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Abstract

Periodic operation of chemical reactors can enhance reactant conversion and product selectivity.
It is desirable to identify reaction kinetics and networks that may benefit from non-steady state
operation and to quantify the extent of that enhancement without extensive computations. In this
study, we describe a simple method to establish approximate functional dependencies of
isothermal point reaction enhancement on dynamic and kinetic parameters during low frequency
operation. Low frequency operation permits the use of steady state as opposed to transient
conservation equations to identify limits of fractional rate enhancement. By approximating local
dynamic rates as square waves modulating between two steady states, an analytical function can
be derived from global rate expressions. The function relates fractional rate enhancement to
concentration wave amplitudes, phase shifts, cyclic averages, duty cycles and reaction orders for
one or more dynamically-fed reactants. We show that the method may be applied to predict integral
conversion enhancement for ideal reactors. During integral operation, nonstoichiometric
concentration waves may change phase through disproportionate consumption of reactants at wave
maxima and minima hence inverting waves out-of-phase (180°) from their initial waveform. This
may cause local rate enhancement to transition to rate diminishment. Three experimental examples
involving catalytic oxidations are described that illustrate selected theoretical aspects of the study.
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1. Introduction

Non steady state operation of chemical reactors through periodic operation can improve
reactant conversion and desired product selectivity over levels achieved using conventional steady
state (SS) operation [1][2][3][4][5][6][7]. However, the mathematical complexity associated with
transient reactor operation thwarts the determination of reaction network type, kinetics and
operating conditions leading to performance enhancement [1][2][3]. This has inspired
development of methods that identify regions of dynamic enhancement, and quantify the extent of
enhancement obtained under a given set of conditions [3][8][9].

Cyclic modulation of the reactant concentration will result in a higher cyclic average rate
compared to steady state operation if the reaction rate has a convex dependence on the reactant
concentration [3][10]. The opposite trend will occur for a concave rate dependence [3][10]. This
effect is graphically demonstrated by drawing a chord between the concentration maxima and
minima on a rate versus concentration diagram [3][10]. If the chord falls above the rate versus
concentration curve, the cyclic average dynamic rate will exceed the steady state whereas if the
chord falls below the curve the dynamic rate will be less than the steady state [3][10]. This feature
is restricted to the effect on the instantaneous rate from a single dynamically operated reactant with
a period much larger than the response time of the system [3][10]. Specifically, Bailey states that
this occurs when the ratio of the reactor time scale (residence time) to oscillation time scale (cycle
period) is greater than 100 [11][12]. This restriction implies that the system approaches steady
state at each maximum and minimum of the concentration wave [3]. Silveston and others referred
to such modes of operation as being in the quasi-steady state (QSS) regime [2][3][10].

Bailey and coworkers explored this concept by demonstrating higher intermediate product

yields during the modulation of multiple reactants compared to single reactant modulation and



steady state operation for a consecutive reaction network [13]. Others have reported enhanced
reactor performance during the periodic operation of multiple reactants [8][9][14].

Optimization techniques such as the Pi-Criterion and related variational methods have been
shown to predict process enhancement in periodically operated continuous stirred tank and batch
reactors [15][16][17][18][19][20]. Others including the groups of Morgenstern, Petkovska and
Rippin have studied modular concentration, temperature and flow profiles to analyze the effects
of periodic parameters on process performance [21][22][23][24][25][26]. Further studies
accounting for surface dynamics such as adsorption, desorption and reactions over catalyst
surfaces also demonstrate improvement during cyclic operation [26][27].

In this study, we develop a simple method to identify regions of rate enhancement using global
kinetics. The method applies a simple expression for the local (differential) fractional rate
enhancement as a function of dynamic parameters for one or more dynamically operated reactants
during isothermal QSS operation. The method is extended to integral operation in ideal reactor
types (PFR and CSTR) for single and sequential reaction schemes, respectively. We show how
local rate enhancement translates to integral properties such as conversion and yield. We
demonstrate that the theoretically predicted rate enhancement is in agreement with that measured
during the periodic operation of ethane and oxygen during total oxidation over a nickel spinel
catalyst. Finally, we illustrate a case of oxygen concentration wave inversion during the oxidative
dehydrogenation (ODH) of ethane to ethylene over a MoOx Al>O3 catalyst.

2. Results and Discussion
2.1 Quasi-Steady State Dynamic Local Rate Analysis
We consider the case of an isothermal chemical reaction having a power law rate

dependence on the concentration of N reacting species:
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where n; is the reaction order with respect to species i. Under dynamic conditions, the reactant feed

concentrations Ci(§¢ = 0), where ¢ is the dimensionless distance in a PFR (or time in a batch

reactor) are considered square pulses with amplitude above (C{ ,)and below (C{ _) the average
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A visual interpretation of the above parameters are provided in the Supplementary Information

(SD). The dimensionless amplitude of species i (a,,_;) is defined as the amplitude normalized by
the average:
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For example, a minimum dimensionless amplitude of 1 (a_=1) indicates on-off (“bang-bang”)
modulation whereas a_ = a, = 0 indicates no modulation. The duty cycle (0 < s < 1) is the
fraction of the period (7) during which the input concentration resides at its maximum value.
Conversely, 1 — s is the fraction of the period during which the input is at its minimum.

The cyclic average concentration at any point (¢) in the reactor is defined by
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Combining Eqn. (2) with Eqn. (4) gives the constraint relating ocf:, a’ and s’ as
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This fixes the integral average of the feed concentration by adjusting the maxima (af: ) and minima
(af) according to the duty cycle (s/). For example, if the duty cycle is small (s/ = 0), the input
resides at the minimum concentration for a larger fraction of the period. Therefore, a larger af:/ocf
is required to maintain an equivalent cyclic average. This relationship between the maxima,
minima and duty cycle is further illustrated in the SI Fig. S3.1d.

We define the fractional enhancement (A) at any point (§) in the reactor as
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When A > 0 the reaction rate experiences dynamic enhancement, while if A <0, there is dynamic
hindrance. For example, A =-0.3 means that the cyclic average dynamic rate is 30% less than the
steady state rate. It is important to note that A is a local parameter as it compares the rate in a QSS
reactor to that in a SS reactor at the same point £.

The fractional enhancement for the power law reaction rate under QSS operation is
obtained by substituting the concentration profile (Eqn. (2)) and rate expression (Eqn. (1)) into
Eqn. (6), giving:
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Here we have removed reference to position but stress that A is a local performance metric. The
SI provides a detailed derivation. In Eqn. (7), the cyclic average concentration (C; 4,,4) 1s the
integral average of the periodic concentration wave (Eqn. (4)), while the steady state concentration
(C; ss) refers to the steady state value chosen for comparison. If we assume that the cyclic average

feed concentration is equivalent to the steady state concentration (Cypg; = Csg; ), implying that

the concentration wave is oscillating around the steady state value, the expression simplifies to
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Eqn. (8) assumes that all species have fixed reaction orders, are modulated in-phase, and have the
same period and duty cycle. For species that are modulated out-of-phase with a 50% duty cycle

(s =0.5), the fractional enhancement is given by:
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If the cyclic average and steady state concentrations are the same (i.e., the concentration is

oscillating around the steady state), then we have
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where a; and Y, represent the dimensionless amplitudes of N total in-phase and M total out-of-
phase species in the feed, respectively.

Power law rate expressions are often inadequate in describing the rates over a wide range
of concentrations. For example, power law expressions do not account for a shift in the apparent
orders. In such cases use of a Langmuir-
Hinshelwood-Hougen-Watson (LHHW) rate expression may be necessary. The QSS analysis can
be extended to LHHW rate expressions. Here we consider the following catalytic sequence:
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where N and L are the number of reactants and products, respectively Assuming adsorption and
desorption steps are quasi-equilibrated, and the surface reaction is rate limiting, it can be shows

that the LHHW rate expression takes the following form:
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where M is the number of surface species (M = L + N). The resulting expression for fractional

enhancement assuming equivalent duty cycles and in-phase modulation is given by:
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Details of the derivation are provided in SI 1.2. The inhibition terms add a new layer of complexity

and dependence on the equilibrium adsorption constant and cyclic average of the concentration

waves. The larger the value of K; the more impactful the denominator terms are on the QSS rate.
In the limit of Kj' — 0, Eqn. (12) resembles Eqn. (8) with n; = 1. Increasing the importance of
inhibition terms by increasing Kj' results in apparent reaction orders transitioning from being

positive to negative, an effect captured by Eqn. (12), but not Eqn. (8). Implications of rate

inhibition on QSS reactor performance are explored in later section.



2.2 OSS Dynamic Rate Analysis: Bimolecular Reactions
Consider the modulation of two reactants with a duty cycle of 50% (s = 0.5) for the
power law rate expression
r=keprClMCy? (16)
The expression for fractional enhancement during in-phase (simultaneous) modulation is given

by
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Figs. 1a - ¢ show the enhancement for in-phase (simultaneous) concentration modulation as a
function of the dimensionless amplitudes for species 1 (a ) and species 2 () for three different
reaction order cases (n; and n,) and s=0.5. The first case involves one negative and one fractional
apparent order for which the sum of orders is less than 0: (a) ny + n, < 0and n; <0< n, <1.
The second case considers two fractional apparent orders with a sum is greater than unity: (b) n; +
n, > 1 and 0 < ny&n, < 1. The third case considers a reaction with apparent orders less than
zero and greater than one which have a fractional sum: (¢)0 <n; +n, <1, n, < 0&n; > 1.

For the first case (Fig. 1a) the reaction orders are fractional with one negative (n; = -0.4)
and the other positive (n2 = 0.2). The results demonstrate the expected effect of concavity based
on the reaction order sign and magnitude. Modulation of species 1 enhances the rate since the order
is negative. Modulation of species 2 hinders the rate since the order is positive but less than 1. As
the rate is further hindered by increasing the normalized amplitude of species 2 (), a higher
normalized amplitude of species 1 () is required to combat the negative effects from the
fractional order of species 2.

For the second case (Fig. 1b) the reaction orders are both fractional and positive (n; = 0.7,

n2 = 0.9) with their sum exceeding unity. If either species 1 or 2 are modulated individually while



the other is held at steady state (i.e., 5 = 0 and @ > 0 or vice versa), the rate is hindered. This is
expected as each species individually has a fractional rate order and therefore concave rate
dependence. However, there exists a large region of rate enhancement along the diagonal. This
shows that the combined order (n; + ny) is the key parameter. Consider the diagonal for which the

dimensionless amplitudes of 1 and 2 are identical (o = 3). Applied to Eqn. (17) gives the result
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We see that the system behaves as the case of a single reactant with order ni + nz. The sum of ny
and n, being 1.6 (>1) and therefore convex with respect to the lumped concentration, results in a
higher cyclic average rate compared to the steady state. This result was recently considered by
Gottlieb et al. [14]. Grabmuller and Hoffman [8] also found that such combinations of reaction
orders (n; + n2>1) yield a convex function leading to increased conversion in a periodically
operated PFR. This work provides the criterion of equivalent dimensionless amplitudes and duty
cycles to achieve enhancement through simultaneous modulation.

The third case (Fig. 1¢) is the converse of case 2; in-phase modulation in this case hinders
the rate even though individual modulation is beneficial. Here, the species 1 order exceeds unity
(n1 = 1.2) while the species 2 order is negative (n2 = -0.5). The sum of the reaction orders being
fractional (0.7) means that in-phase modulation is detrimental to the overall rate even though the
rates are enhanced when either species is modulated individually.

The fractional rate enhancement for a power law rate expression where N reactants are

modulated in-phase with approximately equivalent duty cycles (s; = s, = -+ = sy) and

dimensionless amplitudes (@, = a, = -+ = ay) is as follows
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Additional analyses for out-of-phase modulation are shown in SI 3.2. Here, the QSS dynamic rate

enhancement for a 50% duty cycle (s = 0.5) during out-of-phase modulation is given by
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The terms cannot be mathematically combined in this case, meaning that enhancing effects are not
observed as for the case of simultaneous modulation.

Up to this point, we have demonstrated the requirements for local rate enhancement
through modulation of multiple reactant concentrations. For example, in the case of simultaneous
modulation of two reactants using equivalent dimensionless amplitudes and duty cycles, when the
sum of apparent reaction orders exceeds unity, a pronounced enhancement may be encountered.
QSS operation where dimensionless amplitudes and duty cycles are not equivalent merely abides
by the concavity of the rate function and its dependency on individual reactant concentrations.
Next, we extend our analysis to non-power law, Langmuir Hinshelwood kinetics.

2.3 0SS Dynamic Rate Analysis: Langmuir Hinshelwood Hougen Watson Kinetics

We now consider a reaction described by LHHW kinetics for the case of two inhibiting

reactants modulated in or out of phase with equal duty cycles. The fractional enhancement is given

by
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Simultaneous and out-of-phase modulation are indicated in Eqn. (21) by the + and — signs,
respectively. Plotting A in the plane of dimensionless amplitudes for the example case of K{ = 2
and K; = 30 during in and out-of-phase operation results in Figs. 2a and b, respectively. It is useful

to assess the results by considering the apparent reaction orders for each reactant given by

10
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Application of Eqn. (22) to the LHHW kinetics gives Eqn. (23) for reactants and Eqn. (24) for
products

N 14+ (A -NK +XLK'
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For this specific case of two components (N=2, K; = 2 and K, = 30) the apparent orders are
estimated from Eqns. (23)-(24) as niapp = 0.88 and nzapp = -0.81. It is revealing to consult the
schematic plot in Fig. 2c. Two chords are drawn representing two cases with the minimum and
maximum values of the modulated concentration being the end points. Modulation at lower
concentrations to the left of the rate maximum leads to hindrance while modulation at higher
concentrations to the right of the rate maximum leads to enhancement.

Applying the QSS modulation findings for power law kinetics shows that modulation of
species B leads to fractional enhancement (n < 0) while modulation of species A leads to hindrance
(0<n<1).Figs. 2aand b indeed show a region of enhancement at higher dimensionless amplitudes
of species B () and smaller dimensionless amplitudes of species A (o). However, unlike power
law expressions, the largest enhancement does not occur when the convex species has the largest
dimensionless amplitude, which in this example occurs when 3 = 1. Rather, Fig. 2¢ shows that any
modulation with B = 1 hinders the rate as it is impossible to draw a chord anchored at the origin

with an average greater than the SS rate curve. This effect is captured in Figs. 2a and b as the

enhancement decreases at very high 3 or a.
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In section 2.2, we demonstrated that enhancement during simultaneous modulation with
equivalent duty cycles and dimensionless amplitudes (a¢ = f) is dependent on the sum of apparent
reaction orders. For example, in Fig. 1b, when the two individual species are fractional positive
order, but the sum of the reaction orders is greater than 1, a region of dynamic enhancement can
be observed along the a = [ axis. Simultaneous modulation of A and B in this Langmuir
Hinshelwood case results in negligible enhancement in a region along the diagonal in the 3 vs. a
plane (Fig. 2a). This is a result of the near-zero sum of the apparent reaction orders (ni,app = 0.88
and napp = -0.81). Fig. 2a demonstrates that higher dimensionless amplitudes of species B are
required to out-compete the negative effect of a higher dimensionless amplitudes of species A
(when B <I). In contrast, out-of-phase modulation of A and B results in a larger region of
enhancement (Fig. 2b). During out-of-phase operation (Fig. 2b), the enhancement no longer relies
on the sum of apparent orders, and hence enhancement can be observed along the @ = f axis,
unlike the case of in phase operation (Fig. 2a). Individual apparent orders appear to be more
important than their sum during out-of-phase operation, resulting in the enlarged region of
enhancement in Fig. 2b compared to Fig. 2a.

In section 2.2, we showed that simultaneous modulation may lead to higher rates when the
sum of apparent orders is greater than 1. For the case of M total species with N adsorbed and

reacting components and L inhibiting products (L+N=M), this translates to the following criteria:

N L Lot
+ = m > 1 <0 (25)
Ni,app Niapp = 1+ ZM K.' or
i=reactants i=products 7

For two adsorbing reactants and no adsorbing products (N=2 and L=0), Eqn. (25) simplifies to
Eqn. (26):

0<K;,,0<K| K +K;<1 (26)
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The enhancing effect of additive reaction orders for N = 2 only applies when Eqn. (26) is satisfied.
These criteria imply that K{ and K; must be small enough such that both reactant concentrations
are in the positive order regime (to the left of the maximum rate in Fig. 2¢) in order to benefit from
simultaneous modulation.

For the case of N adsorbing reactants and L inhibiting products, the sum of orders is greater

than 1 when the following equation is satisfied:

N L
N-1> Z K/ +2 Z K;' (27)
j=reactants Jj=products

This expression shows that more inhibiting products make it more difficult for the sum of the
orders to exceed unity, an expected result since apparent orders of inhibiting products are negative.
Therefore, to satisfy this criterion it is best for there to be no inhibiting species. Furthermore, the
expression shows that if there is one adsorbed reacting component (N=1), it is impossible to exceed
an apparent order of 1, which is a characteristic of single order denominator LHHW rate
expressions. The second criterion for enhancement during the simultaneous modulation of species
is for the sum of apparent orders to be less than zero. This criterion is expressed as the following
L
> K> (28)
j=products

This expression shows that the sum of apparent orders is less than zero during high degrees of
product inhibition relative to the number of reactants. Eqns. (27) and (28) demonstrate that
enhancement due to additive reaction orders through simultaneous modulation must occur when
reactants fall to the left of the maximum of the rate concentration curve in Fig. 2¢ (i.e., n1 + n2
+...> 1) or when there is extensive product inhibition (i.e. n; + n2+...<0). In later sections we will

address the implications and effects of QSS operation with LHHW type kinetics in a PFR.
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2.4 Simultaneous Modulation for a Bimolecular Reaction in a PFR

As we have seen up to this point, the QSS rate analysis is a simple and informative way of
approximating local (differential) rate enhancement. In this section we extend the local QSS
analysis to integral operation, i.e. for cases where reactant species concentrations vary along the
length of the reactor. We specifically examine reactant feed modulation for the case of the single
reaction A + bB — pP in an isothermal PFR.

The following reacting species balances account for accumulation, convection, and

reaction:
0xy4 0xy4
% = - ? —Dar (29)
0xp 0xp
%——a—f—bDar (30)
dxp dxp
-/ _ = D 31
50 3% +pDar (31
where
r = Da xgxg (32)
and
n+m-—1
C; z L k(¢!
x; = fl : EZZ; 9=—t; Da = (A,Avg) :
CA,Avg Us Us

The boundary conditions are given by

o (+alylr<o<c(+s))
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where
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1=0,1,2,..
The initial conditions are given by
xg(0 = 0,8) =x4(0 =0,§) =0 (35)

The system of partial differential equations (PDE’s) is solved using the method of lines.
For the calculations reported here we discretized the reactor into 20 cells and solved the system of
ordinary differential equations in Python using the LSODA algorithm. The fractional enhancement
A(E = 1) was calculated using Eqn. (6) after a cyclic steady state was reached for each cell (very
large ). The cyclic average enhancement was compared to the steady state case (i.e., steady state
implying af = af = B/ = B/ = 0 in Eqns. (33) and (34)).

The QSS analysis can be applied to integral operation to identify conditions that result in
conversion enhancement during periodic operation in a PFR. For illustration, we consider the
following combination of reaction orders and stoichiometric coefficients: n =0.7,n2 = 0.9, b =2,
p = 1. We first analyze simultaneous modulation of A and B for which the cyclic average
dimensionless feed concentrations of A (xi Avg) and B (x/; Avg) Satisfy the reaction stoichiometry

(6] ag=1 and x} ,,,=2), with duty cycles s] =s} =05 and amplitudes o = p/ = 0.9.

According to the QSS analysis, this combination of reaction orders, amplitudes and duty cycles
suggest that the local rate will be enhanced since n; + n2> 1. Since A varies along the reactor, we
calculate the effluent enhancement A(¢ = 1) at cyclic steady state as a function of the Damkdhler
number (Da). Model predictions in Fig. 3 shows A(¢ = 1) calculated using Eqns. (6), (7) and (8)
from earlier. As defined in section 2.1, Eqn. (6) is the exact A whereas Eqns. (7) and (8) are
approximations of A assuming square waves; the former (Eqn. (7)) accounts for differences

between cyclic average and SS concentrations, while the latter (Eqn. (8)) assumes they are
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equivalent at the reactor outlet. Also shown in the figure are the calculated QSS and SS
conversions, Xqss and Xss.

The simulations show the expected monotonically increasing dependence of SS conversion
on Da. For the selected reaction orders and stoichiometric parameters, the conversion obtained
under modulation leads to integral enhancement for the entire range of Da. The calculated A(§ =
1) monotonically decreases with Da from a maximum value of 0.42 for Da = 0 to -0.2 at Da ~ 4.
At Da~0.4, A(¢ =1) = 0; i.e., enhancement stops. For Da > 0.4,A({ =1) < 0 and Xgss
approaches Xss. Despite this trend, the QSS operation outperforms SS operation (Xgss > Xss) even
for conversions greater than 90%.

The deviation between the exact A (Eqn. (6)) and estimated A (Eqn.(8)) conveys the
growing gap between the cyclic average and SS concentrations down the length of the reactor.
Specifically, rates are elevated near the inlet of the reactor during QSS operation as result of the
additive order effect described in section 2.1. Higher rates in the QSS reactor therefore result in
lower cyclic average concentrations relative to SS concentrations at the same Da. Accounting for
these differences with A approximated using Eqn. (7) gives much better agreement with the exact
value obtained from Eqn. (6). This indicates that conversion enhancement is determined both by
the degree of reactant modulation as well as difference between cyclic average and steady state
concentrations. Specifically, higher SS concentrations relative to the cycle average concentrations
along a PFR result in a decreasing A as a function of Da as seen in Eqn. (7). In other words, the
ratio of the cyclic average and SS concentrations in Eqn. (7) will decrease as Da increases causing
A to also decrease.

The considered case of a stoichiometric feed with equal dimensionless amplitudes (a/ =

B’) means that these remain identical along the reactor length, i.e. @(Da) = S (Da) for all Da.
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This feature is no longer realized if the feed is not stoichiometric and, as a result, the advantage
gained through simultaneous reactant modulation when the sum of apparent orders exceeding unity
is lost at higher Da. That is, the enhancement diminishes as the local amplitudes are no longer
aligned, a(Da) # f(Da).

To this point, we now consider the case of a non-stoichiometric feed in which B is fed in

excess (x}; avg = 1 and x}; avg = 4) while all other parameters are kept the same as the earlier

stoichiometric case. Fig. 4a shows A(§ = 1) calculated from Eqns. (6), (7), (8) and (9) defined in
section 2.1 along with Xqss and Xss as functions of Da. Comparing Fig. 4a to Fig. 3, as expected,
the 5x increase in the B concentration increases the steady state conversion of A for all Da. As for
the stoichiometric case, Fig. 4a shows that modulation is beneficial due to the sum of reaction
orders exceeding unity. However, the local enhancement decreases with increasing Da, eventually
becoming negative. As a result, the gap between QSS and SS diminishes as Da increases. The most
significant difference in this case is a much more rapidly decreasing A. This is due to the
nonstoichiometric feed condition. Fig. 4b shows that dimensionless amplitudes a and 8 begin to
separate from one another, further decreasing the enhancement at the reactor outlet. At Da~ 0.3,
A = 0 and the rate no longer benefits from QSS operation relative to steady state operation.
Although the integral conversion remains higher in the QSS case at Da~ 0.3, it begins to converge
towards the SS conversion at this point. It is notable that in the stoichiometric case, a and f§
remain equivalent hence maintaining the additive order effect which is not the case with non-
stoichiometric feeds. Fig. S2.3 in the SI (figure) depicts @ and § as a function of Da for the
stoichiometric case demonstrating such compositions maintain equivalent dimensionless

amplitudes.
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Unlike the stoichiometric example, Fig. 4a shows that A is more accurately estimated by
Eqn. (7) only for Da < 0.6 as it accounts for the difference between the SS and cyclic average
concentrations up to Da~ 0.6. However, for Da > 0.6, Eqn. (7) incorrectly predicts an increase
in A as Da increases. Fig. 4b also shows a reconvergence of a and f after Da~0.6. Since both
orders have a sum greater than 1, the reconvergence of a and  should improve the rate, hence the
increase in A predicted by Eqn. (7) in Fig. 4a. However, Fig. 4a shows that A (Eqn. (6)) decreases
for Da > 0.6, therefore, Eqn. (7) no longer captures the behavior of A at higher Da. Rather, the
solution can be found in Figs. 4c and d which plot xa and xs as functions of dimensionless time
(0) before (at Da = 0.5) and after (at Da = 0.9) the point, Da ~ 0.6. Fig. 4c shows that for Da=0.5,
the concentration waves remain in-phase, resulting in a positive effect on the fractional
enhancement as previously described. However, Fig. 4d shows that after Da~ 0.6 (at Da=0.9), the
concentration waves are no longer in-phase with one another. This implies that the concentration
wave undergoes a phase change relative to its initial wave form which occurs at Da~ 0.6, resulting
in further enhancement losses. Specifically, the concentration wave of species A inverts over the
xi axis from Figs. 4c¢ to d. This results in a wave that is out of phase with its inlet waveform.

A similar effect of concentration wave inversion was reported by Marin et. al. in the case
of carbon monoxide (CO) oxidation on Pt catalysts. In some instances, their simulations predicted
bulk phase oxygen and CO concentration waves entering the reactor out-of-phase and exiting
approximately in-phase [7]. In our case, since the waves are no longer in-phase, the rate no longer
benefits from the combined reaction orders and instead suffers from the individual fractional
orders. Eqn. (9) in Fig. 4a solves for A during out-of-phase operation accounting for differences in
SS and cyclic average concentrations. The trajectory of Eqn. (9) more closely follows that of A

(Eqn. (6)) for Da > 0.6. Although Eqn. (9) follows the trajectory of Eqn. (6), deviations between
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equations arise from the distortions of the square waves which is shown by xa in Fig. 4d as this
negates the assumption of square concentration waves.

It is important to note that the wave phase change phenomenon is not a result of waves
shifting past each other. Rather, it is a result of disproportionate decreases in the concentration
wave maxima and minima values. Both A and B are consumed along the length of the reactor to
produce P. The positive reaction orders for A and B also indicate that they will react at higher rates
during the concentration wave maxima relative to the minima. This coupled with the non-
stoichiometric feed results in a disproportionate decrease of the concentration wave maxima and
minima. This disproportionate decrease results in the maxima of the limiting reactant (A)
eventually falling below its minima generating a wave that is out-of-phase with reactant B and its
(A’s) inlet waveform. Therefore, this effect is more accurately referred to as a wave inversion
rather than a phase change.

It is possible to determine the location at which a wave inversion occurs for a
nonstoichiometric feed. For example, if the maxima of the concentration continuously decreases
past the minima as Da increases; the point after which the waves become out-of-phase occurs at
the Da when both the maxima and minima are equal. The point of wave inversion for species i
occurs at the Da when x; yq,(Da) = X; pin(Da). The Da at which this occurs can be determined
by solving the SS model with inlet boundary conditions equivalent to the concentration wave
maxima and minima and finding the Da at which the solutions intersect. This is demonstrated in
Fig. 4e which shows the intersection between the limiting reactant (A) steady state maxima and
minima solutions (x4 pax(Da) = x4 yin(Da)) occurring at Da~ 0.6. This is illustrated in Fig.4a

as the point where the in-phase operation assumption (Eqns. (7)) breaks down and the
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concentration waves switch from in to out-of-phase modulation, hence the better prediction by
Eqn. (9).

In summary, this analysis provides a useful method of selecting inlet conditions for square
waves during QSS dynamic operation. Differences in the cyclic average from steady state reactant
concentrations, wave inversion and distortion at different Da result in inaccurate predictions during
high conversion integral behavior. Despite the lack of accuracy, overall conversions during QSS
operation remain higher than steady state operation even above 90% SS conversion. Later sections
apply the method to predict wave inversion to the periodic operation of ethane and oxygen during
oxidative dehydrogenation to ethylene.

2.5 Simultaneous Modulation for a Single Reaction in a PFR LHHW Kinetics
Here we extend the integral analysis to a reaction having LHHW kinetics. We consider
LHHW kinetics involving self-inhibition by two components as follows:
A+*x—> Ax
B +*— B *
Ax+B*x—> P+ 2%
The rate under surface reaction control is given by

L k3K, Kgx,xg
C/{,Avgus (1+ Kjx, + Kgxp)?

r (36)

where

L ksKaKpg xl{;,Avg

K/ = C[ 1,,Ki; Da =

7 2
Caavgls (1 + K, + Kéxlj;Avg)

The computed results for A, Xqss and Xss as functions of Da in a PFR subject to a

stoichiometric feed (xt{Avg =1 and xg‘Avg = 1) with K; = 2, K} = 30, Sf{ = s}; =05, af =

20



0.1 and B/ = 0.5 during simultaneous modulation are plotted in Fig. 5a. Dimensionless
amplitudes o/ and B/ were selected from Fig. 2a as they result in a positive A while a
stoichiometric feed was used to prevent concentration wave inversion. As shown in Fig. 5a, the
fractional enhancement (A) steadily increases to a maximum before rapidly dropping. This
behavior is understood by considering the rate versus concentration curve in Fig. 2¢ which reaches
a maximum rate at an intermediate concentration value. As the reaction proceeds down the reactor,
the concentration minima will rise to the maximum of the rate curve in Fig. 2c shown by the red
dashed chord, before falling rapidly, resulting in rate hinderance as illustrated by the purple line in
Fig. 2c. Thus, the initial rise of the rate enhancement in Fig. 5a (Da<0.25) is a result of the
concentration wave minima approaching the rate versus concentration maximum. The rapid
decrease at (Da > 0.25) is a result of the minima falling to the left of the rate maxima on the rate
versus concentration plot. It is important to note that the QSS rate will be hindered if the
concentration wave maxima and minima remain to the right and left of the rate versus
concentration maximum in Fig. 2c¢ respectively. If the concentration maximum and minimum both
fall to the left of the rate versus concentration curve maximum, periodic operation will have no
effect on the rate due to the apparent first order nature of this regime. In the following paragraph
we discuss the importance of apparent reaction orders on QSS operation of LHHW reactions.
The point of maximum enhancement as a function of Da for a LHHW rate expression can
be determined from the apparent reaction orders at the maximum and minimum concentrations of
a modulating feed. The rate dependence on concentration for a rate expression having a second
order denominator transitions from a positive to negative reaction order at the rate versus
concentration maximum (Fig. 2¢). As a result, the Da value at which the apparent reaction order

for the minimum concentration transitions from negative to positive represents the maximum A as
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a function of Da in Fig. 5a. The criteria for maximum A as a function of Da can therefore be noted
as when n; g, < 0 and n; p,;;, = 0. This implies that enhancement begins to decrease when the
apparent orders of the maxima and minima are less than and greater than zero, respectively
(Mimax < 0 and n; i > 0). Fig. 5b shows the apparent reaction orders at the concentration wave
maxima and minima as functions of Da using the steady state model with feed conditions set to
the concentration wave maxima and minima concentrations. Apparent reaction orders of species
A at the maxima (na,max) and minima (na min) are both positive and therefore lie to the left of the
rate versus concentration curve maxima. This, coupled with the linear dependence of rate on
concentration to the left of the rate maxima in Fig. 2c, suggests that modulation of A alone does
not significantly affect the rate. This is further confirmed in Fig. 5b as na max and namin are both
close to 1 for small Da (Da < 0.2). However, Fig. 5b shows that ng max and ng min are both negative
until a Da slightly higher than 0.25, at which point ng min becomes positive. When ng max and ng min
<0, the rate is enhanced through QSS operation. As the reaction proceeds to higher Da, Xg min Will
eventually fall to the left of the rate maxima (Fig. 2c) while xmax remains to the right. This
criterion can be mathematically written as the Da when
N min(Da) = 0 and n; yq(Da) < 0 (37)
In section 2.2 we considered the effects of dimensionless feed amplitudes (a/ and £7) on
the maximum A. There we showed that enhancement is dependent on the sum of apparent reaction
orders for the case when reactants A and B have equivalent dimensionless amplitudes and duty
cycles. Fig. 5b shows that at Da < 0.25 species A and B have positive and negative reaction orders,
respectively. Therefore, simultaneous modulation of A and B with equivalent duty cycles and
dimensionless amplitudes will decrease A as a result of the positive apparent order of A hindering

the enhancing effects of the negative apparent order from species B. Therefore, the ideal conditions
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for QSS operation involves a’/ = 0and 0 < 8/ < 1. Fig. 6¢ plots A as a function of Da for
various a/ where 5/ = 0.5. Fig. 6¢ shows that the maximum A decreases in the limit of a/ —
B’. As the dimensionless amplitudes (a/ and /) become equivalent, the enhancing effects of
the negative apparent order of B are overcome by the positive apparent order of species A.
Furthermore, Fig. 2a showed that A decreases as a/ — B7. Therefore, the QSS rate analysis
described in section 2.3 is an effective method of determining optimal periodic feed conditions
that result in maximum rate enhancement for LHHW kinetics in a PFR.

Similar to the point of wave inversion, the Da at which the minimum of the concentration
wave reaches the rate maxima can be used to identify operational parameters when using LHHW
kinetics that have a maximum rate. The wave inversion and maximum enhancement points indicate
the regions at which the rates begin to lose enhancement during QSS operation. Furthermore, these
points can be determined by solving the steady state balances at the concentration wave maxima
and minima which may significantly reduce computational time needed to determine when the
phenomena will occur.

2.6 Simultaneous Modulation for Reactions in Series in a CSTR

In this section, we will extend the QSS analysis to study the effects of simultaneous
modulation in a CSTR involving consecutive reactions. Lee and Bailey studied the effects of
simultaneous bang-bang reactant modulation on the yield of an intermediate product P; as
described by the following reaction scheme [13]:

A+B- P
B+P, - P
The resulting non-dimensional CSTR species balances are as follows [13]:
dx, f

28 = XA T xaTn (38)
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The non-dimensional rate terms are given by:
n= DalexB
rn = Daszxpl

with the following dimensionless parameters

f
C; F kiVCAAvg
| = ; 0==t; Daj=—7>7-; [=012..
xl Cf V al F
AAvg

The feed concentrations of A and B are given by,

(1+a£);lr§6<r(l+s{)

f =
() {mru+g)se<ra+n

(1 +ﬁf:)x£’Avg;lT <0< T(l +s£)

f(9) =
%2 (0) { r(l+si)<6<t(+1)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

The model was solved here using the LSODA algorithm in Python. Fractional rate

enhancements were determined by numerically integrating the rate as a function of dimensionless

time after the system reached a cyclic steady state. Similar to Lee and Bailey [13], data at higher

conversions of A were achieved by increasing the average inlet concentration of B while

maintaining a constant residence time and inlet concentration of A.

Lee and Bailey [13] noted a significant increase in P; yield during the simultaneous

modulation of species A and B shown in a reconstruction of their work in Fig. 6a. In contrast, the

individual modulation of species B hinders the rate at higher conversion of A. At first glance, the
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first order rate dependency of A and B indicates that any individual modulation of either
component should not have any effect on r;. This is indeed observed in Fig. 6b at conversions of
A less than 25% for the individual modulation of B. However, Eqn. (19) suggests the simultaneous
modulation of A and B should enhance the rate of P; formation as the orders have a sum greater
than 1. This effect is indeed observed in Figs. 6a and b by the larger P; yields and r formation rate
enhancement, respectively, when modulating A and B simultaneously.

At conversions below 10%, effects from the undesired reaction (r2) can be ignored as there
is less P present. However, as the conversion and therefore concentration of P; begins to increase,
it becomes necessary to consider the impact of the second reaction. At higher A conversion a
higher yield of P; is obtained (Fig. 6a). This impacts the overall dynamic enhancement as P; further
reacts with B to produce the undesired product P». The first order dependencies of reactants A and
B on the P formation rate indicate that the rate and therefore P; concentration will increase with
increasing reactant concentrations. This effect results in a Py concentration wave that modulates
in-phase (simultaneously) with reactants A and B at the outlet of the CSTR as illustrated in Figs.
6¢ and d. Coupling this with the fact that the CSTR rate depends on the outlet concentrations, the
resulting simultaneous modulating concentration waves of P; and B begin to enhance the P>
formation rate. This effect is observed in both the simultaneous and single species modulation
cases, especially at higher A conversion, as seen in Fig. 6b. Therefore, the individual modulation
of species B does not enhance r; but results in an in-phase cyclic profile of P1 which enhances >
hence decreasing P; production and increasing its consumption. Simultaneous modulation of A
and B is able to outperform this by enhancing the production of P rather than just improving its

consumption.
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As demonstrated, the QSS local dynamic rate analysis provides a suitable method to
identify regions of dynamic operation that induce yield enhancements in a CSTR with reactions in
series. While the accuracy of the method presented is limited to lower conversions, concepts such
as additive reaction orders through simultaneous modulation offer insights into the effects of
dynamic operation on processes with multiple reactions at higher conversion.

2.7 Model Validation: Ethane Total Oxidation Over Spinel Catalysts

We experimentally evaluated the application of QSS analysis methods for the total
oxidation of ethane over a supported NiCo,0s spinel catalyst (CDTi). The fractional rate
enhancements for CO; formation during square wave and SS operation are compared for different
reactor feed amplitudes, phase shifts and duty cycles. The enhancement expressions in Eqn. (6)
were used to integrate the data and Eqn. (7) was used to generate the theoretical curve.
Experimental conditions and details are listed in SI 5.3.

The simultaneous QSS modulation experiment was conducted by testing various
dimensionless amplitudes along the curve f = 1 - a. As shown in Fig. 7a, the experimental CO»
formation rate enhancement closely follows the model prediction using Eqn. (7). As described
earlier, the rate during simultaneous modulation of two reactants described by power law kinetics
will behave as a single reactant whose order is the sum of the individual orders. With the fractional
orders of C2Hg and O» being 0.22 and 0.48, respectively, that order is 0.70 with the dimensionless
amplitudes given by a = 8 = 0.5 and equal duty cycles. With the combined order being less than
unity, the QSS dynamic operation results in dynamic hindrance. Since 0.7 is closer to 1, the
fractional enhancement moves closer to 0 when a = = 0.5. In other words, the steady state rate
versus concentration curve becomes more linear for the combined species with an order of 0.7. It

is noted that the data point at & =1 was determined by assuming that no CO2 was formed at the
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rate minima due to the power law rate dependency (i.e., if the O> concentration is zero, so is the
rate). At @ =1, the oxygen concentration oscillates between 0 and 1.75% but the CO, formation
rate did not approach zero in the absence of oxygen. As in the absence of gaseous oxygen, C2He
is still able to react with oxygen stored on the spinel catalyst which does not reach a steady state
until the catalyst is stripped of O». Total reduction requires a very large period and afterwards the
catalyst is unable to return to its initial state. Therefore, the data point is obtained by multiplying
the duty cycle by the rate at the O concentration maxima.

Further validation of the theory for out-of-phase periodic operation was conducted using
Eqn. (10). Fig. 7b compares the experimental results and model predictions along the curve a = .
As described earlier, out-of-phase operation during QSS operation will only exhibit enhancement
if the individual orders are either greater than 1 or less than 0. In this case, neither of these criteria
are satisfied and therefore there is no enhancement. Instead, as the components are modulated to a
higher degree (increasing a and £3), the rate becomes further hindered due to the fractional reactant
orders.

A third validation was conducted by examining the effect of duty cycle on the fractional
enhancement. The effects of QSS operation become more exaggerated at lower duty cycles as was
previously discussed. Fig. 7c shows that the fractional enhancement increases with increasing duty
cycle. Again, this shows that the dynamic effects of QSS operation will become more prominent
as the wave maximum approaches a delta function. As previously discussed, the wave maxima is
shifted along the rate versus concentration curve to preserve equivalent cyclic averages during
changes in the duty cycle. This shift in the maxima results in a decrease of the cyclic average rate

that is achieved with higher duty cycles like the effects shown in SI 3.1.
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In summary, the QSS model shows quantitative agreement with catalytic ethane total
oxidation data collected at low conversions. Effects of different dimensionless amplitudes, duty
cycles, and phase shifts are all captured by the QSS analysis. In the following section we
demonstrate an experimental case of concentration wave inversion.

2.8 Concentration Wave Inversion.: Ethane Oxidative Dehydrogenation

In section 2.4, we discussed the phenomena of concentration wave inversion and how to
predict when it will occur using SS conservation equations. In this section, we experimentally
demonstrate concentration wave inversion during the oxidative dehydrogenation of ethane to
ethylene over a 7 wt% MoO3/Al;0; catalyst. A simple triangular reaction network for ethane ODH

is depicted as follows

C;He + 0, 0) C2H, 11=1.8*10""[C2Hs]
\ / 12=1.21%102[C;He]
@ co ® r3=2.3*10" [C2H4][02]*26
X

Schematic 1: Reaction pathways during the oxidative dehydrogenation of ethane to ethylene and
associated power law rate expressions with estimated kinetic parameters. Rates above are reported
in [umol/mg-cat/min]. Details on experiments, synthesis and conditions are located in SI 5.4.
Kinetic parameters for each reaction in scheme 1 were obtained through an integral fitting
of SS data and used to plot the O> concentration wave maxima and minima as functions of W/F in
Fig. 8. Fig. 8 shows that the O> concentration maxima and minima intersect at W/F = 2.8 mg sccm™
! As introduced in section 2.4, the intersection between the SS maxima and minima concentration
profiles denotes the point of wave inversion. Therefore, Fig. 8 suggests that the O» concentration
wave during periodic operation under the same conditions will become out of phase with its initial
waveform at W/F ~ 2.8 mg sccm™'. The point of wave inversion was verified by monitoring the

concentration profiles of C2Hg, O2, CoH4 and CO» as functions of time at the effluent of reactors
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with different W/F which are shown in Figs. 9a-d. Fig. 9a shows the concentration wave just before
it enters the MoQOs catalyst bed. CoHs and O» are oscillated in phase implying the concentration
waves reach a maxima and minima at the same times. The blue arrow indicates the C2Hg and O>
concentration wave maxima. Fig. 9b shows the effluent concentration of C2Hg, O2, C:H4 and CO»
versus time for W/F = 2.1 mg sccm™'. At higher residence times, O2 and C2Hg are consumed,
resulting in the decreasing cyclic average observed in Fig. 9b. The O> maxima indicated by the
blue arrow (~1.8*10* ppm) in Fig. 9b is much closer to its effluent minima (~1.6*10* ppm),
implying that O is being consumed more rapidly at its maxima relative to its minima. Fig. 9¢
shows that the effluent O, concentration maxima (1.7*10* ppm) indicated by the blue arrow is
almost equivalent to its minima (1.6*10* ppm) for W/F = 2.6 mg sccm™ which is similar to the
point of wave inversion in Fig. 8. The equivalence between O> concentration wave maxima and
minima implies that the wave inverts 180° from its original phase and that any further reaction
(higher W/F) will result in an O2 concentration wave that is no longer in-phase with its original
wave form. Fig. 9d shows that the original O, concentration maxima (1.5*10* ppm) indicated by
the blue arrow is now less than the original concentration wave minima (1.6*10* ppm) at a W/F
of 3.2 mg sccm™. At this W/F value the Oz concentration wave is now 180° out of phase with its
inlet wave form. It is important to note that Fig. 9a shows the O and C2He concentration waves
enter the reactor in phase but exit the reactor out-of-phase in Fig. 9d (for W/F=3.2mg sccm™).
More importantly, SS solutions plotted in Fig. 8 are able to accurately determine the point of wave
inversion found in Fig. 9c which occurs at W/F ~ 2.8 mg sccm™'. Here, we have experimentally
demonstrated that the application of SS conservation equations to concentration wave maxima and

minima may be used to determine the point of wave inversion in a PFR during C2;Hs ODH.
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2.9 Maximum Rate Enhancement: Methane Oxidation

In this section, we will apply the QSS rate analysis to methane oxidation over Platinum
Group Metals (PGM) catalyst which exhibit similar LHHW rate versus concentration
dependencies as those found in section 2.5. Work by Karinshak et. al. found that modulating
oxygen during total oxidation of methane on a Pt/Pd catalyst resulted in lower light off
temperatures compared to SS operation [30]. The modulation frequency of these experiments was
low enough permitting the use of the QSS approach described in this paper. The effect of amplitude
on light off temperature during QSS operation of methane oxidation is plotted in fig. 10a. As
illustrated in their work, increasing the oxygen amplitude while maintaining an equivalent cyclic
average resulted in decreasing light off temperatures until the amplitude exceeded 0.028 as shown
in Fig. 10a [30]. The decreasing light off temperature is the result of the QSS rate being enhanced
by modulation within the negative order regime of the rate versus concentration curve illustrated
in Fig. 10b. Fig. 10a demonstrates that upon increasing the amplitude beyond 0.028, the light-off
temperature began to shift towards the SS light off temperature-[30]. The reconvergence of QSS
and SS light off temperatures are a consequence of the concentration minima falling to the left of
the rate maxima as detailed in section 2.5 and illustrated in Fig. 10b. It is important to note that
strong oxygen inhibition over PGM catalysts may result in isothermal multiplicity of the SS rate
as shown by Ratcliff et. al. [31]. However, during experiments conducted by Karinshak, the
amplitude was large enough such that the maxima and minima rates fell on the single valued curve
described by fig. 10b [30]. This section highlights the agreement between the QSS theory
presented in this publication to experimental observations during methane oxidation with LHHW

kinetic behavior.
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3. Conclusions

In this paper we have developed a simple method to estimate the effects of multiple
dynamically fed reactants during QSS isothermal operation on reaction rates. Fractional rate
enhancement is shown to be a function of reactant dimensionless amplitudes, duty cycles and
reaction orders. Differences in rates when subject to modulating reactant concentrations compared
to SS can be attributed to disproportionate scaling of the rate maxima and minima. Multi reactant
modulation follows similar trends to single reactant modulation except in the case of in-phase
operation. If multiple reactants are modulated simultaneously while sharing equivalent duty cycles
and dimensionless amplitudes, the rate will behave as if it were dependent upon one species whose
order is the sum of the individual reactants. This effect may lead to enhancement in the cases when
the orders sum outside the range 0-1. The analysis can used to determine inlet dynamic parameters
for QSS operation of both a PFR and a CSTR. Analysis accuracy is reduced at higher reactant
conversions due to differences in the cyclic average and SS concentrations, wave phase inversion
and wave distortion. Regardless of these limitations, effects predicted by the QSS rate analysis
persist to relatively high conversions. Dynamic effects on more complex reaction schemes such as
reactions in series can also be explained through the results of the QSS analysis. For example, the
exaggerated effects resulting from smaller duty cycles and simultaneous reactant modulation are
both captured by the analysis. Experiments involving dynamic operation of alkane oxidation
demonstrate good agreement with theoretical predictions of the fractional rate enhancement, point
of concentration wave inversion and maximum rate enhancement. Future work will include
extension of the analysis to non-isothermal QSS operation and systems subject to multiple

distributed dynamic feeds and more complex reaction networks.
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Symbols

A = Reactant A

B = Reactant B

Ci, avg = Cyclic Average Concentration of species i

Ci= Concentration of species i

C+ = Concentration wave maximum

C.= Concentration wave minimum

Da = Damkohler Number

F = Volumetric flow rate

1 = Counter for periodic concentration profiles (i.e. 1=0,1,2,3...)

P; = Product number 1

kefr = Reaction rate constant

K = Equilibrium adsorption constant of species i

K’ = equilibrium adsorption constant multiplied by the cyclic average of species 1 (Cj, avg *Kj)
n; (or m;) = Power law reaction orders of species i

r = reaction rate

s = Duty cycle/ fraction of period when the concentration wave is at a maximum
t=Time

us = Superficial velocity
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V = Volume of reactor

xi = Dimensionless concentration of species 1 (normalized by the cyclic average of the limiting
reactant)

Greek symbols

a = Dimensionless amplitude of species i (or A)

[ = Dimensionless amplitude of reactant B

& = Dimensionless distance (z/L)

y = Dimensionless amplitude of species modulating out-of-phase (from those with dimensionless

amplitude alpha)
6 = Dimensionless time (Z% for a PFR) and (= % for a CSTR)

A = Fractional rate enhancement

T = Period of oscillation

Subscripts

Avg = Cyclic Average (Integral Average)
QSS = Quasi Steady State

SS = Steady State

+ = At the concentration wave maximum
- = At the concentration wave minimum
Superscripts

f=Feed (at entrance of the reactor)
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Figure 23: FractionalFraetional rate enhancement for simultaneous (a) and out--of--phase (b) modulation as functions of dimensionless
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Figure 786: Percent enhancement [%] of CO, formation rate for ethane oxidation for various dimensionless amplitudes determined
experimentally (blue circles) and by eqn. egns—6-and-(7), (red line). The simultaneous and out-of-phase experiments were carried outat
<

50% duty cycle (s=0.5) and period of 2 minutes (t=2 min). (a) Simultaneous experiments were compared along the cross section, § =
1 — a, (b) Out-of-phase operation experiments were compared along the 8, = a, diagonal. (c) Duty cycle experiments were carried out
with at ¢_=0.5 and period of 3 minutes (z=3 min). For all experiments the cyclic averages were 2500 and 8750 ppm of Oz and C>He
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Figure 8: Steady state concentration profiles [ppm] as a function of W/F [mg/sccm] solved at the concentration wave maxima and

minima for the oxidative dehydrogenation of ethane to ethylene using expressions and kinetic data in Scheme 1. Intersection between

utions marked as the pant of wave inversio ,
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Figure 9:Seh Experimentally measured concentration profiles of Op, CoHg, COp, and CoHy at W/F = 0 (feed) (a), 2.1 (b), 2.6 (c), 3.2 (d)

mg/sccm at 590°C period of 6 minutes and 50% duty cycle using 7wt% MoO3 AlLOs,.
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Figure 10: Methane conversion as a function of temeprature [°C] at different amplitudes during QSS operation of methane oxidation il
over supported Pt/Pd (PGM) catalysts (a). Rate of methane oxidation as a function of Oz concentration (b). Figures are recreated from

work by Karinshak et. al. [28].
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