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Not all the information in a turbulent field is relevant for understanding particular regions
or variables in the flow. Here, we present a method for decomposing a source field into its
informative ΦI(x, t) and residual ΦR(x, t) components relative to another target field. The
method is referred to as informative and non-informative decomposition (IND). All the
necessary information for physical understanding, reduced-order modelling and control of
the target variable is contained in ΦI(x, t), whereas ΦR(x, t) offers no substantial utility
in these contexts. The decomposition is formulated as an optimisation problem that seeks
to maximise the time-lagged mutual information of the informative component with the
target variable while minimising the mutual information with the residual component.
The method is applied to extract the informative and residual components of the velocity
field in a turbulent channel flow, using the wall shear stress as the target variable. We
demonstrate the utility of IND in three scenarios: (i) physical insight into the effect
of the velocity fluctuations on the wall shear stress; (ii) prediction of the wall shear
stress using velocities far from the wall; and (iii) development of control strategies for
drag reduction in a turbulent channel flow using opposition control. In case (i), IND
reveals that the informative velocity related to wall shear stress consists of wall-attached
high- and low-velocity streaks, collocated with regions of vertical motions and weak
spanwise velocity. This informative structure is embedded within a larger-scale streak–roll
structure of residual velocity, which bears no information about the wall shear stress. In
case (ii), the best-performing model for predicting wall shear stress is a convolutional
neural network that uses the informative component of the velocity as input, while the
residual velocity component provides no predictive capabilities. Finally, in case (iii), we
demonstrate that the informative component of the wall-normal velocity is closely linked
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to the observability of the target variable and holds the essential information needed to
develop successful control strategies.

Key words: turbulence simulation, turbulence theory, turbulent boundary layers

1. Introduction
Since the early days of turbulence research, there have been multiple attempts to
decompose the flow into different components to facilitate its physical understanding,
control its behaviour and devise reduced-order models. One of the earliest examples
is the Reynolds decomposition (Reynolds 1895), which divides the velocity field into
its mean and fluctuating components. More sophisticated approaches rapidly emerged,
aiming at extracting the coherent structure of the flow through correlations and
structure identification (Robinson 1991; Panton 2001; Adrian 2007; Smits, McKeon &
Marusic 2011; McKeon 2017; Jiménez 2018). This interest is justified by the hope that
insights into the dynamics can be gained by analysing a subset of the entire flow,
while the remaining incoherent flow plays only a secondary role in understanding the
overall dynamics. In this work, we introduce a method to decompose turbulent flow
fields into informative and non-informative components, referred to as informative and
non-informative decomposition (IND), such that the informative component contains all
the useful information for physical understanding, modelling and control with respect to a
given quantity of interest.

The quest to divide turbulent flows in terms of coherent and incoherent motions
has a long history, tracing back to the work of Theodorsen (1952), and has been a
subject of active research since the pioneering experimental visualisations of Kline
et al. (1967) and the identification of large-scale coherent regions in mixing layers by
Brown & Roshko (1974). Despite this rich history, the field still lacks consensus about
the definition of a coherent structure due to the variety of interpretations proposed
by different researchers. One of the initial approaches to distinguish turbulent regions
was the turbulent/non-turbulent discriminator circuits introduced by Corrsin & Kistler
(1954). Since then, single- and two-point correlations have become conventional tools for
identifying coherent regions within the flow (e.g. Sillero, Jiménez & Moser 2014). The
development of more sophisticated correlation techniques, such as the linear stochastic
estimation (Adrian & Moin 1988) – together with its extensions (Tinney et al. 2006;
Baars & Tinney 2014; Encinar & Jiménez 2019) – and the characteristic-eddy approach
(Moin & Moser 1989), has further improved our understanding of the coherent structure of
turbulence. An alternative set of methods focuses on decomposing the flow into localised
regions where certain quantities of interest are particularly intense. The first attempts,
dating back to the 1970s, include the variable-interval time average method (Blackwelder
& Kaplan 1976) for obtaining temporal structures of bursting events, and its modified
version, the variable-interval space average method (Kim 1985) for characterising spatial
rather than temporal structures. With the advent of larger databases and computational
resources, more refined techniques have emerged to extract three-dimensional, spatially
localised flow structures. These include investigations into regions of rotating fluid (e.g.
vortices; Moisy & Jiménez 2004; Del Álamo et al. 2006), motions carrying most of the
kinetic energy (e.g. regions of high- and low-velocity streaks; Hwang & Sung 2018; Bae
& Lee 2021), and those responsible for most of the momentum transfer in wall turbulence
(e.g. quadrant events and uniform momentum zones; Meinhart & Adrian 1995; Adrian,
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IND of turbulent flow fields

Meinhart & Tomkins 2000; Lozano-Durán, Flores & Jiménez 2012; Lozano-Durán &
Jiménez 2014; de Silva, Hutchins & Marusic 2016; Wallace 2016).

The methods described above offer a local-in-space characterisation of coherent
structures, in contrast to the global-in-space modal decompositions of turbulent flows
(Taira et al. 2017, 2020). One of the first established global-in-space methods is the proper
orthogonal decomposition (POD) (Lumley 1967), wherein the flow is decomposed into
a series of eigenmodes that optimally reconstruct the energy of the field. This method
has evolved in different directions, such as space-only POD (Sirovich 1987), spectral
POD (Towne, Schmidt & Colonius 2018) and conditional POD (Schmidt & Schmid
2019), to name a few. Another popular approach is dynamic mode decomposition (DMD)
(Schmid 2010; Schmid et al. 2011), along with decompositions based on the spectral
analysis of the Koopman operator (Rowley et al. 2009; Mezić 2013). Similar to POD,
various modifications of DMD have been developed, e.g. the extended DMD (Williams,
Kevrekidis & Rowley 2015), the multi-resolution DMD (Kutz, Fu & Brunton 2016), and
the high-order DMD (Le Clainche & Vega 2017) (see Schmid (2022) for a review). The
POD and DMD methods do not explicitly account for nonlinear interactions. To overcome
this, extensions to detect quadratic nonlinear interactions based on the bispectrum have
also been developed (Baars & Tinney 2014; Schmidt 2020). Another noteworthy modal
decomposition approach is empirical mode decomposition, first proposed by Huang et al.
(1998) and recently used in the field of fluid mechanics (e.g. Cheng et al. 2019). While
the methods listed above are purely data-driven, other modal decompositions, such as
resolvent analysis and input–output analysis, are grounded in the linearised Navier–Stokes
equations (Trefethen et al. 1993; Jovanović & Bamieh 2005; McKeon & Sharma 2010).
It has been shown that POD, DMD and resolvent analysis are equivalent under certain
conditions (Towne et al. 2018). Recently, machine learning has opened new opportunities
for nonlinear modal decompositions of turbulent flows (Brunton, Noack & Koumoutsakos
2020).

The flow decomposition approaches presented above, either local or global in space,
have greatly contributed to advancing our knowledge about the coherent structure of
turbulence. Nonetheless, there are still open questions, especially regarding the dynamics
of turbulence, that cannot be answered easily by current methodologies. Part of these
limitations stems from the linearity of most methods, yet turbulence is a nonlinear system.
A more salient issue perhaps lies in the fact that current methods (with exceptions, such as
the extended POD; Borée 2003) tend to focus on decomposing source variables without
accounting for other target variables of interest. In general, it is expected that different
target variables would require different decomposition approaches of the source variable.
For example, we might be interested in a decomposition of the velocity that is useful for
understanding the wall shear stress. Hence the viewpoint adopted here aims to answer
the question: what part of the flow is relevant to understanding the dynamics of another
variable? In this context, coherent structures are defined as those containing the useful
information needed to understand the evolution of a target variable.

The concept of information alluded to above refers to the Shannon information (Shannon
1948; Cover & Thomas 2006), i.e. the average unpredictability in a random variable. The
systematic use of information-theoretic tools for causality, modelling and control in fluid
mechanics has been discussed recently by Lozano-Durán & Arranz (2022). Betchov (1964)
was one of the first authors to propose an information-theoretic metric to quantify the
complexity of turbulence. Some works have leveraged Shannon information to analyse
different aspects of two-dimensional turbulence and energy cascade models (Cerbus
& Goldburg 2013; Materassi et al. 2014; Granero-Belinchon 2018; Shavit & Falkovich
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= +t:

t + ∆t:

Original field, u Informative field, uI Residual field, uR

Wall  shear  stress, τw

Contains all information
about τw

Contains no information
about τw

Figure 1. Schematic of IND applied to wall-bounded turbulent flow. The source variable is the velocity
fluctuation in the fluid volume x ∈ Ωu at t, and the target variable is the wall shear stress vector at the wall at
t + "t. For the sake of visualisation, only the streamwise component of the velocity fluctuations and the wall
shear stress is displayed. The velocity fluctuation at time t are decomposed into their informative and residual
components to the wall shear stress in the future, t + "t.

2020; Lee 2021; Tanogami & Araki 2024). Information theory has also been used for
causal inference in turbulent flows (Liang & Lozano-Durán 2016; Lozano-Durán, Bae &
Encinar 2019; Wang et al. 2021; Lozano-Durán & Arranz 2022; Martínez-Sánchez et al.
2023), and reduced-order modelling (Lozano-Durán et al. 2019). The reader is referred
to Lozano-Durán & Arranz (2022) for a more detailed account of the applications of
information-theoretic tools in fluid mechanics.

This work is organised as follows. The formulation of the flow decomposition into
informative and non-informative components is introduced in § 2: we first discuss the exact
formulation of IND in §§ 2.1 and 2.2, followed by its numerically tractable approximation,
aIND, in § 2.3. Section 3 demonstrates the application of the method to the decomposition
of the velocity field, using wall shear stress in a turbulent channel flow as the target
variable. This decomposition is leveraged for physical understanding, prediction of the
wall shear stress using velocities away from the wall via convolutional neural networks,
and drag reduction through opposition control. Finally, conclusions are presented in § 4.

2. Methodology

2.1. The IND of the source variable
Let us denote the source variable by Φ(x, t), with x ∈ ΩΦ , and the target variable
by Ψ (x, t), with x ∈ ΩΨ , where x and t represent the spatial and time coordinates,
respectively. For example, in the case of a turbulent channel flow, the source variable
could be the velocity fluctuations defined over the entire domain, Φ(x, t) = u(x, t),
and the target variable could be the shear stress vector at every point over one of the
walls, Ψ (x, t) = τw(x, t), as shown in figure 1. We seek to decompose Φ(x, t) into two
independent contributions: an informative contribution to the target variable in the future,
Ψ + = Ψ (x, t + "T) with "T ≥ 0, and a residual term that conveys no information about
Ψ + (i.e. the non-informative component):

Φ(x, t) = ΦI(x, t) + ΦR(x, t), (2.1)

where ΦI and ΦR are the informative and residual contributions, respectively. The
decomposition is referred to as IND.

To find a decomposition of the form shown in (2.1), we need to introduce a definition
of information. We rely on the concept of Shannon information (Shannon 1948), which
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IND of turbulent flow fields

quantifies the average information in the variable Ψ + as

H(Ψ +) = −
∑

S∈S
pΨ +(Ψ + = S) log pΨ +(Ψ + = S) ≥ 0, (2.2)

where H(Ψ +) is referred to as the Shannon entropy or information of Ψ +, pΨ +(Ψ + = S)
denotes the probability of Ψ + being in the state S, and S represents the set of all possible
states of Ψ +. The remaining information in Ψ +, after discounting for the information in
Φ, is measured by the conditional Shannon information:

H(Ψ + | Φ) = −
∑

S∈S

∑

R∈R
pΨ +,Φ(S, R) log

pΨ +,Φ(S, R)

pΦ(R)
≥ 0, (2.3)

where pΨ +,Φ is the joint probability distribution of Ψ + and Φ, R is a particular state of
Φ, and R is the set of all possible states of Φ. The difference between (2.2) and (2.3)
quantifies the amount of shared information between the variables,

I(Ψ +;Φ) = H(Ψ +) − H(Ψ + | Φ), (2.4)

and is referred to as the mutual information between Ψ + and Φ. The condition H(Ψ +) ≥
H(Ψ + |Φ) – known as ‘information can’t hurt’ (Cover & Thomas 2006) – guarantees that
I(Ψ +;Φ) is always non-negative. The mutual information is equal to 0 only when the
variables are independent, i.e. pΨ +,Φ(S, R) = pΨ +(S) pΦ(R) for all possible states S ∈ S
and R ∈ R.

We are now in a position to define the conditions that ΦI and ΦR must satisfy. First, the
informative contribution should maximise I(Ψ +;ΦI) from (2.4), which is achieved when

I(Ψ +;ΦI) = H(Ψ +), (2.5)

namely, ΦI contains all the information in Ψ +. Equation (2.5) can be rewritten using (2.4)
as

H(Ψ + | ΦI) = 0, (2.6)

which is mathematically equivalent to expressing Ψ + as a function of ΦI , namely, Ψ + =
F(ΦI). Second, the residual term ΦR and the informative term ΦI must be independent,
which requires

I(ΦR;ΦI) = 0. (2.7)

This also ensures that the residual component has no information about Ψ +, namely
I(ΦR;Ψ +) = 0, since I(ΦR;Ψ +) ≤ I(ΦR;ΦI). The previous inequality is known as the
data-processing inequality, and states that no transformation of a variable can increase its
information content, which can only remain the same or decrease (Cover & Thomas 2006,
Theorem 2.8.1). In addition, since ΦR and ΦI are statistically independent from (2.7), the
equality

‖Φ‖2 = ‖ΦI‖2 + ‖ΦR‖2 (2.8)

is satisfied. If Φ contains no information about Ψ +, then ‖ΦI‖2/‖Φ‖2 ≈ 0 and
‖ΦR‖2/‖Φ‖2 ≈ 1. Conversely, if Φ exclusively contains all the information necessary to
understand Ψ +, then ‖ΦI‖2/‖Φ‖2 = 1. Note that, in general, ΦI , ΦR and F are functions
of "T , which has been omitted here for the sake of simplicity in the notation.

Since the Shannon information is based on the joint probability distribution of the
variables, rather than their specific values, there may exist many functions that satisfy
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(2.5) and (2.7). To identify a unique solution, we impose that the informative field ΦI(x, t)
is smooth. Note that, assuming Φ(x, t) is smooth, the previous condition also implies that
the residual field must be smooth.

In summary, the necessary conditions that IND satisfies are as follows.

(i) The source variable is decomposed as the sum of the informative and residual
contributions: Φ = ΦI + ΦR (2.1).

(ii) The informative field contains all the information about the target variable in the
future: I(Ψ +;ΦI) = H(Ψ +) (2.5).

(iii) The informative and residual components share no information: I(ΦR;ΦI) = 0
(2.7).

(iv) The informative field is smooth.

2.2. The IND of the target variable
Alternatively, we can seek to decompose the target variable as Ψ = Ψ I + Ψ R, where Ψ I
and Ψ R are, respectively, the informative and residual components of Ψ with respect to
Φ− = Φ(x, t − "T), with "T > 0. The constraints to be satisfied are

I(Φ−;Ψ I) = H(Φ−), I(Ψ R;Ψ I) = 0, (2.9a,b)

together with the smoothness of Ψ I . In this case, Ψ I corresponds to the part of Ψ that
can explain the source variable Φ in the past, while Ψ R is the remaining term, which is
agnostic to the information in the source variable.

2.3. Approximate IND
We frame the conditions of IND described in § 2.1 as a minimisation problem. To that end,
several assumptions are adopted. First, (2.5) and (2.7) require calculating high-dimensional
joint probability distributions, which might be impractical due to limited data and
computational resources. The curse of high dimensionality comes from both the high
dimensionality of Φ and Ψ , and the large number of points in x. To make the problem
tractable, we introduce the approximate IND, or aIND for short. First, the source and target
variables are restricted to be scalars, Φ and Ψ , respectively. Second, we consider only two
points in space: Φ(x, t) and Ψ+(x − "x, t + "T), where x and "x are fixed. This reduces
the problem to the computation of two-dimensional joint probability distributions, which
is trivially affordable in most cases, even enabling the use of experimental data.

Another difficulty arises from the constraint in (2.7), which depends on the unknown
probability distribution of the variable ΦR = Φ − ΦI , which adds to the complexity of the
optimisation problem. To alleviate this issue, we seek to minimise I(ΦR;ΦI) rather than
include it as a hard constraint.

Finally, provided that Φ and Ψ+ are smooth, minimising ‖Φ − ΦI‖2 ensures that ΦI
is smooth too. Therefore, we include the mean square error as a penalisation term in the
minimisation problem. Thus the formulation of the aIND is posed as

arg min
ΦI ,F

I(ΦR;ΦI) + γ ‖Φ − ΦI‖2, s.t. Ψ+ = F(ΦI), (2.10)

where γ ≥ 0 is a regularisation constant, and ΦR = Φ − ΦI . Equation (2.10) is solved by
assuming that the mapping F is invertible over a given interval. This allows replacing
ΦI(t) = F−1(Ψ+(t)) over that interval in (2.10) and solving for F−1 using standard
optimisation techniques. More details about the solution of (2.10) are provided in § A.1.
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IND of turbulent flow fields

Equation (2.10) yields the informative and residual components for a given x, "x and t,
denoted as ΦI,∆(x, t;"x) and ΦR,∆(x, t;"x), together with the mapping F . We can find
the best approximation to IND by selecting the value of "x that maximises the informative
component. To that end, we introduce the relative energy of ΦI,∆ as

EI("x; x, "T) = ‖ΦI,∆‖2

‖Φ‖2 . (2.11)

High values of EI define the informative region of ΦI,∆ over Ψ+, and constitute the
information-theoretic generalisation of the two-point linear correlation (see Appendix C).
We define "xmax as the shift "x that maximises EI for a given x and "T . Hence we use
"x = "xmax for aIND, and simply refer to the variables in this case as ΦI and ΦR. During
the optimisation, we ensure that 2 I(ΦI;ΦR) < 0.03 H(ΦI, ΦR) to guarantee that ΦI and
ΦR are independent, and that (2.8) holds. We also assess a posteriori that I(ΦR;Ψ+)
remains small for all x (see Appendix E).

Finally, we list below the main simplifications of aIND with respect to the general IND
framework.

(i) The source and the target variable are restricted to be scalars.
(ii) The constraint in (2.7) is cast as the minimisation term in (2.10).

(iii) The minimisation problem in (2.10) is computed for two points in space. The closest
approximation to IND is achieved by selecting the value of "x that maximises the
magnitude of the informative component.

(iv) Equation (2.10) is solved by assuming that the mapping F is invertible over a given
interval.

Despite the simplifications above, aIND still successfully recovers the exact analytical
solution in the validation cases presented in Appendix B, even outperforming
correlation-based methods such as linear stochastic estimation (LSE) and extended POD
(EPOD).

2.4. Validation
The methodology presented in § 2.1 and its numerical implementation (§ A.1) have been
validated with several analytical examples. In this subsection, we discuss one of these
examples that also illustrates the use and interpretation of the IND.

Consider the source and target fields:

source Φ(x, t) = f (x, t) + g(x, t), (2.12)

target Ψ+(x, t) = Ψ (x, t + 1) = 0.5 f (x, t)2 − 0.2 f (x, t) + ε(x, t), (2.13)

where

f (x, t) = 2 sin(2πx − 2t) sin(2πy), (2.14)

g(x, t) = 1
5 sin(7

√
2 πx − 0.1t) sin(8

√
3 πy − 0.5t). (2.15)

The source field is a combination of the streamwise travelling wave f and the lower
amplitude, higher wavenumber travelling wave g. The target is a function of f and ε, where
the latter is a random variable that follows the pointwise normal distribution with zero
mean and standard deviation (( ) equal to 0.1: ε(x, t) ∼ N (0, ( ). Snapshots of Φ and Ψ
are shown in figures 2(a,b), respectively.
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Figure 2. Validation of aIND for the system in (2.12). (a–d) Snapshots of Φ, Ψ+, ΦI and ΦR, respectively.
The contours range from the minimum value (dark blue) to the maximum value (dark red) for each quantity;
these correspond to Φ,ΦI ≈ [−2, 2], Ψ+ ≈ [−1.1, 1.4] and ΦR ≈ [−0.35, 0.35]. (e) Contours of the joint
probability (Φ,Ψ+) from lower (white) to higher (blue) probability. The analytical solution is F exact(ΦI) =
0.5Φ2

I − 0.2ΦI (dashed black), and the numerical solution is F(ΦI) (orange).

For "T = 1 and values of ( → 0, the analytical solution of the IND is

Φexact
I = f , Φexact

R = g, (2.16a,b)

where the mapping to comply with H(Ψ+ |Φexact
I ) = 0 is Fexact(ΦI) = 0.5Φ2

I − 0.2ΦI ,
and the residual term satisfies the condition I(Φexact

I ;Φexact
R ) = 0, since the variables are

independent.
The results of solving the optimisation problem using aIND, denoted by ΦI , ΦR and

F , are displayed in figures 2(c–e). It can be observed that ΦI approximates well the
travelling wave represented by Φexact

I = f . The small differences between ΦI and Φexact
I ,

also appreciable in ΦR, are localised at values f ≈ 0.2 and can be explained by the
small discrepancies between F and Fexact at the minimum, as seen in figure 2(e). These
are mostly a consequence of ε and the numerical implementation (see § A.1), and they
diminish as ( → 0. Additional validation cases, together with a comparison of aIND with
EPOD and LSE, can be found in Appendix B.

3. Results
We study the aIND of the streamwise (u), wall-normal (v) and spanwise (w) velocity
fluctuations in a turbulent channel flow using as target the streamwise component of the
shear stress at the wall, )x(x, z, t) = ρν ,U(x, 0, z, t)/,y, where ρ is the fluid density, ν

is the kinematic viscosity, U is the instantaneous streamwise velocity, and x, y and z are
the streamwise, wall-normal and spanwise directions, respectively. The wall is located
at y = 0. The data are obtained from direct numerical simulations in a computational
domain of size 8πh × 2h × 4πh in the streamwise, wall-normal and spanwise directions,
respectively, where h represents the channel half-height. The flow is driven by a constant
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mass flux imposed in the streamwise direction. The Reynolds number, based on the friction
velocity u) , is Re) = u) h/ν ≈ 180. Viscous units, defined in terms of ν and u) , are
denoted by superscript +. The time step is fixed at "t+ = 5 × 10−3, and snapshots are
stored every "t+s = 0.5. A description of the numerical solver and computational details
can be found in Lozano-Durán et al. (2020).

The source and target variables for aIND are

source u(x, t), v(x, t) or w(x, t), (3.1)
target )x,+ = )x(x − "xmax

! , z − "zmax
! , t + "T), (3.2)

where ! = u, v or w. The aIND gives

u(x, t) = uI(x, t) + uR(x, t), (3.3)
v(x, t) = vI(x, t) + vR(x, t), (3.4)

w(x, t) = wI(x, t) + wR(x, t), (3.5)

where the informative and residual components are also functions of "T . We focus our
analysis on "T+ ≈ 25 unless otherwise specified. This value corresponds to the time shift
at which H()x,+ | )x)/H()x,+) " 0.97, meaning that )x,+ shares no significant information
with its past. For "T+ > 25, the value of H()x,+ | )x) gradually increases towards H()x,+)
asymptotically. This value is similar to that reported by Zaki & Wang (2021), who found
using adjoint methods that wall observations at "T+ ≈ 20 are the most sensitive to
upstream and near-wall velocity perturbations. The shifts "xmax

! = ["xmax
! , "zmax

! ] for
! = u, v or w are computed by a parametric sweep performed in Appendix D. Their values
are functions of y, but can be approximated as "xmax

u /h ≈ [−1, 0], "xmax
v /h ≈ [−1.2, 0]

and "xmax
w /h ≈ [−0.8, ±0.15]. Due to the homogeneity and statistical stationarity of the

flow, the mapping F is a function of only y and "T . The validity of the approximations
made in the aIND is discussed in Appendix E, where it is shown that the residual
component of u contains almost no information about the future wall shear stress. For
the interested reader, we also include the relative energy field EI("x; x, "T+ = 25) of the
three velocity components in Appendix D.

3.1. Coherent structure of the informative and residual components of u, v and w to )x

We start by visualising the instantaneous informative and residual components of the flow.
We focus on the streamwise component, as it turns out to be the most informative to )x,
as detailed below. Figure 3(a) displays iso-surfaces of u(x, t), revealing the alternating
high- and low-velocity streaks attached to the wall, along with smaller detached regions.
The informative and residual components uI(x, t) and uR(x, t) are shown in figures 3(b,c),
respectively. The structures in uI exhibit an alternating pattern similar to that in the original
field, with the high- and low-velocity streaks located approximately in the same positions
as u(x, t). These structures are also attached to the wall, but do not extend as far as
the streaks in the original field, especially for uI(x, t) > 0. In contrast, the residual field
uR(x, t) lacks most of the elongated streaks close to the wall, but resembles u(x, t) far
away, once the flow bears barely no information about )x,+.

Figure 4 displays the root mean squared turbulence intensities as functions of the
wall distance. Note that from the minimised term in (2.10), 〈u2〉( y) = 〈u2

I 〉( y) + 〈u2
R〉( y)

(and similarly for the other components). From figure 4(a), we observe that 〈u2
I 〉1/2 is

predominantly located within the region y+ ≤ 50. This finding aligns with our earlier
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Figure 3. Instantaneous flow structures: (a) iso-contours of the streamwise velocity fluctuations u;
(b) iso-contours of the informative streamwise velocity fluctuations uI ; and (c) iso-contours of the residual
streamwise velocity fluctuations uR. In (a) and (c), the iso-contours correspond to blue for u+ ≈ −2.7, red for
u+ ≈ 2.7; and (b) uses blue for u+

I ≈ −1.8, and orange for u+
I ≈ 1.8. The wall is coloured by the instantaneous

wall shear stress at "T , from ) +
x ≈ 0.5 (white) to ) +

x ≈ 2 (black).

visual assessments from figure 3. The residual component 〈u2
R〉1/2 also has a strong

presence close to the wall, although it is shifted towards larger values of y. Interestingly,
about half of the streamwise kinetic energy in the near-wall region originates from 〈u2

R〉,
despite its lack of information about )x,+. This phenomenon is akin to the inactive motions
in wall turbulence (e.g. Townsend 1961; Jiménez & Hoyas 2008; Deshpande, Monty &
Marusic 2021), with the difference that here inactive structures are interpreted as those

1000 A95-10

0:
:7

�	
  

��
1��

�/
 �

��
��

��
 2.

4
��

��
��

��
��

��
��

�1�
0�

��
��

�1�
��

� 
�



4
��

1�
/�

��
�1

��
��

1: 
��

��
��

https://doi.org/10.1017/jfm.2024.1007


IND of turbulent flow fields

50 100 1500

1

2

3

(a) (b) (c)

50 100 1500

0.4

0.8

50 100 1500

0.4

0.8

1.2

y∗ y∗ y∗

"
〈u

2 〉
/u

τ

"
〈v

2 〉
/u

τ

"
〈w

2 〉
/u

τ

Figure 4. Root mean squared turbulence intensities of the (a) streamwise, (b) wall-normal and (c) spanwise
velocity components: solid lines indicate the original flow field, dashed lines indicate the informative flow field,
and dash-dotted lines indicate the residual field.

that do not reflect time variations of the wall shear stress. Another interesting observation
is that 〈u2

I 〉1/2 peaks at y+ ≈ 10, which is slightly below the well-known peak for 〈u2〉1/2,
whereas 〈u2

R〉1/2 peaks at y+ ≈ 30. This suggests that the near-wall peak of 〈u2〉1/2 is
controlled by a combination of active and inactive motions as defined above.

The root mean squared velocities for the cross-flow are shown in figures 4(b,c). The
informative component of the wall-normal velocity 〈v2

I 〉1/2 is predominantly confined
within the region y+ ≤ 70, although its magnitude is small. The residual component
〈v2

R〉1/2 is the major contributor to the wall-normal fluctuations across the channel height.
The dominance of 〈v2

R〉1/2 has important implications for control strategies in drag
reduction, which are investigated in § 3.3. A similar observation is made for 〈w2〉1/2, with
〈w2

I 〉1/2 being negligible except close to the wall for y+ < 40.
The statistical coherence of the informative and residual velocities in the wall-parallel

plane is quantified with the two-point autocorrelation

Cφφ("x, "z; yref ) =
〈φ(x, yref , z, t)φ(x + "x, yref , z + "z, t)〉

〈φ(x, yref , z, t)2〉
, (3.6)

where φ is any component of the velocity field, and y+
ref = 15. The autocorrelations are

shown in figure 5 for the total, informative and residual components of the three velocities.
The shape of the informative structure is elongated along the streamwise direction for
the three correlations CuIuI , CvIvI and CwIwI . The results for u, shown in figure 5(a),
reveal that uI closely resembles the streaky structures of u in terms of streamwise and
spanwise lengths. On the other hand, uR consists of more compact and isotropic eddies in
the (x, z)-plane. Figure 5(b) shows that vI captures the elongated motions in v, which
represents a small fraction of its total energy, whereas the shorter motions in v are
contained in vR. A similar conclusion is drawn for w, as shown in figure 5(c), where
both w and wR share a similar structure, differing from the elongated motions of wI .
The emerging picture from the correlations is that informative velocities tend to comprise
streamwise elongated motions, whereas the remaining residual components are shorter and
more isotropic. The differences between the structures of v and w and their informative
counterparts are consistent with the lower intensities of vI and wI discussed in figure 4. It
should be noted that the shape of the structures depends on the target variable, and they
may differ for a different target quantity. For example, wall pressure fluctuations have been
linked to more isotropic structures in the streamwise direction by several authors (Schewe
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Figure 5. Autocorrelation coefficient of the velocity fluctuations in the y+ = 15 plane: (a) streamwise
component, (b) wall normal component, and (c) spanwise component. Grey indicates the original field,
blue indicates the informative field, and orange indicates the residual field. The contours correspond to
C!! = [0.05, 0.1].

1983; Johansson, Her & Haritonidis 1987; Kim, Moin & Moser 1987; Ghaemi & Scarano
2013). The aIND may provide insights in this regard, as it has been noted in the literature
that at least quadratic terms are needed to capture the interaction between the velocity and
the wall pressure (Naguib, Wark & Juckenhöfel 2001; Murray & Ukeiley 2003).

We now analyse the average coherent structure of the flow in the ( y, z)-plane. It is
widely recognised in the literature that the most dynamically relevant energy-containing
structure in wall turbulence comprises a low-velocity streak accompanied by a collocated
roll (e.g. Kline et al. 1967; Kim et al. 1987; Farrell & Ioannou 2012; Lozano-Durán et al.
2012). A statistical description of this structure can be obtained by conditionally averaging
the flow around low-velocity streaks. To this end, low-velocity streaks were identified by
finding local minima of u at y+ = 15. For each streak, a local frame of reference was
introduced with axes parallel to the original x, y and z coordinates. The origin of this local
frame of reference is at the wall, such that its y-axis is aligned with the local minimum
of u. The z-axis, denoted by "z, points towards the nearest local maximum of u. This
orientation ensures that any nearby high-speed streak is located in the region "z > 0. Then
the conditional average flow was computed by averaging [u, v, w] over a window of size
±h. The resulting conditionally averaged flow in the ( y, z)-plane is shown in figure 6(a).
This process was repeated for the informative and residual velocity fields using the same
streaks identified previously for u. The conditionally averaged informative and residual
velocities are shown in figures 6(b,c), respectively.

The conditional average velocity is shown in figure 6(a), which captures the structure
of the low-/high-velocity streak pair and the accompanying roll characteristic of
wall-bounded turbulence. The informative velocity (figure 6b) is dominated by streak
motions, although these are smaller than the streaks of the entire field. The informative
wall-normal velocity is present mostly within the streaks, while the informative spanwise
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Figure 6. Conditionally averaged flow in the ( y, z)-plane centred about low-velocity streaks: (a) original field,
(b) informative field, and (c) residual field. The contours range from blue for −5u) to red for 5u) . The arrows
display the in-plane velocity components (v! and w!).

component is active close to the wall in the interface of the streak. Conversely, figure 6(c)
shows that the residual velocity contains the large-scale streaks and the remaining
spanwise motions. The emerging picture is that the informative component of the velocity
contributing to the wall shear stress consists of smaller near-wall streaks collocated with
vertical motions (i.e. sweeps and ejections), and spanwise velocity at the near-wall root of
the roll. This informative structure is embedded within a larger-scale streak–roll structure
of residual velocity, which bears no information about the wall shear stress.

We close this subsection by analysing the mappings )x,+ = Fu(uI), )x,+ =
Fv(vI), )x,+ = Fw(wI) obtained from the constraints H()x,+ | uI) = 0, H()x,+ | vI) = 0,
H()x,+ | wI) = 0, respectively. The mapping are depicted in figure 7 at the wall-normal
position where the energy for uI , vI and wI is maximum, namely, y+ ≈ 8, 19 and 6,
respectively (see Appendix D). Figure 7(a) reveals an almost linear relationship between
uI and )x,+ within the range 0 ≤ ) +

x,+ ≤ 2. Negative values of uI align with ) +
x,+ < 1,

while positive values of uI correspond to ) +
x,+ > 1. This is clearly a manifestation of

the proportionality between streak intensity and )x, such that higher streamwise velocities
translate into higher wall shear stress by increasing ,U/,y. However, the process saturates,
and a noticeable change in the slope occurs for larger values of )x,+, leading to uI values
that are relatively independent of )x,+. This finding indicates that uI provides limited
information about high values of )x,+ at the time scale "T+ = 25. In other words, minor
uncertainties in uI result in significant uncertainties in )x,+ after "T .

The effect of "T on Fu(uI) is also analysed in figure 7(a). The main effect of decreasing
"T+ is to decrease the slope of Fu(uI) for u+

I > 5. This result reveals that there exists a
time horizon beyond which it is not possible to predict extreme events of wall shear stress
from local fluctuations. Hence extreme values of the wall shear stress can be attributed
to almost instantaneous high fluctuations of the streamwise velocity. The latter is in
agreement with Guerrero, Lambert & Chin (2020), who linked extreme positive wall
shear stresses with the presence of high-momentum regions created by quasi-streamwise
vortices.

The mapping of vI is shown in figure 7(b), which demonstrates again a nearly linear,
albeit negative, relationship between vI and )x,+ in the range 0 ≤ ) +

x,+ ≤ 2. Positive values
of vI are indicative of ) +

x,+ < 1, whereas negative values imply ) +
x,+ > 1. Note that changes

in the value of )x,+ encompass either uI > 0 and vI < 0, or uI < 0 and vI > 0, revealing a
connection between the dynamics of )x,+ and the well-known sweep and ejection motions
in wall-bounded turbulence (Wallace, Eckelman & Brodkey 1972; Wallace 2016). The
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Figure 7. Mapping functions of the informative contributions of (a) streamwise, (b) wall-normal, and
(c) spanwise velocity fluctuations to the streamwise wall shear stress for "T+ = 25. Plot (a) also shows the
effect of the time lag "T in the mapping )x = F(uI). Line colours correspond as follows: dark blue for
"T+ ≈ 25, cyan for "T+ ≈ 10, and light blue for "T+ ≈ 5. In (c), the solid line corresponds to +"zmax

w ,
and the dashed line to −"zmax

w .

mappings also show that excursions into large wall shear stresses are caused by sweeps.
Analogous to uI , the value of vI remains approximately constant for ) +

x,+ > 2. Beyond that
threshold, vI provides no information about )x,+.

The mapping of wI presents two maxima (±"zmax
w ) due to the spanwise symmetry of the

flow. The results for each maximum, shown in figure 7(c), are antisymmetric with respect
to wI . Similarly to uI and vI , there is an almost linear relationship between wI and )x,+
in the range 0 ≤ ) +

x,+ ≤ 2. For +"zmax
w , negative values of wI indicate ) +

x,+ < 1, whereas
positive values are linked to ) +

x,+ > 1. The opposite is true for −"zmax
w . Low values of

)x,+ are connected to low uI , and positive (negative) values of wI for +"zmax
w (−"zmax

w ).
This outcome is consistent with the conditional average flow from figure 6, where it was
shown that the information transfer between wI and )x,+ is mediated through the bottom
part of the roll structure that accompanies high-/low-velocity streaks. The saturation of the
influence of wI to intense values of the wall shear stress is again observed for ) +

x,+ " 2.
The information provided by the mappings can be embedded into the instantaneous

coherent structures. In figure 3(b), the uI(x, t) structures are coloured by the local value
of ,F/,uI . This metric serves as a measure of the uncertainty in the wall shear stress as
a function of uI . Low values of ,F/,uI are associated with low uncertainty in )x,+. This
implies that small changes in uI result in small changes in )x,+. On the other hand, high
values of ,F/,uI are associated with high uncertainty in )x,+, such that small variations
in uI result in large changes in )x,+. Interestingly, figure 3(b) shows that low-speed streaks
– associated with ejections – are connected to low uncertainty values for )x along their
entire wall-normal extent. On the contrary, the high-speed streaks of uI , linked to extreme
events, carry increasing uncertainty in )x (indicated by the light yellow colour) as they
move further away from the wall.

3.2. Reduced-order modelling: reconstruction of the wall shear stress from u
We evaluate the predictive capabilities of the informative and residual components of
the streamwise velocity fluctuations to reconstruct the wall shear stress in the future.
The main aim of this subsection is to illustrate that when u is used as the input for
developing a model, the resulting model exclusively utilises information from uI , while
uR is disregarded.
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Figure 8. Example of approximate decomposition of u into (a) informative ũI and (b) residual ũR components
using the ANN from (3.7) without need of )x,+. Lines correspond to solid black for the actual uI and uR, and
orange dashed for the predicted values.

Two scenarios are considered. In the first case, we devise a model for the pointwise,
temporal forecasting of )x,+ using pointwise data of u. In the second scenario, the spatially
two-dimensional wall shear stress is reconstructed using u data from a wall-parallel plane
located at given distance from the wall.

First, we discuss the pointwise forecasting of )x,+ using pointwise data of u. We
aim to predict the future of the wall shear stress at one point at the wall, )x,+ =
)x(x0, z0, t + "T), where x0 and z0 are fixed, and the time lag is "T+ = 25. Three
models are considered, using as input u(x0, t), uI(x0, t) and uR(x0, t), respectively, where
x0 = [x0 + "xmax

u , yref , z0] and y+
ref ≈ 10. The data are extracted from a simulation with

the same set-up and friction Reynolds number as in § 3.1 but in a smaller computational
domain (πh × 2h × π/2h). Note that all the points [x0, z0] are statistically equivalent and
can be used to train the model.

As a preliminary step to developing the forecasting models, we use a feedforward
artificial neural network (ANN) to separate u into uI and uR without need of )x,+. This
step is required to make the models predictive, as in a practical case, the future of )x is
unknown and cannot be used to obtained the informative and residual components. The
model is given by

[ũI(x0, t), ũR(x0, t)] = ANNI,R(u(x0, t), u(x0, t − .t), . . . , u(x0, t − p .t)), (3.7)

where the tilde in ũI and ũR denotes estimated quantities, .t+ = 0.5, and p = 1000 is
the number of time lags considered. Multiple time lags are required for predicting ũI
and ũR, in the same manner as time series of u and )x,+ were used to compute uI . The
function ANNI,R comprises 6 hidden layers with 50 neurons per layer and ReLU activation
functions. The approximately 700 000 samples are divided into 80 % for training and 20 %
for validation. The Adam algorithm (Kingma & Ba 2017) is used to find the optimum
solution. An example of the approximate decomposition from (3.7) is shown in figure 8.

The three ANN models trained to forecast )x,+ are

)̃ I
x (x0, z0, t + "T) = ANNI(ũI(x0, t)), (3.8a)
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Figure 9. Temporal reconstruction of the wall shear stress using ANNs in (3.8) trained with (a) u, (b) ũI , and
(c) ũR as inputs, respectively. Solid black lines correspond to the actual wall shear stress; dashed orange lines
correspond to the ANN reconstruction.

)̃R
x (x0, z0, t + "T) = ANNR(ũR(x0, t)), (3.8b)

)̃U
x (x0, z0, t + "T) = ANNU(u(x0, t − .t), . . . , u(x0, t − p .t)). (3.8c)

Note that (3.8a) and (3.8b) use only one time step of ũI and ũR, respectively, while (3.8c)
incorporates multiple time lags of u. This approach is chosen because (3.7) (used to predict
ũI and ũR) also depends on multiple time lags of u. By training (3.8c) using the same time
lags as (3.7), the predictions for )̃U

x rely on a model that accesses an equivalent amount of
information about past states of the flow as do the models for predicting )̃ I

x and )̃R
x . This

ensures a fair comparison among models.
The forecasting of the wall shear stress by the three models is illustrated in figure 9. The

results indicate that the predictions based on u and ũI are comparable, with relative mean
squared errors 18 % and 22 %, respectively. The marginally larger error from the model
using ũI as input arises from inaccuracies within the ANN responsible for decomposing
u into ũI and ũR. In a perfect scenario, the forecasting errors using either u or ũI as input
would be identical, implying that ũI contains all the information in u to make predictions.
In contrast, the model that utilises the residual component ũR fails to accurately predict the
wall shear stress (approximately by 100 % error), yielding values that are nearly constant
and close to the time average of )̃x. These findings demonstrate that when u is used as
input, the model extracts predictive information from ũI , while ũR provides no predictive
value.

It is important to clarify that we are not advocating for the separation of inputs into
informative and residual components as a standard practice for training models. Instead,
our goal is to illustrate that the training process of a model implicitly discriminates
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Figure 10. Schematic of the architecture for the (temporal) CNNs in (3.9) and (3.10). The numbers below the
convolution and transpose convolution blocks correspond to the size of the filter and the number of channels
applied. For CNNI,R in (3.9), and CNNU in (3.10c), Ni = 500; for CNNI and CNNR from (3.10a) and (3.10b),
Ni = 1.

between these components, supporting our claim that all the necessary information for
reduced-order modelling is encapsulated in uI . An interesting consequence of this property
is that the characteristics and structure of uR are not useful for understanding the predictive
capabilities of the model; instead, they help to discern which factors are irrelevant. For
further discussion on the role of information in predictive modelling, the reader is referred
to Lozano-Durán & Arranz (2022) and Yuan & Lozano-Durán (2024).

Next, we reconstruct the spatially varying wall shear stress )x(x, z, t + "T) using
u(xref , t), where xref = [x, yref , z] and y+

ref = 10. The steps followed are analogous to those
described above for the time signal prediction. First, we train a model to approximately
decompose u(xref , t) into its informative and residual parts without requiring information
about )x(x, z, t + "T). To that end, we use a temporal convolutional neural network (CNN)
(Long, Shelhamer & Darrell 2015; Guastoni et al. 2021) of the form

[ũI(xref , t), ũR(xref , t)] = CNNI,R(u(xref , t), u(xref , t − .t), . . . , u(xref , t − p .t)), (3.9)

where p = 500 and .t+ = 0.5. The CNN is designed to process input data shaped as
three-dimensional arrays, where dimensions represent spatial coordinates and temporal
slices. The CNN comprises an image input layer, followed by three blocks consisting each
of a convolutional layer, batch normalisation, and a ReLU activation function. Spatial
dimensions are reduced through successive max pooling layers, while feature maps are
subsequently upscaled back to original dimensions via transposed convolutional layers
with ReLU activations. Further details of the CNN are provided in figure 10. A total of
12 000 snapshots are used, split into training (80 %) and validation (20 %). An example of
the approximate decomposition from (3.9) is shown in figure 11.

The three models to predict the two-dimensional wall shear stress are

)̃ I
x (x, z, t + "T) = CNNI(ũI(xref , t)), (3.10a)

)̃R
x (x, z, t + "T) = CNNR(ũR(xref , t)), (3.10b)

)̃U
x (x, z, t + "T) = CNNU(u(xref , t), u(xref , t − .t), . . . , u(xref , t − p .t)). (3.10c)
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Figure 11. Example of approximate decomposition of u into informative ũI and residual ũR components
using the CNN from (3.9) without need of )x,+: (a) uI , (b) ũI , (c) uR, and (d) ũR.

Similarly to the previous case, the first two models use only one time step for ũI and
ũR, respectively, whereas the last model uses multiple time lags for u (with p = 500 and
.t+ = 0.5).

The spatial reconstruction of the wall shear stress by the three models is shown in
figure 12 for one instant. Consistently with our previous observations, the reconstructions
using u and ũI as inputs to the model are comparable in both structure and magnitude,
yielding relative mean squared errors 28 % and 30 %, respectively. Conversely, the CNN
that utilises the residual component ũR is completely unable to predict the two-dimensional
structure of the wall shear stress, yielding average relative error of 120 %. These results
further reinforce the idea that models rely on the informative component of the input to
predict the output variable, whereas the residual component is of no utility. Finally, it
is worth noting that the CNNs used above have access to the two-dimensional spatial
structure of u and )x; however, the aIND method, which was originally used to decompose
the flow, used only pointwise information. This, along with the inability of ũR to predict
the wall shear stress, further confirms that the assumptions of the aIND method hold
reasonably well in this case.

3.3. Control: wall shear stress reduction with opposition control
We investigate the application of the IND to opposition control in a turbulent channel
flow (Choi, Moin & Kim 1994; Hammond, Bewley & Moin 1998). Opposition control is
a drag reduction technique based on blowing and sucking fluid at the wall with a velocity
opposed to the velocity measured at some distance from the wall. The hypothesis under
consideration in this subsection is that the informative component of the wall-normal
velocity is more impactful for controlling the flow compared to the residual component.
The rationale behind this hypothesis is grounded in the information-theoretic formulation
of observability introduced by Lozano-Durán & Arranz (2022). This formulation defines
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Figure 12. Example of spatial reconstruction of the instantaneous wall shear stress (a) using CNNs trained
with (b) u, (c) ũI , and (d) ũR as inputs, respectively.

the observability of a variable ()x,+) in terms of the knowledge gained from another
variable (v) as

Ov→)x,+ = I()x,+; v)

H()x,+)
. (3.11)

The variable )x,+ is said to be perfectly observable with respect to v when Ov→)x,+ = 1,
i.e. there is no uncertainty in the state to be controlled conditioned to knowing the
state of the sensor. Conversely, )x,+ is completely unobservable when Ou→)x,+ = 0,
i.e. the sensor does not have access to any information about )x,+. The greater the
observability, the more information is available for controlling the system. By substituting
(2.5) and (2.7) into (3.11), it is easy to show that )x,+ is unobservable with respect to the
residual component (OvR→)x,+ = 0), and perfectly observable from the perspective of the
informative component (OvI→)x,+ = 1).

Figure 13 shows a schematic of the problem set-up for opposition control in a turbulent
channel flow. The channel is as in § 3.2, but the wall-normal velocity at the wall is replaced
by v(x, 0, z, t) = f (v(x, ys, z, t)), where ys is the distance to the sensing plane, and f is a
user-defined function. In the original formulation by Choi et al. (1994), f ≡ −v(x, ys, z, t),
hence the name opposition control. Here, we set y+

s ≈ 14, which is the optimum wall
distance reported in previous works (Chung & Talha 2011; Lozano-Durán & Arranz 2022).
Two Reynolds numbers are considered, Re) = 180 and 395.

We split v(x, ys, z, t) into its informative (vI) and residual (vR) components to
)x(x, z, t). Three controllers are investigated. In the first case, the function of the
controller f is such that it uses only the informative component of v(x, ys, z, t), namely
f (v(x, ys, z, t)) ≡ −vI(x, ys, z, t). In the second case, the controller uses the residual
component f (v(x, ys, z, t)) ≡ −vR(x, ys, z, t). Finally, the third controller follows the
original formulation f (v(x, ys, z, t)) ≡ −v(x, ys, z, t).
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v(x, ys, z)

ys

v(x, 0, z) ≡ –v(x, ys, z)

Figure 13. Schematic of the opposition control. The contour corresponds to the instantaneous vertical velocity
on an (x, y)-plane: the green line depicts the instantaneous velocity at the sensing plane ys, and the yellow line
depicts the velocity at the wall imposed by the classical opposition control technique. The colour map ranges
from blue for v+ = −1.8 to red for v+ = 1.8.

This is a more challenging application of the IND due to the dynamic nature of the
control problem. When the flow is actuated, the dynamics of the system changes, and
the controller should re-compute vI (or vR) for the newly actuated flow. This problem is
computationally expensive, and we resort to calculating an approximation. The control
strategy is implemented as follows.

(i) A simulation is performed with f ≡ −v(x, ys, z, t), corresponding to the original
version of opposition control.

(ii) The informative term (vI) of v(x, ys, z, t) related to the wall shear stress )x(x, z, t) is
extracted for "T = 0.

(iii) We find an approximation of the controller, such that ṽI = f (v) ≈ −vI . To obtain
this approximation, we solve the minimisation problem

arg min
ṽI

‖vI − ṽI‖2 + γ
I()x; ṽR)

H()x)
, (3.12)

where γ = 0.75. The approximated informative term is modelled as a feedforward
ANN with 3 layers and 8 neurons per layer.

(iv) Two new simulations are conducted, using either ṽI or ṽR = v − ṽI for opposition
control.

Note that the devised controller can be applied in real time (i.e. during simulation runtime),
since the estimated information component ṽI(t) is computed using only information from
the present time instant, v(t).

Figure 14 summarises the drag reduction for the three scenarios, namely f ≡
−v(x, ys, z, t), f ≡ −ṽI(x, ys, z, t) and f ≡ −ṽR(x, ys, z, t). The original opposition control
achieves drag reductions approximately 22 % and 24 % for Re) = 180 and Re) = 395,
respectively. Similar reductions in drag using the same controller have been documented
in the literature (Chung & Talha 2011; Luhar, Sharma & McKeon 2014). The values show
a marginal dependency on Re) , in agreement with previous studies (Iwamoto, Suzuki &
Kasagi 2002). Opposition control based on ṽI yields a moderate increase in drag reduction
with a 24 % and 26 % drop for each Re) , respectively. Conversely, the drag reduction is
only up to 7 % for the control based on the estimated residual velocity, ṽR. Note that vI
is the component of v with the highest potential to modify the drag. Whether the drag
increases or decreases depends on the specifics of the controller. On the other hand, the
residual component vR is expected to have a minor impact on the drag. As such, one
might anticipate a 0 % drag reduction by using vR. However, the approximation ṽR retains
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180 395
0

0.11 
– 
u2 τ,c

/u
2 τ 0.2

0.3

Reτ
Figure 14. Drag reduction, computed as 1 − u2

),c/u2
) , where u),c is the friction velocity for the controlled case.

Each colour corresponds to a different controller: black for f ≡ −v, blue for f ≡ −ṽI , and orange for f ≡ −ṽR.

some information from the original velocity for intense values of the latter, which seems
to reduce the drag on some occasions. Simulations using f ≡ −kṽR – with k adjusted
to f ∼ ‖v(x, ys, z, t)‖2 – were also conducted, yielding no additional improvements in
the drag reduction beyond 8 %. It is also interesting to note that after performing steps
(i)–(iv) of the control strategy, the informative content in v increases substantially (from
Ev

I ≈ 0.1 to Ev
I ≈ 0.8). This phenomenon exposes the dynamic nature of the control

problem highlighted above.
Figures 15(a,c) show the wall-normal velocity in the sensing plane for the controlled

cases at Re) = 180 with f ≡ −ṽI and f ≡ −ṽR, respectively. Larger velocity amplitudes
are observed in figure 15(c) compared to figure 15(a), indicating that higher Reynolds
stresses are expected, which aligns with a larger average wall shear stress. On the other
hand, figures 15(b,d) display the negative wall-normal velocity imposed at the boundary
for the cases with f ≡ −ṽI and f ≡ −ṽR, respectively. The informative component ṽI
closely resembles the original velocity but with smaller amplitudes at extreme events of v.
This appears to play a slightly beneficial role in drag reduction. Conversely, figure 15(d)
shows that the estimated residual component is negligible except for large values of v. This
is responsible for the smaller reduction in the mean drag. Although not shown, similar flow
structures are observed for Re) = 395, and the same discussion applies. In summary, we
have utilised an example of opposition control in a turbulent channel to demonstrate the
utility of IND. However, it is important to emphasise that the primary focus of this section
is not on the real-time applicability or the performance of the control in this specific case.
Instead, the main message that we aim to convey is more fundamental: the informative
component of the variable measured by the sensor holds the essential information needed
to develop successful control strategies, while the residual component is not useful in this
regard.

4. Conclusions
We have presented informative and non-informative decomposition (IND), a method for
decomposing a flow field into its informative and residual components relative to a target
field. The informative field contains all the information necessary to explain the target
variable, contrasting with the residual component, which holds no relevance to the target
variable. The decomposition of the source field is formulated as an optimisation problem
based on mutual information. To alleviate the computational cost and data requirements
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Figure 15. (a) Wall-normal velocity in the sensing plane, v(x, ys, z) and (b) the minus velocity imposed at
the wall for the case f ≡ −ṽI . (c,d) Same as (a,b), but for the case f ≡ −ṽR. Contours range from blue for
v+ = −0.9 to red for v+ = 0.9.

of IND, we have introduced an approximate solution, referred to as aIND. This approach
still ensures that the informative component retains the information about the target, by
minimising the mutual information between the residual and the target in a pointwise
manner.

The IND is grounded in the fundamental principles of information theory, offering key
advantages over other methods. As such, it is invariant under shifting, rescaling, and, in
general, nonlinear C1-diffeomorphism transformations of the source and target variables
(Kaiser & Schreiber 2002). The method is also fully nonlinear, and does not rely on
simplifications such as the Gaussianity of the variables. This makes IND a suitable tool for
studying turbulent phenomena, which are intrinsically nonlinear. In contrast, other linear
correlation-based methods, such as LSE and EPOD, are not well equipped to capture
nonlinearities in the flows. Additionally, we have shown that the pointwise formulation
of the method (aIND) represents a cost-effective and memory-efficient implementation
of IND without sacrificing performance compared to correlation-based methods. This
approach also allows for the assimilation of experimental data.

The method has been applied to study the information content of the velocity
fluctuations in relation to the wall shear stress in a turbulent channel flow at Re) =
180. Our findings have revealed that streamwise fluctuations contain more information
about the future wall shear stress than the cross-flow velocities. The energy of the
informative streamwise velocity peaks at y+ ≈ 10, slightly below the well-known peak
for total velocity, while the residual component peaks at y+ ≈ 30. This suggests that
the peak observed in the total velocity fluctuations results from both active and
inactive velocities, with ‘active’ referring to motions connected to changes in the wall
shear stress. Further investigation of the coherent structure of the flow showed that
the informative velocity consists of smaller near-wall high- and low-velocity streaks
collocated with vertical motions (i.e. sweeps and ejections). The spanwise informative
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velocity is weak, except close to the wall within the bottom root of the streamwise
rolls. This informative streak–roll structure is embedded within a larger-scale streak–roll
structure from the residual velocity, which bears no information about the wall shear
stress for the considered time scale. We have also shown that ejections propagate
information about the wall stress further from the wall than sweeps, while extreme
values of the wall shear stress are attributed to sweeps in close proximity to the
wall.

The utility of IND for reduced-order modelling was demonstrated in the prediction
of the wall shear stress in a turbulent channel flow. The objective was to estimate
the two-dimensional wall shear stress in the future, after "T+ = 25, by measuring the
streamwise velocity in a wall-parallel plane at y+ ≈ 10 as input. The approach was
implemented using a fully convolutional neural network as the predictor. Two cases
were considered, using either the informative or the residual velocity component as
input, respectively. The main discrepancies were localised in regions with high wall
shear stress values. This outcome aligns with our prior analysis, which indicated that
extreme wall shear stress events are produced by short-time near-wall sweeps not
captured in the input plane. In contrast, the residual velocity component offers no
predictive power for wall shear stress, as it has no observability of the wall shear
stress, meaning that it lacks any information relevant to the latter. This example in
reduced-order modelling reveals that models achieving the highest performance are
those that utilise input variables with the maximum amount of information about the
output.

Finally, we have investigated the application of IND for drag reduction in turbulent
channel flows at Re) = 180 and 395. The strategy implemented involved blowing/suction
via opposition control. To this end, the no-transpiration boundary condition at the wall
was replaced with the wall-normal velocity measured in the wall-parallel plane at y+ = 14.
We explored the use of three wall-normal velocities: the total velocity (i.e. as originally
formulated in opposition control), its informative component, and its residual component.
The largest reduction in drag was achieved using the informative component of v, which
performed slightly better than the total velocity for both Reynolds numbers. The residual
component was shown to yield the poorest results. The application to drag reduction
demonstrated here illustrates that the informative component of v contains the essential
information needed for effective flow control. This paves the way for using IND to devise
enhanced control strategies by isolating the relevant information from the input variables
while disregarding the irrelevant contributions.

We conclude this work by highlighting the potential of IND as a post-processing tool
for gaining physical insight into the interactions among variables in turbulent flows.
Nonetheless, it is also worth noting that the approach relies on the mutual information
between variables, which requires estimating joint probability density functions. This
entails a data-intensive process that could become a constraint in cases where the amount
of numerical or experimental data available is limited. Future efforts will be devoted
to reducing the data requirements of aIND and extending its capabilities to account for
multi-variable and multi-scale interactions among variables.
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Appendix A. Numerical implementation

A.1. Solution for scalar variables using bijective functions
Here, we provide the methodology to tackle the minimisation problem posed in (2.10). For
convenience, we write (2.10) again:

arg min
ΦI ,F

I(ΦR;ΦI) + γ ‖Φ − ΦI‖2, s.t. Ψ+ = F(ΦI). (A1)

To solve (A1), we note that there are two unknowns: ΦI and the function F . If we assume
that F is invertible, namely

ΦI(t) = F−1(Ψ+(t)) ≡ B(Ψ+(t)), (A2)

then (A1) can be recast as

arg min
B

I(Φ − B(q+);B(q+)) + γ ‖Φ − B(Ψ+)‖2, (A3)

which can be solved by standard optimisation techniques upon the parametrisation of the
function B.

However, by imposing bijectivity, we constrain the feasible ΦI(t) solutions that satisfy
H(Ψ+ |ΦI) = 0 and could lead to lower values of the loss function than in the more lenient
case, where F needs only to be surjective. To circumvent this limitation, we recall that a
surjective function with N − 1 local extrema points (points where the slope changes sign)
can be split into N bijective functions (see figure 16a). In particular, we define

ΦI(t) = Bi(Ψ+(t)) s.t. Φ(t) ∈ [ri−1, ri), (A4)

where ri is the ith local extremum, such that ri > ri−1, r0 → −∞ and rN → ∞.
Therefore, the final form of the minimisation equation is

arg min
Bi

I(Φ − B∪(Ψ+);B∪(Ψ+)) + γ

N∑

i

‖Φ − B0
i (Ψ+;Φ)‖2, (A5)

with

B0
i (Ψ+;Φ) =

{
Bi if Φ(t) ∈ [ri−1, ri),

0 otherwise,
B∪(Ψ+) =

N∑

i

B0
i (Ψ+;Φ), (A6a,b)

where the extrema (ri) are unknowns to be determined in the minimisation problem, and γ
and N are the only free parameters. Once the functions Bi are computed, the informative
component is obtained from

ΦI(t) = Bj(Ψ+(t)) s.t. j = arg min
i

(Φ(t) − Bi(Ψ+(t)))2 (A7)

at every time step.
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Figure 16. (a) Illustration of a surjective function F(ΦI) and its decomposition into two bijective functions,
B1(Ψ+) and B2(Ψ+). (b) Example of a DSF architecture with 2 hidden layers and 4 neurons per hidden layer.
The functions plotted within boxes are the activation functions acting on the neurons. Adapted from Huang
et al. (2018).

We use feedforward networks to find Bi, as they are able to approximate any
Borel-measurable function on a compact domain (Hornik, Stinchcombe & White 1989).
In particular, we use the deep sigmoidal flow (DSF) proposed by Huang et al. (2018), who
proved that a feedforward ANN is a bijective transformation if the activation functions
are bijective and all the weights are positive. The details of the DSF architecture and the
optimisation can be found in § A.2.

One must emphasise that the current minimisation problem posed in (2.10) differs from
the classical flow reconstruction problem (e.g. Erichson et al. 2020) where the maximum
reconstruction of Φ is sought. In those cases, we look for a function G(Ψ+) that minimises
‖Φ − G(Ψ+)‖2. If the result is a non-bijective function, then the constraint H(Ψ+ |ΦI) =
0 will not be satisfied.

A.2. Networks architecture and optimisation details
The present algorithm uses DSF networks to approximate bijective functions. This network
architecture is depicted in figure 16(b). The DSF is composed of L stacked sigmoidal
transformations. Each transformation produces the output,

xl = (−1(wT
l × ( (al × xl−1 + bl)), l = 1, . . . , L, (A8)

where xl−1 is the input, ( ( y) = 1/(1 + e−y) is the logistic function, (−1 is the inverse
of ( , al and bl are vectors with the weights and biases of the decoder part of the l-layer,
and wl is a vector with the weights of the encoder part of the l-layer (see figure 16b). In
addition, the weights for each layer have to fulfil 0 < wl,i < 1,

∑
i wl,i = 1 and al,i > 0,

i = 1, . . . , M, where M is the number of neurons per layer. These constraints are enforced
via the softmax and exponential activation functions for wl and al, respectively, namely

wl,i =
exp(w′

l,i)

N∑

i=1

exp(w′
l,i)

, al,i = exp(a′
l,i). (A9a,b)

More details on the DSF architecture can be found in Huang et al. (2018).
To compute the optimal weights and biases that yield the optimal Bi that minimise (A5),

we use the Adam algorithm (Kingma & Ba 2017). This minimisation process requires all
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operations to be continuous and differentiable. To achieve that, we compute the mutual
information using a kernel density estimator, and the piecewise-defined functions B0

i are
made C1 continuous by applying the logistic function

B0
i (Ψ+;Φ) = Bi(Ψ+) ( (k(Φ − r̃i−1)) ( (k(r̃i − Φ)), (A10)

where the parameter k > 0 can be chosen to control the steepness of the function, and
r̃j = rj ± log(p/( p − 1))/k, which ensures B0

i = pBi at the boundaries.
In the present study, the first term in (2.10) is normalised with ‖Φ‖2, and the second

term is normalised with H(ΦI, ΦR)/2. Under this normalisation, free parameters p = 0.99
and k = 500 were determined to be adequate for the optimisation process. The number
of bijective functions N was selected to minimise (A5) while producing a continuous
mapping, as illustrated in figures 2 and 16(a). In the study presented in § 3, an N value of 1
was found to be optimal. We also explored different values for the regularisation constant
γ . For N = 1, similar mappings were achieved for 0.5 ≥ γ ≥ 2, and the results discussed
in § 3 were calculated with γ = 1. In cases with N ≥ 1, starting with a high γ value,
approximately 10, during initial iterations proved beneficial for converging the solution.
Subsequently, γ was gradually decreased to emphasise the minimisation of the first term
in (A5). Currently, this adjustment is performed manually, but future developments in
aIND could automate this process (Groenendijk et al. 2021). Finally, the DSF architecture
was set to 3 layers with 12 neurons per layer.

Appendix B. Validation of aIND and comparison with EPOD and LSE
We include two additional validation cases of aIND applied to two-dimensional fields in a
plane x = (x, z). These synthetic examples have an exact analytic solution that enables us
to quantify the error produced by the different methods. We consider the system

source Φ(x, t) = ΦI(x, t) + ΦR(x, t), (B1)
target Ψ+(x, t) = F(ΦI(x, t)), (B2)

where the fields ΦI and ΦR and the function F are given. In particular, ΦI and ΦR
are the velocity fluctuations in the planes y+ ≈ 5 and 40, respectively, of a turbulent
channel flow with Re) = 180 in a domain 8πh × 2h × 4πh in the streamwise, wall-normal
and spanwise directions, respectively. Instantaneous snapshots of the fields are shown in
figure 17. To ensure that the fields are independent (i.e. I(ΦI, ΦR) = 0), the informative
field is extracted at y+ ≈ 5 from the bottom wall, whereas the residual field is extracted at
y+ ≈ 40 from the top wall at a shifted time step.

We compare aIND with the extended POD method (EPOD) proposed by Borée (2003)
and the spectral in space version of the LSE presented by Encinar & Jiménez (2019). In
the following subsections, we provide a small overview of each method.

B.1. Extended POD
The EPOD offers a linear decomposition of a source field Φ(x, t) into its correlated (C)
and decorrelated (D) contributions to a given target field such that

ΦC(x, t) =
∑

n
an
Ψ (t) Un

Φ(x), (B3)

ΦD(x, t) = Φ(x, t) − ΦC(x, t), (B4)
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Figure 17. Instantaneous velocities used to create synthetic examples: (a) informative field and (b) residual
field. The velocities are extracted from direct numerical simulations of a turbulent channel flow at Re) = 180
at y+ ≈ 5 and 40, respectively.

where n is the number of modes, and an
Ψ is the temporal coefficient of the nth POD mode

of the target field Ψ+ and Un
Φ in the nth spatial mode. The latter is computed as

Un
Φ(x) =

〈an
Ψ Φ(x, t)〉t

〈an
Ψ an

Ψ 〉
, (B5)

where 〈·〉t denotes temporal average. The EPOD decomposition has the following
properties (Borée 2003).

(i) The correlation between the original source field and the target field is the same as
the correlation between the correlated field and the target field, namely

〈ΦΨ 〉 = 〈ΦCΨ 〉. (B6)

(ii) The decorrelated field is uncorrelated with the target field, i.e.

〈ΦDΨ 〉 = 0. (B7)

Therefore, we define the EPOD informative component as the correlated field
(ΦEPOD

I ≡ ΦC) and the EPOD residual component as the decorrelated field (ΦEPOD
R ≡

ΦD). In the following examples, the POD of the target field is obtained using 300 snapshots
and the informative field is reconstructed using the 50 more energetic modes.

B.2. Spectral LSE
The LSE, proposed by Adrian & Moin (1988), provides the best mean square linear
estimate of the ‘response’ field Φ(x, t) given the ‘predictor’ Ψ+(x, t) (Tinney et al. 2006).
Considering a collection of discrete spatial locations xi, the best linear estimate that
minimises

arg min
Φ̃

〈(Φ(xi, t) − Φ̃(xi, t))2〉t (B8)

is given by
Φ̃(xi, t) = Lij Ψ+(xj, t), (B9)

where repeated indices imply summation. The entries of the matrix L take the form (Adrian
& Moin 1988)

Lij(xm) = 〈Φ(xi, t) Ψ (xm, t)〉t

〈Ψ (xj, t) Ψ (xm, t)〉t
. (B10)
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From (B8), we define the LSE informative and residual components as ΦLSE
I (x, t) ≡

Φ̃(x, t) and ΦLSE
R (x, t) ≡ Φ − Φ̃(x, t), respectively.

In the following examples, we exploit the spatial periodicity of the flow field. To that
end, we adopt the approach by Encinar & Jiménez (2019) and use a spatial Fourier basis to
project the fields. This procedure is usually known as spectral linear stochastic estimation
(SLSE). Equation (B10) becomes

L̂(kx, kz) = 〈Ψ̂ (kx, kz, t) Φ̂†(kx, kz, t)〉t

〈Φ̂(kx, kz, t) Φ̂+(kx, kz, t)〉t
, (B11)

where (̂·) denotes the Fourier transform, (·)† is the complex conjugate, and kx, kz are the
wavenumbers in the x, z directions, respectively. It can be shown (see Tinney et al. 2006;
Encinar & Jiménez 2019) that the optimal estimator is

ΦI(xi, t) =
∑

j

L(xi − xj, zi − zj) Ψ (xj, zj, t). (B12)

B.3. Linear mapping
As a first validation case, we consider a linear mapping function

source Φ(x, t) = ΦI(x, t) + ΦR(x, t), (B13a)
target Ψ+(x, t) = ΦI(x, t). (B13b)

The exact informative and residual fields are normalised such that their standard deviations
are 〈ΦIΦI〉 = 1 and 〈ΦRΦR〉 = 1, respectively. The instantaneous reconstructed fields are
displayed in figure 18. To ease the comparison, the time instant is the same as in figure 17.

We can observe that aIND accurately reconstructs the informative and residual fields.
The SLSE is also able to reconstruct the mapping, which is expected since the mapping is
linear. On the contrary, EPOD fails to obtain the correct informative/residual field despite
the linear character of the decomposition. Instead, it tends to reconstruct the original
field Φ.

B.4. Nonlinear mapping
As a second validation case, we consider the nonlinear mapping function

source Φ(x, t) = ΦI(x, t) + ΦR(x, t), (B14a)

target Ψ+(x, t) = Φ2
I (x, t) − 0.2 ΦI(x, t). (B14b)

The exact informative and residual fields are normalised such that their standard
deviations are 〈ΦIΦI〉 = 1 and 〈ΦRΦR〉 = 0.2, respectively. The instantaneous
reconstructed fields are displayed in figure 19 at the same time instant as in figure 17.

In this case, SLSE fails to correctly split the flow into the informative and residual fields.
The same applies to EPOD: although the reconstruction of the informative resembles the
original (due to higher correlation between the original and the informative terms from
(B14a)), the error ΦI − ΦEPOD

I is significant everywhere. A similar error is observed for
the residual field, which is not correctly identified by EPOD. The aIND, similar to the
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Figure 18. Instantaneous reconstructed fields of the informative and residual components for (B13) with
(a,b,c) aIND, (d,e, f ) SLSE, and (g,h,i) EPOD: (a,d,g) the reconstructed informative field, (b,e,h) the
reconstructed residual field, and (c, f,i) the error between the exact and reconstructed informative fields. The
colourmap for the errors range between ±0.5〈ΦiΦI〉.

previous example, accurately reconstructs the informative and residual fields. The small
discrepancies in ΦI − ΦIND

I occur at the locations where ΦI ≈ 0, and stem from the
approach followed to compute ΦIND

I . Note that aIND accurately reconstructs the analytical
mapping as shown in figure 20.

Appendix C. Analytical solution for Gaussian distributions
For the special case in which all the components in ΦI, Ψ + are jointly normal distributed
variables, we can write their mutual information as (Cover & Thomas 2006)

I(Ψ +;ΦI) = 1
2

log
( |/(ΦI)| |/(Ψ +)|

|/(Ψ +⊕ΦI)|

)
. (C1)

In (C1), | · | denotes the matrix determinant, /(ΦI) is the covariance matrix of ΦI (and
similarly for Ψ +), a square matrix whose i, j entry is defined as

/(ΦI)[i, j] = 〈ΦI,i(t)ΦI,j(t)〉t, (C2)
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Figure 19. Instantaneous reconstructed fields of the informative and residual components for (B14) with
(a,b,c) aIND, (d,e, f ) SLSE, and (g,h,i) EPOD: (a,d,g) the reconstructed informative field, (b,e,h) the
reconstructed residual field, and (c, f,i) the error between the exact and the reconstructed informative field.
The colourmap for the errors range between ±0.4〈ΦiΦI〉.
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Figure 20. Mapping of (a) the linear example from (B13) and (b) the nonlinear example from (B14). The
dashed lines correspond to the analytic solution, and the solid lines correspond to the solution computed with
aIND.
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where ΦI,i is the ith element of ΦI . The covariance matrix /(Ψ + ⊕ ΦI) can be written
in block matrix form as

/(Ψ +⊕ΦI) =
[

/(Ψ +) /(Ψ +, ΦI)
/(Ψ +, ΦI)

T /(ΦI)

]
, (C3)

where /(Ψ +, ΦI) is the cross-covariance matrix

/(Ψ +, ΦI)[i, j] = 〈Ψ+,i(t)ΦI,j(t)〉t. (C4)

The mutual information in (C1) is maximised when |/(Ψ + ⊕ ΦI)| = 0, provided
that |/(ΦI)| /= 0. Using the block determinant identity (Johnson & Horn 1985; Barnett,
Barrett & Seth 2009) gives

|/(Ψ +⊕ΦI)| = |/(Ψ +)| |/(ΦI) − /(Ψ +, ΦI)/(Ψ +)−1 /(Ψ +, ΦI)
T| (C5a)

= |/(ΦI+)| |/(Ψ +) − /(Ψ +, ΦI)
T /(ΦI)

−1 /(Ψ +, ΦI)|. (C5b)

The second term in (C5a) (resp. (C5b)) is the residual of a linear regression of Ψ + on
ΦI (resp. ΦI on Ψ +) (Barnett et al. 2009). Therefore, the mutual information in (C1) is
maximised when ΦI is a linear function of Ψ +, or vice versa. However, only when Ψ + is
a function of ΦI , H(Ψ +|ΦI) = 0, as required by (2.5).

We assume that the number NΦ of elements in Φ is larger than the number NΨ of
elements of Ψ +, so that if we find

ΦI = LΨ +, (C6)

then we can find the inverse mapping

Ψ + = L−1ΦI . (C7)

The mutual information in (2.7) can be expanded as

I(Ψ +;ΦR) = 1
2

log
( |/(ΦR)| |/(Ψ +)|

|/(Ψ +⊕ΦR)|

)
, (C8)

which will be equal to zero for |/(Ψ + ⊕ ΦR)| = |/(Ψ +)| |/(ΦR)|. From the block
determinant identity, this requires

|/(Ψ +, ΦR)/(Ψ +)−1 /(Ψ +, ΦR)T| = 0. (C9)

In a general scenario, this requires

/(Ψ +, ΦR)[i, j] = 0, (C10)

namely

〈Ψ+,i(Φj − L[ j, m] Ψ+,m)〉t ≡ 〈Ψ+,iΦj〉t − 〈Ψ+,i L[ j, m] Ψ+,m〉t = 0, (C11)

where Ψ+,k is the kth element of Ψ + and repeated indices imply summation. The solution
to (C11) is given by Adrian & Moin (1988), and it correspond to the LSE:

L[ j, m] =
〈Ψ+,iΦj〉t

〈Ψ+,jΨ+,m〉t
. (C12)

Therefore, for the special case in which all variables involved are jointly normal
distributed variables, the solution to IND is LSE. From the previous results, it is
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straightforward to prove that the solution to aIND when Φ, Ψ+ are jointly distributed is
given by

ΦI(t) = 〈Ψ+Φ〉t

〈Ψ+Ψ+〉t
Ψ+(t). (C13)

We conclude by emphasising that the similarity between IND and higher-order versions
of LSE does not extend to the most likely case where all the variables are not jointly
normal distributed. In this scenario, higher-order versions of LSE attempt to obtain a
better reconstruction of Φ using Ψ +, which will not fulfil the condition H(Ψ +|ΦI) = 0,
as discussed in the last paragraph of § A.1.

Appendix D. Computation of $xmax for the turbulent channel flow
The aIND requires the value of "xmax

! = ("xmax
! , "zmax

! ) for each informative component
! = u, v and w. To that end, we calculate their relative energies as functions of "x, "z
and the wall-normal distance:

Eu
I ("x, "z, y) =

‖u2
I ‖

‖u2‖
, Ev

I ("x, "z, y) =
‖v2

I ‖
‖v2‖

, Ew
I ("x, "z, y) =

‖w2
I ‖

‖w2‖
. (D1a–c)

The parametric sweep is performed using data for a channel flow at Re = 180 in
a computational domain of size πh × 2h × π/2h in the streamwise, wall-normal and
spanwise directions, respectively.

Figure 21 displays Eu
I , Ev

I and Ew
I as functions of "x and "z. Note that due to the

symmetry of the flow, Eu
I ("x, "z, y) = Eu

I ("x, −"z, y) (similarly for Ev
I and Ew

I ). For
Eu

I and Ev
I , the maximum is always located at "z = 0, which is the plane displayed in

figures 21(a,b). For the spanwise component, the maximum value of Ew
I is offset in the

spanwise direction, and its location varies with y. Figure 21(c) displays the horizontal
section that contains its global maximum, which is located at y+ ≈ 6. This offset is caused
by the fact that w motions travel in the spanwise direction until they reach the wall and
affect the wall shear stress.

Close to the wall, we find high values of Eu
I , with peak value approximately 60 % at

y+ ≈ 8, and "xmax
u ( y) ≈ −h, following an almost linear relationship with y. Farther from

the wall (y > 0.2h), "xmax
u becomes more or less constant, although it should be noted

that in this region, the values of Eu
I for a fixed y are low and relatively constant. This may

induce some numerical uncertainty in the particular value of "xmax
u , but the overall results

are not affected. In contrast, high values of Ev
I are located in a compact region further away

from the wall (y+ ≈ 19), and they tend to zero at the wall. The values "xmax
v ( y) lie close to

−1.2h in this region, following a negative linear relationship with y. As before, "xmax
v ( y)

remains relative constant in low Ev
I regions. Finally, although not shown, "xmax

w ( y) and
"zmax

w ( y) lie in the intervals [−h, −0.7h] and ±[0.1h, 0.2h], respectively, approaching
zero at the wall. Nevertheless, EI

w becomes negligible for y > 0.2h.
We close this appendix by noting that although not explored in the present study, "xmax

computed with aIND might correspond to potential locations for sensor placement, since
it maximises the mutual information with the target variable (Lozano-Durán & Arranz
2022).
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Figure 21. Informative regions quantifying the relative energy contained in the informative components uI , vI
and wI for "T+ = 25: (a) Eu

I and (b) Ev
I in the "z = 0 plane; (c) Ew

I in the plane y+ ≈ 6. In (a,b), the black
dashed line corresponds to "xmax( y).

Appendix E. Validity of aIND of u with respect to τx

Figure 22 displays the mutual information between uR(x0, y0, z0) for y+
0 ≈ 10 and

)x,+(x0 − "xmax
u − .x, z0 − "zmax

u − .z) as a function of .x = [.x, .z], denoted as
I(uR; )x,+)(.x). The mutual information is normalised by the total Shannon information
of the wall shear stress, H()x), such that I(uR; )x,+)(.x)/H()x) = 0 means that uR
contains no information about the wall shear stress at .x, and I(uR; )x,+)(.x)/H()x) = 1
implies that uR contains all the information about )x,+(.x). Note that aIND seeks to
minimise I(uR; )x,+)(0). The results show that value of the I(uR; )x,+)(.x)/H()x) remains
always low, reaching a maximum approximately 0.06 at .x ≈ −1.2h along the streamwise
direction. Hence we can conclude that the residual term contains a negligible amount
of information about the wall shear stress at any point in the wall, and aIND is a
valid approximation of IND. For the sake of completeness, we also display in figure 22
the mutual information between uI and the wall shear stress. Since )x,+ = F(uI), the
mutual information I(uI; )x,+)(.x) has to be equal to H()x) at .x = 0, as corroborated
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Figure 22. Mutual information between the streamwise wall shear stress and the residual field, I(uR; )x,+)(.x)
(blue circles) and the informative field I(uI; )x,+)(.x) (red circles). The dashed line corresponds to
I()x,+; )x,+)(.x).

by the results. For larger distances, I(uI; )x,+)(.x) decays following the natural decay of
I()x,+; )x,+)(.x), with values below 0.1 after |.x| ≈ h.
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