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Abstract

1. Plant ecological strategies are shaped by numerous functional traits and their

trade-offs. Trait network analysis enables testing hypotheses for the shift-
ing of trait correlation architecture across communities differing in climate and

productivity.

. We built plant trait networks (PTNs) for 118 species within six communities across

an aridity gradient, from forest to semi-desert across the California Floristic
Province, based on 34 leaf and wood functional traits, representing hydrau-
lic and photosynthetic function, structure, economics and size. We developed
hypotheses for the association of PTN parameters with climate and ecosystem
properties, based on theory for the adaptation of species to low resource/stress-
ful environments versus higher resource availability environments with greater
potential niche differentiation. Thus, we hypothesized that across community
PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated)
and network complexity (i.e., the number of trait modules, and the degree of trait
integration among modules) would be lower for communities adapted to arid cli-
mates and higher for communities adapted to greater water availability, similarly
to trends expected for phylogenetic diversity, functional richness and productiv-
ity. Further, within given PTNs, we hypothesized that traits would vary strongly
in their network connectivity and that the traits most centrally connected within

PTNs would be those with the least across-species variation.

. Across communities from more arid to wetter climates, PTN architecture var-

ied from less to more interconnected and complex, in association with functional
richness, but PTN architecture was independent of phylogenetic diversity and
ecosystem productivity. Within the community PTNs, traits with lower species
variation were more interconnected.

. Synthesis. The responsiveness of PTN architecture to climate highlights how a

wide range of traits contributes to physiological and ecological strategies with an
architecture that varies among plant communities. Communities in more arid en-

vironments show a lower degree of phenotypic integration, consistent with lesser
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1 | INTRODUCTION

Functional traits are characteristics that influence organism vital
rates and thereby fitness (Lavorel & Garnier, 2002; Medeiros
et al, 2019; Poorter et al., 2008; Violle et al., 2007), and they
have long been used to predict species distributions (Engelbrecht
et al., 2007; Stahl et al., 2014; Thuiller et al., 2004), community com-
position (Cavender-Bares et al., 2004) and responses to changing
climates (Tordoni et al., 2022; Trugman et al., 2019, 2020), with appli-
cations in species and ecosystem management (Carlucci et al., 2020;
Foden et al., 2013; Loiseau et al., 2020). Much research has focused
on using small sets of traits to estimate plant ‘strategies’, ‘axes’ or
‘dimensions’ of function (Diaz et al., 2004, 2016; Funk et al., 2017;
Grime, 1979; Lavorel & Garnier, 2002; Maynard et al., 2022;
Westoby, 1998; Wright et al., 2004). Yet, recent work highlights
the enormous promise of considering extensive sets of traits and
their associations across species (Belluau & Shipley, 2018; Fletcher
et al., 2018; Grubb, 2016; He et al., 2020; Medeiros et al., 2019;
Messier et al., 2017; Poorter et al., 2014; Sack et al., 2013; Sack &
Buckley, 2020). New approaches have emerged to quantify ‘pheno-
typic integration’ within and among species, in terms of the network
connectivity (i.e. the degree the traits that are correlated to each
other) and network complexity (i.e. the number of structure-func-
tion modules) of the overall web formed by trait-trait relationships
(He et al., 2020; Li et al., 2022; Messier et al., 2017).

The analysis of plant trait networks, henceforth PTNs, enables
quantification of the overall architecture of the interconnected web
of traits that underlie functional strategies of populations, species or
communities, providing a means of integrating trait function at higher
scales (Fontana et al., 2021; He et al., 2020; Li et al., 2022; Messier
et al., 2017; Rao et al., 2023). Networks built with nodes and edges
are based in graph theory with applications across fields of science
(Brooks et al., 2020; Markett et al., 2018; Salt et al., 2008; Tompson
et al., 2018), including, recently, trait ecology (Boisseaux et al., 2025;
Flores-Moreno et al., 2019; He et al., 2020; Kleyer et al., 2019; Li
et al,, 2021, 2022; Messier et al., 2017; Rao et al., 2023). In these
networks, traits are visualized as ‘nodes’ and statistical correlations
between traits as connections (‘edges’; Flores-Moreno et al., 2019;
He et al., 2020). This approach enables the calculation of parame-
ters that describe the connectivity and complexity of the network,
including the designation of trait functional modules (Flores-Moreno
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niche differentiation. Our study extends the usefulness of PTNs as an approach
to quantify tradeoffs among multiple traits, providing connectivity and complex-
ity parameters as tools that clarify plant environmental adaptation and patterns
of trait associations that would influence species distributions, community as-

sembly, and ecosystem resilience in response to climate change.

drought tolerance, ecophysiology, functional modules, functional traits, leaf economics, plant
trait networks, trait multifunctionality

et al., 2019; He et al., 2020; Li et al., 2021, 2022; Rao et al., 2023).
These parameters are expected to encapsulate information on the
functional strategies or syndromes that contribute to the success of
species or communities under particular environmental conditions
(Sanchez-Martinez et al., 2024). Further, besides parameters quanti-
fying whole-network pattern, we can quantify within-network pat-
tern, such as the contribution of each trait to the overall topology
of the network, highlighting ‘hub’ and ‘mediator’ traits with, respec-
tively, a disproportionally large number or centrality of connections
with other traits, which may be of particular importance in the orga-
nization of the integrated phenotype (He et al., 2020).

Importantly, PTNs can be used to test hypotheses for how trait
correlations may shift across communities that differ in climate,
species, functional richness and/or productivity (He et al., 2020; Li
et al., 2022; Medeiros et al., 2019; Sack & Buckley, 2020). According
to the ‘environmental filtering hypothesis’ and the complementary
‘physiological tolerance hypothesis’, in communities of lower re-
source or stressful environments that fewer species can tolerate,
individual traits would be more likely to specialize to a narrower
number of niches; conversely, in communities of environments with
higher resource availability and primary productivity more function-
ally diverse sets of species can be supported (Currie et al., 2004;
Kraft et al., 2015; Le Bagousse-Pinguet et al., 2017). Notably, each
trait can have several functions (Table 1), and traits may be associ-
ated across species due to developmental or structural coordination,
contribution to a common functions and/or co-selection by environ-
ment (Ahrens et al., 2020; Li et al., 2022; Sack et al., 2003, 2012).
According to theory, both trait variation and trait associations would
tend to arise from trait divergence along a gradient of resource avail-
ability (e.g., low vs. high water supply or irradiance). Consequently,
in communities accessing lower resources or experiencing greater
environmental stress and thus providing fewer niches, traits would
tend to optimize separately for stress adaptation, along fewer com-
mon spectra (He et al., 2020). Thus, given that plants can adapt to
stress with alternative designs (Corréa Dias et al., 2019; Marks &
Lechowicz, 2006)—for example, plants can adapt to drought accord-
ing to multiple strategies (e.g., ‘avoidance’ or ‘resistance’; Fletcher
et al, 2022; Laughlin, 2023)—adaptation to lower resources or
stress would tend to result in a greater independence of traits,
and fewer trait correlations (He et al., 2020). Thus, we expect that
in environments with lower resources, or more stress, community
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TABLE 1 Network parameters that characterize the architecture of plant trait networks (PTNs) and the centrality and connectivity

of the included traits, applied for dominant and common species of sites across a climatic gradient in the California Floristic Province.
Network connectivity increases with higher values of edge density, which reflect more interdependence of traits within the network, and
lower values of density and average path length, which reflect less independence of traits within the network; PTN complexity increases
with higher values of average clustering coefficient, which reflect a network that is less divided into subcomponents, and lower values of
modaularity, which reflect lower clustering of traits. Trait centrality increases with higher values of betweenness and connectedness, and
trait connectivity increases with higher values of closeness and degree of connectedness. For each PTN parameter, we provide a visual
guide of what networks with low versus high values for each parameter would look like (modified from He et al., 2020).

Parameters

Whole-network parameters

Network connectivity
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Network complexity

Average clustering
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Modularity
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Within-network parameters

Trait centrality
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Clustering coefficient

Trait connectedness
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£

Degree of connectedness
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Hypotheses for parameter shifts with

Climatic
Definition aridity
The proportion of Decrease
connections out of all
possible connections
The network-averaged Increase
shortest distance between
traits
The maximum shortest Increase
distances between traits in
the network
The network-averaged Decrease
clustering coefficient of
all traits
Measures the degree of Increase

separation of trait clusters
within the network

The number of shortest -
paths going through a
focal trait

The proportion of -
connections between

a focal trait and its
neighbouring traits out of

all possible connections

The mean shortest path -
between a focal trait

and all other traits in the
network

The number of =
connections of a focal trait

Functional
richness
and/or
phylogenetic
diversity

Increase

Decrease

Decrease

Increase

Decrease

Net primary
productivity

Increase

Decrease

Decrease

Increase

Decrease

Trait
variation

Decrease

Decrease

Decrease

Decrease

Rationale

In more arid climates, with lower
functional richness, multiple traits
may independently optimize for
stress adaptation, leading to greater
independence of traits; this may
correspond to a lower productivity
(Ahrens et al., 2020; He et al., 2020; Li
etal., 2022)

Traits may be divided into more modules
in the moister sites, consistent with the
diversification of overall phenotype

and function for the occupation of

more niches (Currie et al., 2004; He
etal., 2020)

Traits within each module may be
more independent of traits in separate
modules in the more arid sites,
consistent with adaptation to drought
stress and lower resource availability
(Currie et al., 2004; He et al., 2020)

Traits more central and connected
within a PTN would be those involved

in mediating and compromising among
multiple functions (He et al., 2020), and
thus would have a lower variation across
species
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trait networks would show lower connectivity parameters (such as
lower edge density and larger average path length and diameter;
Table 1). By contrast, for communities accessing higher resources,
with less stress, trait network connectivity may be higher, indicat-
ing the greater potential for multiple traits within the network to
adapt collectively for optimization in specific niches, thus increasing
‘phenotypic integration’ (Vasseur et al., 2022). Beyond connectiv-
ity, measures of greater network complexity (such as a larger aver-
age clustering coefficient and lower modularity; Table 1) indicate a
greater diversity of types of trait inter-correlations. Network com-
plexity would also be expected to be lower in lower resource, stress-
ful environments in which traits would adapt to stresses according to
alternative designs, whereas network complexity would be greater
in high resource environments with greater niche differentiation, as
more semi-independent trait modules would be associated with the
adaptation of different processes to a greater number of different
niche axes within the ecosystem (He et al., 2020; Li et al., 2021).
Thus, we hypothesized that PTNs will be less connected and com-
plex in communities in more arid environments, which also tend to
have lower phylogenetic diversity and functional richness and pro-
ductivity, and, by contrast, PTNs will be more connected and com-
plex in cooler, moister environments, which tend to be associated
with higher phylogenetic diversity, functional richness and produc-
tivity (Table 1; Currie et al., 2004; Li et al., 2022).

Previous studies have provided partial support for these hypoth-
eses across continental or global latitudinal gradients. One previ-
ous study tested variation in PTNs based on 35 leaf structure and
composition traits across communities, considering forests across
latitudes in China from cold boreal sites to warm, moist tropical
sites. That study found that PTN connectivity and complexity in-
creased from colder climate forests to wetter and warmer tropical
forests with greater species richness (Li et al., 2021, 2022). Another
previous study utilized a compiled global database for 10 traits to
consider shifts in parameters across biomes from boreal to tropical
regions and found that for woody plants, trait network connectivity
and network complexity were lower in polar than in other global re-
gions (Flores-Moreno et al., 2019).

Notably, both those previous studies investigated the relation-
ship of PTN connectivity and complexity with the greater warmth
and moisture at lower latitudes, and thus neither focused on climatic
aridity, that is, whether soil or atmospheric drought (as opposed to
cold climates) could be a driver of PTN shifts. In this study, we fo-
cused on communities across an aridity gradient in the California
bioregion, from forests in cool, moist climates to semi-desert in hot,
dry climates. Here, we provide a first test of trait network shifts for
communities across a marked aridity gradient, from cool, moist to
hot, dry sites, providing insights into drought adaptation of species
and communities, a topic of increasing urgency given global change
increases the frequency and intensity of high-temperature drought
conditions in many regions. We also introduce tests of the rela-
tionship of network complexity to primary productivity (gross and
net primary productivity [GPP and NPP]), and functional richness,
which tend to be associated with environments with higher resource
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availability and lower stress (Currie et al., 2004; Kraft et al., 2015; Le
Bagousse-Pinguet et al., 2017; Li et al., 2022).

In addition to our novel focus on the shifts in plant community
trait networks across an aridity gradient, we also tested a new hy-
pothesis for the patterning of variation among traits within a net-
work, that is, that traits that are more connected and ‘hub-like’ in
PTNs tend to be those with low variation across species means (i.e.,
with a low coefficient of variation). We thus tested how the con-
nectedness and centrality of the traits within the networks relate
to trait variability (Table 1). Certain traits, such as, by hypothesis,
the leaf mass per area, may be involved in multiple axes of function
(including, e.g., resource retentiveness and drought tolerance, John
et al., 2017; Wright et al., 2004). A previous study of forests across
a continental latitudinal gradient found that trait connectivity within
networks was conserved, with certain traits playing a stronger in-
tegrating role in the phenotype regardless of the species set (He
et al., 2020), implying potential involvement in multiple functions (cf.
Marks, 2007). We hypothesized that traits with greatest connectiv-
ity within the PTN, being involved in mediating multiple functions,
would tend to show lower variation across species relative to other
traits less connected in the PTN (Table 1).

To test these hypotheses, we built a novel database of high res-
olution, standard mechanistic functional traits, including hydrau-
lic, anatomical, composition, economic and structural, for diverse
communities across a bioregion in the California Floristic Province
(CAFP), an endemism-rich biodiversity hotspot (Baldwin, 2014). We
quantified 34 functional traits (listed with functions, symbols and
units in Table 2) in 118 unique species (Table S1) sampled from six
key plant communities that represent approximately 70% of the
CAFP land area (Thorne et al., 2017), including desert, coastal sage
scrub, chaparral, montane wet forest, mixed riparian woodland and
mixed conifer-broad-leaf-forest sites (Table 3). A previous study fo-
cused on 10 key traits that were strongly associated with aridity in
species' native ranges along this gradient (Medeiros et al., 2023). In
this study, we consider an expanded, three times larger trait dataset
representing multiple levels of plant function, including hydraulics,
nutrient composition, plant size, and leaf and wood economics and
structure (Table 2). We built PTNs for each plant community and
tested the hypothesized relationships of trait connectivity (through
the PTN parameters edge density, average path length and diame-
ter) and network complexity (through the PTN parameters average
clustering coefficient and modularity) with site aridity, functional

richness and primary productivity.

2 | MATERIALS AND METHODS
2.1 | Study sites

We sampled 3-5 individuals per species, resulting in a total of
683 individuals from 118 unique species in six plant communities
(Figure 1; Figure S1) distributed across a gradient of climatic aridity
in the CAFP, from northern California to northern Mexico, differing
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TABLE 2 List of traits, their functions and completeness (the percent of species with observations). We present symbols and units for the
34 traits quantified for 118 species from six plant communities across a climatic gradient in the California Floristic Province. The traits relate
to six measurement categories: Epidermal morphology, leaf economics and structure, wood economics and structure, leaf composition,
hydraulics and plant size. Functions: 1. Gas exchange (photosynthesis and transpiration); 2. Light relations; 3. Herbivory defence; 4.
Metabolism; 5. Organ structure; 6. Water transport; 7. Seed dispersal.

Trait Symbol Unit Function(s) Trait completeness (%)

Epidermal morphology

Stomatal density d npm2 1 82
Stomatal area s pm? 1 88
Epidermal pavement cell area e pm2 4,5 94
Trichome density t n pm’2 1,2,3 90
Leaf economics and structure
Leaf area LA cm? 1,2,5,6 98
Leaf mass per area LMA gm'2 1,2,3,4,5 98
Leaf thickness LT mm 1,2,3,4,5 98
Leaf dry matter content LDMC gg™t 1,3,4,5 98
Percentage loss area (dry) PLAdry % 56 91

Wood economics and structure

Wood density WD gcm’3 3,56 100
Leaf composition
Carbon per leaf mass C mgg’1 1,3,4,5 94
Nitrogen per leaf mass N mgg™t 1,2,3,4 94
Phosphorus per leaf mass P mgg’1 1,2,4 88
Potassium per leaf mass K mgg™t 1,4,6 88
Calcium per leaf mass Ca mgg’1 1,4,5,6 88
Magnesium per leaf mass Mg mgg™t 1,2,4 88
Iron per leaf mass Fe ppm 1,2,4 88
Boron per leaf mass B ppm 4,5 88
Manganese per leaf mass Mn mgg™* 1,2,4 88
Sodium per leaf mass Na mgg™ 4,6 88
Zinc per leaf mass Zn mgg’1 1,2,4 88
Copper per leaf mass Cu mgg™ 1,2,4,5 88
Molybdenum per leaf mass Mo mgg’1 1,2,4 88
Cobalt per leaf mass Co mgg™? 4 88
Aluminium per leaf mass Al mgg™* 4 88
Arsenic per leaf mass As mgg™?t 4 88
Cadmium per leaf mass Cd mgg™* 4 88
Rubidium per leaf mass Rb mgg™* 4 88
Strontium per leaf mass Sr mgg™* 4 88
Chlorophyll per mass Chl SPAD g'1 m? 1,2,4 86
Carbon isotope discrimination ABC %o 1 94
Hydraulics
Water potential at turgor loss point Ty MPa 1,6 98
Plant size
Maximum height H, ax m 1,2,5,6 100
Seed mass SM mg 7 78
by 10°C in mean annual temperature (MAT) and sixfold in mean an- work in the University of California Natural Reserve System (UCNRS)
nual precipitation (MAP). The sites also varied strongly in plant com- sites (desert, chaparral, mixed riparian woodland and mixed conifer-

munity composition (Figure S1; Table 3). Permits were obtained for broadleaf forest) and the Centro de Investigacién Cientifica y de
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TABLE 3 Plant communities sampled across California (United States) and Baja California (Mexico), including site abbreviations and names, dominant vegetation type, latitude and longitude

of the site centroid, number of species and families sampled, the aridity index, Al (lower Al values signify higher climatic aridity), mean annual precipitation, MAP and temperature, MAT. Site

climate was modelled from a 100-ha buffer zone around each site's centroid. From left to right, sites are ordered from low to high climatic aridity.

Desert

Coastal sage scrub

Chaparral

Mixed riparian woodland Montane wet forest

Mixed conifer-broadleaf forest

Sweeney Granite

Mountains

Centro de

Stunt Ranch Santa

Yosemite Forest
Dynamics Plot

Onion Creek

Angelo Coast Range Reserve

Site

Investigacion
Cientificay de

Monica Mountains

Reserve

Desert Research

Center

Educacién Superior

de Ensenada

Desert

Coastal sage scrub

31.869475
-116.66689

Chaparral
22

Montane wet forest
37.8529772
-119.83129

20

Mixed riparian woodland

39.274627
-120.36545

19

Mixed conifer-broadleaf-forest

39.7185431
-123.65505

21

Vegetation type

34.7813355
-115.65598

28

34.0955321
-118.66148

26

Latitude

Longitude

N species sampled

Evergreen shrubs Evergreen shrubs Deciduous/semi-

Deciduous shrubs and
evergreen needleleaf

trees

Mixed deciduous and evergreen

shrubs and trees

Mixed deciduous and evergreen

shrubs and trees

Dominant functional types

deciduous shrubs

0.0959
263

0.121

256

0.215
412

0.539
977

0.755
1122
6.46

1.18

Al

1613
114

MAP (mm)

16.6

16.4

16.4

10.7

MAT (°C)

Eggﬂfﬁ:é;u ournal of Ecology | o
Educacién Superior de Ensenada (CICESE) site through direct com-
munication with the reserve directors and for the Yosemite Forest
Dynamics Plot through the United States Department of the Interior
National Park Service (Permit #YOSE-2017-SCI-0009).

To test the drivers of connectivity in PTNs across forests along
a gradient of aridity, we followed previous studies of PTNs that
focused on one ecosystem per type; sampling one location per
ecosystem type provides limited information about the drivers of
connectivity in traits across ecosystem categories, but is robust for
relating PTN parameters to climate variables (Li et al., 2021, 2022;
Messier et al., 2017; Rao et al., 2023).

2.2 | Sampling for leaf trait measurements

Given the infeasibility of sampling all species in each site for func-
tional traits due to the large number of species, we targeted the most
abundant tree and shrub species at each site, including those most
biomass-dominant and most representative of overall ecosystem
structure and functioning and the largest contributors to ecosystem
productivity, based on information from reserve managers and forest
inventories. The sampling spanned 37 families, with the greatest spe-
cies representation in Asteraceae (17), Rosaceae (12), Rhamnaceae (9),
Ericaceae (8) and Pinaceae (8). At each site, we sampled 3-5 individu-
als from 19 to 28 species, collecting a mature, sun-exposed and non-
epicormic branch, with minimal signs of damage or herbivory using
pole pruners or a slingshot. Branches were transported to the labora-
tory in dark plastic bags with moist paper and rehydrated overnight in
a dark saturated atmosphere before harvesting current-year grown,
fully expanded leaves for subsequent analyses. For compound-leafed
species, whole leaves, not leaflets, were used.

In selecting traits for the PTNs, we excluded traits that would
be mathematically determined from other traits. Thus, for example,
as we included leaf mass per area (LMA) and leaf thickness (LT), we
did not include leaf density (which would typically be calculated as
LMA/LT), and we did not include foliar nutrient concentrations per
unit leaf area (LA), as these would be calculated as the concentra-

tions per unit leaf dry mass multiplied by LMA.

2.3 | Epidermal morphology

We measured epidermal traits on one leaf from each of 3-5 individu-
als per species. After rehydration, we fixed the leaves in FAA (48%
ethanol: 10% formalin: 5% glacial acetic acid: 37% water). Epidermal
measurements were obtained from microscopy images taken from
nail varnish impressions of both leaf surfaces, from which we meas-
ured stomatal density (d), stomatal area (s), epidermal pavement cell
area (e) and trichome density (t). To determine leaf-level epidermal
trait values for cell dimensions, we calculated an average value as the
arithmetic mean of the abaxial and adaxial surfaces. For leaf-level
cell densities, we calculated a total trait value as the sum of abaxial
and adaxial values. All images were analysed, and anatomical traits
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were measured using the software ImageJ (http://imagej.nih.gov/ij/
; Schneider et al., 2012).

2.4 | Leaf economics and structure

Leaf saturated mass was measured using an analytical balance
(0.01 mg; XS205; Mettler-Toledo, OH, USA) and LT using digital cal-
lipers (0.01 mm; Fowler, Chicago, IL, USA). The LA was measured
using a flatbed scanner and analysed using the software Image)
(http://imagej.nih.gov/ij/). After scanning, leaves were oven-dried at
70° for 72h, and their dry mass and area were measured again. LMA
was calculated as lamina dry mass divided by saturated area; leaf
dry matter content (LDMC) as dry mass divided by saturated mass;
percentage loss in area after drying (PLAdry) as the per cent declinein
area from saturated to dry leaves (Ogburn & Edwards, 2012; Pérez-
Harguindeguy et al., 2013; Witkowski & Lamont, 1991).

2.5 | Wood economics and structure

We measured wood density (WD) as fresh volume over dry mass
from one 5cm branch segment of each of the studied individuals
after bark removal by water displacement (Pérez-Harguindeguy
et al., 2013; Swenson & Enquist, 2008). We measured the density
of the branch stem, and not a core of the main stem, to minimize
the disturbance of our sampling methods on the tree function and

survival (Tsen et al., 2015).

2.6 | Leaf nutrient and isotope composition and
wilting point

The concentrations of four macronutrients (potassium, calcium,
phosphorus and magnesium) and 13 micronutrients (iron, boron,
manganese, sodium, zinc, copper, molybdenum, cobalt, alumin-
ium, arsenic, cadmium, rubidium and strontium) were determined
from ground oven-dried leaves using high-throughput elemental
profiling (ionomics; Salt et al., 2008) by the USDA-ARS/Danforth
Center lonomics facility at the Donald Danforth Plant Science
Center. Additionally, elemental carbon and nitrogen concentra-
tions and their isotope ratios were measured by the University of
California, Berkeley, Center for Stable Isotope Biogeochemistry, by
continuous flow dual isotope analysis using a CHNOS Elemental
Analyzer interfaced to an IsoPrimel00 mass spectrometer (Fry
et al., 1996; Pérez-Harguindeguy et al., 2013). The carbon isotope
discrimination (A*3C; in parts per thousand, %o) was calculated fol-
lowing Farquhar et al., 1989. The chlorophyll concentration was
measured using a SPAD meter, which provides a correlate of total
chlorophyll a+b concentration per area in SPAD units (Brown
et al.,, 2022; Monje & Bugbee, 1992; SPAD-502, Konica Minolta,
Japan) and the chlorophyll concentration per mass (Chl) was deter-
mined by dividing by LMA.

We measured the turgor loss (i.e. wilting) point (lrﬂp) in two leaves
for each studied individual, for the five individuals per species. We
used a vapour-pressure osmometer (Vapro 5520 and 5600, Wescor,
United States) to obtain the osmotic concentration of the leaves at
full turgor and used calibration equations to estimate To (Bartlett
etal., 2012).

2.7 | Plantsize

Species maximum height (H__ ) and seed dry mass values (SM) were

max
compiled from the Ecological Flora of California database (Jepson
Flora Project, 2021). Whenever H,..x Was not available for a species
in the database, it was recorded as the maximum value reported on

the Jepson eFlora website (https://ucjeps.berkeley.edu/efc/).

2.8 | Ecosystem climate and structure

We extracted the historical aridity index, calculated as the ratio of
precipitation and potential evapotranspiration (CGIAR-CSI, NCAR-
UCAR; Zomer et al., 2008), and the MAT and MAP (WorldClim;
Hijmans et al., 2005) from a 100-ha area around the centroid of
each sampling location (Table 3; Table S3). The site productivity
was quantified using the GPP and NPP derived from MODIS/Terra
(Running & Zhao, 2019, 2023). The data were downloaded using the
Application for Extracting and Exploring Analysis Ready Samples
(AppEEARS, 2023) for the centroid of the sites and calculated as the
annual mean during the sampling period, 2016-2018 (Table S3).

2.9 | Plant trait networks

Across all traits, we had observations for 91% of the species on
average (Table 2). The trait with the least observations was seed
mass due to the sparseness of measurements for CAFP species in
the literature (78%; Table 2). To build weighted PTNs, we calcu-
lated trait-trait correlation matrices using ordinary least squares
regressions from species mean values for each plant community
and for all communities together. Trait-trait relationships were
considered as edges if the Pearson correlation was significant at
p<0.05, corresponding to absolute Pearson coefficient thresholds
of |r|>0.39-0.46 for the individual sites, corresponding to species
n values of 19-28, and |r|>0.18 for the all-species network (spe-
cies n=136). The matrices were then converted into adjacency
matrices A=[ai’j], where we assigned the correlation coefficient to
relationships that were above the significance threshold and O to
those below the threshold. Additionally, we built PTNs considering
as edges relationships where the Pearson and Spearman correlation
coefficients of log-transformed and ranked data, respectively, had
p <0.05 (Table S2). The PTNs showed similar trends of variation with
climate, so we show PTNs built from raw data in the main text. These
networks were visualized using the ‘ggraph’ package (version 1.9.8)
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Mixed riparian woodland
[0.315]

Mixed conifer-broadleaf forest
[0.225]

Montane wet forest
[0.264]

Chaparral
[0.189]

Coastal sage scrub
[0.141]

Climatic aridity

I

low high

FIGURE 1 Shiftsin the architecture of plant trait networks (PTNs) of six plant communities across the California Floristic Province. The
map shows the centroid of the sampling location of each of the six plant communities in a landscape of aridity. Symbols represent different
plant communities, with darker shades of blue representing greater water availability: mixed conifer-broadleaf forest (dark blue circles),
mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares) and desert
(light blue circles). In brackets, we provide the proportion of connections out of all possible connections among traits, the edge density,

of each PTN. PTNs built from species sampled in each of the six sites. Blue edges represent positive and red edges represent negative
relationships between traits; edge thickness and distance represent the correlation strength (p <0.05). Nodes with the same colours are
grouped into the same modules by the clustering algorithm (Table S7).

and all network parameters were calculated using functions avail-
able in the ‘igraph’ package (version 1.3.4) in the R Software (R Core
Team, 2022).

We calculated five parameters to describe PTN topology, three
that quantify the ‘connectivity’ of the PTN: the edge density, the av-
erage path length, and the diameter; and two parameters to quantify

the ‘network complexity’ of the PTN: the average clustering coeffi-
cient and the modularity (Table 1; He et al., 2020). Networks with
higher values of edge density and lower values of average path
length and diameter have higher connectivity; networks with higher
values of average clustering coefficient and lower values of modular-
ity have higher network complexity (Table 1; He et al., 2020).
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We also calculated four parameters to describe the importance
of traits within PTNs (Table 1). To quantify the ‘centrality’ of each
trait, we determined the betweenness and the clustering coefficient.
The betweenness is defined as the number of shortest paths going
through a focal trait, with high values reflecting a central ‘mediator’
trait within the network. The clustering coefficient is the proportion
of connections between a focal trait and its neighbouring traits out
of all possible connections, and traits with high values are those at
the centre of different trait clusters. To quantify the ‘connectedness’
of each trait, we determined the degrees of connectedness and the
closeness. The degree of connectedness is a measure of the num-
ber of connections for a given trait, and traits with high values are
considered ‘hubs’ within the network. The closeness represents the
mean shortest path between a focal trait and all other traits in the
network, and traits with high values are traits closely connected to

many other traits.

2.10 | Statistical analyses

All statistical analyses were performed and plots created using R
software (version 4.2.1; R Core Team, 2022) and packages avail-
able from the CRAN platform. Prior to testing correlations among
traits and constructing PTNs, we tested for the overall variation in
traits across species and sites. We performed nested ANOVAs to
test for differences in functional traits among plant communities
and species, with functional traits coded as the dependent variable,
communities as the independent variable and species nested within
communities (Sokal & Rohlf, 2012).

We calculated the phylogenetic diversity index for each site
(PDI; Faith, 1992), as the sum of the lengths of all the branches in
a phylogenetic tree weighted by species richness to test if the PTN
parameter differences across sites were driven by differences in
phylogenetic diversity. PDI was calculated using the ‘PhyloMeasures’
package (Tsirogiannis & Sandel, 2015).

We calculated the functional richness index, FRic, for species in
each community (Cornwell et al., 2006), using the ‘fundiversity’ pack-
age (Grenié & Gruson, 2023). This functional richness index does not
require abundances (which are not available for most of our sam-
pled sites) and performs better than the other equivalent indices
(Mouchet et al., 2010). For the calculation of FRic, we selected five
of the functional traits from different measurement categories with
the most complete observations and that were involved in many
functions (Table 2), leaf mass per area, wood density, water potential
at turgor loss point, leaf nitrogen concentration and maximum plant

height.
We calculated the coefficient of variation, CV (%), of each trait in
each site (CV = :’—4 x 100, where ¢ is the standard deviation and y is

the mean of a given trait across the species sampled in a given site),
and then calculated the mean CV of each trait across all sites.

To test the relationships between the PTN parameters and
site climate variables, primary productivity, PDI and FRic, we per-
formed ordinary least squares regression analyses (OLS) using the

‘stats’ package. Analyses were performed for untransformed and
log-transformed data, to test for either approximately linear or non-
linear relationships, respectively, and the higher correlation value is
reported in the text; we present the results of both untransformed
and log-transformed data in supplemental Table Sé. Given the use
of multiple significance tests applied when testing relationships be-
tween PTN parameters and environmental variables, we assessed
the significance of the overall correlative pattern by applying pro-
portion tests (Baird et al., 2021; Medeiros et al., 2023). We calcu-
lated the proportion of significant correlations for the correlations
we hypothesized among, on one hand, the site climate variables
(aridity index, MAP and MAT), primary productivity, PDI, and FRic,
and on the other hand, the five PTN parameters (edge density, aver-
age path length, diameter, average clustering coefficient and modu-
larity) for each of the six sites. We used the ‘stats’ package to test if
the proportion of significant correlations was greater than that ex-
pected from chance (0.05).

We also performed OLS regression analyses and calculated the
Pearson's correlation coefficient to test the relationships between
the CV of individual traits and trait-level PTN parameters follow-
ing the same procedures described above for the relationships be-
tween the PTN parameters and environmental variables. Further,
we calculated the proportion of significant correlations for the 24
correlations we hypothesized across traits (=34 traits) among, on
one hand, the trait CVs and on the other hand, the four trait-level
PTN parameters (betweenness, closeness, clustering coefficient and
degree of connectivity) for each of the six sites.

The PTNs were built using traits that are intrinsically related
within measurement categories, which differed in the numbers of
traits included (Table 2). Thus, we tested for a relationship between
trait-level parameters of connectedness and centrality, averaged per
measurement category with the number of traits within each cate-
gory using OLS. For example, the ‘Wood economics and structure’
measurement category included one trait, while the ‘Leaf composi-
tion’ measurement category included 21 traits.

3 | RESULTS
3.1 | Variation in traits across plant communities

Prior to constructing PTNs, we tested for variation in functional
traits across species and communities. Of the 34 traits, 32 differed
across species and 29 across communities (nested ANOVAs; p <0.05;
Table S4). Most of the total trait variance (65%) was explained by
species differences, whereas community and intraspecific variation
explained 17% each (Table S4). Many individual traits varied across
communities in association with their climate. For example, on av-
erage, species in the more arid sites had smaller and thicker leaves
with higher trichome density, a smaller reduction in leaf area when
dry, denser wood and more negative turgor loss points than species
from the more mesic sites (p<0.05; Table S4). Species from more
arid sites also had lower concentrations of mass-based nutrients,
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including carbon, nitrogen, potassium, and phosphorus and low car-
bon isotope discrimination (nested ANOVAs; p <0.05; Table S4).

3.2 | Variationin PTNs across plant
communities and relationships with ecosystem
climate and structure

The architecture and properties of the PTNs varied significantly
across the six sites (Figure 1). The PTNs of the drier sites were
‘looser’, that is, less connected (with lower edge density and higher
average path lengths) and less complex (with lower average cluster-
ing coefficient and higher modularity) than those for the more mesic
sites (Figure 1; Table Sé). Thus, the PTNs of the higher aridity sites
had traits that were overall less interconnected and grouped into a
smaller number of clusters. That is, these networks had lower values
of edge density and average clustering coefficient and higher val-
ues of average path length and modularity than the networks of the
more mesic sites (Figure 1; Table S6). The network diameter did not
differ across sites (Table Sé).

Thus, the connectedness and complexity of the community
PTNs tended to decrease across sites with increasing climatic arid-
ity (lower values of aridity index, Al, and MAP and higher values
of MAT) and yalso with lower functional richness, FRic (Figure 2;
Figure S5; Table S6). Both network edge density and average clus-
tering coefficient decreased for communities at lower Al and MAP
and higher MAT (|r] ranged from 0.85 to 0.97; p<0.05; Figure 2a,d;
Figure S5; Table S6). The network average path length increased
for communities at lower Al and MAP (r=0.84 and 0.85, respec-
tively; p<0.05; Figure 2c; Table S6) and was independent of MAT
(Figure S5; Table S6). The network modularity increased for commu-
nities at higher MAT (r=0.94; p=0.005; Figure S5; Table S6) and was
independent of Al and MAP, and the network diameter was indepen-
dent of Al, MAP and MAT (p>0.05; Figure 2d; Figure S5; Table Sé).
Both edge density and average clustering coefficient increased, and
modularity decreased for communities with greater values of FRic
(]r]=0.91-0.96; p < 0.05; Figure 2b,e,k; Table S6), while average path
length was not correlated with FRic (p=0.32; Figure 3h; Table Sé).

3.3 | Trait connectedness and centrality within
trait networks and relationship with trait variation

From the PTNs, we identified traits central to the networks; that
is, traits with high betweenness and closeness (mediator traits) and
traits with high clustering coefficient and degree of connectedness
(hub traits). Across the PTNs for the six plant communities, K con-
centration, N concentration, leaf dry matter content, Fe concentra-
tion and the leaf mass per area were resolved as mediator traits with
highest betweenness values averaged across communities, 32-49
(Figure S3; Table S7), and Ca concentration, Sr concentration, maxi-
mum tree height, seed mass, and stomatal area with highest close-
ness values, 0.02-0.21 (Figure S3; Table S7). The leaf mass per area,

BRITISH 905
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K concentration, leaf dry matter content, chlorophyll concentration,
and N concentration were resolved as hub traits with the highest
clustering coefficient and degree of connectedness values, with
averages across communities of 0.72-0.85 and 11-14, respectively
(Figure S3; Table S7). Notably, the traits with highest betweenness,
closeness, clustering coefficient and degree of connectedness val-
ues varied across sites (Figure S4; Table S7).

We found no relationship between the number of traits con-
sidered in each of the eight trait categories (i.e. ‘Leaf composition’
(21), ‘Leaf economics and structure’ (5), ‘Epidermal morphology’ (4),
‘Plant size’ (2), ‘Wood economics and structure’ (1) and ‘Hydraulics’
(1)) and the trait-level PTN parameters (Figure Sé). Further, all PTN
parameters were independent of the phylogenetic diversity index,
PDI (p>0.05; Table Sé).

Across the traits, trait centrality and connectedness in the
plant trait networks were strongly related to trait variation within
and across sites. Thus, across species within each site and across
all species, we found strong negative relationships of the trait CVs
with parameters describing PTN connectedness and centrality, i.e.,
with betweenness, closeness, clustering coefficient and degree of
connectedness (r ranging from -0.53 to -0.34; p<0.05; Figure 3;
Figure S7; Table S8). Indeed, across the tested relationships of trait
CVs with the four PTN trait-level parameters, 12 of the 24 tested
relationships (50%) were statistically significant (p<0.05; Figure 3;
Table S8), a proportion significantly higher than our null hypothesis
of chance (0.05; ;(2:93.06; p<2.2x 10716, proportion test).

4 | DISCUSSION

In our study of communities across a bioregional aridity gradient, from
forests to semi-desert, the PTN approach resolved shifts in the inte-
grated relationships among multiple traits with ecosystem climate and
structure, enabled the identification of trait clusters, and indicated the
relative importance of traits within the network. Across plant com-
munities, the PTNs were less connected (i.e. the traits that make up
the network were less interconnected) and complex (i.e. divided into
fewer subcomponents or clusters) with increasing climatic aridity and
decreasing functional richness across communities (Figures 1 and 2;
Table S6). This pattern is consistent with the hypothesis that under
lower resource or stressful environments which fewer species can
tolerate, individual traits would be more likely to specialize similarly,
to a narrower number of niches. The fewer correlations among traits
overall, in combination with a lower modularity, would signify less di-
versification of trait complexes, and thus of functions, across the spe-
cies of the community (see elaboration in Introduction). By contrast,
the moister sites would support a higher species and functional rich-
ness, with divergence in specializations for the optimal use of specific
resources (Harrison et al., 2020; Spasojevic et al., 2014). We did not
find support for the hypotheses that PTN connectivity and complexity
would be associated with phylogenetic diversity or NPP.

Our study provides new insights important to expand theories
about species community assembly, adaptation to aridity, and the
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FIGURE 2 Relationships of plant trait network (PTN) parameters with increasing climatic aridity and ecosystem structure and
independence from primary productivity across an aridity gradient. Relationships across plant communities (each shape point is a
community, with darkness of blue representing site moisture) of the aridity index, Al, of the site's climate (left column), with the site's
functional richness, FRic (middle column) and the site net primary productivity, NPP (right column), plant network parameters edge density
(a-c), average clustering coefficient (d-f), average path length (g-i) and modularity Q (j-1). The network diameter did not vary across sites and
none of the PTN parameters varied with site phylogenetic diversity (Table Sé). Symbols represent different plant communities, with darker
shades of blue representing greater water availability: Mixed conifer-broadleaf forest (dark blue circles), mixed riparian woodland (triangles),
montane wet forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares) and desert (light blue circles). Solid lines describe
the fit of ordinary least squares regression analyses (Table S6). *p <0.05; **p<0.01.

organization of traits in the integrated phenotype within and across
communities. We found that warmer/drier communities had simpler
networks than cooler/moister communities, from semi-desert to
forests across a bioregional aridity gradient. This pattern is distinct,
yet aligned with those shown in two previous studies across a lat-
itudinal continental gradient in which the cold boreal sites, which
have more stressful conditions, had simpler networks than warm
moist tropical forests (Flores-Moreno et al., 2019; He et al., 2020;
Li et al., 2022). Our results overall supported the association of PTN
interconnectedness and complexity with resource availability and
species richness across plant assemblages, as indicated by the stud-
ies across biomes globally and across the latitudinal gradient in China
and extend this finding across a strong aridity gradient within a key
bioregion, and including traits relating to multiple functional axes,

from cells to the whole plant (Table 2), with important novel insights
for specific network-level architecture parameters in community
ecology (Table 1). Thus, our paper indicates the centrality of abiotic
stress in driving the simplification of trait networks, an explanation
that would be applicable in the context of both the bioregional and
continental latitudinal gradients. Further, our study showed that
among traits within a PTN the trait connectedness within the net-
work is higher for traits with relatively low variation across species,
providing a new hypothesis for the reason some traits are more
‘hub-like’, across diverse species assembled in communities across
an aridity gradient.

Beyond cold climate, our study showed that meteorologi-
cal drought would be a driver of PTN shifts. The climate variables
were strongly associated with the topology of PTNs, and functional
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FIGURE 3 Relationships of trait-level parameters of the all-
species plant trait network with the trait variability, assessed as
the trait coefficient of variation across all species. Relationships of
the trait coefficient of variation, CV, with the trait betweenness
(a), closeness (b), clustering coefficient (c) and the degree of
connectedness (d). Each point represents the mean CV of one trait
across all 118 unique species sampled across six plant communities
in a gradient of aridity. Solid lines describe the fit of ordinary least
squares regression analyses (Table S9). **p <0.01. Relationships for
individual plant communities are shown in Figures S8-S11.

richness was a strong community structure driver of PTN topology.
In communities of the more arid sites, with warmer temperatures,
the PTNs were looser, with lower edge density and average clus-
tering coefficient, and higher average path lengths and modularity
(Figure S5). Since the species were sampled from natural ecosys-
tems, the sites differed not only in climate, NPP and soil composition
but also in many other factors, including disturbance history (such as
fire and logging) that may also have a role in driving differences in
PTN architecture. On one hand, the variation in PTNs across com-
munities may therefore be driven to an unknown degree by other
factors correlated with climate; on the other hand, the resolution
of strong relationships of PTN parameters with climate despite con-
founding variables suggests their robustness (Medeiros et al., 2023).
Further studies are needed to fully disentangle the influences of in-
dividual environmental factors on community PTNs.

Our study did not support the hypotheses that PTN connectivity
and complexity would be associated with phylogenetic diversity or
NPP. We propose that the lack of a relationship of PTN architec-
ture with phylogenetic structure and NPP would have been due to
our consideration of diverse ecosystems (from desert to forests), for
which numbers of niches may not correspond strongly to phyloge-
netic diversity or productivity. Future studies testing PTN parame-
ter shifts across communities of a given type (e.g. forests, deserts
or grasslands) may thus highlight relationships of PTN structure
to productivity and phylogenetic diversity that were not resolved
here. Additionally, this study focused on the woody species, as
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these were biomass-dominant and most representative of overall
ecosystem structure and functioning and the largest contributors
to ecosystem productivity. However, our findings for the shifts in
PTNs with climate and with diversity may differ for nonwoody spe-
cies, or when considering the entire species pool, combining woody
and nonwoody species, as this would expand the diversity of niches
within ecosystems. The higher stratification of the forests may also
result in a greater diversity of light niches relative to desert. Our
study points to a number of important avenues for future research.
First, our study suggests the need for comparison of PTNs for dif-
ferent life forms within and across communities, beyond only woody
species. Second, the association of PTN parameters with functional
diversity in our study may be further disentangled given studies de-
signed to separate the role of variation in species richness from that
of functional diversity independently of species richness, especially
given our finding that PTN parameters were not associated with our
phylogenetic diversity index across communities. Notably, both FRic
and the phylogenetic diversity index used in this study would be re-
lated to species richness (Mouchet et al., 2010; Sandel, 2018). Thus,
the relationships of additional metrics of diversity beyond the FRic
index used here could potentially provide additional resolution of
these associations, especially if applied in studies of communities
with species presence/absence and biomass census data beyond
those available for our sites. Notably, the linkage of PTN parameters
with functional diversity may be indirect, for example, via climate, or
potentially may involve bidirectional causality. For example, the trait
relationships represented in PTNs include trade-offs that may con-
strain phylogenetic and functional diversification during evolution,
or, alternatively or additionally, these trait relationships might them-
selves arise from constraints on phylogenetic and functional diversi-
fication driven by other factors (Mouchet et al., 2010; Sandel, 2018).
Indeed, the disentangling of the causal basis for trait diversity and
trait-trait relationships in terms of phylogeny and independently of
phylogeny is a topic of strong current interest, with new approaches
in development (cf. De Bello et al., 2021, pp. 170-173), (Sanchez-
Martinez et al., 2024).

Beyond comparisons across ecosystems, the PTNs allowed us to
identify the traits within each PTN with larger betweenness, close-
ness, clustering coefficient and degree of connectiveness in each
of the six sites, indicating special importance for the functional sta-
bility of the phenotype due to the dependence of other traits on
these traits (Figure 1) (Flores-Moreno et al., 2019; He et al., 2020;
Li et al.,, 2022). We found that despite the relative consistency of
trait-level PTN parameters across sites (Figures S8-511; Table S8),
the importance of individual traits within the PTNs changes accord-
ing to the sampling location (Figure S4). The traits that emerged as
hub and mediator traits included those typically associated with leaf
structural support, photosynthesis and fluxes (Figures S3 and S4).
Overall, the traits that are involved in multiple key functions or me-
diating the specific functions of multiple traits, such as LDMC, leaf
carbon concentrations and leaf mass per area, were more conserved
and serve as hubs and mediators of the PTNs. For example, the leaf
concentration of carbon, which is widely recognized as one of the
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most stable and conserved traits across plants and involved in the
protection of leaves against herbivory (Ma et al., 2018), had one of
the lowest CVs in all six communities and emerged as one of the
traits with the highest degree of connectiveness and betweenness
(Figures S3 and S4). The LDMC and leaf mass per area, also among
the least variable traits within the community, are mechanistically
involved in many aspects of physiology, such as photosynthesis and
tolerance of low resources (de la Riva et al., 2016; John et al., 2017;
Sack et al., 2013; Sack & Buckley, 2020). Additionally, the leaf mass
per area is also a component of many other traits since it mediates
the conversion of trait values from mass to area-based (Wright
et al., 2004). Notably, we did not find support for an effect of the
number of traits within a measurement category and their between-
ness, closeness, clustering coefficient and degree of connectiveness
values (Figure Sé), consistent with hub traits being key connectors
of traits across measurement categories. The predominance of traits
related to plant economics, including whole plant and wood traits,
such as maximum height and WD, and of traits related to drought
tolerance, among the most central and interconnected in the PTNs
of all sites point to an optimization of drought adaptation across the
CAFP (Bohnert et al., 1995; Harrison et al., 2020).

Whereas single trait-climate relationship analyses provide an at-
omistic view of the adaptation of whole phenotypes, PTNs enable
a broader view of the trait-trait correlations in ensemble, leading
to a clearer resolution of trait organization within the integrated
phenotype. Our study points to new conclusions about community
assembly and adaptation to aridity and the organization of traits in
the integrated phenotype for species within and across communi-
ties. While a previous study found that cool/dry sites had simpler
networks across a latitudinal continental gradient, we found that
warmer/drier sites had simpler networks across a bioregional aridity
gradient (Li et al., 2022). Thus, our paper supports a role for stress
and especially drought in simplifying trait networks, an explanation
that would be applicable in both the bioregional and continental
contexts. Our study also introduced new tests of the relationship
of network complexity to phylogenetic diversity, functional richness
and productivity. Further, our study tested the association between
the relative connectedness of traits within a PTN and their variation
(using the coefficient of variation) across species. We found a new
pattern of variation among traits within the network, testing for why
some traits are more ‘hub-like’, and finding that those traits that vary
less across species tend to be highly connected centrally in trait net-

works and provide a new hypothesis to explain this.

5 | CONCLUSION

Our results, indicating the responsiveness of PTN architecture to cli-
mate and its reflection of functional richness, reinforce the idea that
a wide range of traits is organized into multiple modules representing
physiological and ecological strategies that vary among plant com-
munities. Our study extends the usefulness of PTN approaches for
quantifying functional trait patterns at ecosystem and bioregional

scales. We show that PTN parameters representing connectivity and
modularity, like key single or sets of multiple functional traits, or axes
of trait variation representing ‘trait spectra’ or ‘trait strategies’ or
‘syndromes’ (Diaz et al., 2004, 2016; Funk et al., 2017; Grime, 1979;
Lavorel & Garnier, 2002; Maynard et al., 2022; Westoby, 1998; Wright
et al., 2004), relate to functional richness and productivity. Indeed,
PTN parameters such as edge density and modularity have poten-
tial applications as alternative or complementary indices of func-
tional diversity to hypervolumes (cf. Cornwell et al., 2006; Lamanna
et al., 2014), where PTN parameters would encapsulate information
about the inter-correlative pattern of trait variation, complementing
the range indicated by hypervolumes. PTNs thus provide various av-
enues to clarify plant environmental adaptation and trait associations
that would influence current and future species distributions and

ecosystem resilience in response to climate change.
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network-level PTN parameters.
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Table S6. Associations of plant trait network parameters from the
PTNs and environmental variables of the sampling locations.

Table S7. The coefficient of variation of each trait and trait-level
plant network parameters for all species together and for species
sampled in each community.

Table S8. Associations of the trait coefficient of variation with trait-
level plant network parameters for all species together and for

species sampled in each community.
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