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CoRRE trait Data: a dataset of 

17 categorical and continuous 
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In our changing world, understanding plant community responses to global change drivers is critical 
for predicting future ecosystem composition and function. Plant functional traits promise to be a key 
predictive tool for many ecosystems, including grasslands; however, their use requires both complete 
plant community and functional trait data. Yet, representation of these data in global databases is 
sparse, particularly beyond a handful of most used traits and common species. Here we present the 
CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species’ 
responses to global change for 4,079 vascular plant species across 173 plant families present in 390 
grassland experiments from around the world. The dataset contains complete categorical trait records 
for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete 
coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data 
will shed light on mechanisms underlying population, community, and ecosystem responses to global 
change in grasslands worldwide.
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Background & Summary
Ecologists are tasked with forecasting community and ecosystem responses to global change drivers. Functional 
traits have been put forward as a “holy grail” approach capable of generalizing the link between community 
and functional processes across scales1–3. Plant functional traits — characteristics or measures that indirectly 
impact the �tness of an individual4 — are known to in�uence species tolerances to environmental conditions5–7, 
competitive outcomes8–10, trophic interactions11, and ultimately species abundances12–15. Additionally, scaling 
plant functional traits to the community-level by integrating species trait values with their abundances (i.e., 
community-weighted traits) can illuminate community responses to environmental drivers3,16,17, as well as ena-
ble us to predict the e�ects of traits on ecosystem processes1,3,18–20 across a wide array of ecosystems21.

Grasslands and other herbaceous ecosystems are globally important pools of biodiversity and are critical for 
the sustained provisioning of ecosystem services22–25. Yet our global grasslands are under threat due to increased 
human activities, making understanding the trait-based mechanisms underlying their community assembly and 
ecosystem function more imperative than ever26. Experiments in which global change drivers are manipulated 
and community and ecosystem response data are collected are one powerful tool to understand and predict 
grassland responses to global change factors27. In order to utilize a trait-based approach to synthesizing grass-
land responses, it is necessary to gather complete data across all species for traits expected to respond to global 
change manipulations and/or drive subsequent ecosystem responses17,28–30.

Collecting the necessary plant community composition and trait data is time and labour intensive. While 
databases of plant community composition in response to experimental manipulations in herbaceous ecosys-
tems have begun to emerge31–33, complete trait data for an entire plant community is more di�cult to obtain. 
In particular, some plant traits are notoriously di�cult to measure and data are consequently sparse (e.g., many 
belowground plant traits34). Yet even the plant traits that are relatively easy to measure, such as speci�c leaf area 
and leaf dry matter content35,36, tend to be available only for the most abundant species in common ecosystem 
types. Additionally, information for many categorical traits is dispersed across the literature and may not align 
with the same de�nitions across sources.

To meet data demands, trait databases have been developed that bring together a global community of con-
tributors and users, including the TRY37 and BIEN38,39 global databases, as well as many regional trait databases. 
Yet, despite the impressive amount of plant trait data amassed by the ecological community to date, there remain 
critical gaps in available data for many species and traits. Many trait-based statistical approaches require com-
plete datasets, which means there can be no missing data across the species and traits investigated40,41. �us, 
it becomes necessary to impute trait values for species with missing data42–44 or extrapolate from close phy-
logenetic relatives45 to generate the complete plant trait databases that are critical for downstream analyses46,47. 
However, imputation methods are typically only used for continuous trait data and are only as powerful as the 
trait data being fed into them, resulting in both signi�cant remaining missing data and potentially inaccurate 
data. �ey also have the potential to give rise to circular analyses, for example when evolutionary processes are 
investigated using traits imputed using phylogenetic information.

A pressing need in ecology is to determine how plant functional traits determine or are mechanistically asso-
ciated with species’ responses to global change in grassland ecosystems around the world. Towards that end, we 
aim to bridge the gap between existing databases that have assembled plant community and trait information 
and the complete data we require. To do so, we have identi�ed the gaps in existing data sources and �lled those 
gaps with data from an intensive literature search following clear data gathering protocols (categorical traits) and 
statistical imputation methods based on a set of measured trait data from existing plant trait databases (continu-
ous traits). �is e�ort has resulted in a unique and nearly complete trait dataset48 comprised of (1) a suite of 9 cat-
egorical traits (Table 1) for all 4,079 vascular plant species across 173 families found within 138 experiments from 
the Community Responses to Resource Experiments (CoRRE) database (https://corredata.weebly.com/) and 252 
experiments from the Grazing Exclosure (GEx) database (https://koernerlab.weebly.com/) and (2) 8 continuous 
traits (Table 2) for a subset of 2,927 of these same vascular plant species across 147 plant families (Fig. 1). �ese 
traits were selected to encompass those that were expected to meaningfully contribute to plant species responses 
to global change drivers or e�ects on ecosystem function, within the limitations of data availability (see methods 
below). �e assembled trait dataset48 will allow us to directly link complete data on plant community responses 
to global change drivers to the traits of these species and ultimately their ecosystem outcomes.

Summary. �roughout the process of assembling the CoRRE Trait Data48, we learned four important lessons 
that we wish to pass on to the ecological community.

 (1) �e trade-o�s among continuous trait data completeness (including the number and distribution of 
individual measurements for each species), size of the observed data matrix, and the number of traits being 
imputed may limit the scope and quality of the imputed trait dataset. Originally, we had hoped to include 
many more than 8 continuous traits in the published dataset (e.g., physiological traits, root traits, repro-
ductive traits), however with particularly sparse data we determined it is better to retain only traits with the 
highest data coverage. We found that inclusion of traits with extremely sparse data (in our case, less than 
10% of plant individuals with at least one value for each trait) resulted in a matrix with many times more 
missing data that would need to be imputed. �at is, the inclusion of sparse coverage traits resulted in a 
non-linear increase in missing data, thereby decreasing the quality of the �nal imputed dataset. We learned 
that inclusion of a fewer number of data-rich traits for imputation is advisable. In our case, we included a 
suite of the most commonly available traits for our species of interest, but also included one additional trait 
(speci�c root length) that had few records, yet was both ecologically important and occupied a unique trait 
dimension (i.e., not highly correlated with other trait values), warranting inclusion in downstream analyses.
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 (2) Data imputation methods are only as robust as the measured data that are passed to them. Some of the trait 
databases on which the ecological community currently relies contain data that may not be appropriate for 
a given analysis (e.g., data from juvenile plants or from experimental conditions like glasshouses or climate 
chambers), data that may be inaccurate due to discrepancies in measurement methods across investigators, 
and/or repeated data, which can a�ect the results of both trait imputation and statistical analyses of traits as 
drivers of community and ecosystem dynamics. In particular, while they are highly valuable contributions 
to the ecological community as the primary source of the vast majority of plant trait data, the TRY37 and 
BIEN38,39 databases contain data that should be carefully examined prior to any analysis. Despite the mas-
sive cleaning and harmonization e�orts undertaken to produce TRY and BIEN, we found in some cases 
that inaccurate data were included in the database and needed to be removed prior to analysis, primarily 
when units or methods were not standardized to the database convention. In addition, we identi�ed three 
ways in which trait data were repeated within the TRY database, which can result in in�ated con�dence 
in a given trait value both within and across species. First, a dataset may contain multiple measurements 
of a given trait for each Observation ID (which in the ideal case is meant to be a unique identi�er for a 
plant individual) because multiple leaves were measured for that individual. Because there is no way to 
link di�erent trait measurements to these individual leaves from a plant within TRY, we averaged data 
by Observation ID in these cases. Second, a dataset may contain multiple measurements of a given trait 
for each Observation ID because multiple measurements were made through time (e.g., measuring plant 
height multiple times over a growing season). While in some cases a temporal identi�er was provided by 
the investigator, in many others this was not the case. When temporal data were identi�ed, we took either 
the mean or maximum value for each Observation ID, depending on the nature of the trait. Finally, truly 
repeated data were found within TRY, where the same value to an accuracy of �ve or more decimal places 
was found across many Dataset and Observation IDs for a given species. In these cases, it seems likely that 
the same data was entered into TRY multiple times and we used a single value to prevent over-representa-
tion of that data in the overall dataset. Although some duplicate entries are �agged in TRY (primarily 
across DatasetID), in many other cases the reason for repeated data o�en had to be inferred from the 
values of the observations and were thus di�cult to detect.

Trait Name [Trait Code] Categories

Growth Form [growth_form] graminoid, forb, fern, cactus, vine, lycophyte, woody

Lifespan [lifespan] annual, biennial, perennial

Clonal [clonal] yes, no, uncertain

Leaf Type [leaf_type] broad, narrow, needle, scale, frond, microphyll, modi�ed, none

Leaf Compoundness [leaf_compoundness] simple, compound, none

Stem Support [stem_support] self-supporting, pendent, epiphyte, decumbent, prostrate, climbing

Photosynthetic Pathway [photosynthetic_pathway] C3, C4, CAM, hybrid, parasitic, uncertain

Mycorrhizal Type [mycorrhizal_type]
AM (arbuscular mycorrhizae), EcM (ectomycorrhizae), ErM (ericaceous 
mycorrhizae), OM (orchidaceous mycorrhizae), multiple, none, uncertain

Nitrogen Fixation Type [n_�xation_type] none, rhizobial, actinorhizal

Table 1. Description of categorical traits included in this dataset. See Supplemental File 1 for a complete 
description of each trait category.

Trait Name [Trait Code] Description [imputed range] Units

Vegetative Height [plant_height_vegetative] Height of vegetative growth [0.007–20.957] m

Leaf Area (leaf, +petiole) [leaf_area] Leaf area of leaf, including petiole [0.050–61,213] mm2

Leaf Area (lea�et, -petiole) Leaf area of lea�et, excluding petiole mm2

Leaf Area (unde�ned, unde�ned) Leaf area, unde�ned if leaf/lea�et and petiole included/excluded mm2

Leaf Dry Mass [leaf_dry_mass] Dry mass of a single leaf [0.001–4,292] mg

Leaf Dry Matter Content [LDMC] Leaf dry mass per leaf fresh mass [0.002–0.997] g g−1

Speci�c Leaf Area (+petiole) [SLA] Leaf area per leaf dry mass, including petiole [1.125–124.160] mm2 mg−1

Speci�c Leaf Area (-petiole) Leaf area per leaf dry mass, excluding petiole mm2 mg−1

Speci�c Leaf Area (unde�ned) Leaf area per leaf dry mass, unde�ned if petiole included/excluded mm2 mg−1

Leaf N [leaf_N] Leaf nitrogen content per leaf dry mass [5.792–61.708] mg g−1

Speci�c Root Length (all root) [SRL] Root length per root dry mass of all roots [0.450–312,733] cm g−1

Speci�c Root Length (�ne root) Root length per root dry mass of �ne roots only cm g−1

Seed Dry Mass [seed_dry_mass] Seed dry mass [0.001–171.432] mg

Table 2. Description of continuous traits included in this dataset. Traits in italics were utilized for continuous 
trait imputation, but are not presented in the �nal dataset. Range of imputed trait means are included in 
brackets adjacent to each description.

https://doi.org/10.1038/s41597-024-03637-x
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 (3) It is important to carefully consider the data that results from continuous trait imputation. While our im-
puted data exhibited a similar distribution to the measured data overall, some extreme outliers were gen-
erated during the imputation process. Removal of these outliers using standard practices (e.g., considering 
error risks) is relatively straightforward. However, any individual datapoint should be considered carefully 
based on expert knowledge of each species and trait prior to use in further analyses, as incorrect values can 
hide within the bulk of the data for any given trait and species.

 (4) Finally, it is possible to develop complete categorical trait datasets for the most common plant traits (Table 1) 
through an exhaustive manual search of the literature, online �oras, and other online resources. �is is pos-
sible for categorical traits (compared to continuous traits) due to the �xed nature of categorical traits (e.g., a 
plant’s photosynthetic pathway does not di�er depending on location, study, or measurement methods), so 
that a species’ categorical trait value can be identi�ed from a small subset of studies. To collect our categori-
cal trait data, we learned that it is important to develop standardized methods to ensure accurate data collec-
tion and to conduct error checks to determine data accuracy. However, these e�orts may not be possible for 
rarely studied traits, as was the case in our failed e�orts to collect complete data for pollination and dispersal 
modes. Nonetheless, with the rise of machine learning and other algorithms trained on large data inputs, 
our ability to create datasets of less common categorical traits for many species will likely become increas-
ingly achievable.

Fig. 1 Flowchart of trait data generation, including gathering existing data from �ve plant trait databases for 
vascular plant species within the CoRRE and GEx databases, gap �lling through imputation (continuous traits) 
or from the literature (categorical traits), and data cleaning at each step.
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5Scientific Data |          (2024) 11:795  | https://doi.org/10.1038/s41597-024-03637-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Methods
�e existing CoRRE32 and GEx31 databases contain plant community composition data from individual exper-
iments in herbaceous ecosystems around the world. Here we present the new CoRRE Trait Data48, a dataset of 
traits for all vascular plant species (to the extent possible) within the original CoRRE and GEx databases (Fig. 1). 
Requirements for inclusion of an experiment in the CoRRE database are that the experiment is located within a 
grassland ecosystem (i.e., herbaceous), directly manipulates a resource (soil nutrients, water, atmospheric CO2, 
and/or light), has at least 3 years of continuous experimental treatments and at least 4 replicates, and has species 
abundance data32. Requirements for inclusion of an experiment in the GEx database are that experiments were 
located in a grassland ecosystem, have paired plots that are ungrazed vs grazed by large herbivores, had fences 
in place for a minimum of three years, and have species abundance data31. Other than their use for determining 
which vascular plant species to focus on, no other data from the CoRRE and GEx databases were utilized during 
the creation of the CoRRE Trait Data48.

We standardized species names for all plant species represented in the CoRRE and GEx databases to ‘�e 
Plant List’ using the TaxonStand version 2.4 package in R49. Trees and non-vascular plants (e.g., mosses) were 
removed from the dataset. Additionally, plants whose names did not provide taxonomic resolution at the species 
level (e.g., Aster sp. or “unk fuzzy plant”) were removed from the dataset. Finally, any species whose names did 
not result in a match from TaxonStand were cleaned by hand using the World Flora Online50.

Continuous trait data cleaning. For every species, data were pulled from the TRY Plant Trait Database 
version 6.037 (accessed May 2023), AusTraits version 4.1.051 (accessed October 2023), Botanical Information and 
Ecology Network (BIEN) version 4.238 (accessed October 2023), TiP Leaf52 (accessed March 2023), and China 
Plant Trait Database v253 (accessed March 2023) for the following traits, where available: vegetative height, leaf 
area, leaf dry mass, speci�c leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) content per dry 
mass, speci�c root length (SRL), and seed dry mass (Table 2). Other trait databases (e.g., FRED54, GROOT55, 
LT-Brazil56, Tundra Traits57) were excluded from consideration because they were already nested within one 
of the databases listed above. Two traits had multiple methods of collection: (1) SLA with or without petiole 
included and on leaves vs lea�ets and (2) SRL on all roots or �ne roots only. �ese multiple methods of collection 
were included as separate traits within the dataset. Altogether, data were imputed for thirteen focal continuous 
traits, including these di�erent methods of measuring the same trait (see Table 2).

Data were checked when noted (within TRY and BIEN) to ensure that all observations were taken on live 
plants growing under natural conditions (e.g., not greenhouse or growth chamber data). Within TRY, data that 
were noted as duplicates within the database (i.e., those with an Original Observation Data ID) or ranges of a 
trait value were removed from the dataset.

TRY continuous trait data were then �ltered to remove data with Error Risk values greater than 3 (i.e., 3 or 
more standard deviations (SD) away from the mean for each trait value based on species, genera, family, or all 
data across the TRY database). �is �ltering removed 28,571 of 356,367 observations (8.0% of data). We further 
�ltered TRY data to remove zero and negative values, which removed an additional 26 observations. Despite 

Fig. 2 �e number of observations for an individual plant ranged from one to eight focal continuous traits 
measured. �ese data served as the basis for continuous trait imputation. Numbers above the bars report the 
number of individual plants with the given number of traits measured. See Table 2 for a list of the continuous 
traits included in this dataset.

https://doi.org/10.1038/s41597-024-03637-x
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having removed data that were �agged within TRY as duplicates, we did �nd many additional cases of repeated 
values for some species both within and across DatasetID and ObservationID, which were �ltered down to a 
single entry in cases where repeats could be identi�ed as duplicate entries. Cases where it was unclear whether 
repeated trait values for a species were duplicate entries versus true independent measurements were le� in the 
dataset. �is �ltering removed 55,650 of 327,770 observations (17.0% of data), resulting in the �nal inclusion of 
272,120 trait records from the TRY database.

Similarly, duplicate entries within and across DatasetID and ObservationID were found within the BIEN 
database, which were �ltered down to a single entry resulting in dropping 8,819 of 32,585 observations (27.1% 
of data). Further, extreme outliers in the data were checked and removed when the primary source clearly indi-
cated that the trait was not measured in the same way as most data in the database (e.g., total leaf area for a plant 
rather than a single leaf), leading to an additional 2,290 of 23,766 observations being dropped (9.6% of data), 
resulting in the inclusion of 21,476 observations across all traits and species of interest from the BIEN database.

AusTraits, TiP Leaf, and China Plant Trait Database 2 did not contain any obviously duplicated data or 
extreme outliers for any species or traits of interest. Across all traits and species of interest, we included in our 
dataset a total of 9,673 observations from AusTraits, 2,348 from TiP Leaf, and 1,302 from China Plant Trait 
Database 2.

Fig. 3 Number of observations by trait within each trait database, as well as across all databases (grey bar). �e 
red line corresponds to 10% of trait data complete and the grey line corresponds to 20% of trait data complete 
for each trait. Numbers above each bar represent the percentage completeness for each trait within each trait 
database or across all databases. Au: AusTraits; BN: BIEN; C2: China Plant Trait Database 2; TP: TiP Leaf; TY: 
TRY Plant Trait Database; all: across all databases.

https://doi.org/10.1038/s41597-024-03637-x
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Data were then merged across all �ve databases (TRY, BIEN, AusTraits, TiP Leaf, and China Plant Trait 
Database 2), resulting in a total of 306,919 individual trait observations. �is data included 206,113 plant indi-
viduals across 3,188 species in 151 families for which at least one of our thirteen focal traits (Table 2) had been 
measured, with 51,177 plant individuals having more than one trait measured (Fig. 2). All trait dataset and 
observation identi�ers were retained during cleaning to allow for multiple traits that were measured on an indi-
vidual plant to be linked. Units of measure were harmonized across all databases for each trait. Trait cleaning 
and merging code can be found in a Zenodo-archived GitHub Repository58 (see Code Availability below).

Continuous trait data imputation. �e 306,919 observed continuous trait values were used to impute a 
total of 2,679,469 values in the complete dataset (88.2% missing data). Sparseness of data varied by trait (Fig. 3), 
with no traits that were more than 20% complete and only �ve traits (leaf dry mass, LDMC, SLA, vegetative 
height, and seed dry mass) that were at least 10% complete across all trait data. �is was likely due to the lack of 
multiple trait measurements on any individual plant, with the majority of plant individuals only being measured 
for one trait (Fig. 2). Root traits were particularly sparse (Fig. 2), highlighting the need for increased investment in 
collection of belowground trait data. Despite the high volume of missing data, continuous traits spanned a broad 
range of values and were relatively consistent across databases (Figs. 4, 5). Notably, leaf area and leaf dry mass 
were considerably lower in the TiP Leaf database than others (Figs. 4, 5), likely because the species included in TiP 
Leaf52 are from the arid Tibetan Plateau and therefore have dry-adapted traits such as smaller leaf size.

Fig. 4 Continuous trait data from �ve trait databases used for trait imputation (Au, BN, C2, TP, and TRY) 
compared to imputed trait values (imp). Shown are mean values for each species within each trait across 
original and imputed data. Au: AusTraits; BN: BIEN; C2: China Plant Trait Database 2; TP: TiP Leaf; TRY: TY 
Plant Trait Database; imp: imputed data. See Table 2 for units.
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Data were z-transformed within each trait to improve normality prior to data imputation. We then used a 
two-step process to �rst �ll in missing trait values on the complete dataset and second compute species-speci�c 
averages (Fig. 1). In the �rst step, we employed Bayesian hierarchical probabilistic matrix factorization imputa-
tion using the R Package “BHPMF”44 to constrain gap-�lling taxonomically. �is method has previously been 
applied to data from the TRY database59,60, and has been shown to be accurate for large and sparse datasets43. We 
repeated the imputation 90 times, each time starting with di�erent parameters (pre-fold samples = 900–1000; 
cross-validation steps = 10–20; burn-in steps = 10% data length). �e varying parameter combinations resulted 
in comparable errors, as quanti�ed by the “Root Mean Squared Error” (RMSE) falling within the range of 0.5165 
to 0.5259 (mean 0.5212). �erefore, we calculated mean imputed values for each observation across all iter-
ations. We then discarded values that were extreme (>1.5 times the maximum observed value for a trait) or 
uncertain (>1 SD from the mean), resulting in dropping 8,725 values (0.49% of imputed data). In the second 
step, we conducted �ve iterations of multivariate imputation by chained equations using the R package “mice”61 
on the partially �lled dataset and substituted missing cases with mean values from all iterations. Data were then 
back-transformed to generate the �nal imputed data values. Finally, we dropped �ve traits corresponding to 
multiple ways of measuring leaf area, SLA, and SRL to keep imputed data for only one method of measurement 
for each continuous trait (Table 2).

We calculated error risks for each trait on log10 transformed continuous trait values and dropped outliers 
with an error risk of 4 or greater across all data (i.e., 4 or more SD away from the mean for each trait value; 590 
of 1,648,752 observations, 0.0004% of all imputed data) and within each species (8,138 additional observations, 
0.005% of all imputed data). Following this data cleaning step, we calculated mean values across all observations 
for each species and trait combination, resulting in a �nal dataset48 of 23,410 mean imputed trait values across 
2,927 species and 8 continuous traits. Note that the �nal number of species with imputed trait values is lower 
than the number of species with original data used for imputation because data cleaning steps resulted in all 
trait values being dropped for some species. Trait imputation code can be found in the Zenodo-archived GitHub 
Repository58 (see Code Availability below).

Categorical trait data assembly. For each plant species in the CoRRE and GEx databases (4,079 species 
in 173 families), categorical trait data were collected for nine traits (Table 1; Fig. 6). Data from the TRY Plant 
Database were used as a starting point for all trait values except lifespan, clonality, and mycorrhizal and N �x-
ation status. Of the 36,711 trait values needing to be �lled (species by trait combinations), 9,014 values (24.6%) 
were obtained from TRY. For species without values for these categorical traits identi�ed in TRY or where TRY 
had multiple values listed for a single species (75.4% of values), the trait value was identi�ed through individual 
searches through the scienti�c literature, online �oras, and other online resources. Additionally, we checked data 
from TRY for all species, with errors noted and corrected. We obtained data on mycorrhizal status from the 
FungalRoot Database62 and data on rhizobial and actinorhizal N-�xation status from the Germplasm Resources 
Information Network (GRIN) and Werner et al.63. Because many species have not been assessed for N-�xation 
status and this trait is o�en conserved at the genus level, we assigned all species in a genus as N-�xers for any 
genus that had >60% of its species as con�rmed N-�xers in the dataset. For consistency across species records, 
leaf type and leaf compoundness data were checked for all species by K. Komatsu. Data for clonality and photo-
synthetic pathway were either di�cult to �nd online or not known to science for some species. For species where 
clonality information was di�cult to obtain, data were collected primarily by M. Avolio and R. Terry from the 
CLO-PLA database64 or evaluation of photos of herbarium root specimens. For species where photosynthetic 
pathway information was di�cult to obtain, data were collected primarily by S. Koerner and R. Terry using infor-
mation on photosynthetic pathway at the family and genus levels65–72 to make determinations. All other traits 

Fig. 5 Continuous trait data for three traits plotted on a log10 scale for ease of visualization. Traits were derived 
from �ve trait databases used for trait imputation (Au, BN, C2, TP, and TRY) and are compared to imputed 
trait values (imp). Shown are mean values for each species within each trait across original and imputed data. 
Note that on a log10 scale, values between 0–1 become negative. Au: AusTraits; BN: BIEN; C2: China Plant Trait 
Database 2; TP: TiP Leaf; TRY: TY Plant Trait Database; imp: imputed data. See Table 2 for units.

https://doi.org/10.1038/s41597-024-03637-x


9Scientific Data |          (2024) 11:795  | https://doi.org/10.1038/s41597-024-03637-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

were divided equally among dataset authors for collection. Altogether this manual data collection took roughly 
900 person hours, an impressive feat of human labour! All categorical trait records are fully referenced in the 
resulting dataset48.

Data Records
Access to these data is available through Environmental Data Initiative (EDI). Data are being released under a 
CC-BY 4.0 International (CC BY 4.0) license. �e BIEN data is licensed CC-BY-NC-ND, the TiP Leaf data is 
licensed CC-BY-NC-SA, and the FungalRoot data is licensed CC-BY-NC; however, we have been granted per-
mission from the data owners to release this derivative under CC-BY. Any person utilizing the BIEN or TiP Leaf 
imputation training data or FungalRoot mycorrhizal data must comply with the original BIEN, TiP Leaf, and/or 
FungalRoot license terms, respectively.

�e dataset48 contains three �les: (1) CoRRE Categorical Trait Data; (2) CoRRE Continuous Trait Data; and 
(3) Imputation Training Data [observed trait data utilized for imputation procedures, see above for methods]. 
An overview of the trait de�nitions and units can be found in Table 1 for categorical traits and Table 2 for con-
tinuous traits.

Technical Validation
Original trait data were split into three training datasets and used to impute the remaining trait values. Each 
training dataset consisted of two-thirds of the original trait data and was used to impute values for the remaining 
third. Training datasets were selected to preserve the underlying phylogenetic structure of the original trait data 
to the extent possible, with observations selected sequentially within each species and trait to be included in each 
training dataset. �e imputed data from each validation run were then compared to the original trait data (i.e., 

Fig. 6 Pie charts demonstrating the frequency of occurrence of each categorical trait in the dataset. Percentages 
are rounded to the nearest whole number, except those <1%. Due to rounding, percentages may not add 
to 100% within each pie. For mycorrhizal type, AM: arbuscular mycorrhizae, EcM: ectomycorrhizae, ErM: 
ericaceous mycorrhizae, OM: orchidaceous mycorrhizae. Traits listed as uncertain represent those species for 
which the trait expression is unknown.
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data that was not part of their training datasets) to determine the accuracy of imputation of such sparse data. 
Training datasets each had 89.6% missing data, slightly more than our full dataset. Overall, imputed data from 
the validation runs were highly correlated with the original data as indicated by high Normalized Root Mean 
Square Error (NRMSE) demonstrating a high proportion of variance in the imputed data related to the original 
data and correlation coe�cients (r) very close to 1 (Table 3; Fig. 7), lending high con�dence to the use of these 
imputation methods for the entire dataset.

Mean imputed data were cleaned to drop all values with an error risk greater than 4 prior to calculating mean 
values of each trait for each species (see above for details). Despite this substantial data checking and cleaning 
e�ort, we caution that users of this dataset should still check that the imputed values presented here match their 

Trait

Validation Run 1 Validation Run 2 Validation Run 3

NRMSE r NRMSE r NRMSE r

Leaf Area 0.603 0.984 0.623 0.974 0.596 0.983

Leaf Dry Mass 0.694 0.988 0.681 0.987 0.865 0.983

Leaf Dry Matter Content 0.088 0.973 0.089 0.972 0.088 0.972

Speci�c Leaf Area (+petiole) 0.160 0.956 0.166 0.952 0.167 0.952

Leaf N Content 0.098 0.967 0.091 0.971 0.092 0.971

Plant Vegetative Height 0.282 0.979 0.307 0.975 0.368 0.966

Speci�c Root Length (all root) 0.339 0.941 0.518 0.868 0.431 0.904

Seed Dry Mass 0.309 0.996 0.300 0.996 0.306 0.996

Table 3. Fit estimates and correlation coe�cients for each of three validation runs for each trait, for each of 
which 2/3 of the data was used to impute the remaining 1/3. NRMSE and correlations compared the original 
data (not used for training) with the imputed data for each of these runs. NRMSE: Normalized Root mean 
Square Error, r: correlation coe�cient.

Fig. 7 Regressions between observed and imputed values across three iterations of data validation (point 
and regression colors indicate validation run). �e 1:1 line is shown in black. Note, all panels are plotted on a 
log10:log10 scale for ease of visualization. See Table 3 for �t estimates and correlation statistics for each trait.

https://doi.org/10.1038/s41597-024-03637-x


1 1Scientific Data |          (2024) 11:795  | https://doi.org/10.1038/s41597-024-03637-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

expectations for the species and traits they are utilizing. To aid in this e�ort, we present error risks (standard 
deviations away from the mean based on log10 transformed values) for each imputed value at the genus, family, 
and overall dataset scales. Where fewer than 3 species were present in a genus or family, the respective error risks 
were not calculated. Additionally, a mean of the standard deviations that were obtained from the data imputa-
tion models are included for each trait for each species to indicate which data points the imputation struggled 
to �t (higher values indicate less certainty). Imputed trait validation code can be found in the Zenodo-archived 
GitHub Repository58 (see Code Availability below).

For categorical trait data, 424 of the 4,079 species (10.4%) were manually checked for errors in trait entry. Of 
these, error rates were 0.2% for leaf type and leaf compoundness, 0.9% for growth form, 1.7% for photosynthetic 
pathway, 3.8% for lifespan, 3.3% for stem support, and 5.0% for clonality. Because data on mycorrhizal, rhizobial, 
and actinorhizal status were taken directly from other databases, their error rates were not checked beyond the 
values provided by the original sources62,63.

Usage Notes
�is Data Descriptor was peer-reviewed in June 2024 based on the CoRRE Trait Data48 available in EDI repos-
itory at the time. Dataset updates a�er June 2024 were not included in the peer-review process associated with 
this Data Descriptor.

We encourage users of this dataset to notify the corresponding authors if errors are identi�ed with either 
incorrect categorical data or imputed continuous data that falls well outside of expectations. We intend to correct 
such errors in an updated version of the dataset on a yearly basis.

Code availability
All code for data processing, continuous trait imputation, and technical validation can be accessed with no 
restrictions through a Zenodo-archived GitHub Repository58 (https://doi.org/10.5281/zenodo.11204431) and is 
linked to the data package in EDI. All steps were performed in R version 4.1.3.
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