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Abstract 

Periodic operation of chemical reactors can enhance reactant conversion and product selectivity. 
It is desirable to identify reaction kinetics and networks that may benefit from non-steady state 
operation and to quantify the extent of that enhancement without extensive computations. In this 
study, we describe a simple method to establish approximate functional dependencies of 
isothermal point reaction enhancement on dynamic and kinetic parameters during low frequency 
operation. Low frequency operation permits the use of steady state as opposed to transient 
conservation equations to identify limits of fractional rate enhancement. By approximating local 
dynamic rates as square waves modulating between two steady states, an analytical function can 
be derived from global rate expressions. The function relates fractional rate enhancement to 
concentration wave amplitudes, phase shifts, cyclic averages, duty cycles and reaction orders for 
one or more dynamically-fed reactants. We show that the method may be applied to predict integral 
conversion enhancement for ideal reactors. During integral operation, nonstoichiometric 
concentration waves may change phase through disproportionate consumption of reactants at wave 
maxima and minima hence inverting waves out-of-phase (180°) from their initial waveform. This 
may cause local rate enhancement to transition to rate diminishment. Three experimental examples 
involving catalytic oxidations are described that illustrate selected theoretical aspects of the study. 
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1.  Introduction 

 
Non steady state operation of chemical reactors through periodic operation can improve 

reactant conversion and desired product selectivity over levels achieved using conventional steady 

state (SS) operation [1][2][3][4][5][6][7]. However, the mathematical complexity associated with 

transient reactor operation thwarts the determination of reaction network type, kinetics and 

operating conditions leading to performance enhancement [1][2][3]. This has inspired 

development of methods that identify regions of dynamic enhancement, and quantify the extent of 

enhancement obtained under a given set of conditions [3][8][9]. 

Cyclic modulation of the reactant concentration will result in a higher cyclic average rate 

compared to steady state operation if the reaction rate has a convex dependence on the reactant 

concentration [3][10]. The opposite trend will occur for a concave rate dependence [3][10]. This 

effect is graphically demonstrated by drawing a chord between the concentration maxima and 

minima on a rate versus concentration diagram [3][10]. If the chord falls above the rate versus 

concentration curve, the cyclic average dynamic rate will exceed the steady state whereas if the 

chord falls below the curve the dynamic rate will be less than the steady state [3][10]. This feature 

is restricted to the effect on the instantaneous rate from a single dynamically operated reactant with 

a period much larger than the response time of the system [3][10]. Specifically, Bailey states that 

this occurs when the ratio of the reactor time scale (residence time) to oscillation time scale (cycle 

period) is greater than 100 [11][12]. This restriction implies that the system approaches steady 

state at each maximum and minimum of the concentration wave [3]. Silveston and others referred 

to such modes of operation as being in the quasi-steady state (QSS) regime [2][3][10]. 

Bailey and coworkers explored this concept by demonstrating higher intermediate product 

yields during the modulation of multiple reactants compared to single reactant modulation and 
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steady state operation for a consecutive reaction network [13]. Others have reported enhanced 

reactor performance during the periodic operation of multiple reactants [8][9][14].  

Optimization techniques such as the Pi-Criterion and related variational methods have been 

shown to predict process enhancement in periodically operated continuous stirred tank and batch 

reactors [15][16][17][18][19][20]. Others including the groups of Morgenstern, Petkovska and 

Rippin have studied modular concentration, temperature and flow profiles to analyze the effects 

of periodic parameters on process performance [21][22][23][24][25][26]. Further studies 

accounting for surface dynamics such as adsorption, desorption and reactions over catalyst 

surfaces also demonstrate improvement during cyclic operation [26][27].  

In this study, we develop a simple method to identify regions of rate enhancement using global 

kinetics. The method applies a simple expression for the local (differential) fractional rate 

enhancement as a function of dynamic parameters for one or more dynamically operated reactants 

during isothermal QSS operation. The method is extended to integral operation in ideal reactor 

types (PFR and CSTR) for single and sequential reaction schemes, respectively. We show how 

local rate enhancement translates to integral properties such as conversion and yield. We 

demonstrate that the theoretically predicted rate enhancement is in agreement with that measured 

during the periodic operation of ethane and oxygen during total oxidation over a nickel spinel 

catalyst. Finally, we illustrate a case of oxygen concentration wave inversion during the oxidative 

dehydrogenation (ODH) of ethane to ethylene over a MoOx Al2O3 catalyst. 

2.  Results and Discussion

2.1 Quasi-Steady State Dynamic Local Rate Analysis 

We consider the case of an isothermal chemical reaction having a power law rate 

dependence on the concentration of N reacting species: 
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𝑟𝑟 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒�𝐶𝐶𝑖𝑖  
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(1) 

where ni is the reaction order with respect to species i. Under dynamic conditions, the reactant feed 

concentrations Ci(𝜉𝜉 = 0), where 𝜉𝜉 is the dimensionless distance in a PFR (or time in a batch 

reactor) are considered square pulses with amplitude above (𝐶𝐶𝑖𝑖,+
𝑓𝑓 )and below (𝐶𝐶𝑖𝑖,−

𝑓𝑓 ) the average 

concentration (𝐶𝐶𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ) with a period 𝜏𝜏 and duty cycle 𝑠𝑠𝑓𝑓, as described by:  

𝐶𝐶𝑖𝑖
𝑓𝑓(𝑡𝑡) = �

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 
𝑓𝑓 �1 + 𝛼𝛼+,𝑖𝑖

𝑓𝑓 �;  𝑙𝑙 𝜏𝜏 ≤ 𝑡𝑡 < 𝜏𝜏 (𝑠𝑠𝑓𝑓 + 𝑙𝑙)

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 
𝑓𝑓 �1− 𝛼𝛼−,𝑖𝑖

𝑓𝑓 �;    𝜏𝜏 (𝑠𝑠𝑓𝑓 + 𝑙𝑙) ≤ 𝑡𝑡 < 𝜏𝜏 (𝑙𝑙 + 1)
     𝑙𝑙 = 0, 1, 2 … (2)  

A visual interpretation of the above parameters are provided in the Supplementary Information 

(SI). The dimensionless amplitude of species i (𝛼𝛼+/−,𝑖𝑖
 ) is defined as the amplitude normalized by 

the average:  

𝛼𝛼+/−,𝑖𝑖
 =

𝐶𝐶+/−,  𝑖𝑖
 

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,   𝑖𝑖
 (3) 

For example, a minimum dimensionless amplitude of 1 (𝛼𝛼−=1) indicates on-off (“bang-bang”) 

modulation whereas 𝛼𝛼− = 𝛼𝛼+ = 0 indicates no modulation. The duty cycle (0 < s < 1) is the 

fraction of the period (𝜏𝜏) during which the input concentration resides at its maximum value. 

Conversely, 1 – s is the fraction of the period during which the input is at its minimum.  

The cyclic average concentration at any point (𝜉𝜉) in the reactor is defined by  

 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖(𝜉𝜉) =
1
𝜏𝜏
� 𝐶𝐶𝑖𝑖(𝜉𝜉, t) 𝑑𝑑𝑑𝑑
𝜏𝜏+𝑡𝑡

𝑡𝑡
(4) 

Combining Eqn. (2) with Eqn. (4) gives the constraint relating 𝛼𝛼+
𝑓𝑓 ,𝛼𝛼−𝑓𝑓 and 𝑠𝑠𝑓𝑓 as   

𝛼𝛼+
𝑓𝑓

𝛼𝛼−
𝑓𝑓 = �

1
𝑠𝑠𝑓𝑓
− 1� (5) 
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This fixes the integral average of the feed concentration by adjusting the maxima (𝛼𝛼+
𝑓𝑓) and minima 

(𝛼𝛼−𝑓𝑓) according to the duty cycle (𝑠𝑠𝑓𝑓). For example, if the duty cycle is small (𝑠𝑠𝑓𝑓  0), the input 

resides at the minimum concentration for a larger fraction of the period. Therefore, a larger 𝛼𝛼+
𝑓𝑓/𝛼𝛼−𝑓𝑓 

is required to maintain an equivalent cyclic average. This relationship between the maxima, 

minima and duty cycle is further illustrated in the SI Fig. S3.1d.  

We define the fractional enhancement (∆) at any point (𝜉𝜉) in the reactor as  

∆(𝜉𝜉) =   
1
𝜏𝜏
�

𝑟𝑟𝑄𝑄𝑄𝑄𝑄𝑄(𝜉𝜉, 𝑡𝑡)
𝑟𝑟𝑆𝑆𝑆𝑆(𝜉𝜉)

 𝑑𝑑𝑑𝑑
𝜏𝜏+𝑡𝑡

𝑡𝑡
− 1 (6) 

When ∆ > 0 the reaction rate experiences dynamic enhancement, while if ∆ < 0, there is dynamic 

hindrance. For example,  ∆ = -0.3 means that the cyclic average dynamic rate is 30% less than the 

steady state rate. It is important to note that ∆ is a local parameter as it compares the rate in a QSS 

reactor to that in a SS reactor at the same point 𝜉𝜉. 

The fractional enhancement for the power law reaction rate under QSS operation is 

obtained by substituting the concentration profile (Eqn. (2)) and rate expression (Eqn. (1)) into 

Eqn. (6), giving: 

∆ = ��
𝐶𝐶𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴
𝑛𝑛𝑖𝑖

𝐶𝐶𝑖𝑖,𝑆𝑆𝑆𝑆
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

 

���1 + 𝛼𝛼+,𝑖𝑖
 �

 
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1  

 

𝑠𝑠 + ��1 − 𝛼𝛼−,𝑖𝑖
 �

 
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1 − 𝑠𝑠)� − 1 (7) 

Here we have removed reference to position but stress that ∆ is a local performance metric. The 

SI provides a detailed derivation. In Eqn. (7), the cyclic average concentration (𝐶𝐶𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴 ) is the 

integral average of the periodic concentration wave (Eqn. (4)), while the steady state concentration 

(𝐶𝐶𝑖𝑖,𝑆𝑆𝑆𝑆 ) refers to the steady state value chosen for comparison. If we assume that the cyclic average 

feed concentration is equivalent to the steady state concentration (𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 
 = 𝐶𝐶𝑆𝑆𝑆𝑆,𝑖𝑖 

 ), implying that 

the concentration wave is oscillating around the steady state value, the expression simplifies to 
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∆= ���1 + 𝛼𝛼+,𝑖𝑖
 �

 
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1  

 

𝑠𝑠 + ��1 − 𝛼𝛼−,𝑖𝑖
 �

 
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1 − 𝑠𝑠)� − 1 (8) 

Eqn. (8) assumes that all species have fixed reaction orders, are modulated in-phase, and have the 

same period and duty cycle. For species that are modulated out-of-phase with a 50% duty cycle 

(𝑠𝑠 = 0.5), the fractional enhancement is given by: 

∆= ��
𝐶𝐶𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴
𝑛𝑛𝑖𝑖

𝐶𝐶𝑖𝑖,𝑆𝑆𝑆𝑆
𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

 

��
𝐶𝐶𝑗𝑗,𝐴𝐴𝐴𝐴𝐴𝐴
𝑚𝑚𝑗𝑗

𝐶𝐶𝑗𝑗,𝑆𝑆𝑆𝑆
𝑚𝑚𝑗𝑗

𝑀𝑀

𝑗𝑗=1

�

 

�∏ (1 + 𝛼𝛼𝑖𝑖 ) 
𝑛𝑛𝑖𝑖𝑁𝑁

𝑖𝑖=1  
 ∏ �1 − 𝛾𝛾𝑗𝑗 � 

𝑚𝑚𝑗𝑗𝑀𝑀
𝑗𝑗=1  

 
 + ∏ (1 − 𝛼𝛼𝑖𝑖 ) 

𝑛𝑛𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∏ �1 + 𝛾𝛾𝑗𝑗 � 

𝑚𝑚𝑗𝑗𝑀𝑀
𝑗𝑗=1  

 
 �

2
− 1 (9)

 

If the cyclic average and steady state concentrations are the same (i.e., the concentration is 

oscillating around the steady state), then we have 

∆=
�∏ (1 + 𝛼𝛼𝑖𝑖 ) 

𝑛𝑛𝑖𝑖𝑁𝑁
𝑖𝑖=1  

 ∏ �1 − 𝛾𝛾𝑗𝑗 � 

𝑚𝑚𝑗𝑗𝑀𝑀
𝑗𝑗=1  

 
 + ∏ (1 − 𝛼𝛼𝑖𝑖 ) 

𝑛𝑛𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∏ �1 + 𝛾𝛾𝑗𝑗 � 

𝑚𝑚𝑗𝑗𝑀𝑀
𝑗𝑗=1  

 
 �

2
− 1 (10) 

where 𝛼𝛼𝑖𝑖  and 𝛾𝛾𝑗𝑗  represent the dimensionless amplitudes of N total in-phase and M total out-of-

phase species in the feed, respectively.  

 Power law rate expressions are often inadequate in describing the rates over a wide range 

of concentrations. For example, power law expressions do not account for a shift in the apparent 

orders. In such cases use of a Langmuir- 

Hinshelwood-Hougen-Watson (LHHW) rate expression may be necessary. The QSS analysis can 

be extended to LHHW rate expressions. Here we consider the following catalytic sequence: 

𝐴𝐴1 + ∗ ↔ 𝐴𝐴 ∗1 

… 

𝐴𝐴𝑁𝑁 + ∗ ↔ 𝐴𝐴 ∗𝑁𝑁 

𝐴𝐴 ∗1+ ⋯+ 𝐴𝐴 ∗𝑁𝑁  →  𝐶𝐶 ∗1+ ⋯+ 𝐶𝐶 ∗𝐿𝐿 
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  𝐶𝐶 ∗1↔ 𝐶𝐶1 + ∗ 

… 

 𝐶𝐶 ∗𝐿𝐿↔ 𝐶𝐶𝐿𝐿 + ∗  

where N and L are the number of reactants and products, respectively Assuming adsorption and 

desorption steps are quasi-equilibrated, and the surface reaction is rate limiting, it can be shows 

that the LHHW rate expression takes the following form: 

𝑟𝑟 =
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  ∏ 𝐶𝐶𝑖𝑖 𝐾𝐾𝑖𝑖𝑁𝑁

𝑖𝑖=𝑎𝑎𝑎𝑎𝑎𝑎

�1 + ∑ 𝐾𝐾𝑗𝑗 𝐶𝐶𝑗𝑗 𝑀𝑀
𝑗𝑗=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑁𝑁 (11) 

where M is the number of surface species (M = L + N). The resulting expression for fractional 

enhancement assuming equivalent duty cycles and in-phase modulation is given by: 

∆=

�
𝑠𝑠 ∏ �1 + 𝛼𝛼+,𝑖𝑖

 �𝑁𝑁
𝑖𝑖=𝑎𝑎𝑎𝑎𝑎𝑎

�1 + ∑ 𝐾𝐾′𝑗𝑗 �1 + 𝛼𝛼+,𝑗𝑗
 �𝑀𝑀

𝑗𝑗=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑁𝑁  +

(1 − 𝑠𝑠)∏ �1 − 𝛼𝛼−,𝑖𝑖
 �𝑁𝑁

𝑖𝑖=𝑎𝑎𝑎𝑎𝑎𝑎

�1 + ∑ 𝐾𝐾′𝑗𝑗 �1 − 𝛼𝛼−,𝑗𝑗
 �𝑀𝑀

𝑗𝑗=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑁𝑁 �

�1 + ∑ 𝐾𝐾′𝑗𝑗 𝑀𝑀
𝑗𝑗=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

−𝑁𝑁 − 1 (12)
 

where,  

𝐾𝐾𝑗𝑗 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑗𝑗
 = 𝐾𝐾𝑗𝑗′ (13) 

Details of the derivation are provided in SI 1.2. The inhibition terms add a new layer of complexity 

and dependence on the equilibrium adsorption constant and cyclic average of the concentration 

waves. The larger the value of 𝐾𝐾𝑗𝑗′  the more impactful the denominator terms are on the QSS rate. 

In the limit of 𝐾𝐾𝑗𝑗′ → 0, Eqn. (12) resembles Eqn. (8) with 𝑛𝑛𝑖𝑖 = 1. Increasing the importance of 

inhibition terms by increasing 𝐾𝐾𝑗𝑗′ results in apparent reaction orders transitioning from being 

positive to negative, an effect captured by Eqn. (12), but not Eqn. (8). Implications of rate 

inhibition on QSS reactor performance are explored in later section.
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2.2  QSS Dynamic Rate Analysis:  Bimolecular Reactions 

Consider the modulation of two reactants with a duty cycle of 50% (s = 0.5) for the 

power law rate expression 

𝑟𝑟 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶1
𝑛𝑛1𝐶𝐶2

𝑛𝑛2 (16) 

The expression for fractional enhancement during in-phase (simultaneous) modulation is given 

by  

∆ =
(𝛼𝛼  + 1) 

𝑛𝑛1(𝛽𝛽 + 1) 
𝑛𝑛2 + (1 − 𝛼𝛼  ) 

𝑛𝑛1(1 − 𝛽𝛽 ) 
𝑛𝑛2

2
− 1 (17)

Figs. 1a - c show the enhancement for in-phase (simultaneous) concentration modulation as a 

function of the dimensionless amplitudes for species 1 (𝛼𝛼  ) and species 2 (𝛽𝛽 ) for three different 

reaction order cases (𝑛𝑛1 and 𝑛𝑛2) and 𝑠𝑠=0.5. The first case involves one negative and one fractional 

apparent order for which the sum of orders is less than 0: (a) 𝑛𝑛1 + 𝑛𝑛2 < 0 𝑎𝑎𝑎𝑎𝑎𝑎   𝑛𝑛1 < 0 < 𝑛𝑛2 < 1. 

The second case considers two fractional apparent orders with a sum is greater than unity: (b) 𝑛𝑛1 +

𝑛𝑛2 > 1  𝑎𝑎𝑎𝑎𝑎𝑎 0 <  𝑛𝑛1& 𝑛𝑛2 < 1. The third case considers a reaction with apparent orders less than 

zero and greater than one which have a fractional sum: (c) 0 < 𝑛𝑛1 + 𝑛𝑛2 < 1,  𝑛𝑛2 <  0 & 𝑛𝑛1 > 1.  

For the first case (Fig. 1a) the reaction orders are fractional with one negative (n1 = -0.4) 

and the other positive (n2 = 0.2). The results demonstrate the expected effect of concavity based 

on the reaction order sign and magnitude. Modulation of species 1 enhances the rate since the order 

is negative. Modulation of species 2 hinders the rate since the order is positive but less than 1. As 

the rate is further hindered by increasing the normalized amplitude of species 2 (𝛽𝛽 ), a higher 

normalized amplitude of species 1 (𝛼𝛼  ) is required to combat the negative effects from the 

fractional order of species 2.    

 For the second case (Fig. 1b) the reaction orders are both fractional and positive (n1 = 0.7, 

n2 = 0.9) with their sum exceeding unity.  If either species 1 or 2 are modulated individually while 
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the other is held at steady state (i.e., 𝛽𝛽 = 0 and 𝛼𝛼  > 0 or vice versa), the rate is hindered. This is 

expected as each species individually has a fractional rate order and therefore concave rate 

dependence. However, there exists a large region of rate enhancement along the diagonal. This 

shows that the combined order (n1 + n2) is the key parameter. Consider the diagonal for which the 

dimensionless amplitudes of 1 and 2 are identical (α = β). Applied to Eqn. (17) gives the result   

∆ =
(𝛼𝛼  + 1) 

𝑛𝑛1+𝑛𝑛2 + (1 − 𝛼𝛼  ) 
𝑛𝑛1+𝑛𝑛2

2
− 1 (18) 

We see that the system behaves as the case of a single reactant with order n1 + n2. The sum of 𝑛𝑛1 

and 𝑛𝑛2 being 1.6 (>1) and therefore convex with respect to the lumped concentration, results in a 

higher cyclic average rate compared to the steady state. This result was recently considered by 

Gottlieb et al. [14]. Grabmuller and Hoffman [8] also found that such combinations of reaction 

orders (n1 + n2>1) yield a convex function leading to increased conversion in a periodically 

operated PFR. This work provides the criterion of equivalent dimensionless amplitudes and duty 

cycles to achieve enhancement through simultaneous modulation. 

 The third case (Fig. 1c) is the converse of case 2; in-phase modulation in this case hinders 

the rate even though individual modulation is beneficial. Here, the species 1 order exceeds unity 

(n1 = 1.2) while the species 2 order is negative (n2 = -0.5). The sum of the reaction orders being 

fractional (0.7) means that in-phase modulation is detrimental to the overall rate even though the 

rates are enhanced when either species is modulated individually. 

 The fractional rate enhancement for a power law rate expression where N reactants are 

modulated in-phase with approximately equivalent duty cycles (𝑠𝑠1 ≈ 𝑠𝑠2 ≈ ⋯ ≈ 𝑠𝑠N) and 

dimensionless amplitudes (𝛼𝛼1 ≈ 𝛼𝛼2 ≈ ⋯ ≈ 𝛼𝛼N) is as follows 

∆= �𝑠𝑠𝑁𝑁(1 + 𝛼𝛼N)∑ 𝑛𝑛𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

 
 + (1 − sN)(1 − 𝛼𝛼N)∑ 𝑛𝑛𝑖𝑖𝑁𝑁

𝑖𝑖=1 � − 1 (19) 
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Additional analyses for out-of-phase modulation are shown in SI 3.2. Here, the QSS dynamic rate 

enhancement for a 50% duty cycle (s = 0.5) during out-of-phase modulation is given by 

∆  =  
(𝛼𝛼  + 1) 

𝑛𝑛1(1 − 𝛽𝛽 ) 
𝑛𝑛2 + (1 − 𝛼𝛼  ) 

𝑛𝑛1(𝛽𝛽 + 1) 
𝑛𝑛2

2
− 1 (20) 

The terms cannot be mathematically combined in this case, meaning that enhancing effects are not 

observed as for the case of simultaneous modulation. 

 Up to this point, we have demonstrated the requirements for local rate enhancement 

through modulation of multiple reactant concentrations. For example, in the case of simultaneous 

modulation of two reactants using equivalent dimensionless amplitudes and duty cycles, when the 

sum of apparent reaction orders exceeds unity, a pronounced enhancement may be encountered. 

QSS operation where dimensionless amplitudes and duty cycles are not equivalent merely abides 

by the concavity of the rate function and its dependency on individual reactant concentrations. 

Next, we extend our analysis to non-power law, Langmuir Hinshelwood kinetics. 

2.3  QSS Dynamic Rate Analysis:  Langmuir Hinshelwood Hougen Watson Kinetics 

We now consider a reaction described by LHHW kinetics for the case of two inhibiting 

reactants modulated in or out of phase with equal duty cycles.  The fractional enhancement is given 

by 

∆=

� (1 + 𝛼𝛼)(1 ± 𝛽𝛽 )
�1 + 𝐾𝐾1′(1 + 𝛼𝛼) + 𝐾𝐾2′(1 ± 𝛽𝛽)�

2  + (1 − 𝛼𝛼)(1 ∓ 𝛽𝛽 )
�1 + 𝐾𝐾1′(1− 𝛼𝛼 ) + 𝐾𝐾2′(1 ∓ 𝛽𝛽)�

2 �

2(1 + 𝐾𝐾1′ + 𝐾𝐾2′)−2
− 1 (21)

 

Simultaneous and out-of-phase modulation are indicated in Eqn. (21) by the + and – signs, 

respectively. Plotting ∆ in the plane of dimensionless amplitudes for the example case of 𝐾𝐾1′ = 2 

and 𝐾𝐾2′ = 30 during in and out-of-phase operation results in Figs. 2a and b, respectively. It is useful 

to assess the results by considering the apparent reaction orders for each reactant given by 
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𝑛𝑛𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝜕𝜕 ln(𝑟𝑟)
𝜕𝜕ln (𝐶𝐶𝑖𝑖)

�
𝐶𝐶𝑗𝑗≠𝑖𝑖

(22) 

Application of Eqn. (22) to the LHHW kinetics gives Eqn. (23) for reactants and Eqn. (24) for 

products 

𝑛𝑛𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 =
1 + (1 − 𝑁𝑁)𝐾𝐾𝑖𝑖′ + ∑ 𝐾𝐾𝑗𝑗′𝑀𝑀

𝑗𝑗≠𝑖𝑖

1 + ∑ 𝐾𝐾𝑗𝑗′𝑀𝑀
𝑗𝑗

(23) 

𝑛𝑛𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 =
−𝑁𝑁 𝐾𝐾𝑖𝑖′

1 + ∑ 𝐾𝐾𝑗𝑗′𝑀𝑀
𝑗𝑗

(24) 

For this specific case of two components (N=2, 𝐾𝐾1′ = 2 and 𝐾𝐾2′ = 30) the apparent orders are 

estimated from Eqns. (23)-(24) as n1,app = 0.88  and n2,app = -0.81. It is revealing to consult the 

schematic plot in Fig. 2c. Two chords are drawn representing two cases with the minimum and 

maximum values of the modulated concentration being the end points. Modulation at lower 

concentrations to the left of the rate maximum leads to hindrance while modulation at higher 

concentrations to the right of the rate maximum leads to enhancement.   

Applying the QSS modulation findings for power law kinetics shows that modulation of 

species B leads to fractional enhancement (n < 0) while modulation of species A leads to hindrance 

(0 < n < 1). Figs. 2a and b indeed show a region of enhancement at higher dimensionless amplitudes 

of species B (β) and smaller dimensionless amplitudes of species A (α). However, unlike power 

law expressions, the largest enhancement does not occur when the convex species has the largest 

dimensionless amplitude, which in this example occurs when β = 1. Rather, Fig. 2c shows that any 

modulation with β = 1 hinders the rate as it is impossible to draw a chord anchored at the origin 

with an average greater than the SS rate curve. This effect is captured in Figs. 2a and b as the 

enhancement decreases at very high β or α. 
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In section 2.2, we demonstrated that enhancement during simultaneous modulation with 

equivalent duty cycles and dimensionless amplitudes (𝛼𝛼 = 𝛽𝛽) is dependent on the sum of apparent 

reaction orders. For example, in Fig. 1b, when the two individual species are fractional positive 

order, but the sum of the reaction orders is greater than 1, a region of dynamic enhancement can 

be observed along the 𝛼𝛼 = 𝛽𝛽 axis. Simultaneous modulation of A and B in this Langmuir 

Hinshelwood case results in negligible enhancement in a region along the diagonal in the β vs. α 

plane (Fig. 2a). This is a result of the near-zero sum of the apparent reaction orders (n1,app = 0.88  

and n2,app = -0.81). Fig. 2a demonstrates that higher dimensionless amplitudes of species B are 

required to out-compete the negative effect of a higher dimensionless amplitudes of species A 

(when 𝛽𝛽 <1). In contrast, out-of-phase modulation of A and B results in a larger region of 

enhancement (Fig. 2b). During out-of-phase operation (Fig. 2b), the enhancement no longer relies 

on the sum of apparent orders, and hence enhancement can be observed along the 𝛼𝛼 = 𝛽𝛽 axis, 

unlike the case of in phase operation (Fig. 2a). Individual apparent orders appear to be more 

important than their sum during out-of-phase operation, resulting in the enlarged region of 

enhancement in Fig. 2b compared to Fig. 2a. 

 In section 2.2, we showed that simultaneous modulation may lead to higher rates when the 

sum of apparent orders is greater than 1. For the case of M total species with N adsorbed and 

reacting components and L inhibiting products (L+N=M), this translates to the following criteria: 

� 𝑛𝑛𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁

𝑖𝑖=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ � 𝑛𝑛𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎

𝐿𝐿

𝑖𝑖=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  =   
𝑁𝑁 − ∑ 𝐾𝐾𝑗𝑗′𝐿𝐿

𝑗𝑗

1 + ∑ 𝐾𝐾𝑗𝑗′𝑀𝑀
𝑗𝑗

 >  1    𝑜𝑜𝑜𝑜  < 0 (25) 

For two adsorbing reactants and no adsorbing products (N=2 and L=0), Eqn. (25) simplifies to 

Eqn. (26): 

0 < 𝐾𝐾2′  , 0 < 𝐾𝐾1′ ,𝐾𝐾1′ + 𝐾𝐾2′ < 1 (26) 
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The enhancing effect of additive reaction orders for N = 2 only applies when Eqn. (26) is satisfied. 

These criteria imply that 𝐾𝐾1′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾2′ must be small enough such that both reactant concentrations 

are in the positive order regime (to the left of the maximum rate in Fig. 2c) in order to benefit from 

simultaneous modulation. 

For the case of N adsorbing reactants and L inhibiting products, the sum of orders is greater 

than 1 when the following equation is satisfied: 

𝑁𝑁 − 1 > � 𝐾𝐾𝑗𝑗′
𝑁𝑁

𝑗𝑗=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ 2 � 𝐾𝐾𝑗𝑗′
𝐿𝐿

𝑗𝑗=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(27) 

This expression shows that more inhibiting products make it more difficult for the sum of the 

orders to exceed unity, an expected result since apparent orders of inhibiting products are negative. 

Therefore, to satisfy this criterion it is best for there to be no inhibiting species. Furthermore, the 

expression shows that if there is one adsorbed reacting component (N=1), it is impossible to exceed 

an apparent order of 1, which is a characteristic of single order denominator LHHW rate 

expressions. The second criterion for enhancement during the simultaneous modulation of species 

is for the sum of apparent orders to be less than zero. This criterion is expressed as the following 

� 𝐾𝐾𝑗𝑗′
𝐿𝐿

𝑗𝑗=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

> 𝑁𝑁 (28) 

This expression shows that the sum of apparent orders is less than zero during high degrees of 

product inhibition relative to the number of reactants. Eqns. (27) and (28) demonstrate that 

enhancement due to additive reaction orders through simultaneous modulation must occur when 

reactants fall to the left of the maximum of the rate concentration curve in Fig. 2c (i.e., n1 + n2 

+…> 1) or when there is extensive product inhibition (i.e. n1 + n2 +…< 0). In later sections we will 

address the implications and effects of QSS operation with LHHW type kinetics in a PFR. 
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2.4   Simultaneous Modulation for a Bimolecular Reaction in a PFR 

As we have seen up to this point, the QSS rate analysis is a simple and informative way of 

approximating local (differential) rate enhancement. In this section we extend the local QSS 

analysis to integral operation, i.e. for cases where reactant species concentrations vary along the 

length of the reactor. We specifically examine reactant feed modulation for the case of the single 

reaction 𝐴𝐴 + 𝑏𝑏𝑏𝑏 → 𝑝𝑝𝑝𝑝 in an isothermal PFR.  

The following reacting species balances account for accumulation, convection, and 

reaction: 

𝜕𝜕𝑥𝑥𝐴𝐴
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝑥𝑥𝐴𝐴
𝜕𝜕𝜕𝜕

− 𝐷𝐷𝐷𝐷 𝑟𝑟 (29) 

𝜕𝜕𝑥𝑥𝐵𝐵
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝑥𝑥𝐵𝐵
𝜕𝜕𝜕𝜕

− 𝑏𝑏 𝐷𝐷𝐷𝐷 𝑟𝑟 (30) 

𝜕𝜕𝑥𝑥𝑃𝑃
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝑥𝑥𝑃𝑃
𝜕𝜕𝜕𝜕

+ 𝑝𝑝 𝐷𝐷𝐷𝐷 𝑟𝑟 (31) 

where 

𝑟𝑟 = 𝐷𝐷𝐷𝐷 𝑥𝑥𝐴𝐴𝑛𝑛𝑥𝑥𝐵𝐵𝑚𝑚 (32) 

and 

𝑥𝑥𝑖𝑖 =
𝐶𝐶𝑖𝑖

𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ;      𝜉𝜉 =

𝑧𝑧
𝐿𝐿

;     𝜃𝜃 =
𝐿𝐿
𝑢𝑢𝑠𝑠
𝑡𝑡;     𝐷𝐷𝐷𝐷 =

𝑘𝑘 �𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 �

𝑛𝑛+𝑚𝑚−1
 𝐿𝐿

𝑢𝑢𝑠𝑠
;  

The boundary conditions are given by 

𝑥𝑥𝐴𝐴 (𝜃𝜃, 𝜉𝜉 = 0) = �
�1 + 𝛼𝛼+

𝑓𝑓�; 𝑙𝑙 𝜏𝜏 ≤ 𝜃𝜃 < 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐴𝐴
𝑓𝑓�

(1 − 𝛼𝛼−𝑓𝑓); 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐴𝐴
𝑓𝑓� ≤ 𝜃𝜃 < 𝜏𝜏 (𝑙𝑙 + 1)

(33) 

𝑥𝑥𝐵𝐵 (𝜃𝜃, 𝜉𝜉 = 0) = �
�1 + 𝛽𝛽+

𝑓𝑓�𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ; 𝑙𝑙 𝜏𝜏 ≤ 𝜃𝜃 < 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐵𝐵

𝑓𝑓�

(1 − 𝛽𝛽−𝑓𝑓)𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ; 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐵𝐵

𝑓𝑓� ≤ 𝜃𝜃 < 𝜏𝜏 (𝑙𝑙 + 1)
(34) 

where 
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 𝑙𝑙 = 0, 1, 2, … 

The initial conditions are given by 

𝑥𝑥𝐵𝐵(𝜃𝜃 = 0, 𝜉𝜉) = 𝑥𝑥𝐴𝐴(𝜃𝜃 = 0, 𝜉𝜉) = 0 (35) 

The system of partial differential equations (PDE’s) is solved using the method of lines. 

For the calculations reported here we discretized the reactor into 20 cells and solved the system of 

ordinary differential equations in Python using the LSODA algorithm. The fractional enhancement 

∆(ξ = 1) was calculated using Eqn. (6) after a cyclic steady state was reached for each cell (very 

large 𝑙𝑙). The cyclic average enhancement was compared to the steady state case (i.e., steady state 

implying 𝛼𝛼+
𝑓𝑓 = 𝛼𝛼−𝑓𝑓 = 𝛽𝛽+

𝑓𝑓 = 𝛽𝛽−𝑓𝑓 = 0 in Eqns. (33) and (34)). 

The QSS analysis can be applied to integral operation to identify conditions that result in 

conversion enhancement during periodic operation in a PFR. For illustration, we consider the 

following combination of reaction orders and stoichiometric coefficients: n1 = 0.7, n2 = 0.9, b = 2, 

p = 1. We first analyze simultaneous modulation of A and B for which the cyclic average 

dimensionless feed concentrations of A (𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ) and B (𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴

𝑓𝑓 ) satisfy the reaction stoichiometry 

(𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 =1 and 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴

𝑓𝑓 =2), with duty cycles 𝑠𝑠𝐴𝐴
𝑓𝑓 = 𝑠𝑠𝐵𝐵

𝑓𝑓 = 0.5 and amplitudes 𝛼𝛼 
𝑓𝑓 = 𝛽𝛽 

𝑓𝑓 = 0.9. 

According to the QSS analysis, this combination of reaction orders, amplitudes and duty cycles 

suggest that the local rate will be enhanced since n1 + n2 > 1. Since ∆ varies along the reactor, we 

calculate the effluent enhancement ∆(𝜉𝜉 = 1) at cyclic steady state as a function of the Damköhler 

number (Da). Model predictions in Fig. 3 shows ∆(𝜉𝜉 = 1)   calculated using Eqns. (6), (7) and (8) 

from earlier. As defined in section 2.1, Eqn. (6) is the exact ∆ whereas Eqns. (7) and (8) are 

approximations of ∆ assuming square waves; the former (Eqn. (7)) accounts for differences 

between cyclic average and SS concentrations, while the latter (Eqn. (8)) assumes they are 
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equivalent at the reactor outlet. Also shown in the figure are the calculated QSS and SS 

conversions, XQSS and XSS. 

The simulations show the expected monotonically increasing dependence of SS conversion 

on Da. For the selected reaction orders and stoichiometric parameters, the conversion obtained 

under modulation leads to integral enhancement for the entire range of Da. The calculated ∆(𝜉𝜉 =

1) monotonically decreases with Da from a maximum value of 0.42 for Da  0 to -0.2 at Da ~ 4. 

At 𝐷𝐷𝐷𝐷~0.4, ∆(𝜉𝜉 = 1) = 0; i.e., enhancement stops. For Da > 0.4, ∆(𝜉𝜉 = 1) < 0 and XQSS 

approaches XSS. Despite this trend, the QSS operation outperforms SS operation (XQSS > XSS) even 

for conversions greater than 90%.  

The deviation between the exact ∆ (Eqn. (6)) and estimated ∆ (Eqn. (8)) conveys the   

growing gap between the cyclic average and SS concentrations down the length of the reactor. 

Specifically, rates are elevated near the inlet of the reactor during QSS operation as result of the 

additive order effect described in section 2.1. Higher rates in the QSS reactor therefore result in 

lower cyclic average concentrations relative to SS concentrations at the same Da. Accounting for 

these differences with ∆ approximated using Eqn. (7) gives much better agreement with the exact 

value obtained from Eqn. (6). This indicates that conversion enhancement is determined both by 

the degree of reactant modulation as well as difference between cyclic average and steady state 

concentrations. Specifically, higher SS concentrations relative to the cycle average concentrations 

along a PFR result in a decreasing ∆ as a function of Da as seen in Eqn. (7). In other words, the 

ratio of the cyclic average and SS concentrations in Eqn. (7) will decrease as Da increases causing 

∆ to also decrease. 

The considered case of a stoichiometric feed with equal dimensionless amplitudes (𝛼𝛼 
𝑓𝑓 =

𝛽𝛽 
𝑓𝑓) means that these remain identical along the reactor length, i.e. 𝛼𝛼(𝐷𝐷𝐷𝐷) = 𝛽𝛽(𝐷𝐷𝐷𝐷) for all Da. 
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This feature is no longer realized if the feed is not stoichiometric and, as a result, the advantage 

gained through simultaneous reactant modulation when the sum of apparent orders exceeding unity 

is lost at higher Da. That is, the enhancement diminishes as the local amplitudes are no longer 

aligned, 𝛼𝛼(𝐷𝐷𝐷𝐷) ≠ 𝛽𝛽(𝐷𝐷𝐷𝐷) . 

 To this point, we now consider the case of a non-stoichiometric feed in which B is fed in 

excess (𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴 
𝑓𝑓 = 1 and 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴 

𝑓𝑓 = 4) while all other parameters are kept the same as the earlier 

stoichiometric case. Fig. 4a shows ∆(𝜉𝜉 = 1)  calculated from Eqns. (6), (7), (8) and (9) defined in 

section 2.1 along with XQSS and XSS as functions of Da. Comparing Fig. 4a to Fig. 3, as expected, 

the 5x increase in the B concentration increases the steady state conversion of A for all Da. As for 

the stoichiometric case, Fig. 4a shows that modulation is beneficial due to the sum of reaction 

orders exceeding unity. However, the local enhancement decreases with increasing Da, eventually 

becoming negative. As a result, the gap between QSS and SS diminishes as Da increases. The most 

significant difference in this case is a much more rapidly decreasing ∆. This is due to the 

nonstoichiometric feed condition. Fig. 4b shows that dimensionless amplitudes 𝛼𝛼 and 𝛽𝛽  begin to 

separate from one another, further decreasing the enhancement at the reactor outlet. At 𝐷𝐷𝐷𝐷~ 0.3, 

∆ = 0 and the rate no longer benefits from QSS operation relative to steady state operation. 

Although the integral conversion remains higher in the QSS case at 𝐷𝐷𝐷𝐷~ 0.3, it begins to converge 

towards the SS conversion at this point. It is notable that in the stoichiometric case, 𝛼𝛼  and 𝛽𝛽  

remain equivalent hence maintaining the additive order effect which is not the case with non-

stoichiometric feeds. Fig. S2.3 in the SI (figure) depicts 𝛼𝛼  and 𝛽𝛽  as a function of Da for the 

stoichiometric case demonstrating such compositions maintain equivalent dimensionless 

amplitudes. 
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Unlike the stoichiometric example, Fig. 4a shows that ∆ is more accurately estimated by 

Eqn. (7) only for 𝐷𝐷𝐷𝐷 < 0.6 as it accounts for the difference between the SS and cyclic average 

concentrations up to 𝐷𝐷𝐷𝐷~ 0.6. However, for 𝐷𝐷𝐷𝐷 > 0.6, Eqn. (7) incorrectly predicts an increase 

in ∆ as Da increases. Fig. 4b also shows a reconvergence of 𝛼𝛼 and 𝛽𝛽 after 𝐷𝐷𝐷𝐷~0.6. Since both 

orders have a sum greater than 1, the reconvergence of 𝛼𝛼 and 𝛽𝛽 should improve the rate, hence the 

increase in ∆ predicted by Eqn. (7) in Fig. 4a. However, Fig. 4a shows that ∆ (Eqn. (6)) decreases 

for Da > 0.6, therefore, Eqn. (7) no longer captures the behavior of ∆ at higher Da. Rather, the 

solution can be found in Figs. 4c and d which plot xA and xB as functions of dimensionless time 

(𝜃𝜃) before (at 𝐷𝐷𝐷𝐷 = 0.5) and after (at 𝐷𝐷𝐷𝐷 = 0.9) the point, 𝐷𝐷𝐷𝐷 ~ 0.6. Fig. 4c shows that for 𝐷𝐷𝐷𝐷=0.5, 

the concentration waves remain in-phase, resulting in a positive effect on the fractional 

enhancement as previously described. However, Fig. 4d shows that after 𝐷𝐷𝐷𝐷~ 0.6 (at 𝐷𝐷𝐷𝐷=0.9), the 

concentration waves are no longer in-phase with one another. This implies that the concentration 

wave undergoes a phase change relative to its initial wave form which occurs at 𝐷𝐷𝐷𝐷~ 0.6, resulting 

in further enhancement losses. Specifically, the concentration wave of species A inverts over the 

xi axis from Figs. 4c to d. This results in a wave that is out of phase with its inlet waveform.   

A similar effect of concentration wave inversion was reported by Marin et. al. in the case 

of carbon monoxide (CO) oxidation on Pt catalysts. In some instances, their simulations predicted 

bulk phase oxygen and CO concentration waves entering the reactor out-of-phase and exiting 

approximately in-phase [7]. In our case, since the waves are no longer in-phase, the rate no longer 

benefits from the combined reaction orders and instead suffers from the individual fractional 

orders. Eqn. (9) in Fig. 4a solves for ∆ during out-of-phase operation accounting for differences in 

SS and cyclic average concentrations. The trajectory of Eqn. (9) more closely follows that of ∆ 

(Eqn. (6)) for   Da > 0.6. Although Eqn. (9) follows the trajectory of Eqn. (6), deviations between 
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equations arise from the distortions of the square waves which is shown by xA in Fig. 4d as this 

negates the assumption of square concentration waves. 

 It is important to note that the wave phase change phenomenon is not a result of waves 

shifting past each other. Rather, it is a result of disproportionate decreases in the concentration 

wave maxima and minima values. Both A and B are consumed along the length of the reactor to 

produce P. The positive reaction orders for A and B also indicate that they will react at higher rates 

during the concentration wave maxima relative to the minima. This coupled with the non-

stoichiometric feed results in a disproportionate decrease of the concentration wave maxima and 

minima. This disproportionate decrease results in the maxima of the limiting reactant (A) 

eventually falling below its minima generating a wave that is out-of-phase with reactant B and its 

(A’s) inlet waveform. Therefore, this effect is more accurately referred to as a wave inversion 

rather than a phase change.  

It is possible to determine the location at which a wave inversion occurs for a 

nonstoichiometric feed. For example, if the maxima of the concentration continuously decreases 

past the minima as Da increases; the point after which the waves become out-of-phase occurs at 

the Da when both the maxima and minima are equal. The point of wave inversion for species i 

occurs at the Da when 𝑥𝑥𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷) = 𝑥𝑥𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷). The Da at which this occurs can be determined 

by solving the SS model with inlet boundary conditions equivalent to the concentration wave 

maxima and minima and finding the Da at which the solutions intersect. This is demonstrated in 

Fig. 4e which shows the intersection between the limiting reactant (A) steady state maxima and 

minima solutions (𝑥𝑥𝐴𝐴,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷) = 𝑥𝑥𝐴𝐴,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷)) occurring at 𝐷𝐷𝐷𝐷~ 0.6. This is illustrated in Fig.4a 

as the point where the in-phase operation assumption (Eqns. (7)) breaks down and the 
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concentration waves switch from in to out-of-phase modulation, hence the better prediction by 

Eqn. (9).  

 In summary, this analysis provides a useful method of selecting inlet conditions for square 

waves during QSS dynamic operation. Differences in the cyclic average from steady state reactant 

concentrations, wave inversion and distortion at different Da result in inaccurate predictions during 

high conversion integral behavior. Despite the lack of accuracy, overall conversions during QSS 

operation remain higher than steady state operation even above 90% SS conversion. Later sections 

apply the method to predict wave inversion to the periodic operation of ethane and oxygen during 

oxidative dehydrogenation to ethylene.  

2.5  Simultaneous Modulation for a Single Reaction in a PFR LHHW Kinetics  

Here we extend the integral analysis to a reaction having LHHW kinetics. We consider 

LHHW kinetics involving self-inhibition by two components as follows:  

𝐴𝐴 +∗→ 𝐴𝐴 ∗ 

𝐵𝐵 +∗→ 𝐵𝐵 ∗ 

𝐴𝐴 ∗ +𝐵𝐵 ∗→ 𝑃𝑃 + 2 ∗ 

The rate under surface reaction control is given by 

𝑟𝑟 =
𝐿𝐿

𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 𝑢𝑢𝑠𝑠

𝑘𝑘3𝐾𝐾𝐴𝐴′ 𝐾𝐾𝐵𝐵′ 𝑥𝑥𝐴𝐴 𝑥𝑥𝐵𝐵 

(1 + 𝐾𝐾𝐴𝐴′𝑥𝑥𝐴𝐴 + 𝐾𝐾𝐵𝐵′ 𝑥𝑥𝐵𝐵)2
(36) 

where  

𝐾𝐾𝑖𝑖′ = 𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 𝐾𝐾𝑖𝑖;  𝐷𝐷𝐷𝐷 =

𝐿𝐿
𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 𝑢𝑢𝑠𝑠

𝑘𝑘3𝐾𝐾𝐴𝐴′ 𝐾𝐾𝐵𝐵′ 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓

 

 

�1 + 𝐾𝐾𝐴𝐴′ + 𝐾𝐾𝐵𝐵′ 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 �

2 

The computed results for ∆, XQSS and XSS as functions of Da in a PFR subject to a 

stoichiometric feed (𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴 
𝑓𝑓 = 1 and 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴 

𝑓𝑓 = 1) with 𝐾𝐾𝐴𝐴′ = 2, 𝐾𝐾𝐵𝐵′ = 30, 𝑠𝑠𝐴𝐴
𝑓𝑓 = 𝑠𝑠𝐵𝐵

𝑓𝑓 = 0.5, 𝛼𝛼 
𝑓𝑓 =
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0.1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 
𝑓𝑓 = 0.5 during simultaneous modulation are plotted in Fig. 5a. Dimensionless 

amplitudes 𝛼𝛼 
𝑓𝑓 and 𝛽𝛽 

𝑓𝑓 were selected from Fig. 2a as they result in a positive ∆ while a 

stoichiometric feed was used to prevent concentration wave inversion. As shown in Fig. 5a, the 

fractional enhancement (∆) steadily increases to a maximum before rapidly dropping. This 

behavior is understood by considering the rate versus concentration curve in Fig. 2c which reaches 

a maximum rate at an intermediate concentration value. As the reaction proceeds down the reactor, 

the concentration minima will rise to the maximum of the rate curve in Fig. 2c shown by the red 

dashed chord, before falling rapidly, resulting in rate hinderance as illustrated by the purple line in 

Fig. 2c. Thus, the initial rise of the rate enhancement in Fig. 5a (Da<0.25) is a result of the 

concentration wave minima approaching the rate versus concentration maximum. The rapid 

decrease at (Da > 0.25) is a result of the minima falling to the left of the rate maxima on the rate 

versus concentration plot. It is important to note that the QSS rate will be hindered if the 

concentration wave maxima and minima remain to the right and left of the rate versus 

concentration maximum in Fig. 2c respectively. If the concentration maximum and minimum both 

fall to the left of the rate versus concentration curve maximum, periodic operation will have no 

effect on the rate due to the apparent first order nature of this regime. In the following paragraph 

we discuss the importance of apparent reaction orders on QSS operation of LHHW reactions. 

 The point of maximum enhancement as a function of Da for a LHHW rate expression can 

be determined from the apparent reaction orders at the maximum and minimum concentrations of 

a modulating feed. The rate dependence on concentration for a rate expression having a second 

order denominator transitions from a positive to negative reaction order at the rate versus 

concentration maximum (Fig. 2c). As a result, the Da value at which the apparent reaction order 

for the minimum concentration transitions from negative to positive represents the maximum ∆ as 
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a function of Da in Fig. 5a. The criteria for maximum ∆ as a function of Da can therefore be noted 

as when 𝑛𝑛𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 = 0. This implies that enhancement begins to decrease when the 

apparent orders of the maxima and minima are less than and greater than zero, respectively 

(𝑛𝑛𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 > 0). Fig. 5b shows the apparent reaction orders at the concentration wave 

maxima and minima as functions of Da using the steady state model with feed conditions set to 

the concentration wave maxima and minima concentrations. Apparent reaction orders of species 

A at the maxima (nA,max) and minima (nA,min) are both positive and therefore lie to the left of the 

rate versus concentration curve maxima. This, coupled with the linear dependence of rate on 

concentration to the left of the rate maxima in Fig. 2c, suggests that modulation of A alone does 

not significantly affect the rate. This is further confirmed in Fig. 5b as nA,max and nA,min are both 

close to 1 for small Da (Da < 0.2). However, Fig. 5b shows that nB,max and nB,min are both negative 

until a Da slightly higher than 0.25, at which point nB,min becomes positive. When nB,max and nB,min 

< 0, the rate is enhanced through QSS operation. As the reaction proceeds to higher Da, xB,min will 

eventually fall to the left of the rate maxima (Fig. 2c) while xB,max remains to the right. This 

criterion can be mathematically written as the 𝐷𝐷𝐷𝐷 when 

𝑛𝑛𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷) < 0 (37) 

In section 2.2 we considered the effects of dimensionless feed amplitudes (𝛼𝛼 
𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 

𝑓𝑓) on 

the maximum ∆. There we showed that enhancement is dependent on the sum of apparent reaction 

orders for the case when reactants A and B have equivalent dimensionless amplitudes and duty 

cycles. Fig. 5b shows that at Da < 0.25 species A and B have positive and negative reaction orders, 

respectively. Therefore, simultaneous modulation of A and B with equivalent duty cycles and 

dimensionless amplitudes will decrease ∆ as a result of the positive apparent order of A hindering 

the enhancing effects of the negative apparent order from species B. Therefore, the ideal conditions 
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for QSS operation involves  𝛼𝛼 
𝑓𝑓 = 0 𝑎𝑎𝑎𝑎𝑎𝑎  0 < 𝛽𝛽 

𝑓𝑓 < 1. Fig. 6c plots ∆ as a function of Da for 

various 𝛼𝛼 
𝑓𝑓 where 𝛽𝛽 

𝑓𝑓 = 0.5. Fig. 6c shows that the maximum ∆ decreases in the limit of 𝛼𝛼 
𝑓𝑓 →

 𝛽𝛽 
𝑓𝑓. As the dimensionless amplitudes (𝛼𝛼 

𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 
𝑓𝑓) become equivalent, the enhancing effects of 

the negative apparent order of B are overcome by the positive apparent order of species A. 

Furthermore, Fig. 2a showed that ∆ decreases as 𝛼𝛼 
𝑓𝑓 →  𝛽𝛽 

𝑓𝑓. Therefore, the QSS rate analysis 

described in section 2.3 is an effective method of determining optimal periodic feed conditions 

that result in maximum rate enhancement for LHHW kinetics in a PFR. 

Similar to the point of wave inversion, the Da at which the minimum of the concentration 

wave reaches the rate maxima can be used to identify operational parameters when using LHHW 

kinetics that have a maximum rate. The wave inversion and maximum enhancement points indicate 

the regions at which the rates begin to lose enhancement during QSS operation. Furthermore, these 

points can be determined by solving the steady state balances at the concentration wave maxima 

and minima which may significantly reduce computational time needed to determine when the 

phenomena will occur.  

2.6  Simultaneous Modulation for Reactions in Series in a CSTR  

In this section, we will extend the QSS analysis to study the effects of simultaneous 

modulation in a CSTR involving consecutive reactions. Lee and Bailey studied the effects of 

simultaneous bang-bang reactant modulation on the yield of an intermediate product P1 as 

described by the following reaction scheme [13]: 

𝐴𝐴 + 𝐵𝐵 → 𝑃𝑃1 

𝐵𝐵 + 𝑃𝑃1 → 𝑃𝑃2 

The resulting non-dimensional CSTR species balances are as follows [13]: 

𝑑𝑑𝑥𝑥𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝐴𝐴
𝑓𝑓 − 𝑥𝑥𝐴𝐴 − 𝑟𝑟1 (38) 
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𝑑𝑑𝑥𝑥𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝐵𝐵
𝑓𝑓 − 𝑥𝑥𝐵𝐵 − 𝑟𝑟1 − 𝑟𝑟2 (39) 

𝑑𝑑𝑥𝑥𝑃𝑃1
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑃𝑃1 + 𝑟𝑟1 − 𝑟𝑟2 (40) 

𝑑𝑑𝑥𝑥𝑃𝑃2
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑃𝑃2 + 𝑟𝑟2 (41) 

The non-dimensional rate terms are given by: 

𝑟𝑟1 = 𝐷𝐷𝐷𝐷1𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 (42) 

𝑟𝑟2 = 𝐷𝐷𝐷𝐷2𝑥𝑥𝐵𝐵𝑥𝑥𝑃𝑃1 (43) 

with the following dimensionless parameters 

𝑥𝑥𝑖𝑖 =
𝐶𝐶𝑖𝑖

𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓 ;      𝜃𝜃 =

𝐹𝐹
𝑉𝑉
𝑡𝑡;      𝐷𝐷𝐷𝐷𝑖𝑖 =

𝑘𝑘𝑖𝑖𝑉𝑉𝐶𝐶𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴
𝑓𝑓

𝐹𝐹
;      𝑙𝑙 = 0,1,2 … 

The feed concentrations of A and B are given by, 

𝑥𝑥𝐴𝐴
𝑓𝑓(𝜃𝜃) = �

�1 + 𝛼𝛼+
𝑓𝑓�; 𝑙𝑙 𝜏𝜏 ≤ 𝜃𝜃 < 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐴𝐴

𝑓𝑓�
0; 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐴𝐴

𝑓𝑓� ≤ 𝜃𝜃 < 𝜏𝜏 (𝑙𝑙 + 1)
(44) 

𝑥𝑥𝐵𝐵
𝑓𝑓(𝜃𝜃) = �

�1 + 𝛽𝛽+
𝑓𝑓�𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴

𝑓𝑓 ; 𝑙𝑙 𝜏𝜏 ≤ 𝜃𝜃 < 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐵𝐵
𝑓𝑓�

0; 𝜏𝜏 �𝑙𝑙 + 𝑠𝑠𝐵𝐵
𝑓𝑓� ≤ 𝜃𝜃 < 𝜏𝜏 (𝑙𝑙 + 1)

(45) 

 The model was solved here using the LSODA algorithm in Python. Fractional rate 

enhancements were determined by numerically integrating the rate as a function of dimensionless 

time after the system reached a cyclic steady state.  Similar to Lee and Bailey [13], data at higher 

conversions of A were achieved by increasing the average inlet concentration of B while 

maintaining a constant residence time and inlet concentration of A. 

Lee and Bailey [13] noted a significant increase in P1 yield during the simultaneous 

modulation of species A and B shown in a reconstruction of their work in Fig. 6a. In contrast, the 

individual modulation of species B hinders the rate at higher conversion of A. At first glance, the 
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first order rate dependency of A and B indicates that any individual modulation of either 

component should not have any effect on 𝑟𝑟1. This is indeed observed in Fig. 6b at conversions of 

A less than 25% for the individual modulation of B. However, Eqn. (19) suggests the simultaneous 

modulation of A and B should enhance the rate of P1 formation as the orders have a sum greater 

than 1. This effect is indeed observed in Figs. 6a and b by the larger P1 yields and r1 formation rate 

enhancement, respectively, when modulating A and B simultaneously.  

At conversions below 10%, effects from the undesired reaction (r2) can be ignored as there 

is less P1 present. However, as the conversion and therefore concentration of P1 begins to increase, 

it becomes necessary to consider the impact of the second reaction. At higher A conversion a 

higher yield of P1 is obtained (Fig. 6a). This impacts the overall dynamic enhancement as P1 further 

reacts with B to produce the undesired product P2. The first order dependencies of reactants A and 

B on the P1 formation rate indicate that the rate and therefore P1 concentration will increase with 

increasing reactant concentrations. This effect results in a P1 concentration wave that modulates 

in-phase (simultaneously) with reactants A and B at the outlet of the CSTR as illustrated in Figs. 

6c and d. Coupling this with the fact that the CSTR rate depends on the outlet concentrations, the 

resulting simultaneous modulating concentration waves of P1 and B begin to enhance the P2 

formation rate. This effect is observed in both the simultaneous and single species modulation 

cases, especially at higher A conversion, as seen in Fig. 6b. Therefore, the individual modulation 

of species B does not enhance r1 but results in an in-phase cyclic profile of P1 which enhances r2 

hence decreasing P1 production and increasing its consumption. Simultaneous modulation of A 

and B is able to outperform this by enhancing the production of P1 rather than just improving its 

consumption.  
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 As demonstrated, the QSS local dynamic rate analysis provides a suitable method to 

identify regions of dynamic operation that induce yield enhancements in a CSTR with reactions in 

series. While the accuracy of the method presented is limited to lower conversions, concepts such 

as additive reaction orders through simultaneous modulation offer insights into the effects of 

dynamic operation on processes with multiple reactions at higher conversion.

2.7  Model Validation: Ethane Total Oxidation Over Spinel Catalysts 

We experimentally evaluated the application of QSS analysis methods for the total 

oxidation of ethane over a supported NiCo2O4 spinel catalyst (CDTi). The fractional rate 

enhancements for CO2 formation during square wave and SS operation are compared for different 

reactor feed amplitudes, phase shifts and duty cycles. The enhancement expressions in Eqn. (6) 

were used to integrate the data and Eqn. (7) was used to generate the theoretical curve. 

Experimental conditions and details are listed in SI 5.3. 

 The simultaneous QSS modulation experiment was conducted by testing various 

dimensionless amplitudes along the curve 𝛽𝛽 = 1 - 𝛼𝛼. As shown in Fig. 7a, the experimental CO2 

formation rate enhancement closely follows the model prediction using Eqn. (7). As described 

earlier, the rate during simultaneous modulation of two reactants described by power law kinetics 

will behave as a single reactant whose order is the sum of the individual orders. With the fractional 

orders of C2H6 and O2 being 0.22 and 0.48, respectively, that order is 0.70 with the dimensionless 

amplitudes given by 𝛼𝛼 = 𝛽𝛽 = 0.5 and equal duty cycles. With the combined order being less than 

unity, the QSS dynamic operation results in dynamic hindrance. Since 0.7 is closer to 1, the 

fractional enhancement moves closer to 0 when 𝛼𝛼 = 𝛽𝛽 = 0.5. In other words, the steady state rate 

versus concentration curve becomes more linear for the combined species with an order of 0.7. It 

is noted that the data point at 𝛼𝛼 =1 was determined by assuming that no CO2 was formed at the 
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rate minima due to the power law rate dependency (i.e., if the O2 concentration is zero, so is the 

rate). At 𝛼𝛼 =1, the oxygen concentration oscillates between 0 and 1.75% but the CO2 formation 

rate did not approach zero in the absence of oxygen. As in the absence of gaseous oxygen, C2H6 

is still able to react with oxygen stored on the spinel catalyst which does not reach a steady state 

until the catalyst is stripped of O2. Total reduction requires a very large period and afterwards the 

catalyst is unable to return to its initial state. Therefore, the data point is obtained by multiplying 

the duty cycle by the rate at the O2 concentration maxima.  

Further validation of the theory for out-of-phase periodic operation was conducted using 

Eqn. (10). Fig. 7b compares the experimental results and model predictions along the curve 𝛼𝛼 = 𝛽𝛽. 

As described earlier, out-of-phase operation during QSS operation will only exhibit enhancement 

if the individual orders are either greater than 1 or less than 0. In this case, neither of these criteria 

are satisfied and therefore there is no enhancement. Instead, as the components are modulated to a 

higher degree (increasing 𝛼𝛼 and 𝛽𝛽), the rate becomes further hindered due to the fractional reactant 

orders.   

A third validation was conducted by examining the effect of duty cycle on the fractional 

enhancement. The effects of QSS operation become more exaggerated at lower duty cycles as was 

previously discussed. Fig. 7c shows that the fractional enhancement increases with increasing duty 

cycle. Again, this shows that the dynamic effects of QSS operation will become more prominent 

as the wave maximum approaches a delta function. As previously discussed, the wave maxima is 

shifted along the rate versus concentration curve to preserve equivalent cyclic averages during 

changes in the duty cycle. This shift in the maxima results in a decrease of the cyclic average rate 

that is achieved with higher duty cycles like the effects shown in SI 3.1.  
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In summary, the QSS model shows quantitative agreement with catalytic ethane total 

oxidation data collected at low conversions. Effects of different dimensionless amplitudes, duty 

cycles, and phase shifts are all captured by the QSS analysis. In the following section we 

demonstrate an experimental case of concentration wave inversion. 

2.8  Concentration Wave Inversion: Ethane Oxidative Dehydrogenation 

In section 2.4, we discussed the phenomena of concentration wave inversion and how to 

predict when it will occur using SS conservation equations. In this section, we experimentally 

demonstrate concentration wave inversion during the oxidative dehydrogenation of ethane to 

ethylene over a 7 wt% MoO3/Al2O3 catalyst. A simple triangular reaction network for ethane ODH 

is depicted as follows  

 

Schematic 1: Reaction pathways during the oxidative dehydrogenation of ethane to ethylene and 

associated power law rate expressions with estimated kinetic parameters. Rates above are reported 

in [µmol/mg-cat/min]. Details on experiments, synthesis and conditions are located in SI 5.4. 

Kinetic parameters for each reaction in scheme 1 were obtained through an integral fitting 

of SS data and used to plot the O2 concentration wave maxima and minima as functions of W/F in 

Fig. 8. Fig. 8 shows that the O2 concentration maxima and minima intersect at W/F = 2.8 mg sccm-

1. As introduced in section 2.4, the intersection between the SS maxima and minima concentration 

profiles denotes the point of wave inversion. Therefore, Fig. 8 suggests that the O2 concentration 

wave during periodic operation under the same conditions will become out of phase with its initial 

waveform at W/F ~ 2.8 mg sccm-1. The point of wave inversion was verified by monitoring the 

concentration profiles of C2H6, O2, C2H4 and CO2 as functions of time at the effluent of reactors 

r1=1.8*10-1[C2H6] 
r2=1.21*10-2[C2H6] 
r3=2.3*10-1[C2H4][O2]0.26 
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with different W/F which are shown in Figs. 9a-d. Fig. 9a shows the concentration wave just before 

it enters the MoO3 catalyst bed. C2H6 and O2 are oscillated in phase implying the concentration 

waves reach a maxima and minima at the same times. The blue arrow indicates the C2H6 and O2 

concentration wave maxima. Fig. 9b shows the effluent concentration of C2H6, O2, C2H4 and CO2 

versus time for W/F = 2.1 mg sccm-1. At higher residence times, O2 and C2H6 are consumed, 

resulting in the decreasing cyclic average observed in Fig. 9b. The O2 maxima indicated by the 

blue arrow (~1.8*104 ppm) in Fig. 9b is much closer to its effluent minima (~1.6*104 ppm), 

implying that O2 is being consumed more rapidly at its maxima relative to its minima. Fig. 9c 

shows that the effluent O2 concentration maxima (1.7*104 ppm) indicated by the blue arrow is 

almost equivalent to its minima (1.6*104 ppm) for W/F = 2.6 mg sccm-1 which is similar to the 

point of wave inversion in Fig. 8. The equivalence between O2 concentration wave maxima and 

minima implies that the wave inverts 180° from its original phase and that any further reaction 

(higher W/F) will result in an O2 concentration wave that is no longer in-phase with its original 

wave form. Fig. 9d shows that the original O2 concentration maxima (1.5*104 ppm) indicated by 

the blue arrow is now less than the original concentration wave minima (1.6*104 ppm) at a W/F 

of 3.2 mg sccm-1. At this W/F value the O2 concentration wave is now 180° out of phase with its 

inlet wave form. It is important to note that Fig. 9a shows the O2 and C2H6 concentration waves 

enter the reactor in phase but exit the reactor out-of-phase in Fig. 9d (for W/F=3.2mg sccm-1). 

More importantly, SS solutions plotted in Fig. 8 are able to accurately determine the point of wave 

inversion found in Fig. 9c which occurs at W/F ~ 2.8 mg sccm-1. Here, we have experimentally 

demonstrated that the application of SS conservation equations to concentration wave maxima and 

minima may be used to determine the point of wave inversion in a PFR during C2H6 ODH.   
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2.9  Maximum Rate Enhancement: Methane Oxidation 

 In this section, we will apply the QSS rate analysis to methane oxidation over Platinum 

Group Metals (PGM) catalyst which exhibit similar LHHW rate versus concentration 

dependencies as those found in section 2.5. Work by Karinshak et. al. found that modulating 

oxygen during total oxidation of methane on a Pt/Pd catalyst resulted in lower light off 

temperatures compared to SS operation [30]. The modulation frequency of these experiments was 

low enough permitting the use of the QSS approach described in this paper. The effect of amplitude 

on light off temperature during QSS operation of methane oxidation is plotted in fig. 10a. As 

illustrated in their work, increasing the oxygen amplitude while maintaining an equivalent cyclic 

average resulted in decreasing light off temperatures until the amplitude exceeded 0.028 as shown 

in Fig. 10a [30]. The decreasing light off temperature is the result of the QSS rate being enhanced 

by modulation within the negative order regime of the rate versus concentration curve illustrated 

in Fig. 10b. Fig. 10a demonstrates that upon increasing the amplitude beyond 0.028, the light-off 

temperature began to shift towards the SS light off temperature [30]. The reconvergence of QSS 

and SS light off temperatures are a consequence of the concentration minima falling to the left of 

the rate maxima as detailed in section 2.5 and illustrated in Fig. 10b. It is important to note that 

strong oxygen inhibition over PGM catalysts may result in isothermal multiplicity of the SS rate 

as shown by Ratcliff et. al. [31]. However, during experiments conducted by Karinshak, the 

amplitude was large enough such that the maxima and minima rates fell on the single valued curve 

described by fig. 10b [30]. This section highlights the agreement between the QSS theory 

presented in this publication to experimental observations during methane oxidation with LHHW 

kinetic behavior.  
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3.  Conclusions

In this paper we have developed a simple method to estimate the effects of multiple 

dynamically fed reactants during QSS isothermal operation on reaction rates. Fractional rate 

enhancement is shown to be a function of reactant dimensionless amplitudes, duty cycles and 

reaction orders. Differences in rates when subject to modulating reactant concentrations compared 

to SS can be attributed to disproportionate scaling of the rate maxima and minima. Multi reactant 

modulation follows similar trends to single reactant modulation except in the case of in-phase 

operation. If multiple reactants are modulated simultaneously while sharing equivalent duty cycles 

and dimensionless amplitudes, the rate will behave as if it were dependent upon one species whose 

order is the sum of the individual reactants. This effect may lead to enhancement in the cases when 

the orders sum outside the range 0-1. The analysis can used to determine inlet dynamic parameters 

for QSS operation of both a PFR and a CSTR. Analysis accuracy is reduced at higher reactant 

conversions due to differences in the cyclic average and SS concentrations, wave phase inversion 

and wave distortion. Regardless of these limitations, effects predicted by the QSS rate analysis 

persist to relatively high conversions. Dynamic effects on more complex reaction schemes such as 

reactions in series can also be explained through the results of the QSS analysis. For example, the 

exaggerated effects resulting from smaller duty cycles and simultaneous reactant modulation are 

both captured by the analysis. Experiments involving dynamic operation of alkane oxidation 

demonstrate good agreement with theoretical predictions of the fractional rate enhancement, point 

of concentration wave inversion and maximum rate enhancement. Future work will include 

extension of the analysis to non-isothermal QSS operation and systems subject to multiple 

distributed dynamic feeds and more complex reaction networks. 
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Symbols 

A = Reactant A 

B = Reactant B 

Ci, Avg = Cyclic Average Concentration of species i 

Ci = Concentration of species i 

C+ = Concentration wave maximum 

C- = Concentration wave minimum 

Da = Damköhler Number 

F = Volumetric flow rate 

l = Counter for periodic concentration profiles (i.e. l=0,1,2,3…) 

Pi = Product number i 

keff = Reaction rate constant 

Ki = Equilibrium adsorption constant of species i 

Ki’ = equilibrium adsorption constant multiplied by the cyclic average of species i (Ci, Avg *Ki) 

ni (or mi) = Power law reaction orders of species i 

r = reaction rate 

s = Duty cycle/ fraction of period when the concentration wave is at a maximum 

t = Time 

us = Superficial velocity 
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V = Volume of reactor 

xi = Dimensionless concentration of species i (normalized by the cyclic average of the limiting 

reactant) 

Greek symbols 

𝛼𝛼 = Dimensionless amplitude of species i (or A) 

𝛽𝛽 = Dimensionless amplitude of reactant B 

𝜉𝜉 = Dimensionless distance (z/L) 

𝛾𝛾 = Dimensionless amplitude of species modulating out-of-phase (from those with dimensionless 

amplitude alpha) 

𝜃𝜃 = Dimensionless time (=𝐿𝐿 𝑡𝑡
𝑢𝑢𝑠𝑠

 for a PFR) and (= 𝐹𝐹 𝑡𝑡
𝑉𝑉

 for a CSTR) 

∆ = Fractional rate enhancement 

𝜏𝜏 = Period of oscillation 

Subscripts 

Avg = Cyclic Average (Integral Average) 

QSS = Quasi Steady State 

SS = Steady State 

+ = At the concentration wave maximum 

- = At the concentration wave minimum 

Superscripts 

f = Feed (at entrance of the reactor) 
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Figure 1: (a) Fractional rate 
enhancement (∆) plotted 
against dimensionless 
amplitude (𝛼𝛼) and reaction 
order (n) for a 50% duty cycle 
(s=0.5). (b) Normalized 
maxima (∆𝑀𝑀𝑎𝑎𝑀𝑀, solid black 
line) and minima (∆𝑀𝑀𝑖𝑖𝑛𝑛, 
dashed black line) (Eqn. 15) 
at a 50% duty cycle (s=0.5) of 
the dynamic rate subtracted 
by the steady state rate for 
reaction orders of 0.5 ( ), 2 (

) and -1 ( ). (c) Fractional 
rate enhancement (∆) as a function of reaction order and duty cycle at 𝛼𝛼− =
0.5. (d) Rate versus concentration for a power law rate expression with an apparent order greater than 1. I 
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Figure 21: Local fractional rate enhancement with respect to dimensionless amplitudes of species 1 (𝛼𝛼) and 2 (𝛽𝛽) for the following 
combinations of reaction orders for simultaneous modulation (a) 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 < 𝟏𝟏,𝒏𝒏𝟏𝟏 < 𝟎𝟎 < 𝒏𝒏𝟐𝟐 < 𝟏𝟏; (b) 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 > 𝟏𝟏,𝟎𝟎 <  𝒏𝒏𝟏𝟏& 𝒏𝒏𝟐𝟐 < 𝟏𝟏; 
(c) 0 < 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 < 𝟏𝟏,  𝒏𝒏𝟐𝟐 <  𝟎𝟎 & 𝒏𝒏𝟏𝟏 > 𝟏𝟏.   
 Fractional rate enhancement with respect to dimensionless amplitudes of species 1 (𝛼𝛼) and 2 (𝛽𝛽) for the following combinations of 
reaction orders for simultaneous modulation (a) 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 < 𝟏𝟏,𝒏𝒏𝟏𝟏 < 𝟎𝟎 < 𝒏𝒏𝟐𝟐 < 𝟏𝟏; (b) 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 > 𝟏𝟏,𝟎𝟎 <  𝒏𝒏𝟏𝟏& 𝒏𝒏𝟐𝟐 < 𝟏𝟏; (c) 𝒏𝒏𝟏𝟏 + 𝒏𝒏𝟐𝟐 <
𝟏𝟏,  𝒏𝒏𝟐𝟐 <  𝟎𝟎 & 𝒏𝒏𝟏𝟏 > 𝟏𝟏.   
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Figure 23:  FractionalFractional rate enhancement for simultaneous (a) and out- of- phase (b) modulation as functions of dimensionless 
amplitudes with 𝐾𝐾1′ = 2 and 𝐾𝐾2′ = 30. (c) QSS chords on a rate versus concentration for a second order denominator LH expression. 
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Figure 34: Local fFractional enhancement (∆) calculated from Eqn. (6), Eqn. (7), and Eqn. (8) Eqn. 65 ( ), Eqn. 6 7 ( ) and Eqn. 7 8 (
) as functions of Da. Also shown is the calculated Percent  conversion (𝑋𝑋𝑖𝑖) [%] for of QSS ( ) and SS ( ) operation. For the case, 

as functions of Da (A) . 𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,0
𝑒𝑒 = 1, 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴,0

𝑒𝑒 = 2,𝛼𝛼0 
𝑒𝑒 = 𝛽𝛽0 

𝑒𝑒 = 0.9, 𝑠𝑠𝐴𝐴,0
𝑒𝑒 = 𝑠𝑠𝐵𝐵,0

𝑒𝑒 = 0.5, n=0.7 and m=0.9. 
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Figure 45: (a) Local fFractional enhancement (∆) calculated from Eqn. (6)5 ( ), Eqn. (7)6 ( ) , and Eqn. (8),7 ( ) and Eqn. (9) as 
functions of Da. Percent conversion (𝑋𝑋𝑖𝑖) [%] of QSS ( ) and SS ( ) operation as functions of Da (a). Where 𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,0

𝑒𝑒 = 1, 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴,0
𝑒𝑒 =

45,𝛼𝛼0 
𝑒𝑒 = 𝛽𝛽0 

𝑒𝑒 = 0.9, 𝑠𝑠𝐴𝐴
𝑒𝑒 = 𝑠𝑠𝐵𝐵

𝑒𝑒 = 0.5, n=0.7 and m=0.9 (a).  (b) Dimensionless amplitudes, 𝛼𝛼 ( ) and 𝛽𝛽 ( ) versus Da (b). 
Dimensionless concentrations of A, 𝑥𝑥𝐴𝐴 ( ) and B, 𝑥𝑥𝐵𝐵 ( ) at 𝐷𝐷𝑎𝑎=0.52 (c) and 𝐷𝐷𝑎𝑎=0.90.7 (d). (e) Dimensionless reactant concentrations 
of species A ( , ) and B ( , ) at the wave maxima ( , ) and minima ( , ) as functions of Da solved through the SS design 
equations (e).
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Figure 56: (a) (a) Local fractional fractional rate enhancement and conversions as functions of Da. (b) (b) Apparent orders (C) as 
functions of Da for the steady state problem at the concentration wave maxima and minima. Plots are evaluated during simultaneous 
modulation where 𝑥𝑥𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴 

𝑒𝑒 = 1, 𝑥𝑥𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴 
𝑒𝑒 = 1, 𝐾𝐾𝐴𝐴′ = 2, 𝐾𝐾𝐵𝐵′ = 30, 𝑠𝑠𝐴𝐴

𝑒𝑒 = 𝑠𝑠𝐵𝐵
𝑒𝑒 = 0.5, 𝛼𝛼 

𝑒𝑒 = 0.1 𝑎𝑎𝑛𝑛𝑑𝑑 𝛽𝛽 
𝑒𝑒 = 0.5. (c) Fractional rate enhancement 

as a function of Da for different values of  𝛼𝛼 
𝑒𝑒 in the range 0-0.5. 
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Figure 75:6 (a) (a) Dimensionless P1 concentration as a function of A converted for steady state ( ), simultaneous ( , A & B) and 
single ( , B only) reactant modulation reconstructed from Lee and Bailey [11]. (b) Fractional rate enhancement for r1 ( ) and r2 ( ) 
for simultaneous (black) and single (red) species modulation. Dimensionless reactant concentration profiles during one period for A (

), B ( ), P1 ( ) and P2 ( )  for simultaneous (c) and single species modulation (d). 
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Figure 786: Percent enhancement [%] of CO2 formation rate for ethane oxidation for various dimensionless amplitudes determined 
experimentally (blue circles) and by eqn. eqns. 6 and (7) (red line). The simultaneous and out-of-phase experiments were carried out at 
50% duty cycle (s=0.5) and period of 2 minutes (𝜏𝜏=2 min). (a) Simultaneous experiments were compared along the cross section, 𝛽𝛽 =
1 − 𝛼𝛼. (b) Out-of-phase operation experiments were compared along the 𝛽𝛽 = 𝛼𝛼 diagonal. (c) Duty cycle experiments were carried out 
with at 𝛼𝛼−=0.5 and period of 3 minutes (𝜏𝜏=3 min). For all experiments the cyclic averages were 2500 and 8750 ppm of O2 and C2H6 
respectively and were carried out at 400°C with W/F=0.00157 g*ss/cm3 (200sccm and 50 mg of catalyst). 
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Figure 8: Steady state concentration profiles [ppm] as a function of W/F [mg/sccm] solved at the concentration wave maxima and 
minima for the oxidative dehydrogenation of ethane to ethylene using expressions and kinetic data in Scheme 1. Intersection between 
solutions marked as the point of wave inversion. 
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Figure 9:Sch Experimentally measured concentration profiles of O2, C2H6, CO2 and C2H4 at W/F = 0 (feed) (a), 2.1 (b), 2.6 (c), 3.2 (d) 
mg/sccm at 590°C period of 6 minutes and 50% duty cycle using 7wt% MoO3 Al2O3.  
 
 

 
 
Figure 10: Methane conversion as a function of temeprature [°C] at different amplitudes during QSS operation of methane oxidation 
over supported Pt/Pd (PGM) catalysts (a). Rate of methane oxidation as a function of O2 concentration (b). Figures are recreated from 
work by Karinshak et. al. [28].  
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