
Scalable, Fast, and Low-memory Table Lookups for
Network Applications with one CRC-8

Yi Liu, Shouqian Shi, Ruilin Zhou, Yuhang Gan, Chen Qian

University of California Santa Cruz

{yliu634, cqian12}@ucsc.edu

Abstract—Key-value lookup functions have been widely ap-
plied to network applications, including FIBs, load balancers,
and content distributions. Two key performance requirements of
a lookup algorithm are high throughput and small memory cost.
One limitation of existing fast network lookup algorithms is that
they require multiple independent and uniform hash functions,
which cost high computation time and might not be available on
existing hardware network devices. Recently developed learned
model hashing (LMH) proposes to use a linear machine learning
model to replace hash functions to avoid hash computation, but
they are not optimized for memory cost. We propose a novel
network lookup method called Parrot hashing, which uses a
learned model to distribute keys into different buckets and applies
a simple perfect hashing method to resolve the collisions of the
keys in a bucket. Parrot can be implemented with only one CRC-
8, which is available on all network devices. We implement Parrot
in three prototypes: a software program on end hosts, a software
switch, and a FIB running on a hardware programmable switch.
The experimental results show that Parrot achieves the highest
lookup throughput on all three prototypes, compared to existing
methods. Its memory cost is also significantly lower than that of
LMH.

I. INTRODUCTION

Table lookups serve as fundamental functions and design

blocks of numerous network protocols and algorithms from

the data link layer to the application layer. The exact network

lookups can be generalized as searching a key and getting a

value that corresponds to the search key.1 For example,

1) “Flat” address lookups in Forwarding Information Bases

(FIBs). MAC addresses are a typical example of flat

network addresses and efficient MAC table lookup is

a key function to support large-scale Ethernet and data

centers networks [1]–[5]. In addition, many new Internet

architectures rely on flat addresses. For example, NDN

[6] and CCN [7] use content names for routing and

packet forwarding. MobilityFirst [8] provides a solu-

tion for mobile-intensive networks by using globally

unique identifiers (GUIDs). The names and IDs can

be considered keys in the lookup tables of these new

networks. Other examples include Tunnel End Point

Identifier (TEID) lookups for mobile core networks [9].

2) Software defined networks (SDNs) [10] use multiple

packet header fields as the key to identify network flows.

The operations based on the results of flow lookups are

not limited to forwarding, which also include measure-

ment [11]–[14] and security tasks [15].

1This work only considers whole-key matching without prefix matching.

3) Cloud load balancers that distribute packets to replicated

backend servers [16]–[19] rely on key-value lookups for

which the key is the 5-tuple on each packet header and

the value is a server index. Network address translation

(NAT) also stores flow states and performs lookups

based on the 4-tuple.

4) In a content delivery network (CDN) or edge network

[20]–[23], table lookups are used to find the server that

stores a particular content or instance.

5) In-network key-value (KV) storage [24], [25] and com-

puting [26] employ programmable network devices [27]

to support a large variety of KV lookup functions to

achieve fast processing and/or short latency.

All of these applications share two major performance

requirements. First, the lookup function should be fast to

support high network throughput or the line rate. Second, the

memory cost should be minimized because these functions

are located in the fast memory (e.g., TCAM and SRAM)

of network devices, which are expensive and power-hungry.

As a result, existing designs for network lookup functions

focus on optimizing these performance metrics [2]–[5], [9].

All of these designs rely on multiple independent universal

hash functions, which introduces several inevitable problems

including high computation time [12] and lack of sufficient

independent hash functions on certain hardware devices [28].

For example, Broadcom switches support RTAG7 [29] and the

Cisco Nexus 5500 Series [30] supports CRC-8, which do not

satisfy the hash independence and uniformity requirements of

the above designs [28].
In database research, the learned model hashing

(LMH) [31]–[33] was recently proposed to use a machine

learning model to replace traditional hash functions for

secondary indices. The idea of LMH is to train a model that

approximates the cumulative distribution function (CDF) of

all keys and predicts the position of a lookup key in a sorted

array. Let each position of the array represent a bucket that

can store the value corresponding to a lookup key. The array

can then be considered a hash table where LMH replaces

hash functions to calculate the position of a key. Since a

trained model cannot distribute all keys evenly, collisions still

happen. Probe-based or chain-based collision resolution can

be used [33]. However, we realize that most studies about

LMH [31]–[33], including a recent benchmark study [33],

pay little attention to the memory cost.
We are curious about the feasibility of applying LMH for979-8-3503-5171-2/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 3
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
Pr

ot
oc

ol
s (

IC
NP

) |
 9

79
-8

-3
50

3-
51

71
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

NP
61

94
0.

20
24

.1
08

58
55

6

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

network lookups because it has no requirements for hash

functions and provides high throughput. To this purpose, we

conduct extensive empirical studies to evaluate LMH tables

and recent network lookup algorithms [5] on a public bench-

mark [33], [34]. Our key observations are as follows. LMH

tables achieve higher lookup throughput because the learned

models in the LMH tables compute faster than hash functions

for distributing keys into buckets. However, recently-proposed

Minimal Perfect Hashing (MPH) based network lookup [5],

[9] costs much smaller memory because they do not need to

store keys. Another advantage of LMH is that it supports range

queries.
Based on the above observations, we motivate this research

to find a solution that can achieve the best of two worlds:

high throughput, no hash function requirements from LMH,

and low memory from MPH. Our key innovation is to use a

learned model to distribute keys into different buckets. When

collisions happen in a bucket, we use perfect hashing to resolve

all collisions into different slots – because perfect hashing can

be easily implemented with a simple mapping function such as

CRC-8 when the number of keys is small. Based on this idea,

we present Parrot hashing, a scalable, fast, memory-efficient,

and dynamic lookup algorithm that has no requirement

on the hash function support from network devices.

We implement Parrot hashing in three prototypes: 1) a

software program running on end servers and compatible with

an existing benchmark for secondary indices [33], [34], which

can be used for application-layer network lookups such as

CDN and distributed storage; 2) a packet forwarding prototype

implemented on hosts by the Intel Data Plane Development

Kit (DPDK) [35] and 100GbE NICs, which can be considered

an example of software network functions such as software

switches and load balancers; 3) a packet forwarding pro-

totype running on a Tofino programmable switch, which is

an example for programmable network hardware. We believe

the performance results of these prototypes are sufficient to

demonstrate the advantages of Parrot in many network appli-

cations in various layers. The experimental results show that

Parrot hashing achieves the highest lookup throughput on

all three prototypes, compared to existing methods including

LMH and MPH solutions. Parrot hashing costs higher memory

than a recent MPH-based network lookup method [5], but

smaller than other solutions. Unlike these methods, Parrot has

no requirement on hash functions.
Our contributions in this paper are summarized as follows:

1) We conducted comprehensive empirical studies to com-

pare LMH and MPH-based lookups, obtained important

observations, and analyzed the feasibility of applying

LMH for network lookups.

2) Based on the new observations, we design Parrot hash-

ing, a scalable, fast, memory-efficient, and dynamic

lookup algorithm that can be implemented with only

one CRC-8 function. By relaxing the restrictions of hash

functions, Parrot hashing is more widely applicable than

previous network lookup methods [3]–[5], [36]. Parrot

hashing also supports range lookups.

Fig. 1: Ludo hashing structure

3) We implement Parrot hashing in three prototypes and

evaluate it with publicly available datasets [37] exten-

sively. The results show that Parrot hashing provides

higher throughput in all prototypes compared to existing

methods.

II. LMH VS. MPH: EXPERIMENTAL STUDIES AND

OBSERVATIONS

A. Learned Model Hashing (LMH)

LMH [31], [33] aims to reduce the collision rate of tradi-

tional hash functions by approximating the CDF of all keys

and mapping keys into different positions in order. Learned

models [31], [32], [38] leverage the order of keys to output

associated positions so that all keys can be assigned to buckets

in a consecutive array.

As learned models cannot map all keys to the distinct

positions in the array, collisions still happen. LMH addresses

the collisions – keys that are mapped to the same bucket

– with similar designs as traditional hashing tables. The

two representative collision resolution methods are probing

and chaining similar to classic hash tables. One noticeable

advantage of LMH is that model inference in many real

datasets is much faster than hash function computation [33].

For all collision resolution methods mentioned above, keys

must be stored in the table to recognize which bucket stores

which key. We realized that most studies about LMH [31]–

[33] pay little attention to the memory cost, and found that

the memory footprint is not optimized. However, LMH can be

a potential solution to avoid the dependence on complex hash

computations of existing network lookup solutions because it

uses model inference instead of hash functions.

B. Minimal perfect hashing (MPH)

MPH is another line of research to reduce hash colli-

sions [5], [36], [39]–[42]. An MPH method constructs a func-

tion that maps n keys to different buckets without collisions.

MPH achieves significant memory efficiency for network

lookups because the table does not need to store keys to

help the search – only values are required to be stored in

each bucket. Note that storing keys may cost more space than

storing the values in many network applications. For example,

a MAC address (key) is 32-bit long and the return port index

from FIB (value) can be as short as 8 bits (for 256-port

switches); a 5-tuple (key) includes 104 bits while the server

index returned by a load balancer (value) can be less than 20

bits.

To allow key dynamics, including key insertions and dele-

tions, MPH may use (1+ δ)n positions for n keys. The main

idea of recent dynamic MPH for network lookups [5], [36]

2

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

(a) Dataset WIKI (b) Dataset BOOK

Fig. 2: Lookup throughput comparison

is first to divide the set of keys into groups, each of which

includes a small number of keys. Then within each group,

a hash function is found to map the keys in the group to

different positions without collisions. The most recent solution

of dynamic MPH is called Ludo hashing [5]. As shown in

Fig. 1, Ludo hashing [5] first uses a data structure called

Othello [4], a dynamic implementation of Bloomier filter [43],

as the bucket locator to distribute keys into different buckets,

each of which includes 4 slots. Then, in each bucket i Ludo

uses brute force to find a hash seed si such that the hash

function with si can map the 4 keys in the bucket to 4 different

slots without collision. Hence, keys do not need to be stored

in the table for collision resolution. The space cost of Ludo is

3.76 + 1.05l bits per key, where l is the length of the record

value [5]. Ludo requires three independent hash computations,

two for the bucket locator (Othello) and one for the slot

locator. Ludo can be implemented for FIB and application-

layer content lookups [5].

C. Experiments and Observations

We wonder whether LMH can be used for network lookup

algorithms by understanding the tradeoffs between LMH and

MPH. However, we realize that the recent benchmark study

[33] that compares LMH with classic hash methods did not in-

clude the recent solutions of MPH. In addition, the benchmark

study [33] did not show the memory cost comparison.

To this purpose, we have conducted experimental studies

to compare LMH with recent MPH methods and analyze

their tradeoffs. We show the results of the representative

methods: chain-based LMH table with the RMI model [31]

(whose throughput is higher than other LMH tables [33])

and Ludo. We use the same benchmark program as recent

studies of LMH [33] do, as well as 20 million records from

each of the public datasets WIKI and BOOK [37]. We run

experiments on a server equipped with Intel(R) Xeon(R) CPU

E5-2687W v4 at 3.0GHz and 32GB DDR4 memory. For each

set of experiments, we conduct 1 million uniformly random

lookup operations. The results of using application datasets

and network addresses are similar.

As depicted in Fig. 2, we find that chain-based LMH tables

always achieve higher throughput compared to Ludo by up

to 2x in both datasets WIKI and book. We further analyze

the throughput results by showing the time breakdown for

querying a key in Fig. 3(a). With the dataset size varying

from 10M to 50M, the accessing and computing in the bucket

locator always take the most part (62%) of the latency. We

also draw a red line to indicate the time used by a two-layer

model RMI [31], the learned model used in LMH tables,

to output the predicted bucket position of the queried key.

The bucket locator of Ludo takes 3× latency compared with

RMI computation, due to more hash computation and random

memory access for the bucket locator. We realize the root

reason for LMH outperforming Ludo in throughput is that

the learned models (RMI) distribute keys to buckets at a much

faster speed – although the constructed bucket locator of Ludo

can map exactly four keys to each bucket while RMI might

cause random collisions.

Thus, we have our first observation. 1) The bucket locator

is the primary throughput bottleneck in MPH schemes.

We then compare the memory cost of LMH-RMI based hash

table and Ludo and give a breakdown of memory usage as

shown in Fig. 3(b), where the key size is padded to be 40

Bytes with the dataset [44] size as 120 million and 140 million,

respectively. In practical workloads [45], 40B is a typical

average key length. We find that the majority of the memory

cost comes from storing the keys, which almost makes up

80% of the usage. On the other hand, the memory cost of

RMI only takes 1.608KB (≈8−7 of all memory) because lots

of keys can be indexed just with the slope and intercept

of the approximated linear function. We obtain the second

observation: 2) Avoiding storing full keys is the main reason

for the memory efficiency advantage of Ludo hashing.

We further analyze the collisions when the learned models

(e.g., RMI, RadixSpline [38]) map keys to buckets. Fig. 3(c)

shows the distribution of the position errors for 20M sorted

keys in probe-based LMH with RadixSpline and RMI, re-

spectively. We observe that there are only no more than

600K keys that could be found without probing. From the

figure zoomed out, there are around 4000 keys with position

errors up to 100. Unlike the chain-based hash table that

can resolve collisions within the bucket, probe-based LMH

tables accumulate prediction errors in consecutive buckets. The

probing latency is often pulled back when querying a key,

in which a large gap lies between the predicted and actual

positions.

Fig. 3(d) shows the CDF of the number of keys in each

bucket of chain-based LMH tables, when we set the load factor

as 0.85 with RadixSpline for the OSM and WIKI datasets,

respectively. For the WIKI dataset, which has been proven

as a learned-friendly dataset with higher linearity, there are

almost 40% of the buckets are empty. However, for the OSM

dataset, there is a total of 80% empty buckets in the table.

Also, over one-third of non-empty buckets have at least four

records. The probing in the bucket along the collided chain

also drags down the throughput of locating a key. We will

show more throughput details in Section IV.

Our third observation is: 3) The “last-mile” search of

LMH tables to fix the model errors is a major challenge of

LMH that causes longer latency for probing or accessing

linked buckets and higher memory cost because keys must

be stored to resolve collisions.

3

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

(a) Latency breakdown. (b) Memory breakdown.
(c) Position errors in probe-
based LMH.

(d) # of keys distribution in
chain-based LMH.

Fig. 3: Observations: (a) Latency breakdown of data lookup in Ludo hashing w./ the varied dataset size. (b) Memory usage breakdown in
probe-based LMH with the varied key lengths. (c) Predicted distance error distribution in probe-based LMH. (d) The CDF of the number of
records distribution in all buckets of the chain-based LMH.

Fig. 4: Parrot hashing overview

D. Idea of Achieving the Best of Two Worlds
By analyzing the advantages and disadvantages of both

LMH-based and MPH-based tables, we realize LMH is strong

at the initial key distribution method because the learned model

is fast to compute and small in memory – and it does not rely

on complex hash functions – while MPH is powerful for the

“last-mile” search of resolving collisions of a small number

of keys, which can use a constructed function to map keys to

different slots without collision and avoiding storing the keys.

Based on these facts, we conducted research for a new net-

work lookup design that uses LMH for initial key distribution

to buckets and MPH for collision resolution within a bucket of

keys. This design uses the powerful steps from both methods

and can potentially achieve high throughput, low memory, and

range queries, without relying on specific hash functions.

III. DESIGN OF PARROT HASHING

A. Overview

Similar to other hash functions, Parrot hashing provides the

following index function: For each record < k, v > including

the key k and value v (in practice, k is a network identifier and

v is usually the index of forward port on hardware switches,

the index of network function actions, or the index of a

physical machine), if k is queried, Parrot hashing will return

v.

Parrot hashing adopts an architecture design of three mod-

ules, as shown in Fig. 4. Module � provides a pluggable

interface for linear regression models used in LMH (e.g.,

RadixSpline [38], RMI [31]). Module � is called the index

table, which consists of a series of buckets, and each bucket

contains four slots for holding the values of the keys and a

seed. It organizes and places the values in the slots of each

bucket based on the idea of Ludo, without storing keys. The

keys are mapped into buckets indicated by the linear regression

models according to the model-based insert policy [46]. If

more than four records are mapped into one bucket, we will

use the stash chain (Module �) to hold the records in the

linked stash node. Note that the keys of records are kept

in order between the buckets based on the properties of the

learned models: For two consecutive buckets Bx and Bx+1,

the biggest key k1 of bucket Bx is guaranteed to be smaller

than the smallest key k2 of bucket Bx+1. In addition, record

keys in the stash chain are also ordered by the keys. The values

in the same bucket of the index table might not be ordered.

B. Index table

The index table is the main structure to index most of the

records. A bucket is a basic unit for locating records with the

learned models’ results. It includes four slots to store at most

4 record values and one seed (8 bits) used to realize the MPH

for the four records in this bucket. No keys are stored in the

index table. The number of buckets is set to n/(4ε), where

ε is the load factor of the table and n is the total number of

records, as we have four slots initialized in each bucket.

Consider the first four keys of records inserted to a bucket

are {k0, k1, k2, k3}. Parrot hashing uses brute force to select

a specific seed s from 0 to 255, which can make a function

H map the four keys into four distinct slots without collision.

H can be a simple mapping function such as a CRC-8. We

will describe how to implement a seeded CRC-8 for Parrot in

Sec. III-F. In general, we use brute force to find s such that:

H(ki, s) �= H(kj , s), where 0 ≤ i, j ≤ 3 and 0 ≤ H(.) ≤ 3

If the number of records is less than four, finding a seed to

separate the records will take less time. Then, when we access

a record value associated with key k in the bucket, we compute

the hash H(k, s) to locate the slot.

Compared with probing and chaining, realizing the slot

locator with this MPH way is fast, and we will show the results

in Section IV. Furthermore, even if some buckets overflow due

to the uneven distribution of the learned model, index table can

save the space to store the first four record keys, which is also

a large portion of memory usage (> 35%).

MPH could be realized with small overheads in the case

of a small number of records [4], [5], [47]. The core idea of

Parrot hashing is to distribute keys using LMH into different

4

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Insert keys into stash chain.

buckets with order-preserving and fast computation and then

use MPH within each bucket to achieve low memory cost and

high speed to locate the value.

C. Stash chain

The learned model in module � cannot map all keys to the

index table with an even distribution of each bucket having

exactly 4 keys. So we leverage the stash chain to hold the

records overflowing each bucket. We have one pointer in each

bucket of the index table to link to the head of a stash node,

if more than four keys are mapped to the bucket. For a bucket

with more than 4 keys, all other records are stored in the stash

chain.

In the stash chain, each stash node contains one or more

ordered records as shown in Fig. 4. Each stash chain stores

the full keys of the records to realize order-preserving key

insertion and reduce the time spent on queries along the chain.

D. Operations of Parrot hashing
Lookup of keys. As shown in Figure 4, there are one seed,

four KV records in each bucket of the index table, and a

pointer pointing to the first stash node. For a queried key,

we first locate the bucket it exists based on the result of the

learned model. We then access a slot indicated by the result

of the hash function with the bucket’s seed based on the rule

of MPH. The value val we get from the slot “might be” the

associated value for the queried key, because the target record

might be stored in the index table or the stash chain. Before

returning the data back, the lookup algorithm will check if

there is an attached stash chain to this bucket.

If there is no overflow record in this bucket or the first key

in the stash node is larger than key, we return the value val we

get from the index table because key is absolutely not in the

stash chain – recall that records in the stash chain should be

ordered by their keys, hence all remaining keys must be even

larger than key. Otherwise, the algorithm should search the

stash chain until it finds the exact record sharing the same key

with the queried key. Then, the algorithm returns the value

found in the stash chain. This design helps Parrot hashing to

achieve shorter query latency by avoiding searching the stash

chain if key is smaller than the key in the first stash node of

this bucket.

Insertion/Update of keys. Similar to key lookups, the

learned model will first compute the corresponding bucket

when inserting a record with the key key. During the con-

struction of the Parrot hashing table with bulk load, all records

are inserted in order, and the first four records in the index

table are the smallest in their buckets. The algorithm inserts

the record value into the index table and generates a new seed

to make the hash function distribute these records’ keys into

distinct slots without collision. If the four slots of the bucket

are full, the inserting record should be appended and linked

into the stash chain in order. Note that all keys are kept during

bulk loading and will be discarded after that. For the individual

record insertion after bulk loading, the inserting record key

and value will be directly inserted into the stash chain with

the order preserved.

As shown in Fig. 5, provided there is one record per stash

node, the record {key, val} ={15,6} is mapped to the bottom

bucket by the learned model. Then, the algorithm will visit

the stash chain to find a position that maintains the order of

the keys. Eventually, it should be inserted between the records

{12,1} and {16,6}. If the inserted key is smaller than the key

in the first stash node, we will insert it as the first stash node.

For example, the record {8,17} will be inserted into the first

position of the stash chain. Even if there is an old value for

key 8 in the index table, it will not influence the lookup result

because the newly inserted value will be stored with the full

key in the stash chain.

When the exact key cannot be found in the stash chain

during a data update operation, we treat the update as a data

insertion. If a stash node’s record key matches the update key,

the record value is directly updated.

As the number of keys increases, memory usage rises

due to the additional data insertions and updates. Once the

memory usage in the current Parrot hashing table reaches

a threshold – we set 1.2 times the original table size – a

reconstruction will be triggered. During reconstruction, data

insertion will be temporarily halted to the existing table in the

data plane, and the few corresponding buckets will be locked.

The reconstruction will start a new table in the control plane,

while lookups in the data plane that map to unlocked buckets

can continue using the old hash table. A few data requests

to the locked buckets will be cached in an operation list and

processed once the rebuilding is complete. A reconstruction

happens once in a long time as the size needs to increase by

20% and takes <10 seconds for 80 million keys (as shown in

the evaluation in Sec. IV-A4).

Range lookups. Although not our main focus in this work,

range lookups are among the advantages brought by learned

models. Range lookups in network lookups can be used

for application content search. One might think that range

lookups can be used to implement IP prefix matching, but we

have not explored this direction and will leave it for future

work. Parrot supports two kinds of range lookups. One is

scan(low_key, high_key), and Parrot will return the values

whose key is between low_key and high_key. The other one

is scan(low_key, len), and a value list of length len starting

from the low_key would be returned.

The starting key low_key will be located based on the

lookup algorithm, and then the following len records or

records that are smaller than high_key should be retrieved. If

the starting key is found in the index table, then all four records

in the bucket and records in the stash chain should be returned

because the order is not maintained within the index table due

5

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

to the MPH property. Note that some records in the index table

bucket might not be within the range of the query, so when

the data items are retrieved from the database, those items

should be excluded in the final results of the range query. If

the starting key is found in the stash chain of a bucket, then the

records that are in the stash chain and before the starting key

should not be returned because the order in each stash chain

is preserved. After the algorithm traverses a bucket and has

not reached the high bound or enough records, it should move

to the next bucket because the keys in consecutive buckets are

order-preserving.

Deletion of keys. The deletion operation in Parrot hashing

can be implemented as records lookup and mark the data for

this record as invalid. If the record is found in the index table,

we remove the value in it. If it is found in the stash chain, we

can remove the stash node (if empty) and release the space.

We implement an optimistic locking scheme [4], [48] for

concurrency control. Due to the page limit, we skip the details.

E. Analysis
In this section, we provide the theoretical analysis of the

time complexity of lookup and insertion operations, as well

as the memory cost estimation of Parrot hashing.

Expected records in each bucket. Provided we have m
buckets in the index table with the load factor as ε, and there

are n records in a dataset to be inserted. We have m = n/(4ε)
where ε is the load factor and each bucket contains four

slots. Assume all records keys are k0, k1, .., kn, and the

learned model will output the assigned bucket sequence as

b0, b2, .., bn−1, where bi ∈ [0,m) for all i. The gaps between

each consecutive record’s bucket sequences are expressed as

gi, and the bucket number can be expressed as bi =
∑i

u=0 gi.
It is reasonable to assume gi’s distribution is i.i.d [33] with

the probability density function (PDF) as fG(z), then the PDF

function of bi can be expressed as the multiple convolution of

f∗i
B (b) = fG(z0)∗fG(z1)∗··∗fG(zi) based on renewal process.

Provided N(b) =
∑

bi<b bi refers to the number of record

keys that appear in the first b buckets.

The probability for a bucket b to have exact t records is:

P (b, t) = P (N(b)−N(b− 1) = t) =
n−t∑

i=0

P (N(b− 1) = i)P (N(b− (b− 1)) = t)
(1)

The probability P (N(b− (b− 1)) = t) can derived from the

PDF of bi as f∗t
B (1)− f

∗(t+1)
B (1).

Lookup complexity. In Parrot hashing, We set the linear

regression model as two layers for the learned model (e.g.

RMI). Thus, there are at most two linear computations required

with slopes and intercepts to locate the bucket for the key.

In the “last mile” search inside each bucket, the complexity

depends on the number of colliding records.

In the best case, the number of records in each bucket is

no more than 4, and the MPH distributes keys into different

slots without collisions. We can locate the targeted slot with a

hash computation with the provided seed. Thus, the best-case

lookup time is just O(1). In the average case, the number of

keys mapped to a bucket is still a constant, and hence the time

complexity is also O(1).
Insertion complexity. For the in-place insertion shown in

Fig. 5(b), we first need to find the position to insert the new

records in the stash chain and allocate space to link the new

records. The best case is there is no stash node in this bucket,

and we can insert it with a new stash node linked to the

bucket, and the complexity is O(1). In an average case, the

time complexity for inserting a record would be O(l), where

l is the average number of records in a bucket.
Memory usage. Assume we have four slots in each bucket

before allocating extra space for stash nodes. Each bucket

consists of a seed (8-bit), four slots for record values, and

a pointer referring to the stash chain (64-bit).
Provided the length of the record key and value are lk and

lv , respectively. Each bucket memory usage would be 8+64+
4 · lv = 72 + 4 · lv bits. Thus, the memory usage for index

table is (72+4 · lv) ·n/(4 ·ε) = n · (18+ lv)/ε and each record

costs (18 + lv)/ε bits in the best case. The memory cost in

the stash chain depends on the number of colliding records

in each bucket. We get the probability that there are exact t
records in one bucket as P (b, t) in Lemma 1, for any buckets

with records number larger than four (t ≥ 4), at least (t− 4)
stash nodes will be allocated to have collided records. Each

stash node contains a KV record and a pointer linking the next

node so its memory cost is (lk + lv + 64) bits. In addition,

based on the expected number of records in Lemma 1, the

expected number of stash nodes in bucket b is
∑

∞

t=5 P (b, t).
Then, the memory cost of the stash nodes in all buckets is:

m∑

b=0

∞∑

t=5

((lk + lv + 64) · P (b, t)) (2)

F. Implementation with CRC-8
The index table requires the MPH functions to be random

enough to find a seed to distribute four different keys into

distinct slots without collision. Ludo hashing [5] leverages

Murmurhash as the slot locator in their design. However, the

main challenge is that multiple networking hardware only

supports CRC-8 checksum or RTAG7 functions like Broadcom

switches [49] and Cisco Nexus 5500 [30].
In our initial effort, we use CRC-8 function [50] with

polynomial as 0x31 to distribute the keys in the index table by

brute-force searching an 8-bit seed. It turns out we have over

15% buckets that cannot be distributed without collision with

CRC-8. Provided the CRC-8 result of a given key is c7c6..c0,

we then propose to add the c7c6 and c4c3, and then use the

least two bits as the slot index. This shuffle makes the CRC-

8 more random and keeps the fail buckets rate within 2.7%

in the experiments. All the keys in the failed buckets will be

appended to the fallback table for additional checking.

G. Implementation on programmable data plane
The Parrot hashing algorithm is portable and can be im-

plemented on programmable switch ASICs or other network

hardware. We implement Parrot hashing in P4, and the evalu-

ation results in Section IV-C demonstrate that Parrot hashing

can run on a Tofino switch at line rate.

6

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: The main modules of Parrot hashing in Tofino pipeline.

Fig. 7: The registers defined in the Tofino pipeline.

The computation of learned models with match-action

table. In Parrot hashing, learned models are used to map

keys into a bucket, and its calculation consists of linear

computations with slope and intercept. The input key is the

extracted destination Ethernet address. The main challenge is

that the multiplication between key and slope is not fully

supported in Tofino 1 because float multiplication requires

more ALUs than it provides.

We observed that the learned models map all keys to buckets

in order, and we can get to know the key ranges in each bucket

after the construction of the index table before discarding the

keys. Thus, we leverage the range match in the match-action

table by setting the key ranges in each bucket. Then, we can

bypass the float computation of learned models by directly

mapping keys into buckets. The pseudocode is shown in Fig. 6.

In Fig. 7, we show the registers utilized within the Tofino

pipeline. Upon a packet’s arrival, the destination address is

extracted, initiating a range match to determine the bucket

index in the first stage. Subsequently, the seed associated with

the bucket is retrieved from register Reg1. The port value is

obtained from the index table Reg2 by computing the CRC-

8 with the seed. Register Reg3 tracks the starting index of

stash nodes packed in Reg4. If no stash node is present in

the bucket, the offset value is set to 0xFFFFF, indicating

that subsequent register reads can be skipped. If the offset

indicates at least one stash node exists, the low 32-bit Ethernet

address stored in Reg4 is read and compared against the target

port destination address in Reg5. Due to no support for loop

logic and the limited number of stages provided in the Tofino

pipeline, at most two stash node entries can be read. The keys

from terminated stash chains are added to the overflowed list.

IV. EVALUATION

In this section, we present the experimental results to

demonstrate the performance of Parrot hashing and compare

it to other methods. We conduct experiments on a soft-

ware benchmark program to illustrate that Parrot hashing can

achieve high performance in lookup latency compared to other

state-of-the-art solutions on end servers. In addition, we imple-

ment Parrot-based FIBs as software switches running on hosts

using Intel DPDK. Furthermore, we evaluate a Parrot-based

FIB prototype on an Intel Tofino programmable switch, based

on the design mentioned in Section III-G. The throughput

results of packet forwarding confirm the line rate of our Parrot

hashing and demonstrate the feasibility of only using CRC-8

for building network lookups.

A. Algorithm evaluation

We evaluate Parrot hashing in a hashing benchmark program

with practical datasets and compare it against the chained-

based LMH table and other state-of-the-art hash table schemes.

Setup. The experiments are run on a workstation with

Intel(R) Xeon(R) CPU E5-2687W v4 at 3.0GHz, 32GB

2400MHz DDR4 memory, and 32MB LLC. The secondary

storage device equipped with the workstation is an SK Hynix

SC311 SATA SSD with a capacity of 1T. We use Ubuntu

18.04 LTS with Linux Kernel 4.15. As a common setting in

the existing SOSD benchmark program [34] that has been used

to benchmark LMH and classic hashing methods, we use a

single thread unless otherwise stated.

Comparing methods. We compare Parrot hashing with the

state-of-the-art solutions of both LMH and MPH that include

the following methods. 1) Chained-based LMH table. They

have been demonstrated to achieve the highest throughput

among existing hash tables in many practical datasets [34]. The

models we used for training the CDF of keys are two layers

RMI [31] models. Following that, we use a chain-based LMH

table with a bucket capacity of 1, which is the default setting of

it [33]. 2) Ludo hashing [5]. It is a recent MPH index solution

with a lookup in O(1) time and the smallest space cost among

dynamic perfect hashing. We use the source code of Ludo

hashing provided by the author on a public webpage [51]. 3)

Cuckoo hashing [52]. It is a state-of-the-art hashing technique

that addresses hash collisions by placing each key in one of

multiple possible locations. Cuckoo has been widely applied

to network lookups [3], [18], [35]. We use the (2,4)-Cuckoo

hash table, meaning each bucket includes 4 slots and there are

two alternative buckets.

Datasets. They are (1) WIKI (application-layer identifiers),

time stamps of users’ updates from Wikipedia. (2) BOOK

(application-layer identifiers), which are keys for indexing

the popularity of books on Amazon. (3) MAC (link-layer

7

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

(a) Dataset: MAC; Dist: Uniform. (b) Dataset: TUPLE; Dist: Uniform. (c) Dataset: WIKI; Dist: Uniform. (d) Dataset: BOOK; Dist: Uniform.

(e) Dataset: MAC; Dist: Zipfian. (f) Dataset: TUPLE; Dist: Zipfian. (g) Dataset: WIKI; Dist: Zipfian. (h) Dataset: BOOK; Dist: Zipfian.

Fig. 8: Lookup throughput with uniform and zipfian workloads.

identifiers), randomly generated MAC addresses (48-bit), and

each of them is associated with a port (8-bit). (4) 5-TUPLE

(transport-layer identifiers), randomly-generated 5-tuples for

TCP connections. WIKI and BOOK are publicly available

datasets [37] used by many existing evaluations [33], [46],

[53]. We generate the returned values in 16 bits for datasets

WIKI, BOOK, and 5-TUPLE. As indicated by the past

work [46], [53], the key distribution of dataset WIKI shows

better linearity, and there will be fewer collisions in each

bucket computed by the learned models compared with that

of dataset BOOK.
Configuration. In our default experiment setting, we first

load 80M distinct keys from the original datasets after re-

moving duplicates. Each query set contains 10 million keys

generated from the loaded keys in uniform or Zipfian distri-

bution. We run three query sets for each data point and report

the average.
1) Lookup throughput on end systems: We evaluate the

lookup throughput by varying the load factor of these hash

tables. Fig. 8 shows the performance comparison with load

factors from 0.85 to 0.95 for the four datasets. Figs. 8(a-d)

are results on the query sets sampled in a uniform distribution,

and Figs. 8(e-h) are those with a Zipfian distribution.
We find that Parrot hashing can always achieve the high-

est throughput compared with other baselines. In uniform

workload, Parrot hashing outperforms Ludo hashing, Cuckoo

hashing, and chained LMH by 2.08×, 1.10×, and 1.09× on the

lookup throughput of dataset MAC with a load factor of 0.85,

respectively. For WIKI lookups, Parrot hashing outperforms

these three by 2.38×, 1.37×, and 1.10×, respectively. The

results in the Zipfian workload show similar patterns. The

experimental results demonstrate that Parrot hashing provides

the highest lookup throughput across different datasets.
We observe Parrot hashing and Chained LMH show their

own highest lookup throughput in the dataset WIKI because

the key distributions of the dataset WIKI show better linearity,

and there are fewer key collisions after keys are mapped to

buckets. Parrot hashing can locate the first four keys in the

bucket with one hash computation, but Chained LMH has

to traverse keys and check them individually. Additionally,

Ludo hashing and Cuckoo hashing maintain stable lookup

throughput on their own with varied datasets and load factors

because the computation and memory accessing required are

the same.

2) Memory usage: In this section, we show the memory

cost of the compared lookup schemes.

Figures 9 show the memory cost of these methods by

varying the load factor from 0.85 to 0.95, and each of these

tables includes 80M items. Note that the memory usage of

Chained LMH and Parrot hashing include all the learned

models. Ludo hashing always achieves the lowest memory

overhead for all datasets since it leverages MPH to manipulate

the keys’ placement in the bucket and slot to avoid extra

memory costs.

As shown in Fig. 9(c), for the dataset WIKI, the memory

usage of Parrot hashing is 1.94×, 0.36×, and 0.47× of

that in Ludo hashing, Cuckoo hashing, and Chained LMH,

respectively, when the load factor is 0.85. Compared with

Chained LMH, the memory usage benefit comes from the

space for storing the keys of the first four items in each bucket.

Regarding the dataset BOOK, the memory usage of Parrot

hashing is a bit larger than that of dataset WIKI. The reason

is that the learned models map keys into buckets with more

collisions in the dataset BOOK, and the amount of stash chains

are used in Parrot hashing. Thus, the Parrot hashing consumes

large memory resources with pointers and stash nodes.

In addition, we set the load factor to 0.95 and evaluated

the memory cost by varying the number of records from 16M

to 96M. As illustrated in Fig. 10(a-d), we observed that the

memory usage of all tables increases linearly with the number

of records. Comparatively, Ludo hashing incurs the lowest

memory overhead among all schemes, while Chained LMH

costs the most. Parrot hashing outperforms Cuckoo hashing

and Chained LMH in all datasets by not storing full keys of

the first four items in each bucket.

8

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

(a) Dataset: MAC. (b) Dataset: 5-TUPLE. (c) Dataset: WIKI. (d) Dataset: BOOK.

Fig. 9: Memory usage with the varied load factors.

(a) Dataset: MAC. (b) Dataset: 5-TUPLE. (c) Dataset: WIKI. (d) Dataset: BOOK.

Fig. 10: Memory usage with the varied number of records.

Fig. 11: Range query latency. Fig. 12: Lookup thpt with ta-

ble updating.

Datasets Ludo
Hashing

Chained
LMH

Cuckoo
Hashing

Parrot
Hashing

WIKI 240.9s 4.9s 16.8s 9.8s

BOOK 293.8s 5.6s 16.2s 9.5s

TABLE I: Construction time

3) Range query performance: Both LMH and Parrot hash-

ing support range queries to hash tables. Fig. 11 shows the

evaluation results of range queries under dataset WIKI. We

measure the time consumed from starting with a range query

request to ending with a returned list of values.

In chained LMH, all records are sorted and placed in buckets

and link nodes because all keys are inserted into the bucket

indicated by the model’s output. When there is range query

{ks, len}, we go directly to the bucket where ks is stored and

then read the following len records out in the table. Similarly,

all keys are sorted between buckets in Parrot hashing. Thus,

the range queried keys could be retrieved after we locate the

starting key ks. The only difference is the record key order is

not maintained in the index table, so there are at most four or

eight extra records that would be read out as indicated in III-D.

4) Construction and updates: We evaluate the construction

time in this section. Each table is constructed with 64 million

records bulk loaded, and the load factor is set as 0.85. The

construction time results are shown in Table I. Chained LMH

Fig. 13: Testbed for evaluating FIB via DPDK.

tables can complete the construction in around 5 seconds, and

Parrot hashing spends a bit more than that (6∼10s), which is

still very fast. Ludo hashing takes a much longer time (>100s)

to construct their tables.

We evaluate the lookup throughput during table updates and

show the results in Fig. 12. The table includes 50M KVs, and

we vary the number of updates from 0 to 500 per second,

and half are insertions. A reconstruction is triggered at the

beginning. The figure shows the updates have a negligible

impact on throughput.

B. Software switch prototype with DPDK

In this section, we show the results of the software switch

prototype implemented by DPDK.

Setup. We use a workstation configured with an Intel

Xeon Silver 4314 CPU@2.40GHz, 160GB 2133MHz DDR4

memory, and 48MB LLC as a testbed. We also have two

Mellonax ConnectX-5 NICs installed in two RISE interfaces

of the server, respectively.

As illustrated in Fig. 13, the left NIC serves as the packet

sender, utilizing pktgen to transmit packets from a .pcap file

generated by different dataset workloads. The FIB units act as

receivers on separate cores, bound to the other NIC. These

FIBs are implemented using chained LMH, Ludo, Cuckoo,

and Parrot. Upon receiving a packet, the receiver extracts its

Ethernet address and performs a lookup in the corresponding

FIB to determine the outgoing port for forwarding.

For each baseline, we load 64M distinct records from the

WIKI and MAC datasets to construct the FIBs. We then

9

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

(a) Dataset: MAC; Dist: Uniform. (b) Dataset: WIKI; Dist: Uniform.

(c) Dataset: MAC; Dist: Zipfian. (d) Dataset: WIKI; Dist: Zipfian.

Fig. 14: Lookup and forwarding throughput with DPDK

Fig. 15: Tofino programmable switch testbed.

(a) Packets forwarding throughput
with UDP flow.

(b) Packets forwarding throughput
with TCP flow.

Fig. 16: Packets forwarding throughput with Tofino switch.

sample 10K keys from these keys in uniform and Zipfian

distributions and pack them into a .pcap file to feed the

packet sender. Fig. 14 illustrates the throughput performance

of FIB lookup and forwarding of all approaches. Across all

scenarios, Parrot hashing consistently achieves the highest

packet forwarding throughput. For instance, with the dataset

WIKI, Parrot hashing outperforms Cuckoo, Ludo, and chained

LMH by 1.08×, 1.21×, and 1.76× as depicted in Fig. 14(b),

respectively. The throughput of chained LMH notably declines

with the dataset MAC, and we attribute it to increased record

collisions in buckets compared to the dataset WIKI.

C. FIB prototype on a hardware switch
We implement and deploy a Parrot-based FIB on a

Wedge 100BF-32X switch with programmable Tofino 1, using

P4studio version 9.6.0 for experimentation. The two Mellanox

NICs are connected to two 40GB ports on the switch. In the

setup shown in Fig. 15, the left NIC saturates the bandwidth

(40 Gbps) by sending packets at a rate of 32.3 million packets

per second, each with a size of 155 bytes. The switch extracts

the destination Ethernet address of each packet and looks up

the outgoing port in the FIB. The right NIC keeps polling the

NIC to receive the forwarded packets.

The Parrot hashing implementation on Tofino comprises

approximately 800 lines of P4_16 code for data plane pro-

gramming. Note that we use only CRC-8 hash functions in our

FIB implementation, as detailed in Section III-G. In the perfor-

mance evaluation shown in Fig. 16, we conduct tests with both

UDP and TCP flows, achieving a throughput of 29.09 million

packets per second for each. These results demonstrate that

Parrot hashing can achieve a packet forwarding rate of 33.59

Gbits per second, indicating line-rate lookup throughput for

FIB in the testbed. V. RELATED WORK

Network lookup algorithms are key design components for

network functions in different layers and examples include

classic IP and MAC table lookups and other key-value lookups

such as load balancers [17], [19], [54], content-centric routing

[6], [7], [55], mobile host search [8], [9], [23], and in-network

storage [24], [56].

MPH provides a fast lookup method for network appli-

cations. One attractive feature of MPH is that it can avoid

storing keys and minimizes the memory cost. Setsep [9],

[36] uses a two-level MPH scheme with a memory cost of

0.5+1.5l bits/record. Othello [4] is a dynamic implementation

of MWHC [39] and Bloomier filters [43]. The space cost is

2.33l bits/record, where l is the length of the value field. Ludo

hashing [5], [57] uses a constructed data structure to map each

element into small-sized buckets. However, all of them require

multiple independent and uniformly distributed hash functions,

which usually consume high computation costs.

Learned index schemes realize a fast indexing approach for

a large-volume database with model-based mapping. In the ex-

isting LMH-based hash tables [31]–[33], collisions of records

are resolved with its associated hash table schemes. None of

the existing LMH methods includes efforts to minimize the

memory cost. Parrot is compatible with all existing learned

index models [31]–[33], [58].

VI. CONCLUSION

We conduct a comprehensive study on existing LMH and

MPH lookup algorithms and analyze their feasibility to net-

work lookup applications that require high throughput and

small memory. Our observations show that LMH can achieve

fast computation using linear models instead of hash functions

while MPH can achieve low memory cost but rely on multiple

independent and complex hash functions. We propose Parrot

hashing, a novel lookup method that achieves both high

throughput and small memory, by using only one CRC-8.

We implement Parrot on three prototypes running on end

systems, software switches, and a programmable hardware

switch. The evaluation results show that Parrot achieves the

highest packet processing throughput among existing solutions

on these prototypes. We believe Parrot can be widely applied

to various network lookup applications in different layers.

ACKNOWLEDGMENT

We thank our shepherd Geoffrey Xie and the anonymous re-

viewers for their suggestions and comments. The authors were

partially supported by National Science Foundation Grants

2114113, 2322919, 2420632, and 2426031.

10

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A Scalable
Ethernet Architecture for Large Enterprises,” in Proc. of Sigcomm, 2008.

[2] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom filter for-
warding architecture for large organizations,” in Proc. of ACM CoNEXT,
2009.

[3] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
High Performance Ethernet Forwarding with CuckooSwitch,” in Proc.

of ACM CoNEXT, 2013.
[4] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang, “Memory-efficient and

Ultra-fast Network Lookup and Forwarding using Othello Hashing,”
Proc. of IEEE/ACM Transactions on Networking, 2018.

[5] S. Shi and C. Qian, “Ludo hashing: Compact, fast, and dynamic key-
value lookups for practical network systems,” Proceedings of the ACM

on Measurement and Analysis of Computing Systems, vol. 4, no. 2, pp.
1–32, 2020.

[6] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smet-
ters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, T. Abdelzaher,
L. Wang, P. Crowley, and E. Yeh, “Named Data Networking (NDN)
project,” NDN Tech. report ndn-0001, 2010.

[7] V. Jacobson, Smetters, D. K., J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of ACM

CoNEXT, 2009.
[8] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “ MobilityFirst:

A Robust and Trustworthy MobilityCentric Architecture for the Future
Internet,” Mobile Computer Communication Review, 2012.

[9] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh, “Scaling up clustered network appli-
ances with scalebricks,” in SIGCOMM, 2015.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[11] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proc. of USENIX NSDI, 2013, pp. 29–42.

[12] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and General Sketch-based
Monitoring in Software Switches,” in Proc. of ACM SIGCOMM, 2019,
pp. 334–350.

[13] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” in Proc. of ACM SIGCOMM, 2018, pp. 561–575.

[14] M. Wang, S. Shi, X. Zhang, S. Han, and C. Qian, “Lois: Low-cost packet
header protection for iot devices,” in Proceedings of the 8th ACM/IEEE

Conference on Internet of Things Design and Implementation, 2023, pp.
354–366.

[15] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A High-Performance Switch-Native
Approach for Detecting and Mitigating Volumetric DDoS Attacks with
Programmable Switches,” in Proc. of USENIX Security, 2021.

[16] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, “Ananta:
Cloud scale load balancing,” 2013.

[17] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A Fast and Reliable Software Network Load Balancer,” in
Proc. of USENIX NSDI, 2016.

[18] R. Mao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs,” in Proc. of ACM SIGCOMM, 2017.

[19] S. Shi, Y. Yu, M. Xie, X. Li, X. Li, Y. Zhang, and C. Qian, “Concury: a
Fast and Light-weight Software Cloud Load Balancer,” in Proceedings

of ACM SoCC, 2020, pp. 179–192.
[20] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets in Content

Delivery,” ACM SIGCOMM Computer Communication Review, 2015.
[21] K.-K. Yap et al., “Taking the Edge off with Espresso: Scale, Reliability

and Programmability for Global Internet Peering,” in Proc. of ACM

SIGCOMM, 2017.
[22] B. Schlinker et al., “Engineering Egress with Edge Fabric: Steering

Oceans of Content to the World,” in Proc. of ACM SIGCOMM, 2017.
[23] Y. Liu, M. Wang, S. Shi, Y. Wang, and C. Qian, “Edgecut: Fast and

low-overhead access of user-associated contents from edge servers,” in
2023 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2023,
pp. 228–240.

[24] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: Provable Load Balancing for Large-Scale Storage Systems
with Distributed Caching,” in Proc. of USENIX FAST, 2019.

[25] Z. Zhu, Y. Zhao, and Z. Liu, “In-memory key-value store live migration
with netmigrate,” in 22nd USENIX Conference on File and Storage

Technologies (FAST 24), 2024, pp. 209–224.

[26] S. Kianpisheh and T. Taleb, “A Survey on In-Network Computing:
Programmable Data Plane and Technology Specific Applications,” IEEE

Communications Surveys & Tutorials, 2023.

[27] “Intel tofino series of p4-programmable ethernet switch asics.
https://www.intel.com/content/www/us/en/products/details/network-
io/intelligent-fabric-processors/tofino.html.”

[28] Y. Xu, K. He, R. Wang, M. Yu, N. Duffield, H. Wassel, S. Zhang,
L. Poutievski, J. Zhou, and A. Vahdat, “Hashing Design in Modern
Networks: Challenges and Mitigation Techniques,” in Proc. of USENIX

ATC, 2022.

[29] “Broadcom bcm56070 switch programming guide.”
https://docs.broadcom.com/doc/56070- PG2-PUB.

[30] “Data center access design with cisco nexus 5000 series switches
and 2000 series fabric extenders and virtual port channels.”
https://itnetworkingpros.files.wordpress.com/2014/04/c07-572829-
01_design_n5k_n2k_vpc_dg.pdf.

[31] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proceedings of the 2018 international

conference on management of data, 2018, pp. 489–504.

[32] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proceedings of

the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.

[33] I. Sabek, K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, and T. Kraska,
“Can learned models replace hash functions?” Proceedings of the VLDB

Endowment, vol. 16, no. 3, pp. 532–545, 2022.

[34] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Sosd: A benchmark for learned indexes,” arXiv preprint

arXiv:1911.13014, 2019.

[35] “Intel DPDK: Data Plane Development Kit,” https://www.dpdk.org.

[36] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh, “Scaling up clustered network appli-
ances with scalebricks,” in Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, 2015, pp. 241–254.

[37] R. Marcus, A. Kipf, and A. van Renen, “Searching on
sorted data.” Harvard Dataverse, 2019. [Online]. Available:
https://doi.org/10.7910/DVN/JGVF9A/8FX9BV

[38] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Radixspline: a single-pass learned index,” in Proceedings

of the third international workshop on exploiting artificial intelligence

techniques for data management, 2020, pp. 1–5.

[39] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech, “A family
of perfect hashing methods,” The Computer Journal, 1996.

[40] D. Belazzougui and F. C. Botelho, “Hash, displace, and compress,” in
Proc. of Algorithms-ESA, 2009.

[41] E. Esposito, T. M. Graf, and S. Vigna, “Recsplit: Minimal perfect
hashing via recursive splitting,” Tech. Rep., 2019.

[42] M. Genuzio, G. Ottaviano, and S. Vigna, “Fast Scalable Construction of
(Minimal Perfect Hash) Functions,” in Proceedings of the International

Symposium on Experimental Algorithms, 2016.

[43] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: an
efficient data structure for static support lookup tables,” in Proceedings

of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.
Citeseer, 2004, pp. 30–39.

[44] “YCSB benchmark. https://github.com/brianfrankcooper/ycsb.”

[45] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings

of the 12th ACM SIGMETRICS/PERFORMANCE joint international

conference on Measurement and Modeling of Computer Systems, 2012,
pp. 53–64.

[46] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann et al., “Alex: an updatable
adaptive learned index,” in Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, 2020, pp. 969–984.

[47] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, “Monotone minimal
perfect hashing: searching a sorted table with o (1) accesses,” in
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete

algorithms. SIAM, 2009, pp. 785–794.

11

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

[48] B. Fan, D. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,”
in Proc. of USENIX NSDI, 2013.

[49] “Broadcom corporation. bcm56070 switch programming guide.
https://docs.broadcom.com/doc/56070- pg2-pub, 2020.”

[50] “CRC8-MAXIM. https://github.com/frankboesing/fastcrc.”
[51] “Implementation of Ludo Hashing in C++,”

https://github.com/QianLabUCSC/Ludo.
[52] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,

2004.
[53] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang, “Are

updatable learned indexes ready?” arXiv preprint arXiv:2207.02900,
2022.

[54] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” 2014.

[55] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly,
“Symbiotic routing in future data centers,” in Proc. of ACM SIGCOMM,
2011.

[56] X. Jin et al., “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of ACM SOSP, 2017.

[57] Y. Liu, S. Shi, M. Xie, H. Litz, and C. Qian, “Smash: Flexible, fast,
and resource-efficient placement and lookup of distributed storage,”
Proceedings of the ACM on Measurement and Analysis of Computing

Systems, vol. 7, no. 2, pp. 1–22, 2023.
[58] S. Wu, Y. Cui, J. Yu, X. Sun, T.-W. Kuo, and C. J. Xue, “Nfl:

Robust learned index via distribution transformation,” arXiv preprint

arXiv:2205.11807, 2022.

12

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.

