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Deception is a universal human behavior. Yet longstanding skepticism about the validity
of measures used to characterize the biological mechanisms underlying deceptive behav-
ior has relegated such studies to the scientific periphery. Here, we address these fun-
damental questions by applying machine learning methods and functional magnetic
resonance imaging (IMRI) to signaling games capturing motivated deception in human
participants. First, we develop an approach to test for the presence of confounding
processes and validate past skepticism by showing that much of the predictive power of
neural predictors trained on deception data comes from processes other than deception.
Specifically, we demonstrate that discriminant validity is compromised by the predictor’s
ability to predict behavior in a control task that does not involve deception. Second, we
show that the presence of confounding signals need not be fatal and that the validity of
the neural predictor can be improved by removing confounding signals while retaining
those associated with the task of interest. To this end, we develop a “dual-goal tuning”
approach in which, beyond the typical goal of predicting the behavior of interest, the
predictor also incorporates a second compulsory goal that enforces chance performance
in the control task. Together, these findings provide a firmer scientific foundation for
understanding the neural basis of a neglected class of behavior, and they suggest an
approach for improving validity of neural predictors.

deception | lie detection | MVPA | prediction | validity

Claims that scientifically based methods can detect deception have been made since at
least the early part of the 20th century. Yet from the start, such proposals, typically driven
by forensic goals, have been met with intense skepticism from the scientific community,
in large part due to uncertainty about the nature of the measured signals (1-4). Indeed,
a conundrum dating to the earliest attempts at detecting deception concerns how to rule
out the myriad alternative processes, such as those involved in arousal, weighing of risks
and rewards, and belief inference, that often co-occur with deception but are not necessarily
themselves indicative of deception (3-0).

Scientifically, this continued lack of progress in our ability to assess and exclude validity
threats has severely impeded progress in understanding the neural bases of deceptive and
honest behaviors, which are central in studies of mate selection, social communication,
and economic exchange, among others (7-10). As described by the National Research
Council, “An indication of the state of the field is the fact that the validity questions that
scientists raise today include many of the same ones that were first articulated in criticisms
of Marston’s original work in 19177 (4).

In recent years, however, there has been renewed excitement about the possibility of a
more scientifically grounded understanding of the neural basis of deception. New analysis
approaches offer formal, testable ways to decode mental states from brain data (11, 12)
due to a confluence of advances in behavioral, neural, and statistical methods, and, in
particular, the application of machine learning pattern analysis techniques to economic
signaling games (13—16). Such games have now been extensively studied in the economic
and biological sciences in order to model goal-directed communication between agents,
including the possibility for motivated deception (7-9).

Here, we seck to build upon these advances by developing a set of methodological and
statistical tools to enable researchers to systematically test and improve the validity of
putative predictors of deception. As a first step toward establishing criterion validity, we
tested the accuracy of a neural predictor by applying multivariate decoding methods to
functional neuroimaging data while participants made decisions about whether to send
honest or deceptive messages to another participant. Our initial results show that once
trained on behavior in this game, a whole-brain neural predictor is capable of distinguishing
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Complex behaviors such as
deception engage a myriad of
co-occurring processes, making
it difficult to determine whether
any predictor of deception
actually predicts deceptive
processes, per se. Here, we
confirm this problem by
demonstrating that a neural
predictor of deception can also
predict selfish, nondeceptive
choices, suggesting that the
predictor utilizes other signals.
To remediate this problem, we
develop a machine-learning
method that pursues “dual goals
to ensure that the predictor
identifies behaviors of interest
but not confounding behaviors
from a parallel experimental task.
In addition to its application to
deception, we argue that this
approach may permit improved
isolation of other complex
cognitive processes and thereby
open the door to more
sophisticated questions
addressing the dissociability

of cognitive constructs.
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between deceptive and honest behavior at rates significantly higher
than chance.

Second, and more importantly, we set out to address questions
about the construct validity of our neural predictor—i.e., how
and why our predictor works. Whereas accuracy metrics ask
whether our neural predictor can make accurate predictions, con-
struct validity asks whether our neural predictor is truly measuring
the underlying process it purports to measure. Despite its acknowl-
edged importance, and the many methods of detection proposed
over the past 100 y, there has been surprisingly little effort in
attempting to assess the construct validity of these methods, nor
even an agreement on what constitutes scientific evidence for or
against the presence of validity threats (3, 4, 17).

In particular, we focus on the aspect of construct validity that
pertains to discriminant validity (18), which assesses the extent to
which our deception predictor is driven by processes not specific
to deception. For this reason, we introduced a second, isomorphic
game in which players can achieve the same ends (i.c., payoffs) as
in the deception game, but via nondeceptive means. That is, the
two games share the same players, strategies, and payoffs such that
only surface labels (i.c., the messages) differ (19). Critically, if the
putative deception predictor “overgeneralizes”—meaning that its
predictions are also correlated with signals underlying the control
game—this result would provide strong evidence that its predictive
power is significantly driven by processes held in common between
the two games—e.g., self-interested motives, belief inference,
arousal associated with violation of social norms, or others—rather
than those specific to deception itself (4, 6, 12, 20).

Using the neural predictor trained on the deception game, we
show that its construct validity is significantly compromised by
the fact that this predictor also predicts “merely selfish” (i.e., selfish
but not deceptive) behavior in the control game. Indeed, the mag-
nitude of this effect is such that the prediction rate in the control
task is statistically indistinguishable from that for the task of inter-
est. Moreover, performance falls to chance when the predictor is
asked to distinguish between a) deceptive choices and b) selfish
but not deceptive choices. Finally, at the neural level, we find that
overgeneralization is pervasive across the brain such that many
regions that predict deception are at least partially driven by signals
common to the control task.

Having identified the presence of confounding processes, we
further investigated the extent to which the influence of any iden-
tified confounding processes can be removed or mitigated. This
step is particularly important because the presence of confounding
signals need not rule out the possible presence of a coexisting
deception-specific signal. If so, we may be able to improve the
validity of the neural predictor by purging the set of signals com-
mon to both tasks. To this end, we develop a statistical approach
where, in addition to the typical goal of predicting the behavior
of interest, the predictor also incorporates a second goal enforcing
chance performance in the control task.

We show that compared to three other potential alternative meth-
ods considered, this “dual-goal tuning” approach is able to construct
awhole-brain deception predictor that predicts deception but does
not rely on neural patterns held in common with the control task,
rendering it capable of distinguishing between deceptive and merely
selfish behavior. Additionally, this method uncovers substantial var-
fation in the extent to which deception-specific signals can be recov-
ered: Whereas dual-goal tuning in some regions, such as the primary
visual cortex, entirely purges presumptive predictive signals—sug-
gesting that predictive accuracy in these regions is driven by pro-
cesses other than deception—other regions, including ones
previously implicated in meta-analyses of deception (such as the
superior anterior cingulate cortex and superior frontal gyrus), retain
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significant predictive power after correction. Together, these findings
potentially enhance the scientific rigor of studies that assess the
neural basis of deceptive and honest behaviors, and they represent
an important step forward in building a firmer scientific foundation
necessary for ongoing progress in detecting deception in forensic
settings (1-5).

Results

Signaling Game Approach to Dissociate Processes Underlying
Deception. To identify a set of processes that co-occur with, but
are not necessarily indicative of, deception, we used a signaling game
approach that has been extensively employed in behavioral economics
and evolutionary biology to capture the role of communication in
economic interactions, including tradeoffs between honesty and
deception (7-10, 19). Specifically, we designed a pair of isomorphic
signaling games that differed only in the extent to which players
actions could be assigned a truth value (8-10). In both games, the
participant (the sender) is presented with two potential allocations
of monetary gains for themselves and a counterpart (the receiver).
Importantly, participants are informed that as the sender, they can
see the options but cannot make the choice between them, while
the receiver cannot see the options but is responsible for the choice.
This manipulation thus renders the receiver completely reliant upon
the sender for any information about the choice. On each trial, one
allocation provides a larger payoff to the sender, while the other
provides a larger payoff to the receiver. Critically, in the deception
task, senders must choose between two messages that are verifiably
truthful or false (e.g., “Option A will earn you more money than B”;
Fig. 1A—deception task). In contrast, in the control task, the
senders’ messages do not have a truth value (e.g., “I prefer that
you choose option A”; Fig. 1A—control task). Participants were
not given any feedback about whether their chosen option was
accepted by the receiver, but they were told that based on previous
studies, receivers tend to choose the suggested option 78% of the
time. Additionally, participants’ bonus payments were determined
by randomly picking one trial of each task and carrying out the
selected message with 78% probability (see S Appendix for further
task details).

This design incorporates two important features that together
help to identify deception-specific processes. First, in contrast with
previous paradigms involving instructed lies (20-24), behavior in
signaling games captures the idea that honesty and deception are
properties of the communicative signals that agents send to one
another in the service of some economic or evolutionary value.
Second, and more importantly, the inclusion of an isomorphic
control game allows us to identify the set of processes that are also
present in other nondeceptive decisions—for example, those asso-
ciated with weighing costs and benefits to oneself, or concerns for
fairness—and thus that are not specific to deception per se.

Consistent with previous findings showing that processes
underlying deception can be dissociated from those underlying
other types of norm violations (8-10), there was a significant
difference in how participants behaved in the two conditions. In
particular, the need to send a deceptive message reduced the pro-
portion of messages recommending the selfish option to the
receiver (54.6%) compared to the control condition (61.9%; paired
t test P = 0.0074). Notably, individual differences in sensitivity to
social norms around self-favoring and honest responses could be
dissociated across the two tasks, indicating that the message manip-
ulation differentially impacted behavior: Those participants who
made more deceptive choices in the deception task were not
necessarily the ones who made more selfish choices in the control
task (Fig. 1B; = 0.28, P=0.11).
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Fig. 1. (A) Experimental task design dissociating deception from basic social decision-making processes. Both task conditions (deception and control) involve
allocations of monetary gains between the participant and a counterpart. Participants always played the role of the message sender, who sends one of two
messages to the receiver. The deception task requires senders to choose between two messages that are verifiably truthful or false (e.g., “Option A will earn
you more money than B"). In the Control Task, the senders’ messages do not have a truth value (e.g., “I prefer that you choose option A”). (B) Scatterplot of the
proportion of deceptive choices from the main task and the proportion of selfish choices in the control task. That behavior in the deception task could be partially
dissociated from that in the control task suggests a contribution of processes that are not simply reducible to those captured in the control task. (C) Schematic
of test 1: leave-one-out cross-validation procedure for within-task prediction. (D) Predictors were trained on subjects’ run-level average neural activity for each
choice type (two images per task for each subject). Neural predictors of deception predicted deceptive behavior at rates significantly greater than chance (78.8%
+7.24% (mean * SE), P < 0.001). (E) In trial-level prediction, each trial’s activity was estimated separately and predictions were made at the trial level. The neural
predictor of trial-level deception also showed significant prediction of deceptive choices (AUC = 56.6% + 2.1% (mean + SE), P = 0.004). **P <0.01 and ***P < 0.001.
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Neural Predictor Distinguishing between Deceptive and Honest
Behavior. Next, using functional neuroimaging data, we sought
to assess the extent to which a whole-brain neural predictor, once
trained on neural responses associated with deceptive and honest
behavior (Fig. 1C), could predict deception in holdout data
using brain activity alone (13). Specifically, training and testing
were performed at both subject and trial levels. In subject-level
prediction, we estimated, for each subject, one image associated
with truthful behavior and one with deceptive behavior, by
estimating average brain activity across the same trial types (25,
26). We found that the neural predictor was able to correctly
distinguish the two images at rates significantly greater than
chance (78.8%, P < 0.001; Fig. 1D). In trial-level prediction,
separate images were estimated for each choice (27-29). Because
the numbers of deceptive and honest choices are not balanced, a
simple model that predicts the most frequent choice can achieve
accuracy higher than 50%. We therefore used the area under the
receiver operating characteristic curve (AUC) as a measure of overall
performance of the classifier, where 50% corresponds to chance
performance and 100% corresponds to perfect classification. The
AUC can be understood as the accuracy obtained by repeatedly
randomly selecting two trials and assessing whether the predictor
assigns higher scores to the correct category. We found that the
neural predictor performed significantly better than chance at the

trial level (average AUC = 56.6%, P = 0.004; Fig. 1E).

Significant Presence of Confounding Signals. Although this neural
predictor of deception was able to show significant discrimination
between deceptive and honest behavior, it is possible that at least
some of the predictive signal is not related to deception, but rather
to confounding processes. We sought to test for this possibility
by building upon recent methods that ask whether a neural
predictor of a particular cognitive state shares signals with other
processes (12, 29, 30). For example, researchers might develop a
neural predictor in one dataset and then apply that predictor to
another dataset that utilizes a different task in order to (putatively)
assess the same underlying construct. A significant correlation
between the predictive signal and the behavior of the new task
(i.e., generalization) argues that the predictor of one construct
incorporates the other construct, whereas a lack of generalization
suggests independence of the constructs in question.

By testing the extent to which the neural predictor of deception
trained on the deception task could also distinguish between
behavior in the isomorphic control signaling game that did not
involve deception, this approach provides one way to identify
threats to discriminant validity in the neural predictor (Fig. 24)—
in other words, by evaluating whether measures that should not
be correlated are indeed uncorrelated (31). In contrast, if a neural
predictor trained on the deception game produces signals that are
also associated with nondeceptive behaviors, we can conclude that
this “naive” predictor is at least partially driven by processes held
in common between the two games—e.g,, self-interested motives,
belief inference, arousal associated with violation of social norms,
or others—rather than those specific to deception itself.

We found strong evidence that the deception predictor incor-
porates signals that are shared with the control task. Specifically,
the neural signal produced by applying a deception predictor to
a control task was positively correlated with selfish but nonde-
ceptive choices in the control task (subject-level: r = 0.39,
P =0.021, Fig. 2B; trial-level r = 0.084, P = 0.014, Fig. 20).
Thus, despite the significant predictive accuracy in the deception
task, this overgeneralization provides strong evidence of a lack
of discriminant validity for this predictor (Fig. 2D). Indeed, the
strength of this overgeneralization is such that if one were to use
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the putative deception predictor to classify the choices in the
control task, the prediction accuracy would be statistically indis-
tinguishable from its performance in the deception task at both
the subject prediction level (78.8% vs. 69.7%; P = 0.45) and
the single-trial prediction level (56.6% vs. 55.4%; P = 0.71).

Methods to Control for Confounding Processes. While the
presence of overgeneralization shows the vulnerability of our
neural predictor to confounding, it also offers an opportunity to
improve its validity by identifying the set of such signals that can
be removed if handled appropriately. To explore this possibility,
we considered four potential solutions by incorporating data from
the control task into the training process (Fig. 2E).

First, if the loci containing confounded signals are spatially sep-
arate from those carrying signals of interest, a “region removal”
method can be used to improve the validity of the neural predictor
by removing regions that carry strong confounding signals. Second,
we considered a data “relabeling” method, also known as the binary
relevance method (32), that is often used in the machine-learning
literature in the context of multiclass prediction problems. It has
also been used in previous MVPA studies to show dissociability of
related cognitive constructs (30). In our setting, this method works
by assigning all trials of the control task to be “truth” trials, with the
only “lie” trials supplied by the main task. By explicitly defining
both control categories as “truth” trials, this method ensures that
the predictor is trained to down-weight any confounding signals
present in the control task categories (i.e., selfish vs. altruistic).
Third, we considered a “regress-out” method, which attempts to
focus the neural predictor on signal variation unique to the decep-
tion task. This method takes advantage of the isomorphic nature of
our task, in that both tasks have the same number of trials, and
choices in the two tasks can be paired. As such, we can regress
behavioral variation in the control task out of the deception task
(see SI Appendix for more details on various regress-out methods).

Finally, we developed a fourth method that seeks to directly control
for cross-task (over-) generalization, akin to recent efforts in machine
learning to incorporate a guiding cost function to better identify “cor-
rect” signals (33, 34). However, because the correct signal in our
case—i.e., the neural signature of deception—is unknown in its form
or loci, we are not able to augment the cost function with additional
terms that guide the validity of the signal, as in multiobjective opti-
mization (35). Instead, we approach this problem as a constrained
optimization problem by incorporating a negative guiding cost func-
tion that penalizes the presence of “incorrect” signals (36).

Formally, let there be two datasets, (X}, ¥}) and (X, ¥,), where
X is an 7 X p matrix of brain activity (z observations, p voxels),
and ¥ an 7 X 1 column vector of participants’ choices. Shared
signal is present if the vector of weights & in the linear predictor
X, b of Y] can also be used to construct a linear predictor X, b that
is predictive of Y. If both X'and Y have been mean-centered, this
test can be expressed as follows, in the case of positive
over-generalization:

T
cov (X6, Y ) =i (X1, )= %0

n

where C, is the brain—behavior covariance in Dataset S2. Thus, one
way to control cross-task generalization is to introduce X;and ¥,
into model training and incorporate [1] into the cost function.
Extending the ridge regression cost function, for example, results in:

P(Y1=1)

¥ =0) =by+X b+ 6" b+wb’ C,, [2]
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Fig. 2. (A) Schematic of test 2. Discriminant validity is tested by using the control task as testing data, rather than deception task trials as in test 1. A predictor
that also predicts behavior in the control task indicates a lack of discriminant validity. (B) In subject-level testing, the neural predictor of deception showed a
lack of discriminant validity, as it was significantly correlated with behavior in the control game (mean r = 0.39, P = 0.021). (C) Neural predictors showed a lack
of discriminant validity in trial-level prediction as well (mean r = 0.084, P = 0.014). (D) Combining test 1 and test 2, an ideal neural predictor should be located in
the Upper Right quadrant where it is predictive of deception (ordinate) but uncorrelated with other behaviors (abscissa). In contrast, the neural predictor trained
on deception data was located in the Upper Left quadrant—i.e., it was able to demonstrate predictive accuracy when tested on deceptive and honest trials,
but underlying signals contained processes held in common with the control task. (£) Constructing and comparing methods that seek to improve discriminant
validity by incorporating the control task into training data. (F) As in (D), predictive accuracy vs. discriminant validity, compared across different neural predictors.
Generally, all methods used, when compared with the naive predictor, showed some tradeoff between predictive power and discriminant validity, with dual-goal
tuning providing the most favorable tradeoff in terms of power loss and discriminant validity. (G) Bar graphs of prediction performances and validity tests for
methods shown in panel (F). *P < 0.05, **P < 0.01, and ***P < 0.001.
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which in addition to the standard ridge penalty 4 includes a new
hyperparameter  to control for cross-task generalization. That is,
the set of hyperparameters (4, @) should be chosen to maximize
prediction performance while cross-task generalization is held at
null. However, the above formulation can be computationally taxing
due to the increased parameter space, and difficult to use with
approaches that do not employ a direct cost function—e.g., prin-
cipal component regression or partial least squares. Hence, we use
a simplification of the solution via a two-step procedure in which
the map b is first constructed naively, and then orthogonalized with

regard to C, using a Gram—Schmidt procedure (57 Appendix):
C2 M b
C2 * C2

b—w

C,. [3]

Improving Neural Predictor Discriminant Validity. Ideally, a
successful method should remove any correlation with nondeceptive
behaviors while retaining as much of its predictive power in the
task of interest as possible—i.c., shifting the naive predictor
away from the “predictive confounded” quadrant and toward the
“predictive unconfounded” region (Fig. 2D). For the region-removal
method, using a cutoff P-value of 0.05 to mask out voxels that
were significantly correlated with the control task led to negligible
change in performance as compared to the naive approach (Fig. 2
Fand G). A more systematic examination of different cutoff values
(P <0.1,0.2, ..., 0.99) further showed that while confounding
signals were indeed removed as more regions were masked out, this
improvement was largely achieved at the expense of accuracy in the
task of interest (Fig. 2F). Similarly, the relabeling approach and the
regress-out methods were only able to remove confounding signals
at the expense of reduced accuracy (Fig. 2 Fand G).

In contrast to the poor to mixed performance of the previous
three approaches, we found that the dual-goal tuning approach
significantly reduced overgeneralization compared to the naive
method (P < 0.001) and was in fact nearly able to eliminate it
completely (»=-0.0067, P= 0.85) while retaining predictive power
for deceptive choices (single-trial prediction: 56.0%, P = 0.01;
Fig. 2 Fand G). This difference reflects an important distinction
between the other approaches and dual-goal tuning, in that the
latter required much less tradeoff between predictive performance
in the two tasks.

Distinguishing between Deceptive and Selfish Behavior. A
potentially important limitation of inferring discriminant validity
based on the removal or absence of overgeneralization is that it relies
on accepting the null hypothesis. Such conclusions are known to
be problematic, as the null may fail to be rejected simply because
the study lacked statistical power, for example (37). To address
this possibility, we constructed a positive test involving a “high
confound” testing set consisting of deceptive and selfish trials.
Here, a helpful analogy can be made with pregnancy tests,
which when used in the general population are known to be highly
sensitive and specific. However, because the test does not measure
pregnancy per se, but levels of f-hCG hormone, the test is known
to perform poorly if used in a “high-confound” testing set in which
pregnant women are intermixed with populations with syndromes
causing abnormally high levels of B-hCG, such as trophoblastic
disease and certain cancers (38). Thus, just as a pregnancy test
with improved discriminant validity can be demonstrated by suc-
cessfully distinguishing between pregnant and other individuals
with elevated f-hCG levels (38), we can provide positive evidence
that discriminant validity has improved by showing that the cor-
rected neural predictor can distinguish between deceptive and

merely selfish behavior (Fig. 34).

https://doi.org/10.1073/pnas.2412881121

We found that whereas dual-goal tuning was able to signifi-
cantly distinguish between the two trial types (mean AUC =
53.3%, P = 0.0177), all other methods did not result in greater
than chance rates of performance (Fig. 3 Band C). Furthermore,
dual-goal tuning had significantly higher performance than each
of the other four methods (P < 0.05 for all tests). Thus, consistent
with the indirect evidence provided by our overgeneralization
results above, these data provide positive evidence that dual-goal
tuning was able to improve discriminant validity of the deception
predictor.

Neural Systems Underlying Deception. Beyond prediction, the
ability to detect and control for nuisance processes can also enrich
our understanding of neural systems underlying deception. For
example, previous meta-analyses of fMRI studies of deception have
suggested the involvement of a network of regions in deception,
including the anterior insula, anterior cingulate, inferior frontal
gyrus, inferior parietal lobule, and superior frontal gyrus (17, 39,
40). However, it is unclear the extent to which predictors based
on these regions are vulnerable to the presence of confounding
processes captured by our control task.

Using our deception task and searchlight MVPA (41), we cor-
roborate previous meta-analytic findings (17) and show that
regions such as the superior frontal gyrus and precuneus contain
signals that allow us to decode deception (Fig. 44). We used a
searchlight with a radius of 2 voxels (33 voxels in a spherical ROI)
and a partial least squares (PLS) algorithm with leave-one-
subject-out cross-validation, followed by whole-brain permutation
testing of significant predictive performance. We also find evidence
that overgeneralization at the ROI level is significantly more likely
to occur than would be expected by chance such that predictors
trained on the deception task also generalize to the control task
(permutation test 2 = 0.003; Fig. 4B8). Contingent on the strin-
gency of the null criterion for meaningful overgeneralization, a
more systematic examination of different cutoff values further
shows that the percentage of voxels that overgeneralize ranges
between 18 and 88% (P < 0.05: 18%, P < 0.1: 28%, P < 0.2:
39%, P < 0.5: 66%, P < 0.8: 88%).

Importantly, the extent to which the predictive regions were
affected by posttraining orthogonalization sheds light on the nature
of neural signals in these regions. Some highly predictive regions,
such as the left occipital pole, were no longer able to significantly
predict deception after dual-goal tuning, suggesting that their pre-
dictive power was entirely driven by confounded signals (Fig. 4C).
In contrast, other highly predictive regions, such as the superior
frontal gyrus, were able to retain predictive power even after orthog-
onalization, suggesting the comingling of distinct signals within
these regions (details and coordinates in S/ Appendix, Table S2).

Discussion

Deception is ubiquitous in nature and a known feature of a num-
ber of mental and behavioral disorders (42, 43). Despite its impor-
tance, however, studies on the relationship between deception and
the underlying biological mechanisms have long been discounted
because of a historical lack of attention to its scientific foundations.
As the National Research Council lamented in its 2003 report on
the poor knowledge of diagnostic and psychometric properties of
lie detection techniques, “More intensive efforts to develop the
basic science in the 1920s would have produced a more favorable
assessment in the 1950s; more intensive efforts in the 1950s would
have produced a more favorable assessment in the 1980s; more
intensive efforts in the 1980s would have produced a more favora-
ble assessment now” (4).
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Fig. 3. (A) Schematic of test 3: prediction in a high-confound test set in which lie trials are mixed with a confounded selfish but nondeceptive behavior. (B) Bar
graphs of validity tests and high-confound prediction performances. Only dual-goal tuning significantly discriminated between lie trials and selfish trials. Dual-
goal tuning also showed significantly higher AUC than each of the other four methods at P < 0.05. (C) Discriminant validity (test 2) and high-confound prediction
performances (test 3) of different neural predictors compared on a 2D plot. In contrast with dual-goal tuning, all other methods fail to adequately control nuisance
correlation and hence result in low discriminability between highly confounded trials. *P < 0.05.

Our work seeks to break this stalemate by providing such a sci-
entific foundation. First, we build upon pioneering cognitive neu-
roscience studies in which participants could choose to lie, rather
than being instructed to do so (8, 10, 14, 44-46). By capturing the
fact that honesty and deception are properties of the communicative
signals that agents send to one another in the service of some eco-
nomic or evolutionary benefit, meta-analyses of IMRI studies using
these paradigms have identified a consistent set of brain regions in
the lateral and medial PFC, as well as the anterior insula, that are
more strongly engaged by deceptive compared with honest responses
(17, 47). More recent efforts have extended these findings by incor-
porating machine learning methods to predict behavior from brain
activity, permitting researchers to avoid problems associated with
reverse inference—e.g., that connectivity patterns in the
self-referential thinking network were able to predict the honesty
of participants during decision-making (14).

Building on these efforts, we sought to explore a complementary
aspect of prediction and generalization: the need to evaluate for
the presence or absence of potentially confounding processes.
Specifically, we leveraged generalization tests in MVPA methods
to test for the presence of confounding processes in a deception
predictor. Generalization tests have become increasingly popular
in cognitive neuroscience (12, 25-30, 48, 49), and they can be
used to assess the validity of the predictive signals. Our finding
that signals underlying the neural predictor of deception are

PNAS 2024 Vol.121 No.50 2412881121

associated with nondeceptive, selfish choices supports long-standing
validity concerns that predictive signals for deception can be driven
by confounding processes.

In addition, our results suggest that using cross-task generali-
zation to identify confounding signals can provide essential infor-
mation about construct validity in a manner that extends beyond
within-dataset sensitivity and specificity (12, 17). To clearly dis-
ambiguate these distinct contributions, we note that measures
such as sensitivity or specificity address criterion validity using
metrics such as the percentage of the total number of lies the
predictor identifies, or the percentage of truths it falsely flags as
lies. Cross-task generalization, on the other hand, probes the con-
struct validity of the predictive signal by asking whether the pre-
dictive signal is correlated with unrelated measures, such as being
significantly greater for certain types of truth trials (selfish ones)
than other truth trials (altruistic ones) (18).

Our second contribution is to develop an approach to create
predictors that do not demonstrate undesirable out-of-sample
generalization when applied to a new task. While there have been
studies in which an absence of generalization across two tasks has
been used to show evidence for the distinctiveness of two con-
structs (e.g., ref. 30), developing methods to eliminate an already
existing generalization has received less attention. Rather, there
were efforts to test whether the level of prediction is beyond what
is expected from confounds (50, 51). Such tests can be used in
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Fig. 4. (A)Searchlight analysis for regions that can predict deceptive choices. Searchlight analysis with a radius of two voxels was performed across the entire brain
to identify regions that significantly predict deceptive choices, as assessed by leave-one-out cross-validation. Regions with predictive performances significantly
above 50% at the whole-brain correction level (permutation tested TFCE P < 0.05) are shown. (B) Cross-task generalization performance is measured for regions
identified in (A); the ratio of the t test statistics is shown. Several regions that have high predictive power in panel (A) are also shown to have high generalization
in panel (B). (C) Dual goal tuning is applied at each searchlight to eliminate cross-task generalization and thereby identify regions that can significantly predict

deceptive but not selfish choices (P < 0.05).

cases where a confounding variable is comeasured with the tar-
geted behavior, but is difficult to use in the generalized case here
where there are separate tasks for signal vs. confound. Furthermore,
while pioneering work on regression models and machine learning
algorithms in neuroimaging has primarily addressed the goal of
tuning model hyperparameters to improve predictive performance
(28, 52), purging confounding signals will in general require sac-
rificing, rather than improving, performance.

Our results suggest that controlling for overgeneralization can
be achieved by addressing the predictor construction directly
rather than altering what is included in the training darta.
Preprocessing the training data by removing the most confounded
voxels (i.e., region-removal) performs poorly when signals of inter-
est and no-interest comingle at the voxel level. In such cases,
region-removal can result in reduced power in predicting the var-
iable of interest due to imperfect orthogonalization (Fig. 54). On
the other hand, our dual-goal tuning procedure can be seen as a
shearing transformation that reduces the inner product between
the prediction map and the nuisance covariance (Fig. 5C).

In contrast, by introducing data from the control task to the
training process without changing the optimization function, the
relabeling approach attempts to find a decision boundary to dis-
tinguish the lie trials from all other trials. However, while this
procedure enriches the examples of “truth” trials in order to iden-
tify a better decision threshold, the predictive signal, which runs
orthogonal to the decision boundary, is still correlated with the
nuisance signal (Fig. 5E). On the other hand, by conceptualizing
the problem as a form of constrained optimization for
out-of-sample prediction, dual-goal tuning orthogonalizes the
predictive signal with regard to the nuisance signal such that the

https://doi.org/10.1073/pnas.2412881121

predictor cannot distinguish between the selfish and altruistic
nondeceptive choices no matter where the decision boundary
is placed.

At the neural level, we show that removing the presence of
confounding signals can allow for more specific inferences about
the nature of underlying processes. Searchlight analysis of decep-
tive behavior revealed a number of regions that previous studies
have implicated in deception, including the anterior cingulate
cortex (ACC), superior frontal gyrus (SFG), dorsolateral prefrontal
cortex (dIPFC), and nucleus accumbens (NAcc) (8, 14, 17, 47)
(SI Appendix, Table S2). At the same time, as with the whole-brain
predictor, the discriminant validity of these findings is significantly
undercut by the widespread presence of signals that are not specific
to deception. By purging signals that are not specific to deception,
our dual-goal tuning approach shows that in many of these
regions, a neural signature of deception that is not shared with
the control task can be identified by incorporating control task
data into training.

Notably, while traditionally sensory and unimodal areas, such
as the occipital pole, no longer predict deception after shared
signals are removed, surviving polymodal regions support hypoth-
eses that deceptive behaviors utilize both domain-general and
domain-specific higher-order processes linked to cognitive control,
self-referential thought, and social cognition (53-55). Importantly,
the fact that a neural predictor does not generalize to the control
task does not imply the underlying processes are “unique” to
deception. Indeed, although the two games are isomorphic in the
game-theoretic sense, in that the games differ only in the surface
labels, the fact that participants behave quite differently in the two
games suggests that these labels can matter a great deal to message
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Fig. 5. Comparison of region removal, relabeling, and dual-goal tuning in the presence of confounding processes. (A) Depiction of an underlying signal for which
the signals of interest are confounded with nuisance signals. Voxels that carry highly positive signal for the signal of interest also carry highly positive signal for the
nuisance signal, and vice versa for negative signals. (B7 and B2) Depiction of the region-removal method, in which voxels that are strongly correlated with nuisance
signals are removed before building a predictor. However, because the underlying nonorthogonality has not been solved, the region-removal approach is unlikely
to achieve orthogonality. Furthermore, as the voxels that are correlated with nuisance are removed, so are the voxels that are correlated with signal of interest.
(C7 and C2) Depiction of the dual-goal tuning approach using Gram-Schmidt orthogonalization to correct the predictor. The shearing transformation is controlled
by the orthogonalization hyperparameter so as to achieve zero out-of-sample predictive power for nuisance. (D) Depiction of a classification space in which the
underlying signal of interest (purple arrow) is not orthogonal (perpendicular) to the nuisance signal (blue arrow). (E7 and E2) Depiction of the relabeling approach,
in which a best decision boundary is identified between the lie trials (purple triangle) and all other trials. While the decision boundary may be effective in labeling
all truth trials as truths, the predictive signal (purple arrow) is still correlated with the nuisance signal such that selfish trials still receive higher prediction scores
than altruistic trials. (F7 and F2) Depiction of the dual-goal tuning approach, in which the predictive signal (purple arrow) is constructed under dual-goal tuning
to be orthogonal (perpendicular) to the nuisance signal (blue dotted line) such that the predictor cannot reliably distinguish between altruistic and selfish trials.

senders. It is possible, for example, that predictive power in at least
some ROIs reflects engagement of processes involved in parsing
and evaluating the truth value of messages only in the deception
condition. This idea is consistent with past hypotheses that decep-
tion may require additional engagement of inhibitory control,
working memory, task switching processes, and other executive
functions that are subserved by regions including the SFG and
ACC found in our study (17, 40, 56-59). This idea is similarly
true for social cognitive processes such as those underlying impres-
sion management, which may be differentially involved in decep-
tion compared to nondeceptive decision (3). The fact that we can

PNAS 2024 Vol.121 No.50 2412881121

control for shared processes therefore raises the exciting possibility
that future studies may be able to test these hypotheses in more
specific ways, for example by incorporating control conditions
that vary in their engagement of executive functioning or social
cognitive processes.

More generally, while we advance upon previous paradigms in
which participants are instructed when to lie, our signaling task
and others involving motivated deception are still limited by the
fact that experimenters specify how participants can lie. Addressing
this issue will require different behavioral paradigms and models
that allow researchers to better capture the open-ended nature

https://doi.org/10.1073/pnas.2412881121
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(60) of real-world deception. In turn, such paradigms might be
used to elucidate neurocognitive processes that underlie decisions
regarding when, how, and whom to deceive. Additional work is
also needed to account for individual-level heterogeneity in
out-of-sample prediction, which is critical in forensic and clinical
settings (17, 40, 56-59). Depending on the nature of the ques-
tions, one can either treat individual heterogeneity as a factor of
no interest—e.g., in order to identify core (shared) components
of deception—or more fully characterize the neural heterogeneity
of deception in order to account for it when making out-of-sample
predictions.

Finally, we note that although discriminant validity may be par-
ticularly important in the case of deception, it is also of critical
importance in other areas of cognitive neuroscience and computa-
tional psychiatry (11, 12, 61). Currently, dissociating co-occurring
or confounded processes requires an experiment that allows for
orthogonal control of both processes, an approach that is not always
possible. Failing that, studies have argued for the distinctiveness of
mental processes by showing an absence of overgeneralization across
datasets with naive predictors (29, 30). However, our results suggest
that even when there is a considerable amount of overlap, the under-
lying mental processes may be distinguishable. Our methodology
may therefore be useful in dissociating common co-occurring pro-
cesses, especially if the orthogonality must be established post hoc
or used as a complement to specific task designs, such as cases
involving working memory and attention (62), valuation and sali-
ence (57), or valence, arousal, and emotions (48). In applied settings
such as computational psychiatry, our approach may aid in con-
structing neural biomarkers specific to a particular diagnosis without
relying on covariates of no interest (63, 64). Thus, despite important
limitations, our findings represent a meaningful advance given the
potential significance of the questions and the protracted nature of

the challenges involved (4).

Materials and Methods

Participants. Forty healthy individuals provided informed consent and partic-
ipated in the experiment (16 males; age = Mean 20.8 y + S.D. 2.6 y). Seven
participants were excluded from data analysis because they exhibited one-sided
choices in more than 90% of trials in at least one task and therefore lacked suf-
ficient behavioral variation to predict (see below). As a result, 33 participants
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were included in final data analysis, and no additional participants were removed
based on image quality or motion in the scanner. All experimental procedures
were approved by the Institutional Review Board of Peking University.

Neural Activity Estimation for Decoding Analyses. Neural prediction was
performed attwo levels. At the subject level, activity for trials of the same category
was estimated together such that one activity image per category was estimated
for each run. At the trial-level, each trial's activity was estimated separately. For
subject-level predictions, we used a GLM with one regressor for all trials in which
the participant made truthful/altruistic choices, and one for deceptive/selfish
choices. For single-trial predictions, the GLM consisted of a separate regressor for
each trial [beta-series regression (65)]. Regressors were modeled with an impulse
function time-locked to the button press and convolved with a double-gamma
HRF (see SI Appendix for decoding from trial onset). Nuisance regressors included
the average CSF activity, the average white matter activity, and the top 10 PCA
components derived from the combined CSF+white-matter masks (a_comp_cor,
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Data, Materials, and Software Availability. The experimental dataset used
in this study has been anonymized and is available online at OpenNeuro (DOI:
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manuscript and/or supporting information.
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