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Abstract—In this paper, we consider a cell-free massive multi-

ple input multiple output (CF-MMIMO) communication system,

where users are supported by access points (AP) in conjunction

with intelligent reflecting surfaces (IRS) mounted on unmanned

aerial vehicles (UAVs). Although aerial IRS (aIRS) offers agile

support for expanding network coverage in CF communication

systems, the effective operation of such a complex network neces-

sitates a channel state information (CSI) acquisition scheme that

exhibits low run-time computational complexity. We propose an

artificial intelligence (AI)-based approach to design and develop

an efficient channel prediction scheme for CSI acquisition in the

CF-MMIMO network supported by aIRS considered. Simulation

results demonstrate the effectiveness of the proposed scheme in

predicting channel gains across a wide range of signal-to-noise

ratios (SNR) while maintaining low computational complexity

during real-time operations.

Index Terms—Cell-free massive MIMO (CF-MIMO), Intelli-

gent Reflecting Surface (IRS), Unmanned Aerial Vehicle (UAV),

Deep Learning Neural Network (DNN), Channel State Informa-

tion (CSI), Channel Mapping

I. INTRODUCTION

NEXT-generation wireless communication systems, such as
beyond fifth generation (B5G) / sixth generation (6G)

cellular communication systems, are expected to significantly
increase network capacity over current fifth generation (5G)
new radio (NR) systems to satisfy the ever-growing demands
for higher data rates, increased energy efficiency, larger cov-
erage area, and versatile multimodal services. For this, cell-
free MMIMO (CF-MMIMO) is a potential technology that
divides the conventional MMIMO base station (BS) into a
large number of individually controllable antennas that act as
access points (AP) in the same time/frequency band [1], [2].
This provides uniformly better quality of service (QoS) in a
much larger geographical region. The intelligent reflecting sur-
face (IRS)-supported CF-MMIMO network offers numerous
constructive reflected paths for the signals transmitted from
the APs [3]. The phase shifts of the IRS passive reflecting
elements (PRE) are smartly tuned to increase the desired signal
in the intended direction and suppress co-channel interference
[4]. Furthermore, in a CF-MMIMO system, an IRS can replace
some APs to improve capacity while maintaining cost and
energy efficiency [5].

The communication scenario in this work (as illustrated in
Fig. 1) shows that the transmitters and the receiver nodes are
separated by large obstacles (e.g., towering buildings, moun-
tains, etc.). As a result, line-of-sight (LoS) communication
between them is impossible. An IRS-integrated network can
establish this LoS communication path. However, the terres-

trial IRS deployment strategy is critical. To address dynamic
and complex communication challenges; it is important to
evaluate key variables such as network coverage, reconfig-
urable channel state, and passive beamforming performance
[6]. The integration of IRS with UAVs, by mounting IRS
panels on it, known as aerial IRS (aIRS), can be an appealing
option for our system model [7], [8]. The fully controllable
mobility of the UAV in the 3D space ensures the flexible
deployment of aIRS in an appropriate location for favorable
communication between the transmitter and receiver nodes [9].
Due to user mobility, constant repositioning of the UAV is
typically required; however, adjusting IRS phase shifts can
alleviate this B5G requirement [10].

In this study, we consider an aIRS-integrated CF-MMIMO
communication system, where APs serve ground user equip-
ment (UEs) with the help of aIRS panels, to enhance the
performance of conventional point-to-point communications.
In such a system, reliable data transmission over aIRS requires
the estimation of a significant number of channel coefficients,
despite the absence of active radio frequency (RF) chains. In
addition, the end-to-end cascaded channels (AP-IRS-UE) are
estimated instead of estimating separate channels for AP-IRS
and IRS-UE, which yields high computational complexity. A
least squares (LS) channel estimator for an IRS-aided single-
user CF-MMIMO system is proposed in [11]. Estimation of
the direction-of-arrival (DoA)-based channel, considering that
some of the IRS elements are active and have an RF chain
behind them, is proposed in [12]. Furthermore, [13] considers
IRS on/off element patterns for channel estimation.

Data-driven CSI acquisition schemes have shown superior
performance while reducing computational complexity during
runtime. Deep learning-based algorithms techniques are used
to estimate downlink CSI from known uplink CSI [14], [15],
[16], [17]. In our paper both uplink and downlink CSIs
are unknown and the IRS is considered fully passive. The
IRS-carrying UAV has active antennas with RF chains. So,
considering AP-UAV and UAV-UE links known, in this paper
we derived an algorithm to estimate the channels of individual
AP-IRS and IRS-UE links. In particular, we decipher the
underlying correlations among CSIs of different links that are
co-located in space. The following two scenarios are studied
for channel acquisitions in the considered aIRS-assisted CF
network:

• Scenario 1: In this scenario, the channels for the AP-
IRS link are predicted from the estimated channels of
the AP-UAV link for a given AP.
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Fig. 1. System Model.

• Scenario 2: In this scenario, the channels for a set of
AP-IRS links are predicted from another set of known
channels of AP-IRS links estimated in Scenario 1.

Scenario 1 is the objective of this work. Scenario 2 further
reduces the complexity of the CF-MMIMO system by es-
timating multiple AP-IRS links from one link. For each of
the scenarios considered, we develop a deep neural network
(DNN)-assisted channel mapping scheme that is trained offline
using large training datasets. Once trained, the inference mod-
els are deployed for online channel predictions. We evaluate
the performance of the proposed scheme with the baseline
scheme to show its effectiveness.

II. SYSTEM AND CHANNEL MODEL

In this section, we introduce the system and channel model
for the considered CF-MMIMO network.

A. System Model
Let us consider a CF-MMIMO system that is aided by an

IRS-mounted UAV node, as shown in Fig. 1. The considered
system has K APs that provide signal coverage to U ground
(terrestrial) users. Each of the APs and users is equipped with a
single antenna for data transmission. All APs are connected to
the central processing unit (CPU) via high-capacity fronthaul
links. The CPU is capable of high-performance computing and
centralized baseband signal processing operations to support
all users. An aIRS is deployed to support APs to provide
coverage to users with N discrete, individually controllable
reconfigurable PREs, oriented as a uniform planar array (UPA)
with dimensions of Nh columns and Nv rows. We consider
the IRS panel to be positioned on the X-Y plane of a
Cartesian coordinate system. The UAV mounting the aIRS
is equipped with L active antennas that communicate with
the participating APs in the considered CF network. Unlike
the PREs of the IRS panel, the UAV itself is capable of
active data transmission and, therefore, estimating channels
with the aid of active digital and analog chains configured
with L antennas. All APs, users, and UAVs are considered
fixed in their respective positions (at a given time), randomly
distributed in a geographical area of D → D m2, and placed
at a given altitude.

B. Channel Model
In the considered system, each AP, each user, the IRS

and the UAV are represented by Ps = (xs, ys, zs), Pd =
(xd, yd, zd), Pr = (xr, yr, zr), and Pu = (xu, yu, zu), respec-
tively, in 3D coordinates, where Pi ↑ N1→3 for i ↑ {s, d, r, u}.

We define h ↑ CN→1 as the channel from AP to IRS,
hv ↑ CL→1 as the channel from AP to UAV, g ↑ C1→N as
the channel from IRS to user and gv ↑ C1→L as the channel
from UAV to user. All these channels are considered to be
time-varying Rician fading, consisting of both LoS and non-
LoS (NLoS) components. Therefore, the LoS component of
h, denoted as hLoS , is modeled as [18].

hLoS =

√
!hKh

1 +Kh
exp

(
j2ωn

f

fs

)
ah(εh,ϑh), (1)

where !h= 10
PL0
10 ↑ωlog

dh
d0 represents the transmission path

loss between the AP and the IRS. Here, ϖ and Kh are the
path loss exponent and the Rician K factor, respectively. PL0

represents the path loss at the reference distance of d0 = 1 m.
Moreover, the distance between an AP and the IRS is defined
as dh, which can be calculated as

dh =
√

(xs ↓ xr)2 + (ys ↓ yr)2 + (zs ↓ zr)2. (2)
The array response vector of the IRS panel is given by [18]

ah(εh,ϑh) = [1, . . . , exp (j
2ω

ϱ
d)

((Nh ↓ 1) sin εh cosϑh + (Nv ↓ 1) sinϑh)]
T , (3)

where the azimuth angle of arrival (AoA) and the eleva-
tion AoA are denoted as εh = arccos zs↑zr

dh
and ϑh =

arctan ys↑yr

xs↑xr
, respectively. Furthermore, the wavelength is

denoted as ϱ = c/f , and the spacing between two consecutive
PREs of IRS is represented as ” = ϱ/2. Here, f is the carrier
frequency and fs is the system bandwidth. On the other hand,
the antennas of UAV are modeled as a uniform linear array
(ULA), and its array response vector is given by

ahv(εhv,ϑhv) = [1, . . . , exp (j
2ω

ϱ
d)(L↓1) sin εhv cosϑhv]

T .

(4)
Each element of the non-LoS component of h, denoted
as hLoS , is independently generated by Clarke’s model as
hn,LoS ↔ CN (0, !h

1+Kh
). Therefore, h can be represented as

h =

√
!hKh

1 +Kh
exp

(
j2ωn

f

fs

)
ah(εh,ϑh) + hn,LoS . (5)

Likewise, hv can be denoted as

hv =

√
!hKh

1 +Kh
exp

(
j2ωn

f

fs

)
ahv(εhv,ϑhv) + hv,n,LoS ,

(6)
where hv,n,LoS represents the non-LoS component of hv .
Following the same approach, each of g and gv can be
defined in terms of LoS and non-LoS components. It is worth
mentioning that Ps, Pd, Pr, Pu, and their associated channels
follow the bijection function [19], that is, each position of
the communication node has a unique channel vector. This
property is vital for the considered CF network and is the
central feature in developing a channel prediction scheme by
using a data-driven approach [19].

III. DNN-BASED CHANNEL MAPPING

In this section, we discuss how we develop an artificial
intelligence (AI)-driven channel mapping algorithm that cap-
tures the correlation between the channel gains of two different
configurations. It is worth mentioning that such a correlation is
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mathematically intractable, and we leverage DNN to approx-
imate the correlations by exploiting data collected from the
Monte Carlo simulation framework discussed in Section IV.
In this section, we first discuss the input dataset preparation,
and pre-processing, then explore the DNN model architecture
and proposed channel mapping algorithm.

A. Dataset Preparation
A large dataset is generated by positioning APs in different

locations following uniform distributions in the D→D m2 geo-
graphical area. The dataset includes the 3D coordinates of APs
along with channels h and hv . For training and simulations,
h, and hv are generated via MATLAB following (5)-(6). A
similar dataset is generated for different user coordinates with
their channels g, and gv .

B. Data Pre-processing
To train the DNN model properly, two pre-processing

procedures are performed on the dataset. First, each complex
channel gain is separated into its real and imaginary parts and
then fed to the network. The data values are then rescaled
using a conventional normalization approach to confine the
dataset within the range [↓1; 1].

C. DNN Architecture
We develop a fully connected and feed-forward DNN-based

channel mapping scheme. The nature of the problem requires
the appropriate learning approach to be supervised learning.
It consists of (i) an input layer I, (ii) W hidden layers with
Nw neurons, w ↑ {1, 2, . . . ,W} in each layer, Nw > 2N , iii)
an output layer J , shown in Fig. 2 and 3. The hidden layers
are designed optimally to predict the non-linearity of inputs.
The size of Nw is selected to fit the model after numerous
tests. We define ςw and φw be the weights and bias factors
of hidden layer w, respectively. With the activation function
F for the hidden layer w, the output from the DNN can be
represented as follows:

J = Fw(ςwFw↑1(. . .F1(ς1I + φ1) . . . ) + φw). (7)
The hyperbolic tangent function tanh(·) is used as the ac-
tivation function in the output layer, and the leaky rectified
linear unit (leaky ReLU) is deployed in the input and hidden
layers as they produce effective performance in approximating
the nonlinear functions. Until the model converges, the loss
is reduced by the ADAptive Moment Estimation (ADAM)
algorithm with a learning rate of Lr. We present a four-stage
algorithm for channel estimation:

1) Stage I: For a given static communication environment,
there exists a deterministic mapping function ↼ from every AP
position Ps to their corresponding channel h [16]. The exis-
tence of position-to-channel mapping and channel-to-channel
mapping is confirmed in [14]. Based on these propositions,
the mapping function # between two receiving antenna sets
for the same transmitter was explored in Scenario 1. For Q
samples, if {Ps} is the set of all AP location Ps, and {h},
{hv} be the sets for h, hv , then due to objectiveness, the
position-to-channel mapping functions can be represented as
follows:

↼u : {Ps,q}
Q
q=1 ↗ {hv,q}

Q
q=1. (8)

Fig. 2. DNN structure

↼r : {Ps,q}
Q
q=1 ↗ {hq}

Q
q=1. (9)

Hence, the channel-to-channel mapping function can be rep-
resented as follows:

# = ↼u ↗ ↼r : {hv,q}
Q
q=1 ↗ {hq}

Q
q=1. (10)

In case of Scenario 1, the input layer I1 has (2L+3) neurons,
I1 ↑ [Ps ↑ N1→3,RE{hv ↑ CL→1

}, IM{hv ↑ CL→1
}], as

shown in Fig. 2. Here, RE{·} and IM{·} present the real
and imaginary parts of a complex variable. Note that I1 is
designed based on the position-to-channel mapping function
↼u. The DNN model considered incorporates the dataset
clearly, enabling it to distinguish and perform operations
with better accuracy. The output layer J1 has 2N neurons,
J1 ↑ [RE{h ↑ CN→1

}, IM{h ↑ CN→1
}]. The training

dataset is prepared from the original dataset based on these
input-output layers. The DNN model proposed for scenario 1
is then trained offline for the number of S epochs.

2) Stage II: Following offline training, the trained model
for Scenario 1 is deployed to map the channels h from hv in
real-time. At first, uplink pilot signals transmitted from AP are
received by UAV. Then, channel hv is derived by exploiting
the pilot signals and associated UAV-captured channel data.
Finally, channel h is mapped using the DNN.

3) Stage III: In Scenario 2, the channel of one AP is
mapped into other neighboring APs while considering the
environmental impact. In particular, the bijectivity criteria of
the considered APs are exploited to realize the position-to-
channel mapping function ↼r [14]. It is worth mentioning that
scenario 2 uses the outcome of Scenario 1 h. In Scenario
2, the input layer I2 has 3 neurons, I2 ↑ [Ps ↑ N1→3],
and the output layer J2 has 2N neurons, J2 ↑ [RE{h ↑
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Fig. 3. Impact of the number of IRS elements on model accuracy.

CN→1
}, IM{h ↑ CN→1

}], as shown in Fig. 2. Another
training dataset is prepared from the original dataset based on
these input-output layers. Finally, the proposed DNN model
for Scenario 2 is trained offline for S number of epochs.

4) Stage IV: After the offline training, the trained model
for Scenario 2 is deployed to map the channel hi of AP i to
the nearby channel hj of AP j. This phenomenon is being
explored to reduce the computational complexity of network-
wide use cases.

D. Computational Complexity
The computational complexity of our proposed DNN

model is different for the training and testing phases
for both Scenarios 1 and 2. The training complexities
in Stages I and III depend on forward and backward
propagations [20]. The training complexity for Stage I is
O(2((2L+3)N1+2NNW+

∑W
w=2 Nw↑1Nw)S) and for Stage

III is O(2(3N1+2NNW+
∑W

w=2 Nw↑1Nw)S). However, com-
putational complexities during real-time operations (the test-
ing phases) in Stages II and IV depend only on forward
propagation [20]. The testing complexity for Stage II is
O((2L+3)N1+2NNW+

∑W
w=2 Nw↑1Nw) and for Stage IV is

O(3N1+2NNW+
∑W

w=2 Nw↑1Nw).
IV. RESULTS AND DISCUSSIONS

In this section, we will demonstrate the performance of
the proposed channel mapping scheme for CF communication
systems through rigorous computer simulations.
Parameter Specifications: Throughout the experiments, we
consider that 4 APs serve 2 UEs within an area of 500→500
m2 via a UAV-mounted IRS panel. This aIRS panel is capable
of hovering around adaptively to optimize the effective data
throughput of the downlink and uplink. Table I lists significant

TABLE I
INPUT PARAMETERS FOR SYSTEM MODEL AND DNN

No. of elements in IRS 16 (4→4)
No. of antennas in UAV 2

Path loss factors ωh = 3.8, ωg = 2
Ricean K-factors Kh =Kg = 4 dB

Path loss at the reference distance PL0 = 30 dB
System Bandwidth fs = 100 kHz
Carrier frequency f = 2.6 GHz (S-band)
Transmit power 46 dBm

Dataset size 7000
No. of Epoch S = 500

1 2 3 4 5 6 7 8
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Fig. 4. Impact of number of UAV antenna on model accuracy.

parameters of the CF communication system model considered
[18]. A 55 m-tall towering structure is established where
the considered APs and UEs are positioned on the opposite
side of the tower. The IRS-carrying UAV is hovering at a
height of 61 m above the ground. We design, create, train,
and evaluate the DNN model using the open-source Python
libraries TensorFlow and Keras. To evaluate the performance
of the proposed scheme, we calculate the normalized mean
square error (NMSE) for a total number of realizations N as
follows:

NMSE =
1

N

N∑

i=1

|hi ↓ ĥi|
2

|hi|
2

, (11)

where hi and ĥi denote the actual and predicted channel,
respectively, for realization i. Throughout the simulations,
we consider 7000 independent channel realizations and 500
epochs to train the DNN. The trained inference models are
evaluated on N = 100000 realizations of channel gains
to evaluate NMSE for Scenarios 1 and 2. However, the
number of hidden layers and the number of neurons in each
hidden layer have been set by trial and error to maximize
the performance of the DNN considered. The accuracy of the
model is formulated in Keras as:

Accuracy =
1↓ NMSE

N
→ 100% (12)

Channel Mapping for Scenario 1: In Fig. 3, we demonstrate
the performance of the proposed channel mapping scheme
for Scenario 1. In particular, we evaluate the accuracy of the
mapped channel as a function of the number of PREs (N )
for different numbers of UAV antennas (L = {1, 2, 4, 6}). We
observe that for a given L, the prediction accuracy decreases
with N as increasing the number of unknown elements from
a fixed number of known elements without modifying the
DNN design and training decreases the performance. It is
worth noting that accuracy decreases significantly beyond
N = 60. The prediction of a large number of unknown
channels from L ↘ 6 known channels is cumbersome due
to weaker correlations between channel gains. These findings
will assist system designers in determining the optimal PRE-
to-UAV antenna ratio to implement the proposed channel
mapping algorithm.

Fig. 4 compares the performance of the proposed channel
mapping scheme for Scenario 1 as a function of L for N =
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{16, 64, 100}. It is evident that the accuracy of the proposed
scheme for predicting the channel increases with L for a given
N . Increasing the number of UAV antennas and leveraging all
of them to predict the channel improves the performance of
channel mapping.
Channel Mapping for Scenario 2: Figs. 5 and 6 show the
performance of the proposed channel mapping scheme for
Scenario 2. Since the placement of APs follows a random
distribution, we present the performance of the proposed
scheme as functions of the mean distances between a pair of
APs and a pair of AP-aIRS nodes in Figs 5 and 6, respectively.

In Fig. 5, we set a sub-region within the geographical
area considered and predict the unknown channels of the
AP-aIRS links from the known channels of the AP-aIRS
links. We observed that the accuracy of channel prediction
decreases with increasing mean distances of inter-APs. It is
worth mentioning that increasing the distances among the APs
decreases the spatial correlations of the underlying channels.
Therefore, the proposed scheme shows degraded performance
in predicting channels when the distances are larger between
a pair of APs.

In Fig. 6, we present the NMSE performance of the pro-
posed channel mapping scheme as a function of the distance
between the AP and the IRS for Scenario 2. We considered
three different use cases based on the number of passive
reflecting elements. We observe that as the distance between
the access point and the IRS increases, the NMSE also in-
creases for all the use cases considered. However, with a larger
number of passive reflecting elements, the NMSE performance
improves significantly as N increases. In contrast, when the
number of passive reflecting elements is small, the NMSE
remains relatively stable even at greater distances.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes a DNN-based channel mapping net-
work for the CF-MMIMO system, combining aerial-to-ground
(A2G) and ground-to-aerial (G2A) communications. Based on
simulation findings, the proposed model achieves its target in
terms of prediction accuracy. Furthermore, we have considered
different channel environments for uplink and downlink, and
the proposed model excels in both environments. In this paper,
users and the UAV are assumed to be in fixed positions. Future
research will examine the Doppler effect, considering mobile
users and mobile UAVs.

50 100 150 200 250 300 350 400 450 500

distance between AP and IRS (meter)

10
-4

10
-3

N
M

S
E

N=16 elements
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Fig. 6. Impact of AP-IRS distance on the channel.
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