients while maintaining un-modelled
requirements to the analysis. XGBoost learns how to
discriminate between typical noise and signal popula-
tion features through chosen cWB summary statistics,
outputting a number between 0 (noise) and 1 (signal)
which weights the SNR of given events. As an alternative
method to GMM post-production, comparisons of perfor-
mance are made to the XGBoost approach throughout
the paper.

The paper is structured as follows. Section II details
the enhanced methodology of Gaussian Mixture Mod-
elling and the application as post-production to the cWB
algorithm. Section III explores the robustness of the up-
dated methodology through comparisons to results with
the previous method in O3a data. Section IV gives an
overview of the results on the LVK full O3 observing
run using GMM post-production with cWB for 2- and 3-
detector networks, including sensitivity to generic signal
morphologies, core-collapse supernova waveforms, cosmic
strings and detected GW events. Finally, in Section V,
we summarise the key works from the GMM method and
future plans.

II. METHODOLOGY

A. Coherent WaveBurst

Coherent WaveBurst (cWB) [34–36] is an un-modelled
search algorithm which holds no assumption on a po-
tential signal’s morphology, sky direction or polarisa-
tion. Instead, a coherent analysis is used across multi-
ple detectors, transforming time-domain strain data into
the time-frequency domain via the Wilson-Daubechiers-
Meyer wavelet transformation [44]. Pixels with excess
coherent energy are selected above a given noise thresh-
old from the network of detectors, while attributes are
calculated based on statistics from signal and noise prop-

erties. These pixels are clustered based on time-frequency
information with the help of the nearest neighbouring al-
gorithm. From here clusters are reconstructed and are
labelled as possible GW events (triggers) if they surpass
thresholds on coherent energy (Ec) and network correla-
tion coe”cient (cc).
Following the production of triggers, search sensitiv-

ities are optimised during a post-production stage, in
which trigger attributes are manipulated in an e!ort to
distinguish potential signals from noise transients. The
standard cWB post-production method which was pre-
viously utilized in the LVK all-sky short search [39] does
this by placing threshold cuts on triggers’ coherent statis-
tics in an attempt to remove noisy glitches. Triggers are
then split into 3 search classes based upon energy distri-
bution and Quality factor, Q, so that problematic blip
glitches are refined to only one class, and the significance
of events in the other classes remains una!ected. While
this methodology is e!ective, it does not distinguish trig-
gers with low Q and single-energy oscillation well, such
as Gaussian Pulses, since the bulk of problematic glitches
lie within this class. Defining the attribute thresholds in
which to define these search classes can also be a chal-
lenging and lengthy process.

B. Gaussian Mixture Modelling

Gaussian Mixture Modelling (GMM) is a supervised
Machine Learning method which allows for multi-model
data to be modelled as superpositions of Gaussians. By
constructing two distinct GMM models based on signal
and noise distributions in the multi-dimensional attribute
space, it is possible to distinguish astrophysical GW sig-
nals from noisy glitches by calculating likelihoods with
respect to the models. The full methodology of using
GMM to aid the search of gravitational waves was first
proposed in [41], while the application of GMM as a post-
production to cWB was detailed for the all-sky short
burst search during O3a in [42]. The approach to con-
structing and optimising models has since been altered
in order to enhance the sensitivity and robustness of the
analysis to a wide range of GW burst waveform types.
The updated approach is outlined in section IIC.
The GMM analysis is applied to triggers which have

multi-dimensional statistical attributes which represent
the distributions of noise and signal well. The triggers
representing GW signals and detector noise can be con-
sidered as two distinct populations, allowing for two com-
pletely separate GMM models to be constructed as su-
perpositions of Gaussians. Once these models are con-
structed, the log-likelihood of a given trigger being in
either model can be determined through W = ln(L̂)|K̂ ,

where L̂ is the value of the likelihood function given an
optimal number of K̂ Gaussians [41]. The optimal num-
ber of Gaussians K̂ are found by optimising the detection
e”ciency on validation data, explained in detail in sec-
tion IIC 2. This leads to the construction of the GMM
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detection statistic, T :

T = Ws →Wn (1)

where the subscripts s and n stand for signal and noise.
T is a log-likelihood ratio measure of a given trigger
belonging to the distribution of GW signals, with pos-
itive T values favouring signal and negative T values
favouring noise. The GMMmethodology described above
can be applied to any search in which the signal and
noise parameter space are distinguishable over selected
attributes, however we outline below the details specific
to cWB application.

C. Application to the all-sky short search with coherent
WaveBurst

The following sections detail how GMM is applied as
post-production to the cWB algorithm, replacing the
standard methodology based upon binning in an attempt
to mitigate the a!ect of blip glitches and better improve
the classification of signals against noise from the detec-
tors.

1. Data

The triggers and calculated attributes, derived from
the cWB production, are used as inputs for the GMM
analysis. A portion of these triggers is reserved for train-
ing and validating the models. The background trig-
gers represent a population of detector glitches, produced
by cWB through simulated time-shifts so that it is un-
physical for a GW signal to exist and only detector noise
is considered. These background triggers are split into
three subsets: validation, training and testing data. The
training data is used to model the background GMM,
while the validation data is used to tune the optimal num-
ber of Gaussian components per model, and test data is
reserved for False Alarm Rate (FAR) calculation with the
final GMM models.

To construct the signal model, generic band-limited
white noise burst (WNB) injections are simulated to rep-
resent the wide range of signal attribute space, as in
the XGBoost post-production in [43]. The WNBs span
the low-frequency range of the all-sky short search, and
are designed to cover the signal parameter space over
selected attributes. Specifically, it consists of two dis-
tributions: firstly WNBs are uniformly distributed be-
tween central frequency range [24, 996]Hz and bandwidth
[10,300]Hz, with duration logarithmically distributed be-
tween [0.1, 500]ms; the second has WNBs with bandwidth
of 10Hz, duration randomly distributed over [0.1, 10]ms,
and frequency over [10, 100]Hz1. Unlike the background

1
for the secondary WNB distribution, frequency is dependent on

duration
→0.5

Original attribute Re-parameterised attribute

LH LHV

Ec log10(Ec)

ωc log10(ωc)

cc0 logit(cc0)

cc2 logit(cc2)

NED log10(NED + 1000), log10(NED + 2000)

Nnorm Nnorm

penalty log10(penalty)

Qveto0 log10(Qveto0 + 1)

Qveto1 log10(Qveto1), log10(Qveto1 + 1)

Lveto0 logit(Lratio) = logit(Lveto1
Lveto0

)
Lveto1

TABLE I: Table of cWB attributes selected for GMM
analysis and their re-parameterisation.

Re-parameterisation is similar for LH and LHV
networks, with di!erences only in NED and Qveto1.

data, the WNB triggers are split into only two subsets
of validation and training, with training data used to fit
the GMM signal model and validation again used for the
tuning of number of Gaussian components. The choice
of generic simulated WNBs as training implies that the
signal model is more representative of the entire burst
sensitive parameter space, rather than training on a dis-
tribution that represents fewer samples in frequency, as
was done in [42]. It also builds a model that is rela-
tively less biased towards any specific population of GW
sources, since WNBs have random waveform morpholo-
gies over the frequency, bandwidth and duration param-
eters. Further, this choice of training data reserves all
ad-hoc simulation injections for sensitivity estimates.

For the multi-dimensional attribute space, we select
a subset of cWB attributes in which properties of sig-
nals and noise are well represented, and re-parameterise
to achieve desirable Gaussian behaviour. The attributes
considered in the GMM analysis are as follows: e!ec-
tive network coherent SNR (ωc), network correlation co-
e”cients (cc0, cc2), the network coherent energy (Ec),
the network energy dis-balance (NED), the ratio between
the reconstructed energy and the total energy (Nnorm),
the penalty factor (penalty), and attributes measur-
ing likeness to known glitches (Qveto, Lveto). The re-
parameterisation of these attributes are seen in Table I,
with more details of their distributions in Appendix A. In
the previous methodology [42], the Lveto2 attribute had
also been considered, which aids in identifying narrow-
band glitches observed at power line frequencies. How-
ever with the new training data outlined above, it was
found that the consideration of this attribute was causing
confusion to the models and that this source of glitches
were not found to be problematic in O3 data. Hence, this
attribute is no longer considered.
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FIG. 1: Variation of the detection e”ciency with the
number of Gaussian components. NBKG and NSIM are

the numbers of Gaussian components for the
background and the WNB distributions respectively.

The colorbar shows the detection e”ciency, which is the
fraction of the validation WNB triggers detected at an

FAR of 1 in 50 years or lower.

2. Model optimisation

As mentioned above, a subset of background trig-
gers and simulated WNB triggers are used to construct
the background and signal GMM models respectively.
While fitting mixture models to each of the two train-
ing sets, Gaussian parameters (mean, covariance and
weight of each Gaussian) are optimised by the Expecta-
tion Maximisation (EM) algorithm [45], while the hyper-
parameter of number of Gaussian components is speci-
fied by optimising detection e”ciency with the validation
data. During this validation step, models are produced
over a range of number of Gaussian components. The log-
likelihood values of all triggers (WNB and background)
in validation data are calculated for each background and
signal model over the range of the number of Gaussian
components, allowing for the construction of the T statis-
tic as in eqn. 1. We define detection e”ciency as the frac-
tion of WNB validation triggers with T value greater than
the detection threshold at a given FAR. In general, the
fraction of detected signals will depend on the waveform
type and the injected amplitude. But for the detection
e”ciency calculation here, we use only the WNB triggers
and consider all triggers above the detection threshold
regardless of the amplitude. For model optimisation, we
choose to calculate the detection e”ciency at a FAR of 1

in 50 years for each combination of GMM models. The
combination of models which give the optimal detection
e”ciency at the selected FAR threshold are labelled as
the GMM models with the optimal number of Gaussian
components. An example of the distribution of e”ciency
at FAR 1 in 50 years over the number of Gaussian com-
ponents is seen for the O3a analysis in fig 1. GMMs
were trained for number of Gaussian components in the
range [140, 168] for background triggers and in the range
[120, 188] for the WNB simulations, both varying in steps
of 2. Only the region surrounding the optimal number of
Gaussian components is shown in the figure. The color-
bar represents the detection e”ciency on validation data
for each combination of models. We observe that the de-
tection e”ciency varies from 0.48 to 0.52 in this range
of numbers of Gaussian components, with the maximum
occurring at the combination of models with 148 com-
ponents for background and 172 components for WNB
simulations.
Previously in [42], the optimal number of Gaussian

components had been selected using the Bayesian Infor-
mation Criterion (BIC). However, the BIC provided a
measure of how well the Gaussians fit the training data,
which did not directly relate to our models’ ability to dis-
tinguish between the background and signal populations.
The new approach attempts to combine both measures
through the optimisation of correctly classified data, and
was found to reliably obtain better results.
Once the optimal models have been chosen, the T de-

tection statistic is calculated for each trigger in the back-
ground and signal test data sets, as detailed in section
II B, to assign triggers significance estimates.

III. ROBUSTNESS CHECKS WITH O3A

The GMM methodology detailed in section II en-
sures the analysis is sensitive to a variety of signals
that may arise from the all-sky short search. Here,
we investigate the robustness of this updated GMM
methodology by comparing sensitivities to the previous
GMM post-production in [42] for O3a, from 1st April
2019 to 1st October 2019. We consider the 2-detector
LIGO-Livingston-LIGO-Hanford (LH) network for the
frequency range 16-1024 Hz, giving a total coincidence
time of 104.9 days, while a total of 980.7 years of back-
ground data is available through the application of un-
physical time-shifts between detector data.
The robustness of the analysis is investigated by mak-

ing population injections into O3a data with cWB using
the generic ad-hoc set of waveforms commonly used to
benchmark all-sky short pipeline sensitivities, and astro-
physically motivated core-collapse supernovae (CCSN)
waveforms. The set of generic ad-hoc simulations used
in the burst all-sky short search [39] consists of Gaussian
Pulse (GA), Sine-Gaussian (SG) and White Noise Burst
(WNB) simulations, injected over a variety of frequencies,
bandwidths and duration in order to cover a significant
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Gaussian Pulse (GA)

ε (s)

0.1

1

2.5

4

Sine-Gaussian (SG)

f0 (Hz) Q

70 3

70 9

70 100

100 9

153 9

235 3

235 9

235 100

361 9

554 9

849 3

849 9

849 100

White Noise Burst (WNB)

flow (Hz) ”f (Hz) ε (s)

150 100 0.1

300 100 0.1

750 100 0.1

TABLE II: Table of generic ad-hoc simulations with
defining parameters used in the O3 all-sky short search.

portion of the search signal parameter space, as seen in
Table II. These simulations are injected at sky locations
drawn from a uniform distribution in solid angle over the
entire sky. The GA waveforms are all linearly polarised.
The SG waveforms are circularly polarised, that is, the
source is assumed to be optimally oriented. The ampli-
tudes 2 of these simulations are chosen from a grid of
maximum strain values given by (

↑
3)N ↓ 5↓ 10→23 with

N ranging from 0 to 8.
We also utilise a collection of CCSN waveforms, a

population commonly benchmarked in the all-sky short
search. The specific mechanisms occurring during the
explosion of stars can be very complex, and hence di”-
cult to model. Here, the waveform models cover a variety
of mechanisms such as di!erent progenitor star masses,
rotation vs non-rotation of progenitors, explosion type
and particular GW signatures. Specifically, we look at
10 neutrino explosion models: Anderson et al. 2017 [46]
(And s11), Müller et al. 2012 [47] (Mul L15), Kuroda et
al. 2016 [48] (Kur SFHx), O’Connor & Couch 2018 [16]

2
The amplitude is represented by hrss, defined on page 5

(Oco mesa20), Powell & Müller 2019 [13] (Pow he3.5,
s18), Radice et al. 2019 [15] (Rad s9, s13, s25), and
1 magnetorotationally-driven explosion model: Abdika-
malov et al. 2014 [49].

1. Statistic to measure pipeline sensitivity

In order to compare the sensitivities of both GMM
post-production approaches, we introduce the root sum
square of the GW strain - ie. the hrss:

hrss =

√∫ ↑

→↑

(
h
2
+(t) + h

2
↓(t)

)
dt (2)

where h+ and h↓ are the polarisation components of
the GW signal. A common way to estimate sensitivities
in GW burst searches is to calculate the detection e”-
ciency of given waveforms as a function of hrss, which is
found by taking the fraction of detected events at a given
false alarm threshold over the number of injected events
for injected hrss amplitude values. From hrss in Eqn. 2,
we can introduce the hrss50 statistic, which corresponds
to the hrss amplitude where 50% detection e”ciency is
achieved. Since this is a measure of GW strain, smaller
hrss50 signifies the ability to better detect smaller ampli-
tude signals and hence the improvement of sensitivity. In
the results below, we quote the hrss50 values per wave-
form as a way to compare the sensitivities of di!erent
methodologies.

A. Comparisons with old GMM method

In order to directly measure the benefits of our up-
dated methodology, we compare sensitivities for the up-
dated GMM process, here-on referred to as GMM+, to
the methodology previously detailed in the paper by D.
Lopez et al. [42], for the O3a Burst all-sky short search.
The major changes between these methodologies are:

• New signal training set: As mentioned above, the
signal GMM is now trained on a set of generic sim-
ulated WNBs, well-sampled across the entire short
duration, low-frequency parameter space. In previ-
ous methodology, the signal GMM was trained on
a portion of the ad-hoc waveforms detailed in table
II, which sparsely sampled the full signal space and
created bias towards this specific set of waveforms.

• New method to optimise number of Gaussian com-
ponents in the models: As demonstrated in Fig-
ure 1, this is now done through the optimisation
of detection e”ciency at an inverse False Alarm
Rate (iFAR) threshold of 50 years over combina-
tions of models with di!ering number of Gaussian
components with validation data. Previously, the
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Bayesian Information Criterion (BIC) was utilized,
however was not reliably favouring models with op-
timal classification performance.

• Removal of the Lveto2 attribute from the analysis:
As it did not hold distinguishable distributions be-
tween the signal and noise space, we omitted this
attribute.

As detailed in [42], the previous methodology applied a
10% validation, 70% training, 20% testing split to back-
ground triggers, and a similar 10% validation, 70% train-
ing, 20% testing split to the ad-hoc simulation injections
from Table II. For the GMM+ methodology, we retain
the same split for background triggers, however apply a
20% validation, 80% training split to the generic WNB
simulation triggers. Despite this new methodology re-
serving the entirety of the ad-hoc injection data for test-
ing sensitivities, in the interest of fair comparison we use
the same set of 20% ad-hoc injections to test the sensi-
tivities of both methods in this section.

We directly compare the sensitivity of both method-
ologies to given waveforms by calculating the percentage
change in hrss50 at iFAR ↔ 100 years for GMM+ rela-
tive to the previous methodology, as seen in Figure 2. A
negative percentage change indicates a lower hrss50, and
hence an improvement in sensitivity due to the ability to
probe smaller amplitude signals for that given waveform.
The results for ad-hoc simulation waveforms are shown
in Fig 2a. Sensitivities to the majority of Sine-Gaussian
waveforms with Q=3, Q=9 are worsened, however this
loss is somewhat expected due to the removal of bias from
the models towards these specific injections. Sensitivities
to Sine-Gaussian Q = 100 and White Noise Burst wave-
forms remain comparable, while GMM+ gains sensitivity
to the majority of Gaussian Pulse waveforms. The bene-
fit of eliminating ad-hoc waveform bias from the model is
further seen in Figure 2b, where the consistent decrease
in hrss50 for CCSN injections demonstrates that our new
GMM+ methodology improves the pipeline’s sensitivity
to astrophysical source populations.

IV. RESULTS WITH THE THIRD OBSERVING RUN

We apply the updated methodology of GMM+ to
the full third LVK observing run (O3) all-sky short
search for the first time. We detail the pipeline’s
sensitivity to injected burst sources and present GW
search results with both the 2-detector LIGOLivingston-
LIGOHanford (LH) and 3-detector LIGOLivingston-
LIGOHanford-Virgo (LHV) networks. In both cases,
models are trained for O3a and second of half of third ob-
servation run (O3b) separately to account for di!erence
in detector noise, with sensitivities and search results be-
ing combined in the final stage of analysis.

We use the hrss50 statistic outlined in section III 1
to explore the sensitivity of the cWB+GMM post-
production for three populations of waveforms: generic

(a) ad-hoc waveforms

(b) CCSN waveforms

FIG. 2: Percentage change in hrss50 for the updated
methodology, GMM+, compared to the old GMM

methodology seen in [42] for the generic set of ad-hoc
waveform injections and CCSN injections at an iFAR

threshold of 100 years. A negative change signifies lower
hrss50 and hence better sensitivities with the GMM+

methodology.

ad-hoc waveforms, astrophysically motivated waveforms
from core-collapse supernovae (CCSN) and cosmic string
(CS) populations. We use the same set of ad-hoc wave-
forms detailed in the previous section, consisting of Gaus-
sian Pulse (GA), Sine-Gaussian (SG) and White Noise
Burst (WNB) waveforms over a range of frequency, du-
ration and bandwidth properties as detailed in Table II.
The same set of CCSN waveforms detailed in Section
III are also considered, consisting of 10 neutrino explo-



7

sion and 1 magnetorotationally-driven explosion mod-
els. The final astrophysical population of injections con-
sidered is cosmic strings (CS), which are tested by the
GMM methodology for the first time. These are one-
dimensional topological defects which may form follow-
ing spontaneous phase transitions in the early universe,
with bursts of GW signal expected to be created from
both kinks and cusps occurring in the CS loops. From
this population we consider 4 waveforms representing CS
cusps [50] with low-frequency cut-o! of 1Hz and high-
frequency cut-o! of 50Hz, 150Hz, 500Hz, and 1500Hz,
as seen in the O1 LIGO CS search [19]. Note that only
10% of injected CS amplitudes fall inside the analysed
frequency band of the algorithm.

Both sensitivities and GW search results are compared
to studies completed with other cWB post-production
methodologies, namely the cWB standard (STD) post-
production detailed in [39], and the ML-enhanced deci-
sion tree post-production of XGBoost, detailed in [43].

A. Sensitivities with a 2-detector network

As mentioned in the above section, for the 2-detector
LH network we collect a total coincidence time of 104.9
days during O3a, with 980.7 years of background gen-
erated. During O3b, there was 101.63 days of coinci-
dent data to be analysed, while time-shifting allowed for
1096.0 years of background data to be accumulated. 70%
of respective background data was used to train the mod-
els, while 10% is used for validation and 20% for test-
ing, leaving 196.14 years of background reserved for False
Alarm Rate (FAR) calculation in O3a, and 219.2 years
in O3b.

The hrss50 sensitivities at iFAR ↔ 100 years are quoted
for all injected ad-hoc, CCSN and CS injections in Ta-
ble III. Figure 3 reports the hrss50 comparisons for all
generic ad-hoc injections detailed in Table II for the 3
cWB post-production methods at a threshold of iFAR
↔ 100 years. We see that for Gaussian Pulse wave-
forms, the GMM+ post-production enhances the sensi-
tivity compared to the Standard post-production (cWB
STD) method, while achieving comparable sensitivities
to those produced by XGBoost post-production. No sen-
sitivity improvement is seen for sine-Gaussian and white
noise burst waveforms, with GMM+ having lower sen-
sitivity than other post-productions by upto 40%. The
improvement seen for Gaussian pulses demonstrates the
ability GMM methodology has to mitigate the e!ect of
blip glitches in the data, as these have previously been
one of the most problematic noise source in the low-Q
factor parameter space.

The robustness of the updated methodology to vari-
ous astrophysically-motivated population injections, es-
pecially cosmic strings, is supported by Figure 4. Here,
we again present hrss50 estimates at a threshold of iFAR
↔ 100 years, with comparisons to the standard [39] and
XGBoost [43] post-productions. Figure 4a details the

set of CCSN injections. GMM+ observes sensitivity im-
provements for the Rad s25 [15] neutrino-driven explo-
sion model and the magnetorotationally-driven explosion
model Abd A4O01.0 [49]. The GMM+ methodology still
performs well for other waveform models, obtaining sensi-
tivities within 17% of the standard post-production, and
30% of XGBoost.
Sensitivity to cosmic string injections is shown in Fig-

ure 4b. The GMM+ post-production brings improve-
ment to all theorised CS sources considered with high-
frequency cut-o! above 150Hz, with a 30% reduction
to the hrss50 seen by XGBoost, and a 75% reduction
to that seen by standard post-production. GMM+ has
worse performance for only the CS f = 50Hz waveform,
for which XGBoost achieves the highest sensitivity. The
results seen on cosmic string waveforms reinforce that
Gaussian Mixture Modelling can e!ectively mitigate blip
glitches and performs well in the low-Q factor parameter
space.

B. Sensitivity with a 3-detector network

We extend the GMM+ post-production to analyse
data from the 3-detector LIGOLivingston-LIGOHanford-
Virgo (LHV) network, presented here for the first time.
For the 3-detector network, we collect 79.12 days of coin-
cident data during O3a, and 72.24 days for O3b. Again,
using the time-shifting analysis, we produced 572.9 years
of background for O3a and 395.8 years for O3b. In order
to have more background data reserved for False Alarm
Rate calculation, we altered the background data split
for LHV network to be 10% validation, 60% training,
and 30% testing, leaving 171.87 years of test data in O3a
and 118.75 years in O3b. The overall methodology re-
mains largely consistent, with minimal changes made to
the re-parameterisation of the NED and Qveto1 attributes
to account for the dependence of attribute definitions on
the number of detectors. These re-parameterisations are
seen in Table I.
The hrss50 sensitivities at iFAR ↔ 100 years are again

quoted for all injected ad-hoc, CCSN and CS injections
in Table III, for LHV analysis with GMM+, XGBoost
and cWB STD. Figure 5 shows these sensitivities for
all generic ad-hoc injections. Here, GMM+ brings im-
provement to the sensitivity of all Gaussian Pulse wave-
forms compared to both standard and XGBoost post-
production, resulting in an average 85% and 66% de-
crease in hrss50, respectively. Similarly to the 2-detector
results, GMM+ is less sensitive to sine-Gaussian and
white noise burst waveforms by 39% and 104% compared
to standard post-production, and by 45% and 126% com-
pared to XGBoost post-production.
Figure 6a shows the sensitivity of GMM+ post-

production on LHV network for CCSN waveforms. The
overall sensitivity of GMM+ is comparable to the
other methods: compared to standard post-production,
GMM+ shows increased sensitivity for 9 out of 11 in-
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FIG. 3: Sensitivity to generic ad-hoc waveforms detailed in Table II in terms hrss50 at iFAR ↔ 100 years for the full
O3 all-sky short search with 2-detector LH network. Results are shown for GMM+ in dark blue, with comparisons

to the XGBoost post-production [43] in royal blue and standard post-production [39] in light blue.

(a) Core-collapse supernovae (b) Cosmic strings

FIG. 4: Sensitivity to astrophysically-motivated waveforms in terms hrss50 at iFAR ↔ 100 years for the full O3
all-sky short search with 2-detector LH network. Results are shown for GMM+ in dark blue, with comparisons to

the XGBoost post-production [43] in royal blue and standard post-production [39] in light blue.

jected waveforms, with the Mul L15 waveform having
slightly lower sensitivity by 16%, while the Abd A4O01.0

waveform achieves almost the same sensitivity. When
compared to XGBoost post-production, GMM+ shows a
noticeable improvement in sensitivity for 3 out of 11 in-
jected waveforms, the others except Mul L15 being com-
parable within 7%.

Figure 6b shows the sensitivity of GMM+ post-
production on LHV network for cosmic string injections.

GMM+ brings considerable improvements in sensitivity
for all CS models when compared to both XGBoost and
standard post-production, with an average 90% decrease
in hrss50 compared to standard post-production and an
average 85% decrease in hrss50 compared to XGBoost
post-production. This significant improvement in cosmic
strings, alongside the good sensitivity the GMM LHV
analysis achieves to Gaussian Pulses, further reinforces
how well the methodology can mitigate the e!ect of blip
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FIG. 5: Sensitivity to generic ad-hoc waveforms detailed in Table II in terms hrss50 at iFAR ↔ 100 years for the full
O3 all-sky short search with 3-detector LHV network. Results are shown for GMM+ in dark purple, with

comparisons to the XGBoost post-production [43] in medium purple and standard post-production [39] in light
purple.

(a) CCSN waveforms (b) CS waveforms

FIG. 6: Sensitivity to astrophysically-motivated waveforms in terms hrss50 at iFAR ↔ 100 years for the full O3
all-sky short search with 3-detector LHV network. Results are shown for GMM+ in dark purple, with comparisons

to the XGBoost post-production [43] in medium purple and standard post-production [39] in light purple.

glitches. This is an important result for the 3-detector
network, as it has been noted that the LHV network has
less e”cient discrimination of glitches during trigger pro-
duction. Unlike the LH network, this arises due to the
3-detector network being sensitive to un-correlated GW
polarisations, which means that less glitches can be dis-
regarded based on this information. Through the appli-
cation of GMM+ as a post-production method, we are

able to achieve similar sensitivities to the LH network, ef-
fectively discriminating previously problematic glitches.

C. GW detections

Here, we discuss the detections in O3 data from the
cWB-GMM+ analysis for LH and LHV. All significant



10

hrss50 (→10→22 1/
↑
Hz)

Waveform
LH network LHV network

GMM+ STD XGB GMM+ STD XGB

Gaussian Pulse

ε = 0.1ms 3.9 12.6 3.6 4.2 17.5 11.7

ε = 1.0ms 2.9 11.1 3.7 2.8 13.9 8.4

ε = 2.5ms 4.2 16.7 4.2 3.5 31.8 10.9

ε = 4.0ms 6.8 27.0 5.5 4.7 94.5 13.8

Sine-Gaussian

f0 = 70Hz, Q=3 1.8 1.1 1.0 1.5 1.2 1.2

f0 = 70Hz, Q=9 2.2 1.5 1.4 2.0 1.4 1.4

f0 = 70Hz, Q=100 1.3 1.1 1.0 1.8 1.1 1.0

f0 = 100Hz, Q=9 1.8 1.2 1.1 1.9 1.2 1.2

f0 = 153Hz, Q=9 1.1 0.8 0.8 1.1 0.9 0.9

f0 = 235Hz, Q=3 1.3 0.9 0.8 1.2 0.9 0.9

f0 = 235Hz, Q=9 1.5 1.0 0.9 1.6 1.1 1.0

f0 = 235Hz, Q=100 0.8 0.8 0.7 1.1 0.8 0.7

f0 = 361Hz, Q=9 1.6 1.2 1.1 1.9 1.3 1.2

f0 = 554Hz, Q=9 1.4 1.1 1.0 1.6 1.2 1.2

f0 = 849Hz, Q=3 2.1 1.6 1.5 2.7 1.8 1.7

f0 = 849Hz, Q=9 1.8 1.4 1.3 2.3 1.6 1.5

f0 = 849Hz, Q=100 1.5 1.4 1.2 1.9 1.5 1.4

White Noise Burst

flow = 150Hz 1.2 1.0 0.9 2.4 1.1 1.0

flow = 300Hz 1.3 1.0 1.0 2.4 1.2 1.1

flow = 700Hz 1.8 1.5 1.4 3.3 1.8 1.5

Core-collapse Supernova

And s11 2.3 2.2 1.8 2.2 2.9 2.2

Mul L15 1.4 1.1 1.0 1.4 1.2 1.1

Pow he3.5 2.8 2.8 2.4 2.6 3.9 2.6

Rad s13 2.5 2.4 2.0 2.2 3.1 2.2

Rad s25 3.1 3.9 3.3 2.4 5.1 3.7

Rad s9 2.4 1.3 1.9 2.2 3.3 1.3

Pow s18 3.0 3.0 2.4 2.7 4.2 2.7

Kur SFHx 1.4 1.2 1.1 1.3 1.4 1.2

Oco mesa20 4.0 3.9 3.3 3.5 5.5 4.7

Oco mesa20 pert 3.5 3.4 2.8 3.3 4.9 3.5

Abd A4O01.0 2.0 2.5 2.4 3.1 3.0 13.1

Cosmic String

f = 50Hz 170.0 208.3 49.8 22.1 336.4 246.7

f = 150Hz 37.0 133.5 48.8 18.7 180.2 117.9

f = 500Hz 38.1 119.6 52.0 18.7 155.6 114.0

f = 1500Hz 36.3 114.6 50.1 18.5 148.4 106.5

TABLE III: Table detailing the hrss50 in units of ↓10→22 1/
↑
Hz achieved at an iFAR ↔ 100 years for each injected

waveform in O3 across all three cWB post-production methodologies. Values for the STD and XGB
post-productions are taken directly from [43].
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FIG. 7: Cumulative number of events vs. iFAR found from the O3 all-sky short search for 2-detector LH network
(left) and 3-detector LHV network (right). Dashed triangular lines represent search results including known CBC
detections for the various post-production methods, while solid lines represent the results with known CBC events
removed. Left: search results for LH network, with GMM+ results (dark blue) compared against the XGBoost

(royal blue) and standard post-production results (light blue). Right: search results for LHV network, with GMM+
results (dark purple) compared against XGBoost (medium purple). All post-production methods conclude on null

result for non-CBC events.

events seen are known CBC detections in [5], concluding
with a null result on burst-type events. The results are
displayed in Figure 7, where the cumulative number of
events vs. iFAR is plotted. All search results are no-
tated by the dashed triangular markers, and results with
known CBC removed are notated by solid lines. The
left-hand plot shows results for the LH network, with
GMM+ results compared to the XGBoost and standard
cWB post-productions. The GMM+ methodology de-
tects a total of 14 CBC events for iFAR ↔ 1 year, similar
to the standard analysis (14) and slightly less than XG-
Boost (16). Overall the GMM+ analysis detects CBCs
with lower significance, which is not surprising as the up-
dated methodology has improved sensitivity mainly for
the Gaussian pulse and cosmic string waveforms. The
loudest event detected by GMM+ with the LH network
is GW200224 222234, with an iFAR close to 110 years.
With known CBC events removed, the search results are
consistent with the expected background.

The right-hand plot of Figure 7 presents the LHV
search results, this time only with GMM+ and XG-
Boost post-productions since the cWB-standard search
was not run for LHV network [39]. For LHV, GMM+
observes a total of 4 events with iFAR ↔ 1 year, which
is less than detected with the XGBoost post-production
(8). The loudest event detected by GMM+ with LHV is
GW190412 with an iFAR = 19.10 years. Similar to the
LH network, the search is consistent with the expected
background when known CBCs are removed.

A full breakdown of CBC events detected by cWB-
GMM+ is detailed in Appendix B, with events listed in
decreasing order of iFAR and compared to the signifi-

cance found by standard and XGBoost post-production.

V. CONCLUSIONS

Developing searches for un-modeled GW signals from
astrophysical systems has always been challenging, due
to new classes of noisy transients percolating in any GW
signal search that is model-agnostic by nature. cWB
has been a back-bone in the un-modelled search for GW
transients, however is still a!ected by noisy transients
from the detectors. There are new approaches to post-
production with a variety of methods to mitigate the
noisy transients. Gaussian Mixture Modelling is one such
approach which develops models for signal and noise in
the multi-dimensional attribute space under the super-
vised machine learning framework using the likelihood
ratio statistic. While an earlier version of GMM was
trained on a suite of ad-hoc waveforms, in this work, we
detail the enhancement of the GMM methodology as a
post-production to the cWB burst search algorithm. We
refer to this enhanced version as GMM+, in which we
train our signal models on generic WNB simulations dis-
tributed over a broad frequency range, making the search
more robust to a wide variety of burst signals. We also
improve the validation stage by maximising the detec-
tion e”ciency over a wide range of numbers of Gaussian
components, instead of BIC, which did not reliably select
the optimal models. Through updates on the approach
to model optimisation, we have removed a bias to ad-
hoc waveforms that was previously seen in the GMM all-
sky short application, and have demonstrated that the
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analysis now has increased robustness to a wider class of
expected sources within the short GW transient signal
parameter space.

Additionally, from applying the analysis to the gravi-
tational wave data of the third LVK observation run for
the first time, we see that both two detector LH and three
detector LHV searches can achieve improvement in sensi-
tivities to Gaussian pulses and cosmic strings. The most
significant sensitivity improvements are seen within the
LHV network, which achieves substantial improvements
in sensitivities to Gaussian pulses and cosmic strings
compared to other post-production methods, and com-
parable results to GMM+ analysis with the 2-detector
network. It is this improvement in the low Quality factor
region which proves the ability GMM+ has in mitigat-
ing blip glitches, one of the most problematic classes of
noise transients in burst searches. We also obtain com-
parable sensitivities to those seen by the XGBoost post-
production for CCSN.

The GMM+ post-production detects a similar num-
ber of CBC events at iFAR ↔ 1 year to the other post-
production methods for the LH network, whereas de-
tects half as many for the LHV network. In both cases,
GMM+ detects CBC events with less significance than
other methods, however this is not the targeted sensi-
tivity space of the search. With known CBC events re-
moved, we conclude with null result for non-CBC events,
similarly to the conclusions in [39, 43].

Considering the competitive sensitivities of the GMM
and XGBoost post-productions to various astrophysical
signals, it may in the future be desirable to run multiple
pipelines on a dedicated search for GWs. The combina-
tion of multiple pipelines would require the application of
a trials factor, however the true implications of this are
not yet fully understood and not the target of this work.

The results of GMM+ are encouraging, and there
are good prospects to use cWB with GMM+ post-
production in burst searches for short gravitational wave
transients in future LVK observing runs. The GMM post-
production approach is general enough that it can be
adapted for any un-modelled search, not specific to cWB.
We expect that there will be ongoing e!orts of improving
the methodology with the future observation runs.
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Appendix A: re-parameterised cWB attributes

As mentioned in section II, the following cWB at-
tributes are considered for the GMM+ analysis: Ec, ωc,
cc0, cc2, NED, Nnorm, penalty, Qveto0, Qveto1, Lveto0, and
Lveto1. In order to achieve better Gaussian behaviour,
these attributes are reparameterised as detailed in Table
I. An example of the distribution of reparameterised
attributes is shown for background and signal training
data for LH network in Figure 8, demonstrating that
the choice of attributes have distinguishable properties
between the 2 populations.

Appendix B: CBC events detected by cWB-GMM in O3

Table IV lists the CBC events detected by GMM+with
iFAR ↔ 1 year for both the LH and LHV networks. The
iFAR estimates obtained with the other cWB pipelines
are listed for the same events. The triggers are obtained
from the entire coincident data used for the O3 cWB all-
sky short search.
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For LHV, this event was obtained from the ”extended segments” in cWB, for which the minimum analysis segment time is reduced.

b
For LH, this event was obtained from the “extended segments” in cWB, for which the minimum analysis segment time is reduced.
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