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Abstract—Key-value lookup functions have been widely ap-
plied to network applications, including FIBs, load balancers,
and content distributions. Two key performance requirements of
a lookup algorithm are high throughput and small memory cost.
One limitation of existing fast network lookup algorithms is that
they require multiple independent and uniform hash functions,
which cost high computation time and might not be available on
existing hardware network devices. Recently developed learned
model hashing (LMH) proposes to use a linear machine learning
model to replace hash functions to avoid hash computation, but
they are not optimized for memory cost. We propose a novel
network lookup method called Parrot hashing, which uses a
learned model to distribute keys into different buckets and applies
a simple perfect hashing method to resolve the collisions of the
keys in a bucket. Parrot can be implemented with only one CRC-
8, which is available on all network devices. We implement Parrot
in three prototypes: a software program on end hosts, a software
switch, and a FIB running on a hardware programmable switch.
The experimental results show that Parrot achieves the highest
lookup throughput on all three prototypes, compared to existing
methods. Its memory cost is also significantly lower than that of

LMH.
I. INTRODUCTION

Table lookups serve as fundamental functions and design
blocks of numerous network protocols and algorithms from
the data link layer to the application layer. The exact network
lookups can be generalized as searching a key and getting a
value that corresponds to the search key.! For example,

1) “Flat” address lookups in Forwarding Information Bases
(FIBs). MAC addresses are a typical example of flat
network addresses and efficient MAC table lookup is
a key function to support large-scale Ethernet and data
centers networks [1]-[5]. In addition, many new Internet
architectures rely on flat addresses. For example, NDN
[6] and CCN [7] use content names for routing and
packet forwarding. MobilityFirst [8] provides a solu-
tion for mobile-intensive networks by using globally
unique identifiers (GUIDs). The names and IDs can
be considered keys in the lookup tables of these new
networks. Other examples include Tunnel End Point
Identifier (TEID) lookups for mobile core networks [9].

2) Software defined networks (SDNs) [10] use multiple
packet header fields as the key to identify network flows.
The operations based on the results of flow lookups are
not limited to forwarding, which also include measure-
ment [11]-[14] and security tasks [15].

IThis work only considers whole-key matching without prefix matching.
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3) Cloud load balancers that distribute packets to replicated
backend servers [16]-[19] rely on key-value lookups for
which the key is the 5-tuple on each packet header and
the value is a server index. Network address translation
(NAT) also stores flow states and performs lookups
based on the 4-tuple.

4) In a content delivery network (CDN) or edge network
[20]-[23], table lookups are used to find the server that
stores a particular content or instance.

5) In-network key-value (KV) storage [24], [25] and com-
puting [26] employ programmable network devices [27]
to support a large variety of KV lookup functions to
achieve fast processing and/or short latency.

All of these applications share two major performance
requirements. First, the lookup function should be fast to
support high network throughput or the line rate. Second, the
memory cost should be minimized because these functions
are located in the fast memory (e.g., TCAM and SRAM)
of network devices, which are expensive and power-hungry.
As a result, existing designs for network lookup functions
focus on optimizing these performance metrics [2]-[5], [9].
All of these designs rely on multiple independent universal
hash functions, which introduces several inevitable problems
including high computation time [12] and lack of sufficient
independent hash functions on certain hardware devices [28].
For example, Broadcom switches support RTAG7 [29] and the
Cisco Nexus 5500 Series [30] supports CRC-8, which do not
satisfy the hash independence and uniformity requirements of
the above designs [28].

In database research, the learned model hashing
(LMH) [31]-[33] was recently proposed to use a machine
learning model to replace traditional hash functions for
secondary indices. The idea of LMH is to train a model that
approximates the cumulative distribution function (CDF) of
all keys and predicts the position of a lookup key in a sorted
array. Let each position of the array represent a bucket that
can store the value corresponding to a lookup key. The array
can then be considered a hash table where LMH replaces
hash functions to calculate the position of a key. Since a
trained model cannot distribute all keys evenly, collisions still
happen. Probe-based or chain-based collision resolution can
be used [33]. However, we realize that most studies about
LMH [31]-[33], including a recent benchmark study [33],
pay little attention to the memory cost.

We are curious about the feasibility of applying LMH for
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network lookups because it has no requirements for hash
functions and provides high throughput. To this purpose, we
conduct extensive empirical studies to evaluate LMH tables
and recent network lookup algorithms [5] on a public bench-
mark [33], [34]. Our key observations are as follows. LMH
tables achieve higher lookup throughput because the learned
models in the LMH tables compute faster than hash functions
for distributing keys into buckets. However, recently-proposed
Minimal Perfect Hashing (MPH) based network lookup [5],
[9] costs much smaller memory because they do not need to
store keys. Another advantage of LMH is that it supports range
queries.

Based on the above observations, we motivate this research
to find a solution that can achieve the best of two worlds:
high throughput, no hash function requirements from LMH,
and low memory from MPH. Our key innovation is to use a
learned model to distribute keys into different buckets. When
collisions happen in a bucket, we use perfect hashing to resolve
all collisions into different slots — because perfect hashing can
be easily implemented with a simple mapping function such as
CRC-8 when the number of keys is small. Based on this idea,
we present Parrot hashing, a scalable, fast, memory-efficient,
and dynamic lookup algorithm that has no requirement
on the hash function support from network devices.

We implement Parrot hashing in three prototypes: 1) a
software program running on end servers and compatible with
an existing benchmark for secondary indices [33], [34], which
can be used for application-layer network lookups such as
CDN and distributed storage; 2) a packet forwarding prototype
implemented on hosts by the Intel Data Plane Development
Kit (DPDK) [35] and 100GbE NICs, which can be considered
an example of software network functions such as software
switches and load balancers; 3) a packet forwarding pro-
totype running on a Tofino programmable switch, which is
an example for programmable network hardware. We believe
the performance results of these prototypes are sufficient to
demonstrate the advantages of Parrot in many network appli-
cations in various layers. The experimental results show that
Parrot hashing achieves the highest lookup throughput on
all three prototypes, compared to existing methods including
LMH and MPH solutions. Parrot hashing costs higher memory
than a recent MPH-based network lookup method [5], but
smaller than other solutions. Unlike these methods, Parrot has
no requirement on hash functions.

Our contributions in this paper are summarized as follows:

1) We conducted comprehensive empirical studies to com-

pare LMH and MPH-based lookups, obtained important
observations, and analyzed the feasibility of applying
LMH for network lookups.
Based on the new observations, we design Parrot hash-
ing, a scalable, fast, memory-efficient, and dynamic
lookup algorithm that can be implemented with only
one CRC-8 function. By relaxing the restrictions of hash
functions, Parrot hashing is more widely applicable than
previous network lookup methods [3]-[5], [36]. Parrot
hashing also supports range lookups.
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Fig. 1: Ludo hashing structure

3) We implement Parrot hashing in three prototypes and
evaluate it with publicly available datasets [37] exten-
sively. The results show that Parrot hashing provides
higher throughput in all prototypes compared to existing
methods.

II. LMH vs. MPH: EXPERIMENTAL STUDIES AND
OBSERVATIONS
A. Learned Model Hashing (LMH)

LMH [31], [33] aims to reduce the collision rate of tradi-
tional hash functions by approximating the CDF of all keys
and mapping keys into different positions in order. Learned
models [31], [32], [38] leverage the order of keys to output
associated positions so that all keys can be assigned to buckets
in a consecutive array.

As learned models cannot map all keys to the distinct
positions in the array, collisions still happen. LMH addresses
the collisions — keys that are mapped to the same bucket
— with similar designs as traditional hashing tables. The
two representative collision resolution methods are probing
and chaining similar to classic hash tables. One noticeable
advantage of LMH is that model inference in many real
datasets is much faster than hash function computation [33].

For all collision resolution methods mentioned above, keys
must be stored in the table to recognize which bucket stores
which key. We realized that most studies about LMH [31]-
[33] pay little attention to the memory cost, and found that
the memory footprint is not optimized. However, LMH can be
a potential solution to avoid the dependence on complex hash
computations of existing network lookup solutions because it
uses model inference instead of hash functions.

B. Minimal perfect hashing (MPH)

MPH is another line of research to reduce hash colli-
sions [5], [36], [39]-[42]. An MPH method constructs a func-
tion that maps n keys to different buckets without collisions.
MPH achieves significant memory efficiency for network
lookups because the table does not need to store keys to
help the search — only values are required to be stored in
each bucket. Note that storing keys may cost more space than
storing the values in many network applications. For example,
a MAC address (key) is 32-bit long and the return port index
from FIB (value) can be as short as 8 bits (for 256-port
switches); a 5-tuple (key) includes 104 bits while the server
index returned by a load balancer (value) can be less than 20
bits.

To allow key dynamics, including key insertions and dele-
tions, MPH may use (1 + d)n positions for n keys. The main
idea of recent dynamic MPH for network lookups [5], [36]
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Fig. 2: Lookup throughput comparison

is first to divide the set of keys into groups, each of which
includes a small number of keys. Then within each group,
a hash function is found to map the keys in the group to
different positions without collisions. The most recent solution
of dynamic MPH is called Ludo hashing [5]. As shown in
Fig. 1, Ludo hashing [5] first uses a data structure called
Othello [4], a dynamic implementation of Bloomier filter [43],
as the bucket locator to distribute keys into different buckets,
each of which includes 4 slots. Then, in each bucket ¢ Ludo
uses brute force to find a hash seed s; such that the hash
function with s; can map the 4 keys in the bucket to 4 different
slots without collision. Hence, keys do not need to be stored
in the table for collision resolution. The space cost of Ludo is
3.76 4+ 1.051 bits per key, where [ is the length of the record
value [5]. Ludo requires three independent hash computations,
two for the bucket locator (Othello) and one for the slot
locator. Ludo can be implemented for FIB and application-
layer content lookups [5].

C. Experiments and Observations

We wonder whether LMH can be used for network lookup
algorithms by understanding the tradeoffs between LMH and
MPH. However, we realize that the recent benchmark study
[33] that compares LMH with classic hash methods did not in-
clude the recent solutions of MPH. In addition, the benchmark
study [33] did not show the memory cost comparison.

To this purpose, we have conducted experimental studies
to compare LMH with recent MPH methods and analyze
their tradeoffs. We show the results of the representative
methods: chain-based LMH table with the RMI model [31]
(whose throughput is higher than other LMH tables [33])
and Ludo. We use the same benchmark program as recent
studies of LMH [33] do, as well as 20 million records from
each of the public datasets WIKI and BOOK [37]. We run
experiments on a server equipped with Intel(R) Xeon(R) CPU
E5-2687W v4 at 3.0GHz and 32GB DDR4 memory. For each
set of experiments, we conduct 1 million uniformly random
lookup operations. The results of using application datasets
and network addresses are similar.

As depicted in Fig. 2, we find that chain-based LMH tables
always achieve higher throughput compared to Ludo by up
to 2x in both datasets WIKI and book. We further analyze
the throughput results by showing the time breakdown for
querying a key in Fig. 3(a). With the dataset size varying
from 10M to 50M, the accessing and computing in the bucket
locator always take the most part (62%) of the latency. We
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also draw a red line to indicate the time used by a two-layer
model RMI [31], the learned model used in LMH tables,
to output the predicted bucket position of the queried key.
The bucket locator of Ludo takes 3x latency compared with
RMI computation, due to more hash computation and random
memory access for the bucket locator. We realize the root
reason for LMH outperforming Ludo in throughput is that
the learned models (RMI) distribute keys to buckets at a much
faster speed — although the constructed bucket locator of Ludo
can map exactly four keys to each bucket while RMI might
cause random collisions.

Thus, we have our first observation. 1) The bucket locator
is the primary throughput bottleneck in MPH schemes.

We then compare the memory cost of LMH-RMI based hash
table and Ludo and give a breakdown of memory usage as
shown in Fig. 3(b), where the key size is padded to be 40
Bytes with the dataset [44] size as 120 million and 140 million,
respectively. In practical workloads [45], 40B is a typical
average key length. We find that the majority of the memory
cost comes from storing the keys, which almost makes up
80% of the usage. On the other hand, the memory cost of
RMI only takes 1.608KB (~8~7 of all memory) because lots
of keys can be indexed just with the slope and intercept
of the approximated linear function. We obtain the second
observation: 2) Avoiding storing full keys is the main reason
for the memory efficiency advantage of Ludo hashing.

We further analyze the collisions when the learned models
(e.g., RMI, RadixSpline [38]) map keys to buckets. Fig. 3(c)
shows the distribution of the position errors for 20M sorted
keys in probe-based LMH with RadixSpline and RMI, re-
spectively. We observe that there are only no more than
600K keys that could be found without probing. From the
figure zoomed out, there are around 4000 keys with position
errors up to 100. Unlike the chain-based hash table that
can resolve collisions within the bucket, probe-based LMH
tables accumulate prediction errors in consecutive buckets. The
probing latency is often pulled back when querying a key,
in which a large gap lies between the predicted and actual
positions.

Fig. 3(d) shows the CDF of the number of keys in each
bucket of chain-based LMH tables, when we set the load factor
as 0.85 with RadixSpline for the OSM and WIKI datasets,
respectively. For the WIKI dataset, which has been proven
as a learned-friendly dataset with higher linearity, there are
almost 40% of the buckets are empty. However, for the OSM
dataset, there is a total of 80% empty buckets in the table.
Also, over one-third of non-empty buckets have at least four
records. The probing in the bucket along the collided chain
also drags down the throughput of locating a key. We will
show more throughput details in Section IV.

Our third observation is: 3) The “last-mile” search of
LMH tables to fix the model errors is a major challenge of
LMH that causes longer latency for probing or accessing
linked buckets and higher memory cost because keys must
be stored to resolve collisions.
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Fig. 4: Parrot hashing overview

D. Idea of Achieving the Best of Two Worlds

By analyzing the advantages and disadvantages of both
LMH-based and MPH-based tables, we realize LMH is strong
at the initial key distribution method because the learned model
is fast to compute and small in memory — and it does not rely
on complex hash functions — while MPH is powerful for the
“last-mile” search of resolving collisions of a small number
of keys, which can use a constructed function to map keys to
different slots without collision and avoiding storing the keys.

Based on these facts, we conducted research for a new net-
work lookup design that uses LMH for initial key distribution
to buckets and MPH for collision resolution within a bucket of
keys. This design uses the powerful steps from both methods
and can potentially achieve high throughput, low memory, and
range queries, without relying on specific hash functions.

III. DESIGN OF PARROT HASHING
A. Overview

Similar to other hash functions, Parrot hashing provides the
following index function: For each record < k,v > including
the key k and value v (in practice, k is a network identifier and
v is usually the index of forward port on hardware switches,
the index of network function actions, or the index of a
physical machine), if k is queried, Parrot hashing will return
.

Parrot hashing adopts an architecture design of three mod-
ules, as shown in Fig. 4. Module @ provides a pluggable
interface for linear regression models used in LMH (e.g.,
RadixSpline [38], RMI [31]). Module @ is called the index
table, which consists of a series of buckets, and each bucket
contains four slots for holding the values of the keys and a
seed. It organizes and places the values in the slots of each
bucket based on the idea of Ludo, without storing keys. The
keys are mapped into buckets indicated by the linear regression
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models according to the model-based insert policy [46]. If
more than four records are mapped into one bucket, we will
use the stash chain (Module ®) to hold the records in the
linked stash node. Note that the keys of records are kept
in order between the buckets based on the properties of the
learned models: For two consecutive buckets B, and B, 1,
the biggest key k; of bucket B, is guaranteed to be smaller
than the smallest key ko of bucket B, ;. In addition, record
keys in the stash chain are also ordered by the keys. The values
in the same bucket of the index table might not be ordered.

B. Index table

The index table is the main structure to index most of the
records. A bucket is a basic unit for locating records with the
learned models’ results. It includes four slots to store at most
4 record values and one seed (8 bits) used to realize the MPH
for the four records in this bucket. No keys are stored in the
index table. The number of buckets is set to n/(4e), where
€ is the load factor of the table and n is the total number of
records, as we have four slots initialized in each bucket.

Consider the first four keys of records inserted to a bucket
are {ko, k1, ko, ks}. Parrot hashing uses brute force to select
a specific seed s from O to 255, which can make a function
H map the four keys into four distinct slots without collision.
H can be a simple mapping function such as a CRC-8. We
will describe how to implement a seeded CRC-8 for Parrot in
Sec. III-F. In general, we use brute force to find s such that:

H(k;,s) # H(kj,s), where 0 <¢,7 <3and 0 < H(.) <3

If the number of records is less than four, finding a seed to
separate the records will take less time. Then, when we access
a record value associated with key k in the bucket, we compute
the hash H (k, s) to locate the slot.

Compared with probing and chaining, realizing the slot
locator with this MPH way is fast, and we will show the results
in Section IV. Furthermore, even if some buckets overflow due
to the uneven distribution of the learned model, index table can
save the space to store the first four record keys, which is also
a large portion of memory usage (> 35%).

MPH could be realized with small overheads in the case
of a small number of records [4], [5], [47]. The core idea of
Parrot hashing is to distribute keys using LMH into different
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buckets with order-preserving and fast computation and then
use MPH within each bucket to achieve low memory cost and
high speed to locate the value.

C. Stash chain

The learned model in module @ cannot map all keys to the
index table with an even distribution of each bucket having
exactly 4 keys. So we leverage the stash chain to hold the
records overflowing each bucket. We have one pointer in each
bucket of the index table to link to the head of a stash node,
if more than four keys are mapped to the bucket. For a bucket
with more than 4 keys, all other records are stored in the stash
chain.

In the stash chain, each stash node contains one or more
ordered records as shown in Fig. 4. Each stash chain stores
the full keys of the records to realize order-preserving key
insertion and reduce the time spent on queries along the chain.
D. Operations of Parrot hashing

Lookup of keys. As shown in Figure 4, there are one seed,
four KV records in each bucket of the index table, and a
pointer pointing to the first stash node. For a queried key,
we first locate the bucket it exists based on the result of the
learned model. We then access a slot indicated by the result
of the hash function with the bucket’s seed based on the rule
of MPH. The value val we get from the slot “might be” the
associated value for the queried key, because the target record
might be stored in the index table or the stash chain. Before
returning the data back, the lookup algorithm will check if
there is an attached stash chain to this bucket.

If there is no overflow record in this bucket or the first key
in the stash node is larger than key, we return the value val we
get from the index table because key is absolutely not in the
stash chain — recall that records in the stash chain should be
ordered by their keys, hence all remaining keys must be even
larger than key. Otherwise, the algorithm should search the
stash chain until it finds the exact record sharing the same key
with the queried key. Then, the algorithm returns the value
found in the stash chain. This design helps Parrot hashing to
achieve shorter query latency by avoiding searching the stash
chain if key is smaller than the key in the first stash node of
this bucket.

Insertion/Update of keys. Similar to key lookups, the
learned model will first compute the corresponding bucket
when inserting a record with the key key. During the con-
struction of the Parrot hashing table with bulk load, all records
are inserted in order, and the first four records in the index
table are the smallest in their buckets. The algorithm inserts
the record value into the index table and generates a new seed
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to make the hash function distribute these records’ keys into
distinct slots without collision. If the four slots of the bucket
are full, the inserting record should be appended and linked
into the stash chain in order. Note that all keys are kept during
bulk loading and will be discarded after that. For the individual
record insertion after bulk loading, the inserting record key
and value will be directly inserted into the stash chain with
the order preserved.

As shown in Fig. 5, provided there is one record per stash
node, the record {key,val} ={15,6} is mapped to the bottom
bucket by the learned model. Then, the algorithm will visit
the stash chain to find a position that maintains the order of
the keys. Eventually, it should be inserted between the records
{12,1} and {16,6}. If the inserted key is smaller than the key
in the first stash node, we will insert it as the first stash node.
For example, the record {8,17} will be inserted into the first
position of the stash chain. Even if there is an old value for
key 8 in the index table, it will not influence the lookup result
because the newly inserted value will be stored with the full
key in the stash chain.

When the exact key cannot be found in the stash chain
during a data update operation, we treat the update as a data
insertion. If a stash node’s record key matches the update key,
the record value is directly updated.

As the number of keys increases, memory usage rises
due to the additional data insertions and updates. Once the
memory usage in the current Parrot hashing table reaches
a threshold — we set 1.2 times the original table size — a
reconstruction will be triggered. During reconstruction, data
insertion will be temporarily halted to the existing table in the
data plane, and the few corresponding buckets will be locked.
The reconstruction will start a new table in the control plane,
while lookups in the data plane that map to unlocked buckets
can continue using the old hash table. A few data requests
to the locked buckets will be cached in an operation list and
processed once the rebuilding is complete. A reconstruction
happens once in a long time as the size needs to increase by
20% and takes <10 seconds for 80 million keys (as shown in
the evaluation in Sec. IV-A4).

Range lookups. Although not our main focus in this work,
range lookups are among the advantages brought by learned
models. Range lookups in network lookups can be used
for application content search. One might think that range
lookups can be used to implement IP prefix matching, but we
have not explored this direction and will leave it for future
work. Parrot supports two kinds of range lookups. One is
scan(low_key, high_key), and Parrot will return the values
whose key is between low_key and high_key. The other one
is scan(low_key,len), and a value list of length len starting
from the low_key would be returned.

The starting key low_key will be located based on the
lookup algorithm, and then the following len records or
records that are smaller than high_key should be retrieved. If
the starting key is found in the index table, then all four records
in the bucket and records in the stash chain should be returned
because the order is not maintained within the index table due
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to the MPH property. Note that some records in the index table
bucket might not be within the range of the query, so when
the data items are retrieved from the database, those items
should be excluded in the final results of the range query. If
the starting key is found in the stash chain of a bucket, then the
records that are in the stash chain and before the starting key
should not be returned because the order in each stash chain
is preserved. After the algorithm traverses a bucket and has
not reached the high bound or enough records, it should move
to the next bucket because the keys in consecutive buckets are
order-preserving.

Deletion of keys. The deletion operation in Parrot hashing
can be implemented as records lookup and mark the data for
this record as invalid. If the record is found in the index table,
we remove the value in it. If it is found in the stash chain, we
can remove the stash node (if empty) and release the space.

We implement an optimistic locking scheme [4], [48] for
concurrency control. Due to the page limit, we skip the details.
E. Analysis

In this section, we provide the theoretical analysis of the
time complexity of lookup and insertion operations, as well
as the memory cost estimation of Parrot hashing.

Expected records in each bucket. Provided we have m
buckets in the index table with the load factor as ¢, and there
are n records in a dataset to be inserted. We have m = n/(4e)
where € is the load factor and each bucket contains four
slots. Assume all records keys are ko,ki,..,k,, and the
learned model will output the assigned bucket sequence as
bo, b2, .., bn—1, where b; € [0,m) for all 7. The gaps between
each consecutive record’s bucket sequences are expressed as
¢gi, and the bucket number can be expressed as b; = Z;:O gi.
It is reasonable to assume g;’s distribution is i.i.d [33] with
the probability density function (PDF) as f;(z), then the PDF
function of b; can be expressed as the multiple convolution of

*1(b) = fa(20)* fa(21)*-*fc(z;) based on renewal process.

Provided N(b) = >, _, b; refers to the number of record
keys that appear in the first b buckets.

The probability for a bucket b to have exact ¢ records is:

Pb,t)=P(N(b)—Nb-1)=t) =

niP(N(b )= )P(NB-(b—1)=t)
=0

The probability P(N (b — (b — 1)) = ¢) can derived from the
PDF of bi as f(1) — £ (1).

Lookup complexity. In Parrot hashing, We set the linear
regression model as two layers for the learned model (e.g.
RMI). Thus, there are at most two linear computations required
with slopes and intercepts to locate the bucket for the key.
In the “last mile” search inside each bucket, the complexity
depends on the number of colliding records.

In the best case, the number of records in each bucket is
no more than 4, and the MPH distributes keys into different
slots without collisions. We can locate the targeted slot with a
hash computation with the provided seed. Thus, the best-case
lookup time is just O(1). In the average case, the number of
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keys mapped to a bucket is still a constant, and hence the time
complexity is also O(1).

Insertion complexity. For the in-place insertion shown in
Fig. 5(b), we first need to find the position to insert the new
records in the stash chain and allocate space to link the new
records. The best case is there is no stash node in this bucket,
and we can insert it with a new stash node linked to the
bucket, and the complexity is O(1). In an average case, the
time complexity for inserting a record would be O(l), where
l is the average number of records in a bucket.

Memory usage. Assume we have four slots in each bucket
before allocating extra space for stash nodes. Each bucket
consists of a seed (8-bit), four slots for record values, and
a pointer referring to the stash chain (64-bit).

Provided the length of the record key and value are [, and
l,, respectively. Each bucket memory usage would be 8+64+
4.1, =72+ 41, bits. Thus, the memory usage for index
table is (72+4-1,)-n/(4-€¢) = n-(18+1,)/¢ and each record
costs (18 + 1,)/e bits in the best case. The memory cost in
the stash chain depends on the number of colliding records
in each bucket. We get the probability that there are exact ¢
records in one bucket as P(b,t) in Lemma 1, for any buckets
with records number larger than four (¢ > 4), at least (¢t — 4)
stash nodes will be allocated to have collided records. Each
stash node contains a KV record and a pointer linking the next
node so its memory cost is (I + I, + 64) bits. In addition,
based on the expected number of records in Lemma 1, the
expected number of stash nodes in bucket b is >~ - P(b,t).
Then, the memory cost of the stash nodes in all buckets is:

DO Uk + 1y + 64) - P(b, 1)) 2)
b=0 t=5
F. Implementation with CRC-8

The index table requires the MPH functions to be random
enough to find a seed to distribute four different keys into
distinct slots without collision. Ludo hashing [5] leverages
Murmurhash as the slot locator in their design. However, the
main challenge is that multiple networking hardware only
supports CRC-8 checksum or RTAG7 functions like Broadcom
switches [49] and Cisco Nexus 5500 [30].

In our initial effort, we use CRC-8 function [50] with
polynomial as 0x31 to distribute the keys in the index table by
brute-force searching an 8-bit seed. It turns out we have over
15% buckets that cannot be distributed without collision with
CRC-8. Provided the CRC-8 result of a given key is c7cg..co,
we then propose to add the crcg and cycs, and then use the
least two bits as the slot index. This shuffle makes the CRC-
8 more random and keeps the fail buckets rate within 2.7%
in the experiments. All the keys in the failed buckets will be
appended to the fallback table for additional checking.

G. Implementation on programmable data plane

The Parrot hashing algorithm is portable and can be im-
plemented on programmable switch ASICs or other network
hardware. We implement Parrot hashing in P4, and the evalu-
ation results in Section IV-C demonstrate that Parrot hashing
can run on a Tofino switch at line rate.
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Fig. 7: The registers defined in the Tofino pipeline.

The computation of learned models with match-action
table. In Parrot hashing, learned models are used to map
keys into a bucket, and its calculation consists of linear
computations with slope and intercept. The input key is the
extracted destination Ethernet address. The main challenge is
that the multiplication between key and slope is not fully
supported in Tofino 1 because float multiplication requires
more ALUs than it provides.

We observed that the learned models map all keys to buckets
in order, and we can get to know the key ranges in each bucket
after the construction of the index table before discarding the
keys. Thus, we leverage the range match in the match-action
table by setting the key ranges in each bucket. Then, we can
bypass the float computation of learned models by directly
mapping keys into buckets. The pseudocode is shown in Fig. 6.

In Fig. 7, we show the registers utilized within the Tofino
pipeline. Upon a packet’s arrival, the destination address is
extracted, initiating a range match to determine the bucket
index in the first stage. Subsequently, the seed associated with
the bucket is retrieved from register Reg/. The port value is
obtained from the index table Reg2 by computing the CRC-
8 with the seed. Register Reg3 tracks the starting index of
stash nodes packed in Reg4. If no stash node is present in
the bucket, the offset value is set to OxFFFFF, indicating
that subsequent register reads can be skipped. If the offset
indicates at least one stash node exists, the low 32-bit Ethernet
address stored in Reg4 is read and compared against the target
port destination address in Reg5. Due to no support for loop
logic and the limited number of stages provided in the Tofino
pipeline, at most two stash node entries can be read. The keys
from terminated stash chains are added to the overflowed list.

IV. EVALUATION

In this section, we present the experimental results to
demonstrate the performance of Parrot hashing and compare
it to other methods. We conduct experiments on a soft-
ware benchmark program to illustrate that Parrot hashing can
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results of packet forwarding confirm the line rate of our Parrot
hashing and demonstrate the feasibility of only using CRC-8
for building network lookups.

A. Algorithm evaluation

We evaluate Parrot hashing in a hashing benchmark program
with practical datasets and compare it against the chained-
based LMH table and other state-of-the-art hash table schemes.

Setup. The experiments are run on a workstation with
Intel(R) Xeon(R) CPU ES5-2687W v4 at 3.0GHz, 32GB
2400MHz DDR4 memory, and 32MB LLC. The secondary
storage device equipped with the workstation is an SK Hynix
SC311 SATA SSD with a capacity of IT. We use Ubuntu
18.04 LTS with Linux Kernel 4.15. As a common setting in
the existing SOSD benchmark program [34] that has been used
to benchmark LMH and classic hashing methods, we use a
single thread unless otherwise stated.

Comparing methods. We compare Parrot hashing with the
state-of-the-art solutions of both LMH and MPH that include
the following methods. 1) Chained-based LMH table. They
have been demonstrated to achieve the highest throughput
among existing hash tables in many practical datasets [34]. The
models we used for training the CDF of keys are two layers
RMI [31] models. Following that, we use a chain-based LMH
table with a bucket capacity of 1, which is the default setting of
it [33]. 2) Ludo hashing [5]. It is a recent MPH index solution
with a lookup in O(1) time and the smallest space cost among
dynamic perfect hashing. We use the source code of Ludo
hashing provided by the author on a public webpage [51]. 3)
Cuckoo hashing [52]. It is a state-of-the-art hashing technique
that addresses hash collisions by placing each key in one of
multiple possible locations. Cuckoo has been widely applied
to network lookups [3], [18], [35]. We use the (2,4)-Cuckoo
hash table, meaning each bucket includes 4 slots and there are
two alternative buckets.

Datasets. They are (1) WIKI (application-layer identifiers),
time stamps of users’ updates from Wikipedia. (2) BOOK
(application-layer identifiers), which are keys for indexing
the popularity of books on Amazon. (3) MAC (link-layer
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Fig. 8: Lookup throughput with uniform and zipfian workloads.

identifiers), randomly generated MAC addresses (48-bit), and
each of them is associated with a port (8-bit). (4) 5-TUPLE
(transport-layer identifiers), randomly-generated 5-tuples for
TCP connections. WIKI and BOOK are publicly available
datasets [37] used by many existing evaluations [33], [46],
[53]. We generate the returned values in 16 bits for datasets
WIKI, BOOK, and 5-TUPLE. As indicated by the past
work [46], [53], the key distribution of dataset WIKI shows
better linearity, and there will be fewer collisions in each
bucket computed by the learned models compared with that
of dataset BOOK.

Configuration. In our default experiment setting, we first
load 80M distinct keys from the original datasets after re-
moving duplicates. Each query set contains 10 million keys
generated from the loaded keys in uniform or Zipfian distri-
bution. We run three query sets for each data point and report
the average.

1) Lookup throughput on end systems: We evaluate the
lookup throughput by varying the load factor of these hash
tables. Fig. 8 shows the performance comparison with load
factors from 0.85 to 0.95 for the four datasets. Figs. 8(a-d)
are results on the query sets sampled in a uniform distribution,
and Figs. 8(e-h) are those with a Zipfian distribution.

We find that Parrot hashing can always achieve the high-
est throughput compared with other baselines. In uniform
workload, Parrot hashing outperforms Ludo hashing, Cuckoo
hashing, and chained LMH by 2.08 %, 1.10x, and 1.09 X on the
lookup throughput of dataset MAC with a load factor of 0.85,
respectively. For WIKI lookups, Parrot hashing outperforms
these three by 2.38x, 1.37x, and 1.10x, respectively. The
results in the Zipfian workload show similar patterns. The
experimental results demonstrate that Parrot hashing provides
the highest lookup throughput across different datasets.

We observe Parrot hashing and Chained LMH show their
own highest lookup throughput in the dataset WIKI because
the key distributions of the dataset WIKI show better linearity,
and there are fewer key collisions after keys are mapped to
buckets. Parrot hashing can locate the first four keys in the
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bucket with one hash computation, but Chained LMH has
to traverse keys and check them individually. Additionally,
Ludo hashing and Cuckoo hashing maintain stable lookup
throughput on their own with varied datasets and load factors
because the computation and memory accessing required are
the same.

2) Memory usage: In this section, we show the memory
cost of the compared lookup schemes.

Figures 9 show the memory cost of these methods by
varying the load factor from 0.85 to 0.95, and each of these
tables includes 80M items. Note that the memory usage of
Chained LMH and Parrot hashing include all the learned
models. Ludo hashing always achieves the lowest memory
overhead for all datasets since it leverages MPH to manipulate
the keys’ placement in the bucket and slot to avoid extra
memory costs.

As shown in Fig. 9(c), for the dataset WIKI, the memory
usage of Parrot hashing is 1.94x, 0.36x, and 0.47x of
that in Ludo hashing, Cuckoo hashing, and Chained LMH,
respectively, when the load factor is 0.85. Compared with
Chained LMH, the memory usage benefit comes from the
space for storing the keys of the first four items in each bucket.
Regarding the dataset BOOK, the memory usage of Parrot
hashing is a bit larger than that of dataset WIKI. The reason
is that the learned models map keys into buckets with more
collisions in the dataset BOOK, and the amount of stash chains
are used in Parrot hashing. Thus, the Parrot hashing consumes
large memory resources with pointers and stash nodes.

In addition, we set the load factor to 0.95 and evaluated
the memory cost by varying the number of records from 16M
to 96M. As illustrated in Fig. 10(a-d), we observed that the
memory usage of all tables increases linearly with the number
of records. Comparatively, Ludo hashing incurs the lowest
memory overhead among all schemes, while Chained LMH
costs the most. Parrot hashing outperforms Cuckoo hashing
and Chained LMH in all datasets by not storing full keys of
the first four items in each bucket.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 21,2025 at 20:04:19 UTC from IEEE Xplore. Restrictions apply.



A Ludo Hashing EEM Chained LMH

BB Cuckoo Hashing B Parrot Hashing

518 18
Q15 Q15
1.2 51.2
3 ]

20.9 20.9
éo.e go.e
€03 €03
Z0.0 =0.0

85 87 89 91
Load factor

93 95 85 87 89 091

Load factor

93 95

(c) Dataset: WIKI. (d) Dataset: BOOK.

Fig. 9: Memory usage with the varied load factors.

@ Cuckoo Hashing BB Parrot Hashing|

521 ~2.1
018 018
815 015
§12 §12

0.9 0.9
50.6 50.6
£o03 £03
0.0 =0.0

16 32 48 64 80 96 16 32 48 64 80 96

Number of items (Million) Number of items (Million)

(c) Dataset: WIKI. (d) Dataset: BOOK.

Fig. 10: Memory usage with the varied number of records.

18 z1l8
Q15 Q15
%1.2 1.2
$0.9 E 0.9
206 206
£03 £03
=00 =00
85 87 89 91 93 95 85 87 89 91 93 95
Load factor Load factor
(a) Dataset: MAC. (b) Dataset: 5-TUPLE.
[==2 Ludo Hashing  m=m Chained LMH
~2.1 ~2.1
018 018
8, 1.5 015
512 81.2
- S
0.9 0.9
gO.G 50.6
£03 £03
=00 =00
16 32 48 64 80 96 16 32 48 64 80 96
Number of items (Million) Number of items (Million)
(a) Dataset: MAC. (b) Dataset: 5-TUPLE.
107 ~ 20
BEN Chained LMH [ Parrot Hashing 3
zo 16
Z12
=
- 8
S
< 4
o
-0
10* 102 10® 10* 10° 0 25 100 250 500

Range query length

Number of updates/second

Fig. 11: Range query latency. Fig. 12: Lookup thpt with ta-

ble updating.
Ludo |Chained| Cuckoo | Parrot
Datasets Hashing| LMH |Hashing | Hashing
WIKI | 240.9s 4.9s 16.8s 9.8s
BOOK | 293.8s 5.6s 16.2s 9.5s

TABLE I: Construction time

3) Range query performance: Both LMH and Parrot hash-
ing support range queries to hash tables. Fig. 11 shows the
evaluation results of range queries under dataset WIKI. We
measure the time consumed from starting with a range query
request to ending with a returned list of values.

In chained LMH, all records are sorted and placed in buckets
and link nodes because all keys are inserted into the bucket
indicated by the model’s output. When there is range query
{ks,len}, we go directly to the bucket where k is stored and
then read the following len records out in the table. Similarly,
all keys are sorted between buckets in Parrot hashing. Thus,
the range queried keys could be retrieved after we locate the
starting key k. The only difference is the record key order is
not maintained in the index table, so there are at most four or
eight extra records that would be read out as indicated in III-D.

4) Construction and updates: We evaluate the construction
time in this section. Each table is constructed with 64 million
records bulk loaded, and the load factor is set as 0.85. The
construction time results are shown in Table I. Chained LMH
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Fig. 13: Testbed for evaluating FIB via DPDK.

tables can complete the construction in around 5 seconds, and
Parrot hashing spends a bit more than that (6~10s), which is
still very fast. Ludo hashing takes a much longer time (>100s)
to construct their tables.

We evaluate the lookup throughput during table updates and
show the results in Fig. 12. The table includes 50M KVs, and
we vary the number of updates from 0 to 500 per second,
and half are insertions. A reconstruction is triggered at the
beginning. The figure shows the updates have a negligible
impact on throughput.

B. Software switch prototype with DPDK

In this section, we show the results of the software switch
prototype implemented by DPDK.

Setup. We use a workstation configured with an Intel
Xeon Silver 4314 CPU@2.40GHz, 160GB 2133MHz DDR4
memory, and 48MB LLC as a testbed. We also have two
Mellonax ConnectX-5 NICs installed in two RISE interfaces
of the server, respectively.

As illustrated in Fig. 13, the left NIC serves as the packet
sender, utilizing pktgen to transmit packets from a .pcap file
generated by different dataset workloads. The FIB units act as
receivers on separate cores, bound to the other NIC. These
FIBs are implemented using chained LMH, Ludo, Cuckoo,
and Parrot. Upon receiving a packet, the receiver extracts its
Ethernet address and performs a lookup in the corresponding
FIB to determine the outgoing port for forwarding.

For each baseline, we load 64M distinct records from the
WIKI and MAC datasets to construct the FIBs. We then
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Fig. 16: Packets forwarding throughput with Tofino switch.
sample 10K keys from these keys in uniform and Zipfian
distributions and pack them into a .pcap file to feed the
packet sender. Fig. 14 illustrates the throughput performance
of FIB lookup and forwarding of all approaches. Across all
scenarios, Parrot hashing consistently achieves the highest
packet forwarding throughput. For instance, with the dataset
WIKI, Parrot hashing outperforms Cuckoo, Ludo, and chained
LMH by 1.08x, 1.21x, and 1.76x as depicted in Fig. 14(b),
respectively. The throughput of chained LMH notably declines
with the dataset MAC, and we attribute it to increased record
collisions in buckets compared to the dataset WIKI.

C. FIB prototype on a hardware switch

We implement and deploy a Parrot-based FIB on a
Wedge 100BF-32X switch with programmable Tofino 1, using
P4studio version 9.6.0 for experimentation. The two Mellanox
NICs are connected to two 40GB ports on the switch. In the
setup shown in Fig. 15, the left NIC saturates the bandwidth
(40 Gbps) by sending packets at a rate of 32.3 million packets
per second, each with a size of 155 bytes. The switch extracts
the destination Ethernet address of each packet and looks up
the outgoing port in the FIB. The right NIC keeps polling the
NIC to receive the forwarded packets.
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The Parrot hashing implementation on Tofino comprises
approximately 800 lines of P4_16 code for data plane pro-
gramming. Note that we use only CRC-8 hash functions in our
FIB implementation, as detailed in Section III-G. In the perfor-
mance evaluation shown in Fig. 16, we conduct tests with both
UDP and TCP flows, achieving a throughput of 29.09 million
packets per second for each. These results demonstrate that
Parrot hashing can achieve a packet forwarding rate of 33.59
Gbits per second, indicating line-rate lookup throughput for

FIB in the testbed. V. RELATED WORK

Network lookup algorithms are key design components for
network functions in different layers and examples include
classic IP and MAC table lookups and other key-value lookups
such as load balancers [17], [19], [54], content-centric routing
[6], [7], [55], mobile host search [8], [9], [23], and in-network
storage [24], [56].

MPH provides a fast lookup method for network appli-
cations. One attractive feature of MPH is that it can avoid
storing keys and minimizes the memory cost. Setsep [9],
[36] uses a two-level MPH scheme with a memory cost of
0.5+ 1.5 bits/record. Othello [4] is a dynamic implementation
of MWHC [39] and Bloomier filters [43]. The space cost is
2.33l bits/record, where [ is the length of the value field. Ludo
hashing [5], [57] uses a constructed data structure to map each
element into small-sized buckets. However, all of them require
multiple independent and uniformly distributed hash functions,
which usually consume high computation costs.

Learned index schemes realize a fast indexing approach for
a large-volume database with model-based mapping. In the ex-
isting LMH-based hash tables [31]-[33], collisions of records
are resolved with its associated hash table schemes. None of
the existing LMH methods includes efforts to minimize the
memory cost. Parrot is compatible with all existing learned
index models [31]-[33], [58].

VI. CONCLUSION

We conduct a comprehensive study on existing LMH and
MPH lookup algorithms and analyze their feasibility to net-
work lookup applications that require high throughput and
small memory. Our observations show that LMH can achieve
fast computation using linear models instead of hash functions
while MPH can achieve low memory cost but rely on multiple
independent and complex hash functions. We propose Parrot
hashing, a novel lookup method that achieves both high
throughput and small memory, by using only one CRC-8.
We implement Parrot on three prototypes running on end
systems, software switches, and a programmable hardware
switch. The evaluation results show that Parrot achieves the
highest packet processing throughput among existing solutions
on these prototypes. We believe Parrot can be widely applied
to various network lookup applications in different layers.
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