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Abstract

Large pre-trained models have been extensively explored for

numerous biomedical tasks. However, the diversity and com-

plexity of biological systems often make zero-shot learning

in a new context challenging. In many instances, the bud-

get allows for the acquisition of a small number of labeled

data through experiments for few-shot learning. Yet, the

methodology for selecting the optimal set of samples for

these experiments remains underexplored. In this work, we

present an application focused on drug-induced gene expres-

sion prediction to demonstrate a data-driven approach for

facilitating sample selection. We developed a system named

AnchorDrug, which predicts drug-induced gene expression

changes in new cell lines after fine-tuning with experimental

data from a limited number of drugs. Initially, we built a

pre-trained model with a large dataset of drug-induced gene

expressions. We then adopted active learning to identify an

optimal set of drugs (i.e. anchor drugs) for experiments,

aiming to ensure that the experimental data used for subse-

quent fine-tuning would maximize model performance. Sev-

eral acquisition functions are customized and incorporated

into our pipeline. Compared with knowledge-based drug se-

lection, our customized active learning methods proved more

effective in selecting anchor drugs. A model trained using

data from anchor drugs can even perform better than that

trained using all available data in certain scenarios. We fur-

ther provided insights into the reasons behind its superior

performance. Our system is designed to mimic real-world

scenarios, enabling its easy application to real biomedical

research projects.

1 Introduction

Advancements in high-throughput technologies, cou-
pling with the decreasing costs of biological experi-
ments, have led to the generation of voluminous data,
enabling the creation of large pre-trained models for var-
ious tasks [10], [17], [3], [14]. Example tasks include
drug-target prediction, gene-regulatory network model-
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ing, cell surface protein prediction, and drug-induced
gene expression prediction. Given the diversity of do-
mains (or contexts), it is common to fine-tune a pre-
trained model for a specific context. In practice, Prepar-
ing data for fine-tuning a model to a new domain in-
volves conducting experiments with a small sample set.
This approach is both necessary and feasible. However,
how to select an optimal set of samples for experiments
within a specific budget is significant yet not fully ex-
plored.

Drug-induced gene expression profiles are exten-
sively used to discover new drugs and understand drug
mechanisms [24], [28], [23]. Initiatives like LINCS have
invested heavily in generating such profiles for tens of
thousands of drugs across various cell lines under di-
verse biological conditions (e.g., treatment duration,
dosage) [24]. A single drug can exhibit a unique gene
expression profile in a specific cell line under a partic-
ular condition. However, given the existence of thou-
sands of cell lines and the wide range of biological con-
ditions, it is impractical to experimentally profile each
drug in each cell line. Even the largest database LINCS
only covers a few dozen cell lines. Machine learning
models have proven to be effective in predicting ex-
pression profiles for a cell line that has a substantial
amount of data for training [27], [25], [18], but many
cell lines have little to no data, imposing a challenge
to generalize the model to various contexts. Typically,
generating such profiles in a new context is feasible for
a limited set of drugs. For instance, recent advance-
ments in high-throughput transcriptomics allow profil-
ing of 30 (three replicates per compound in a 96-well
plate) or 100 (365-well plate) compounds at a reasonable
cost (https://alitheagenomics.com), [1]. Several studies
have demonstrated the feasibility of performing high-
throughput transcriptomics for a small library of drugs
in neuron cells [13], [20]. These profiles can be unitized
to fine-tune the model so that the model can support
the prediction of drug-induced gene expression in a new
context, but currently, there is no established method
for selecting the drugs from a large library to perform
experiments. In this work, we present a system named
AnchorDrug, designed to predict drug-induced gene ex-
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pression in new cell lines using experimental data from a
limited number of drugs. Initially, we adopted a model
that inputs the embeddings of drugs, genes, and cell
lines, predicting the categorical change in expression of
a gene following treatment with a drug in a specific cell
line. Unlike previous models that input embeddings
of drugs and cell lines to predict the expression of all
genes, our model significantly increases the sample size,
thereby enhancing performance. To mimic real-world
applications, we selected three cell lines for validation
and pretrained the model with data from the remaining
cell lines. To enable the pretrained model to predict ex-
pression change in these test cell lines, we fine-tuned it
using expression data from a selected set of drugs, which
we referred to as anchor drugs. To select anchor drugs,
we leveraged active learning and investigated multiple
active learning choices. We showed the superiority of
the anchor drugs and provided mechanistic insights. We
anticipated that this system could be applied not only
to real research studies (e.g., predicting drug-gene ex-
pression in neurons) but also to different projects where
the budget is limited to conducting a few experiments
in a new context.

Our work made the following contributions:
1) We developed a model that enables the prediction
of drug-induced gene expression changes in a cell line,
using the drug’s chemical structure, the gene name, and
the gene expression profile of the untreated cell line.
2) We investigated various strategies for selecting an
optimal set of drugs for experiments, ensuring that the
experimental data used for fine-tuning would lead to
optimal performance.
3) We integrated various active learning methods into
our system for selecting anchor drugs, tailored them to
our specific task for better performance and efficiency,
and provided insights into their superior performance.
4) We designed our system to emulate real-world sce-
narios, ensuring it can be seamlessly integrated into real
research applications.

2 Related Works

Drug-induced Gene Expression Prediction. The mas-
sive existing drug-induced gene expression profiles have
enabled the development of advanced machine-learning
models to infer gene expression based solely on chem-
ical structure. [9] developed a computational frame-
work that first arranged existing profiles into a three-
dimensional array indexed by drugs, genes, and cell
types and then used either local or global information
to predict unmeasured profiles. By this means, the
missing drug-gene-cell type profiles were predicted from
known pairs in LINCS. However, only known drugs in
LINCS could be predicted. Godwin et al. [27] developed

DeepCOP, a deep learning-based approach to tackle this
challenge. They used molecular fingerprints to repre-
sent compounds and Gene Ontology (GO) terms to em-
bed genes, which could be likely extended to any com-
pounds and genes of interest. However, around 2/3 of
the compound profiles are of poor quality and failing to
account for this variation might degrade performance.
A subsequent study proposed a collaborative model to
improve input data quality, further boosting the over-
all performance [25]. Similarly, [18] utilized a GNN
and multi-head attention mechanism to model chemi-
cal substructure-gene and gene-gene associations. Using
the predicted profiles, they proposed repurposed candi-
dates for SARS-CoV-2. Zhu et al. trained a multi-task
deep neural network model that used the latent embed-
ding from a chemical autoencoder as the input to gen-
erate compound-induced gene expression changes and
applied it to four drug screening cases based on the dis-
ease transcriptome reversal concept [29]. While all of
these prior studies have demonstrated the feasibility of
predicting gene expression based on chemical structures,
none have addressed the specific scenario we consider,
where the gene expression profiles of only a certain num-
ber of compounds in a given context are available for
fine-tuning the model.
Batch Mode Active Learning. Label efficiency is of high
significance in domains such as drug discovery, where
the cost of labeling data can be prohibitively expen-
sive. Many researchers have worked on predictive mod-
els to make use of limited labeled data to explore un-
limited possibilities. However, training powerful models
needs the support of massive labeled data, which again
leads us to obtain expensive labels. Decades ago, ac-
tive learning [22] was proposed to improve the labeling
efficiency for model training. Active learning can be
approximately divided into two categories. One type is
based on uncertainty, and the other makes use of fea-
tures extracted from the network. Entering the era of
deep learning, many researchers have worked on batch-
mode active learning. [2] proposed to use the gradients
of the last layer’s input as features, which could take
both uncertainty and data distribution into consider-
ation. [6] worked on Bayesian neural networks, which
could provide reliable prediction uncertainty with em-
pirical demonstration. And [5] proposed to use dropout
to estimate uncertainty from any network. Another
work [15] was inspired by adversarial sampling and es-
timated the distance between samples and the classifi-
cation boundary using adversarial samples created by a
generative adversarial network.
Active Learning in Drug Discovery. Several researchers
have focused on employing active learning techniques to
address various application challenges. [16] introduced
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a benchmark study that conducted experiments on nu-
merous genomics datasets utilizing different acquisition
functions. [26] discussed selecting drugs based on the
maximum margin hyperplane principle generated by
Support Vector Machines (SVM). [19] carried out ex-
periments with the ChEMBL dataset, employing two
acquisition functions to capture two critical considera-
tions in drug discovery: the exploitativeness of a drug,
which concentrates on identifying target drugs, and the
explorativeness of a drug, highlighting the novelty of the
drugs. Other contributions, such as [8], and [7], have
also made significant strides in applying active learn-
ing to efficiently explore the chemical space. Overall,
the efficiency of labeling remains a key challenge for
researchers in drug discovery. However, the area of re-
search involving drug-induced gene expression data re-
mains unexplored.

3 Method

3.1 Problem Definition. Our objective is to pre-
dict gene expression change following a drug treatment
in a target cell line (denoted as cT ) under a specified bi-
ological condition, via utilizing data of only a few drugs
in the target cell line for model training. This is consid-
ered a three-class classification problem with the con-
straints of labeling budgets B, where B represents the
number of drugs (Since one drug corresponds to multi-
ple genes’ expression values in our data, we consider all
data points corresponding to one drug collectively as a
labeling budget). The input to our model, denoted as
X = XD

⊕
XC

⊕
XG, X ∈ Rp (p = pD + pC + pG), is

the concatenation of drug, gene, and cell line represen-
tations, where XD ∈ RpD , XG ∈ RpG and XC ∈ RpC
denotes the drug, gene, and cell line representations, re-
spectively (fig. 1(a)). The output is the drug-induced
gene expression change, where 0, 1, and 2 represent
down-regulation, no change, and up-regulation, respec-
tively (fig. 1(a)).

3.2 AnchorDrug Pipeline AnchorDrug system
comprised three stages: pre-training, fine-tuning, and
prediction (fig. 1(b)). Our model was designed to lever-
age information on drug structure, cell line character-
istics, and gene function together as input, enabling it
to predict expression changes for any drug, gene, or cell
line. During the pre-training stage, the model f0 was
pre-trained using a large number of samples from the
LINCS database to effectively incorporate knowledge
from the source cell lines (fig. 1(b)). During the fine-
tuning stage, we optimized the fine-tuning data by em-
ploying active learning methods to select a small number
of drugs (i.e., anchor drugs), obtaining their data in the
target cell line from wet-lab experiments, and fine-tune
the pre-trained model (fig. 1(b)-(c)). For anchor drug

selection, we incorporated seven acquisition functions
into our pipeline. Our budget constraint is tied to the
number of drugs to profile rather than the quantity of
data points. Thus we tailored each acquisition function
to emphasize individual drugs rather than data points.
These seven acquisition functions, which include state-
of-the-art active learning methods, covered the three
main principles of active learning: uncertainty, repre-
sentativity, and diversity, thereby broadening our selec-
tion options. Finally, during the prediction stage, the
fine-tuned model is applied to predict drug-induced gene
expression change for all drugs in the target cell line.

3.3 Base Model The preparation of the base model
involved extracting cell line embeddings using an au-
toencoder, followed by pretraining of the base model.
Cell Line Embeddings An autoencoder was used to
generate a 128 bits cell line embeddings from the
original cell line features X̂C ∈ Rp̂C (p̂C > 10, 000).
MSE loss is used for model training. The objective
function is defined as:

argminϕψ
1
n

∑n
o=1(X̂Co − ψ(ϕ(X̂Co)))

2,

where ϕ : X̂C → XC , ψ : XC → X̂C , XC ∈ R128, and n
is the number of cell lines.
The Universal Model We designed a universal model
that enabled the prediction of drug-induced gene ex-
pression change for any provided drugs and genes in any
cell lines. Gene representations (XG, GO terms), drug
representations (XD, ECFP), and cell line representa-
tions (XC , cell line embeddings) were concatenated to-
gether to serve as the input (fig. 1(a)). The model was a
fully connected MLP that outputs the possibilities of the
three categories. Softmax function was applied to the
output. Cross-entropy loss was used for model training.
The objective function was defined as:
argminf0

1
m

∑m
o=1(−

∑M
c=1 Ic log(f0(XD

⊕
XC

⊕
XG)o,c))

where M is the number of classes, m is the number of
observations. Ic is the binary indicator if class label c is
the correct label and f0 maps XD

⊕
XC

⊕
XG to label.

3.4 Active Learning Active learning takes the
model and drug pool as input and outputs the candi-
date drugs for experiments. As shown in the fig. 1(c),
our active learning cycle was initialized by a pre-trained
model, a data pool, and an empty training dataset. In
every cycle, it works as follows:
1) Apply the model to inference on the data pool;
2) Select a drug set using the inference information
according to the acquisition function;
3) Get labels of the selected drugs’ data, add them to the
training dataset, and delete them from the drug pool.
4) At the end of every cycle, fine-tune the pre-trained
model to prepare for the next cycle if the budgets have
not been used up. Otherwise, end the cycle and output
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Figure 1: AnchorDrug pipeline overview.

the final training dataset.
We considered seven acquisition functions: Adver-

sarialBIM [12], BALDDropout [6], BADGE [2], Core-
Set [21], K-Means Sampling, Least-Confidence Sam-
pling, and Margin Sampling. All of them were tailored
to focus on drugs instead of individual data to achieve
better performance or essential efficiency.

3.5 Model Fine-tuning The pre-trained model was
fine-tuned in a cell line-specific manner, where data of
the selected anchor drugs in the corresponding target
cell line was used for fine-tuning, resulting in a model
specifically for a target cell line (fig. 1(b)). The
dominant label classes were down-sampled to mitigate
the negative effect of data imbalance.

4 Experiments

4.1 Dataset Drug-induced gene expression profiles
from LINCS L5 [24] data were collected, where only
the labeled high-quality profiles under the biological
condition of 10µM concentration and 24-hour treatment
duration were used. The data were further filtered based
on genes, where the profiles of 307 highly predictable
genes [25] were filtered and used. We also filtered out
cell lines that are not in OCTAD [28]. After filtering,
the dataset covered 5886 unique drugs, 54 cell lines,
and more than 20000 experiments. One experiment
corresponded to one drug being tested in one cell line.
Data of all 307 highly predictable genes were collected
at the same time.

For validation use, the top three cell lines with
the most number of profiles, A549, PC3, and MCF7
(containing 936, 1413, and 1337 drugs, respectively),
were selected as the target cell lines, and their corre-
sponding data were excluded from model pre-training
(fig. 1(b)). Pretraining data covered 45 cell lines, 4872
unique drugs, and 17624 experiments. In each of the

three target cell lines, random 10% of the drugs were
held out, whose data served as the test set for the cor-
responding cell line. The rest of the data served as the
drug pool for active learning for the corresponding cell
line.

Gene expression profiles in 1210 untreated cell lines
from OCTAD [28] were used for generating lower-
dimensional cell line embeddings (128 bits). ECFP4
features (1024 bits) were used as drug representations.
GO terms from [4] were used as gene representations.

The GitHub link for data and code of An-
chorDrug system is: https://github.com/Bin-Chen-
Lab/AnchorDrug official.

4.2 Anchor Drug Selection Scenario We pro-
posed two real-world scenarios of selecting anchor drugs
for model fine-tuning:
S1 Design a common list of N anchor drugs which can
be applied to any new target cell line, and
S2 For each new target cell line, design a specific list of
N anchor drugs.

The considerations were that S1 should be more
economical than S2, whereas it would also be useful to
know if cell line-specific anchor drug lists perform better
than a common anchor drug list. In S1, we assumed
that the common anchor drugs were representative
enough for our model to learn contextual knowledge
from various new cell lines.

To mimic these two scenarios with the three target
cell lines, we first established an “initial pool”, the pool
which we would later select anchor drugs from, using
the drugs in the intersection between the pre-trained
LINCS data and the target cell lines’ data. Drugs in
the pre-trained LINCS data were used as a universal
standard. In reality, what drugs have been measured for
any new target cell line are unclear in advance. The pre-
trained LINCS data consists of data that have already
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Selected Drug Numbers 30 100
Cell Line Name A549 MCF7 PC3 Mean A549 MCF7 PC3 Mean

Anchor Drug Pipeline

Margin 0.572 0.517 0.537 0.542 0.591 0.552 0.578 0.574
LeastConfidence 0.575 0.523 0.540 0.546 0.591 0.552 0.576 0.573
BALDDropout 0.576 0.554 0.555 0.561 0.594 0.566 0.583 0.581
BADGE 0.569 0.543 0.552 0.555 0.569 0.557 0.571 0.565
CoreSet 0.573 0.547 0.559 0.560 0.588 0.568 0.576 0.577
K-Means 0.566 0.539 0.554 0.553 0.571 0.557 0.571 0.566
AdversarialBIM 0.575 0.547 0.557 0.559 0.586 0.562 0.578 0.575

All Anchor Drug Options - Averaged 0.572 0.539 0.551 0.554 0.584 0.559 0.576 0.573

Baseline
Clustering 0.568 0.540 0.556 0.555 0.576 0.549 0.562 0.562
MOA 0.563 0.533 0.554 0.550 0.569 0.554 0.563 0.562
Random 0.564 0.535 0.556 0.552 0.571 0.553 0.565 0.563

All Baselines - Averaged 0.565 0.536 0.556 0.552 0.572 0.552 0.563 0.562
All Data Finetuned Model 0.579 0.561 0.570 0.570 0.579 0.561 0.570 0.570

Pre-trained Model 0.519 0.415 0.463 0.466 0.519 0.415 0.463 0.466

Table 1: Benchmarking evaluation of AnchorDrug’s performance with a common list of anchor drugs shared by
all target cell lines (averaged across three runs of random seeds for each method).

been measured, ensuring its popularity and general
applicability to any newly given target cell lines to the
greatest extent. Plus, we needed to ensure that the
anchor drugs we selected had corresponding data in the
target cell lines for the sake of validation. Thus, under
Scenario 1 (S1), drugs shared by all the three target
cell lines and the pre-trained LINCS data were used as
our initial pool. For scenario 2 (S2), drugs shared by
the target cell line and the pre-trained LINCS data were
used as the initial pool for the corresponding target cell
line. For both scenarios, the test set was held out in
advance, as described in section 4.1.

4.3 Benchmarking Evaluation To evaluate An-
chorDrug’s performance, we compared AnchorDrug, in-
cluding seven acquisition function options, with another
three traditional drug section baselines:
1) Random selection: Random N drugs were selected
from the initial pool.
2) Clustering-based selection: Drugs in the initial pool
were grouped into N clusters by K-modes clustering [11]
based on their drug representations (ECFP). From each
cluster, a random drug was selected.
3) Mechanism of action (MOA)-based selection: Drugs
in the initial pool were grouped by their MOAs, random
N groups of MOAs were selected, where a random drug
was selected from each group.
We also included the pre-trained base model and the
model fine-tuned using all data of the initial pool in
our comparison. Experiment settings except for fine-
tuning data were consistent across experiments. Each
drug selection method was run 3 times to select 30 or
100 drugs. The F1 score (macro) was averaged across
three runs for each method.
With a Common List of Anchor Drugs (S1) Results

in table 1 showed the averaged performance of Anchor-
Drug outperformed the other three baselines in all three
target cell lines under both 30 and 100 anchor drug
conditions, and was significantly better than the pre-
trained model (t-test, p < 0.05), with an improvement
of 18.89% and 22.95% in the mean F1 score across all
cell lines under 30 and 100 anchor drug conditions, re-
spectively. Surprisingly, when 100 anchor drugs were
used for finetuning, the averaged performance of An-
chorDrug even outperformed the model fine-tuned using
all available data slightly.

In all three cell lines, BALDDropout achieved su-
perior F1 score under both 30 and 100 anchor drug con-
ditions, even showing a higher F1 score than all data
fine-tuned models under the 100 anchor drug condition.
Other acquisition functions such as CoreSet and Adver-
sarialBIM also showed comparable performance.

Taken together, our results showed the superiority
of active learning-based methods over random selection
or domain knowledge-based methods in drug selection
for training data (table 1). This indicated AnchorDrug’s
effectiveness in designing a common list of anchor drugs
for different target cell lines.
With Cell Line-specific Lists of Anchor Drugs (S2) Re-
sults in table 2 showed that AnchorDrug outperformed
the other three baselines in all three target cell lines un-
der both 30 and 100 anchor drug conditions, and was
significantly better than the pre-trained model baseline
(t-test, p < 0.05), with an improvement of 17.60% and
22.10% in the mean F1 score across all cell lines under
30 and 100 anchor drug conditions, respectively. Similar
to S1, in S2, the averaged performance of AnchorDrug
outperformed the model fine-tuned using all available
data slightly under 100 anchor drug conditions, with
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Selected Drug Numbers 30 100
Cell Line Name A549 MCF7 PC3 Mean A549 MCF7 PC3 Mean

Anchor Drug Pipeline

Margin 0.569 0.509 0.529 0.536 0.589 0.548 0.561 0.566
LeastConfidence 0.571 0.512 0.534 0.539 0.588 0.555 0.562 0.568
BALDDropout 0.569 0.539 0.555 0.554 0.593 0.566 0.577 0.578
BADGE 0.568 0.542 0.554 0.555 0.571 0.557 0.567 0.565
CoreSet 0.561 0.538 0.549 0.549 0.587 0.569 0.574 0.576
K-Means 0.566 0.539 0.540 0.548 0.565 0.550 0.547 0.554
AdversarialBIM 0.580 0.542 0.551 0.558 0.590 0.567 0.571 0.576

All Anchor Drug Options - Averaged 0.569 0.532 0.545 0.548 0.583 0.559 0.566 0.569

Baseline
Clustering 0.554 0.539 0.549 0.548 0.562 0.546 0.551 0.553
MOA 0.541 0.527 0.535 0.534 0.550 0.535 0.547 0.544
Random 0.542 0.532 0.540 0.538 0.547 0.539 0.545 0.544

All Baselines - Averaged 0.546 0.532 0.541 0.540 0.553 0.540 0.548 0.547
All Data Finetuned Model 0.563 0.547 0.551 0.554 0.563 0.547 0.551 0.554

Pre-trained Model 0.519 0.415 0.463 0.466 0.519 0.415 0.463 0.466

Table 2: Benchmarking evaluation of AnchorDrug’s performance with cell line-specific lists of anchor drugs .

an improvement of 2.71%. Among all baselines includ-
ing all data fine-tuned models and all acquisition func-
tions, AdversarialBIM and BALDDropout achieved the
highest mean F1 score across all cell lines under the 30
and 100 anchor drug conditions, respectively. Under
the 100 anchor drug condition, six acquisition functions
achieved better F1 scores in all cell lines than the model
fine-tuned using all available data.

Interestingly, compared to the results in S2, the
results in S1 showed overall better performance (table 1,
table 2). The model fine-tuned using all data in the
S1 initial pool also outperformed the model fine-tuned
using all data in the S2 initial pool. This might be
due to the higher quality of the initial pool used for
S1 compared to S2. Another observation was that the
performance gap between baselines and active learning-
based methods was larger in S2 than in S1. These
findings together implied that in reality, when the drug
pool is large and of low quality (useful information is
sparse), the AnchorDrug system is highly promising to
achieve a much better performance than other solutions.

5 Discussion

5.1 Anchor Drug Analysis To understand why the
selected anchor drugs can improve model prediction per-
formance, we used TSNE to visualize the distribution
of gene profiles induced by the 30/100 selected anchor
drugs in each target cell line (use the BALDDropout
function in AnchorDrug as an example), and compared
with the distribution of gene profiles induced by the
other deselected, non-anchor drugs from the same ini-
tial drug pool. Results revealed that under both S1
and S2, in each target cell line, gene profiles induced
by the 30/100 anchor drugs show a sparse distribution
across the whole space (fig. 2, ). Also, as indicated by

the black arrows (fig. 2), some anchor drugs were se-
lected from outlier clusters in the distribution space.
This suggested that AnchorDrug tends to select N an-
chor drugs which are more sparsely scattered across the
whole space of the initial pool regarding their induced-
gene expression profiles in target cell lines.

To further quantitatively evaluate the distribution
space coverage of the anchor drugs’ induced-gene ex-
pression profiles in target cell lines, we compared An-
chorDrug (BALDDropout) to the other three drug selec-
tion method baselines (Random, Clustering, and MOA).
In each target cell line, we calculated the Convex Hull
for anchor drugs and all drugs from the initial pool,
respectively, using their TSNE embeddings of induced
gene expression profiles (fig. 2, ), and then divided the
two Convex Hull values to obtain a space coverage ratio.
Results showed that in S2, under both 30/100 anchor
drug conditions, selected anchor drugs showed a higher
space coverage with their induced-gene expression pro-
files compared to drugs selected by the other three base-
lines . The same held true for S1 under the 100 anchor
drug conditions . Another metric of pairwise Euclid-
ian distance variance also revealed consistent results .
Moreover, a correlation test confirmed the positive re-
lation between AnchorDrug performance and the distri-
bution space coverage of selected anchor drugs’ induced-
gene expression profiles in target cell lines (fig. 3). In-
terestingly, anchor drugs selected in S1 showed a higher
space coverage compared to the anchor drugs selected
in S2 . This may account for the underlying reason why
a common list of anchor drugs shared by all target cell
lines performs better than the cell line-specific anchor
drug lists (table 1, table 2).

Taken together, our results indicated that Anchor-
Drug tends to select a combination of N anchor drugs

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited452

D
ow

nl
oa

de
d 

09
/2

2/
25

 to
 3

5.
3.

17
9.

22
6 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Figure 2: Distribution of the drug induced-gene expression profiles in the target cell lines from 30/100 anchor
drugs selected by AnchorDrug (BALDDropout, one run using one random seed) compared to the whole initial
pool (279 drugs) under S1.

Figure 3: Correlation between the F1 score and the dis-
tribution space coverage of drug-induced gene expres-
sion profiles from selected drugs under S1 (a) and S2
(b). One dot represents one drug selection method with
a certain number of selected drugs in one target cell
line. For each scenario, three target cell lines, four drug
selection methods (Random, Clustering, MOA, and An-
chorDrug (BALDDropout)), and two numbers (30 and
100) of selected drugs are included.

whose induced-gene expression profiles in target cell
lines optimally represent the distribution space of all
drugs in the initial pool. This may result in optimal
samples in the model fine-tuning stage, which boosted
the effects of fine-tuning and contributed to Anchor-
Drug’s good prediction performance.

5.2 Convergence of Performance with the In-
crease of Drug Number We first investigated the
convergence of model performance with random addi-
tion of data. In all three cell lines, after 100 drugs
were covered, the F1 score increased only slightly as
the training data covered more drugs. When all data
was included, the F1-score was still under 0.6, which is
comparable to the low F1 scores reported in other pa-
pers [25]. This suggested that for the drug-induced gene
expression prediction task, information scarcity of data

remains a bottleneck for improving performance. The
converge curve is zig-zag, which indicates that randomly
added new data may have beneficial or detrimental ef-
fects on model performance, implying the importance
of training data selection.

The model performance change during active learn-
ing is shown in fig. 4. Performance ranged from a pre-
trained model (no fine-tuned data) to a model fine-
tuned using data from 100 drugs. The curve of ran-
domly adding training data under the same experiment
setting was also included for a fair comparison. The
overall trend showed the F1-score increased as the train-
ing sample size grew in three cell lines for every acqui-
sition function. Across three cell lines, LeastConfidence
stably achieved good F1-scores and Random was always
among the poor-performance group.

As shown in fig. 4, there was a performance degra-
dation from the pre-trained model to the model fine-
tuned using data from 10 drugs. This may be due
to the transition between different contexts. The pre-
trained model was trained on other cell lines, while the
fine-tuned model was fine-tuned on a new, unseen cell
line, representing a new biological context. A very small
amount of data can lead to a highly biased representa-
tion of the new context, resulting in a worse model than
the pre-trained one. Among all the functions, LeastCon-
fidence and Margin did not experience this performance
degradation and achieved a relatively smooth transition
from the pre-trained model to the fine-tuned model.
This implied that for an extremely low labeling bud-
get, these two acquisition functions may be a reason-
able choice. Results in fig. 4 again demonstrated the
superiority of active learning-based drug selection.

5.3 Adaptation of Active Learning to Drug-
induced Gene Expression Data Because of the
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Figure 4: F1 Score v.s. Number of Drugs in Finetunning Samples during active learning. The experiments are
conducted under scenario 2. For every step, we increase the data of 10 drugs into training data. (averaged across
three runs of random seeds for each method)

nature of wet lab experiments, testing one drug in one
cell line simultaneously generates expression data for
multiple genes. Available active learning acquisition
functions select data points. Applying them to our
real-world scenarios means that when one data point is
selected and labeled, all other data points of the same
drug are also labeled regardless of whether they are
selected or not. Intuitively, this would cause efficiency
problems and lead to a poorly designed training dataset.
Therefore, we modified several widely used acquisition
functions to focus on drugs instead of individual data
points to better suit our needs. These customized
query strategies fall into three categories based on our
adaptations.

LeastConfidence, BALDDropout, and MarginSam-
pling are uncertainty-based acquisition functions. The
original algorithms select the most uncertain data and
its corresponding drug, then add all associated data to
the training set. Our adapted version treated the av-
erage uncertainty of all associated data as the uncer-
tainty of the corresponding drug. Comparing results in
table 3 and table 2, for LeastConfidence, MarginSam-
pling, and BALDDropout, our adapted version consis-
tently achieved higher F1 scores in all three cell lines,
which validated the superiority of our modification.

method cell A549 MCF7 PC3 mean
Margin 0.573 0.532 0.546 0.550
LeastConfidence 0.569 0.531 0.548 0.549
BALDDropout 0.580 0.557 0.570 0.569

Table 3: Performance of the original MarginSampling,
LeastConfidence, and BALDDropout methods under
the 100 anchor drug condition in scenario 2 .

KMeansSampling, KCenterGreedy, and BadgeSam-
pling all utilize model embeddings. The original meth-
ods generate embeddings for individual data points and
then apply clustering, which involves extensive compu-
tations like pairwise distance calculations among all em-
beddings, making it impractical to implement for our
task. Our adapted version generated embeddings for
drugs and avoided calculations between data points of

the same drug, whose difference solely came from gene
variance. (Cost analysis can be found in the github).
Thus, our adapted methods are more efficient, practical,
and biologically reasonable than the original methods.

The third category, AdversarialBIM, updates the
input according to gradient descent until the output dif-
fers from the original one. The difference between the
original and the updated input is regarded as the dis-
tance between the data and the decision boundary. It
then picks data closest to the decision boundary. The
original one calculates gradients and updates each data
individually, making it impractical for our task. In con-
trast, our revised version updates all data of one drug
simultaneously, significantly improving efficiency. Plus,
the original one alters the whole input including drug,
cell line, and gene representations, while our modified
version only updates drug representation, providing a
more accurate distance between drugs and the decision
boundary. To sum up, our modified version is more
reasonable and practical compared to the original coun-
terparts.

6 Conclusion

In this work, we proposed the AnchorDrug system,
which incorporated pertaining, fine-tuning, and active
learning, providing a promising framework to explore
new contexts and train a powerful predictive model
of drug-induced gene expression. We further proposed
two real-world scenarios and demonstrated that under
both scenarios, the AnchorDrug system is superior in
selecting an optimal combination of anchor drugs for
model fine-tuning.
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