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The companion section for classical groups

T. Hameister, B. C. Ngo

Abstract

We use the companion matrix construction for GL,, to build canonical sections of the Chevalley
map [g/G] — g//G for classical groups G as well as the group Gz2. To do so, we construct canonical
tensors on the associated spectral covers. As an application, we make explicit lattice descriptions
of affine Springer fibers and Hitchin fibers for classical groups and Gs.

1 Introduction

Let G be a reductive group over k, and denote by g its Lie algebra. The Chevalley map

x:9—g/G,

where g/G := Spec(k[g]®) denotes the invariant theoretic quotient of g by the adjoint action of G, is of
fundamental importance in the construction of the Hitchin system [Hit87]. In particular, for g = gl,,,
x sends a matrix to its characteristic polynomial.

In [Kos63|, Kostant exhibited a section of the Chevalley map for a general reductive group G under
the assumption that the characteristic of & does not divide the order of the Weyl group. Kostant’s
section was generalized in [BC22] and [AFV18], including the case of characteristics p > 2 for classical
groups and the group G3. As explained in [Ngol0], this section can be used to construct sections
of the Hitchin fibration and affine Springer fibers. However, Kostant’s construction can be counter-
intuitive for computations. To illustrate this latter point, consider the case G = GL3(k), in which case
g//G = A3 is the 3-dimensional affine space. The Kostant section is the map sending
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If you introduced this problem to an undergraduate student of linear algebra, of course, they would
not give you the answer above; they might instead suggest the map:

0 0 —as
(a1,a2,a3) € gJG 1 0 —a2] €g
0 1 —ai

sending a characteristic polynomial to its companion matriz. The section to the Hitchin map that
Hitchin constructed in [Hit87] is not strictly the same as the one of [Ngol0| in the sense that he
does not rely on the Kostant section but another section that feels more like a generalization of the
companion matrix. Instead of the companion matrix, a map g/G — g, we will construct a map
9/G — [9/G], where [g/G] is the quotient of g by the adjoint action of G in the sense of algebraic
stack. This section will be called the companion section, which is free of any choice. The present



note aims to explicitly construct the companion section for classical groups, including the symplectic
and orthogonal groups and G5. As an application of the companion sections, we will give elementary
descriptions of affine Springer fibers and Hitchin fibers for classical groups similar to the description
of the Hitchin fibers in the linear case due to Beauville-Narasimhan-Ramanan.

The emphasis of this work is on providing case-by-case explicit formulas for the companion section
for classical groups. It is also possible to construct the companion section uniformly. This will be the
subject of our subsequent work.
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2 Tensors defining classical groups

We will recall the standard definition of classical groups as the subgroup of the linear groups fixing
certain tensors. This is very well known for symplectic and orthogonal groups but a bit less known for
G2, which in a certain respect could qualify as a classical group as well.

Let V be a 2n-dimensional vector space over a base field k, V* its dual vector space. The linear
group GL(V) acts on the space A?V* of alternating bilinear forms on V with an open orbit. An
alternating bilinear form p € A2V* is considered non-degenerate if it lies in this open orbit. This is
equivalent to requiring the induced map p : V' — V* to be an isomorphism. The stabilizer of such
a non-degenerate alternating bilinear form is a symplectic group G. We note that p € A2V* is non-
degenerate if A"u € A?"V* is a non-zero vector of the 1-dimensional vector space A?"V* and as a
result, G is contained in the special linear group SL(V'). Then, a G-bundle over a k-scheme S consists
of a locally free Og-module V of rank 2n equipped with an alternating bilinear form /\%V — Og which
is non-degenerate fiberwise. Although the embedding of G' = Sp,,, into GLg, may differ by conjugation
by an element of GLs,, as we are more concerned with G-bundles than G itself, the specific choice of
non-degenerate alternating form pu € A2V* is immaterial. We will write G = Sps,,.

Let V be a n-dimensional vector space over a base field k, V* its dual vector space. The linear group
GL(V) acts on the space S2V* of symmetric bilinear forms on V with an open orbit. A symmetric
bilinear form p € S2V* is considered non-degenerate if it lies in this open orbit. This is also equivalent
to the induced map p : V' — V* being an isomorphism, which in turn is equivalent to the induced
map A"u : A"V — A"V being an isomorphism of 1-dimensional vector spaces. We note that A"V
and A"V* are dual as vector spaces so that for every choice of a basis vector w € A"V, we have a
dual basis vector w* € A"V*. A basis vector w € A"V is said to be compatible with p if the equation
A"u(w) = w* is satisfied. This equation has exactly two non-zero solutions w € A"V, which differ by
a sign. The stabilizer of a non-degenerate symmetric bilinear form p € S?V* is an orthogonal group
O(p). The stabilizer of a pair (u,w) consisting of a non-degenerate symmetric bilinear form p € S2V*
and a compatible basis vector w € A"V is the special orthogonal group SO(u,w) which is the neutral
component of O(u). We note that SO(p, w) = O(p) N SL(V') so that the special orthogonal group can
also be defined as the stabilizer of a pair (u,w) as above but without requiring w being compatible
with p. The stabilizer of any such pair is a special orthogonal group G. A G-bundle over a k-scheme S
consists then in a locally free Og-module V of rank n equipped a symmetric bilinear form /\%V — Og



which is non-degenerate fiberwise. The embedding of G = SO,, into GL,, depends on the form p and is
well defined only up to conjugation by GL,,. However, as we are more concerned with G-bundles than
G itself, choosing a specific non-degenerate symmetric form p € A?V* is immaterial. We will write

G = S0,

There is a simple tensor definition of G5 due to Engel [Eng00]. Let V' be a 7-dimensional vector space.
The linear group GL(V) acts on the space A3V* of non-degenerate trilinear forms on V' with an open
orbit. We will follow Hitchin’s [Hit00] in formulating the equation defining this open orbit . We will
denote the contraction A3V* xV — A2V* by p, for p € A2V* and v € V. For v, vy € V and p € A3V*,
we then have

fhoy A oy A g € NV,

By choosing a non-zero vector ¢ of the determinant A7V, u gives rise to a symmetric bilinear form
ve SV
v(v1,02) = (4 poy A fhoy A 1) (1)

which is non-degenerate if and only if x lies in the open orbit of A3V*. We will say that u is a non-
degenerate 3-form on V. The stabilizer of a non-degenerate 3-form is a group Gy x us(k) where pg(k)
is the group of 3rd roots of unity in k; We obtain the connected component, a group of type Gs, by
taking the intersection with SL(V). A Ga-bundle over a k-scheme S is thus a locally free Og-module
V of rank 7 equipped with an alternating trilinear form p € A3V* which is non-degenerate fiberwise
together with a trivialization of the determinant. Again, a different choice of nondegenerate 3-form u
may give a GL7 conjugate embedding of GG into GL;. However, such a choice is immaterial for us.

3 Spectral cover and the companion matrix

For all groups G discussed previously, including symplectic, special orthogonal, and G5, G is defined as
a subgroup of GL,, fixing certain tensors. We call the inclusion G — GL,, the standard representation
of G. We also have the induced inclusion of Lie algebras g — gl,, compatible with the adjoint actions
of G and GL,. We derive a morphism between invariant theoretic quotients

c=g9/G —gl,/GL, = ¢,

which is a closed embedding for symplectic groups, odd special orthogonal groups, and G, but not
for even orthogonal groups. For GL,,, we have a spectral cover s,, — ¢,, defined in Section 3.1, which
is a finite flat morphism of degree n so that O, is a locally free O, -module of rank n given with a
canonical endomorphism [z] which is the usual companion matrix. The main result of this work can
be formulated as follows:

Theorem 3.1. Let G be a symplectic group, odd special orthogonal group, or Gy group and G — GL,
its standard representation. Let ¢ — ¢, be the induced map of Chevalley quotients which is a closed
embedding in these cases. Then the restriction O, to ¢

V=0 ®0,, Os,

as locally free Oc.-module affords a canonical tensor defining a G-reduction and the companion matrix
for GL,, defines a canonical map g)/G — [g/G] which is a section of the natural map [g/G] — g//G.
This statement remains valid for even orthogonal groups after replacing ¢ X, s, by its normalization.

We prove the theorem by a case-by-case analysis. In particular, we will construct the explicit tensors
required in each case.



3.1 Linear groups

We first recall how the companion matrix is connected to the universal spectral cover in the case
GL,. In this case, the Chevalley quotient g/G is the n-dimensional affine space A™ and the map
X : g — g//G is given by the characteristic polynomial x(v) = (a1(¥),...,an(vy)) where v € g and
ai(y) = (=1)%r(A%y). In this case we have ¢, = Spec(A,) where A, = klay,...,a,]. The spectral
cover s, = Spec(B,,) where B,, is the A,-algebra

B, = A, [z]/(z"™ + a " N+t an)

which is a free A,-module of rank n as the images of 1, z, ..., 2"~ ! form an A,,-basis of B,,. We also note
that B, is a regular k-algebra as it is isomorphic to the polynomial algebra of variables aq,...,a,_1, .
On the other hand, B, is equipped with an A,-linear operator [z] : B, — B,, given by b — bx. To
give a map ¢, — [gl,,/GL,] is equivalent to the data of a rank n vector bundle £ — ¢,, together with
a an O, -linear endomorphism of &; that is, at the level of modules, a free, rank n A,, module with an
Ay, linear endomorphism. Hence, B,, with the operator [z] provides us with an A,,-point of [gl,,/GL,],
and we have thus constructed a map [z] : ¢, = [gl,,/GLy] which is a section of x : [gl,/GLy] — ¢,. In
term of matrices with respect to the A,-basis of B, given by 1,,... 2"} [z] is given by the usual
companion matrix

0 e —ay,
1 e —ag

r= |t 0 T e ) (2)
0 1 —ap

The companion matrix thus gives us a map o : ¢ — g in the case G = GL, taking a point a =
(a1,...,ay) of ¢ to the matrix above. This construction is a section to the characteristic polynomial
map. However, it is often more useful to think of [z] as a map [z] : ¢ — [g/G] in the case G = GL,,.

Let g come equipped with the homothety action of G,,, and ¢ with the induced action ¢-a; = t‘a;. There
is an issue with using the companion matrix to construct a section to the Hitchin map as the companion
map o : ¢ — g is not G,,-equivariant. We note, however, that the stack-valued map [z] : ¢ — [g/G] is
almost G,,-equivariant in the sense that after a base change by the isogeny G,, — G,,, given by t — t2,
it becomes equivariant because of the identity

0 0 —t2"a,,
.. _42n—=2
ad(diag(t"1 773, () =2 | 1 0 A 3)
0 1 —t2a;

This explains why we have a section to the Hitchin map after choosing a square root of the canonical
bundle as in [Hit87].

As we intend to use the companion matrix (2) to construct a canonical section to the Chevalley map
X : [g/G] — ¢ for classical groups, it is useful to further investigate the linear algebraic structure of B,,
as an Ap-module. We have a symmetric A,-bilinear map ¢ : B, ® 4,, B, — A, given by

§(b1 ®a, b2) =trp, /4, (b1b2)

thus an element £ € Sfln B} . Because this element induces degenerate forms over the ramification locus
of B, over A,, we need a correction term to get a symmetric bilinear form that is non-degenerate
fiberwise. We will describe this correction and the associated nondegenerate form in Lemma 3.2.

The pairing £ defines an A,-linear map p : B, — B} where B} = Homau, (B, A,) and pu(b1)(b2) =
&(by,b2). We note that the A,-module B} is naturally a B,-module and p : B, — B} is B, linear;



thus, it is uniquely determined by the image of 1 € B,, that we will also denote by p € B}. We will
show that B} is a free B,-module of rank 1, construct a generator of B} and find an explicit formula
for u € B} as a multiple of this generator.

Lemma 3.2. Let us denote by vy, . ..,vn_1 the basis of B, given by the images of 1,x,..., 2" ! in B,
and vy, ...,v5_1 the dual basis of B). Then 8* = v}, _, is a generator of B} as a By-module. Let us
denote f' € By, = Ay[z]/(f) the image of the derivative

"' (n— Daga™ 2+ Fan_1 € Ayz]

of the universal polynomial f = x™ + ajz" ' + - 4+ a, € A,[z]. Then we have u = f'B*.

Proof. First, the discriminant d of the universal polynomial f, defined as the resultant between f
and its derivative, is a nonzero element of the polynomial ring A,,. Indeed, d defines the ramification
divisor of the finite flat covering s — ¢, which is generically étale for there exist separable polynomials
in k'[x] of degree n with coefficients in any infinite field &’ containing k. We denote A’ = A,[d™'] the
localization of A,, obtained by inverting d, and B’ = B,, ® 4, A’. By construction, f’ is an invertible
element of B’. The trace map trp/ /4 : B' — A’ of B as free A’-module of rank n is now given by the
Euler formula (cf. III.6, Lemma 2 in [Ser13])

. (xk> 0 ifk<n—1

Tpr/ar | — =

BIAF 1 ifk=n—1

If vg,...,vn_1 denote the basis of B’ given by the images of 1,z,...,2" ! in B, and vy, .-, Us_q the
dual basis of (B’)*, then we derive from the Euler formula that the identities

p(vi) = f | on_yi + Za;,jv;szlfj (4)

J<i
hold in B}, ®4, A’ for some a; ; € A" In particular, we have u(vo) = f'v;_;. As the localization map
B! — B! ®g4, A’ is injective, this identity also holds in Bf. It follows that u = f'v}_; as desired. O

As a consequence, we have a canonical nondegenerate bilinear form * : B, ®4, B, — A, which is
symmetric with respect to which the A,-linear operator [z]| : B,, — B, is anti-self-adjoint; that is, for
all v1,v2 € B, we have

B* (zv1,v2) + B*(v1, zv9) = 0.

For G = SL,, the Lie algebra g = sl,, is the space of traceless matrices. We have ¢ = Spec(A4) where
A = klag, . ..,a,]. We note that for a; = 0, the companion matrix (2) is traceless and thus gives rise
to a A-point on sl,. The companion map v : ¢ — g induces a map [7] : ¢ — [g/G]. The latter lays
over the point of BG with values in A corresponding to the SL,,-bundle corresponding to rank n vector
bundle B equipped with the trivialization of the determinant given by the basis 1,z,...,2" . The
formula (3) shows that the map [y] : ¢ — [g/G] is equivariant with respect to the isogeny G,, — Gy,
given by t ~— ¢ for the diagonal matrix diag(t"~1,¢"=3,... t!™") belonging to SL,,.

3.2 Symplectic groups

In the case G = Sp,,,, we have ¢ = Spec(A) with A = k[ag, ..., a2,]. The spectral cover s = Spec(B)
where
B = Alz]/(z® 4 aez®™ 2 + - + agy)



is a free A-module of rank 2n, is equipped with an involution 7 : B — B given 7(z) = —x. The
companion matrix (2) gives a A-linear endomorphism of B as a free A-module. For the companion
matrix to produce a section to the Chevalley map [g/G] — ¢ in the symplectic case, we need to construct
a canonical nondegenerate symplectic form w on the A-module B for which ~ is anti-self-adjoint in the
sense that

w(yvi,v2) + w(vi,yv2) =0
for all vy,v9 € B.

The standard representation Sp,,, — GLg, induces a map on Chevalley bases ¢ — ¢o,, = Spec(Aay,)
where Ay, = k[aq,...,az,] which identidies ¢ with the closed subscheme of ¢y, defined by the ideal
generated by a1,as,...,a2,—1. We have B = A ®4,, Ba, where By, is the finite free Ay,-algebra
defining the spectral covering of cg,. If we denote B* = Homy (B, A) then we have B* = A ®4,, B3,
where B, = Homy,, (Bay, A2,). The generator 35, of the free Ba,-module Bj, defined in Lemma
3.2 then induces a generator 5* of B* as a free B-module of rank one which can also be viewed as the
bilinear form f*: B®4 B — A given by by @4 by = tI‘B/A(flilblbg) after localization.

The bilinear form w: B®4 B — A

w(by,b2) = B (b1, 7(b2)) = trg a(f br17(ba))

with the second identity only making sense after localization of A making f’ invertible, is a non-
degenerate symplectic form for which [z] is anti-self-adjoint. Indeed, we have

w(bl, bg) = —w(bg, bl)

because 7(f') = —f' for f' € A[z] is an odd polynomial as f € A[z] is an even polynomial. The
equation w(xzby, b2) + w(by,xby) = 0 can be derived from 7(z) = —z.

It follows that we have a morphism
[z] : ¢ = [9/G]

which deserves to be called the companion map for the symplectic group. To obtain a companion matrix
Te : ¢ —> @, it is enough to find a trivialization of the G-bundle associated with the non-degenerate
symplectic form w : B®4 B — A. For most applications, particularly the Hitchin fibration, we only
need the section [z] : ¢ — [g/G].

3.3 0dd special orthogonal groups

In the case G = SOgy,41, we have ¢ = Spec(A) with A = klag, a4, ...,a2,]. The spectral cover is
defined as s = Spec(B) where B = A[z]/(f) with f = 2fy and fo = 22" + ax® 2 +--- 4+ ag,. Bisa
free A-module of rank 2n + 1. As in the symplectic case, we will define a symmetric non-degenerate
bilinear form B ® 4 B — A for which the multiplication by z is anti-self-adjoint.

The standard representation SOg,+1 — GLoj41 gives rise to a map ¢ — cop+1 = Spec(kaq, . .., a2n+1])
which is a closed embedding defined by the ideal generated by ai,as,...,as,+1. We have B =
A ®Agpiq Bany1 where Bo, 1 is the finite free Ag,q1-module of rank 2n + 1 defining the spectral
cover in the case GLo,41. We also have B* = A ®a,,,, Bj,,; where B* = Homyu(B,A) and
B3, .1 = Hompy,, ,, (Bany1, A2ny1). Following the discussion in the linear case B3, is a free Bo,q1
generated by the element 33, ,; = (f')~'p where p is the trace form p(by ®4 bg) = tr(b1b2). It induces
a generator 0* of B* as a B-module. We define the bilinear form w: B ®4 B — A by

w(b1,by) = B* (b1, 7(ba)) = tr(f'~ by7(b2)). (5)



The bilinear form w is a nondegenerate bilinear form because 8* is. It is symmetric because 7(f’) = f
as f’ is an even polynomial. The equation w(zby,bs)+w (b1, zbs) can be derived from the fact 7(z) = —z.

By choosing a trivialization of the determinant, we obtain a companion map [z] : ¢ — [g/G] for

G = SO2p41.

3.4 Even special orthogonal groups

The case G = SOa,, is slightly more difficult for the map ¢ — ¢o, induced by the standard representation
of SOy, is not a closed embedding. Indeed, we have co, = Spec(Asg,) where Ag, = k[ay,...,az,] but
¢ = Spec(A) where A = klas, ..., a2, 2, p,] where p, is the Pfaffian satisfying p2 = as, does not lie in
the image of Ay, — A. If By, is the spectral cover of Ay, and B = A ®4,, B, then we have

B = Alz]/(2®" + agx® % + - + agp_o7® + p2).

As indicated by Hitchin [Hit87], the true spectral cover for even special orthogonal groups is not B
but its blowup B along the singular locus defined by x. We have

B= A[l',pn—l]/(xpn—l — Py 22 agr® T 4 ag, o +p721—1)

which is a free A-module of rank 2n and smooth as a k-algebra. We have an involution 7 on B and B
given by 7(z) = —z and 7(pp—1) = —pn—-1-

The dualizing sheaf wg /A is a free rank-one E—module, canonically isomorphic to B away from the

ramification locus. As a B-submodule of Fr(é) it is generated by the inverse of the different ©
which is given by the formula

_ _ —Pn-1 fl
QB/A = det( o 2pn—1)

= (n—=1)2"D 4 (n = 2)agz®™ ) 4+ agy92” +pp_y.

B/A

In other words, the bilinear form B® A B— A given by

-1
b1 ®4 by — trE/A(QE/Able)
is non-degenerate. As in the symplectic and odd special orthogonal cases, we now consider the sym-

metric bilinear form
w(br,bo) = trg 4 (D) bi7(b2))

Then w is a non-degenerate symmetric bilinear form because 7(D 5 / 1) =95 /a0 and it satisfies

w(xbl, bg) = —w(bl, :Ubg)

After a choice of trivialization of the determinant of B as a free A-module of rank n, the multiplication
by x gives rise to the companion section [z] : g/G — [g/G] for the odd special orthogonal group
G = S09,,41-



3.5 The group G-

In the case Go, the invariant quotient is A = kle,q| with deg(e) = 2 and deg(q) = 6. The spectral
cover § = Spec(B) of ¢ = Spec(A) given by
2

B = Alz]/ (xfy) for fo :x676x4+%x2+q

is a reducible cover of A with two components corresponding to the quotient maps

B — B' = Alz]/(fo) and B — A= Alz]/(z).

The cover s = Spec(B’) of A is finite, flat of degree 6, and factors through two subcovers, of degrees
2 and 3, corresponding to the sub-A-algebras

2
Ac Alyl/ <y3 — ey’ + ezy + q) C B’ where y =

A C Alz]/ (22 =+ q) C B' where z ==z (xQ _ g)

Let € € Blg7Y* := HomA[q_l](B[q’l],A[q’l]) be dual to fo; & € Blg~']* be dual to z%; and n; €
Blg~!]* be dual to 2’z for i = 1,2,3. Let tr, denote the skew-symmetric bilinear form on B given by

tl"z(g, h) - TrFraC(B)/Frac(A) (W)

We will denote by p the 3-form on B[g~!] given by
p=06 N0 An3+6 AmANd3+n1 ANda ANds —q-nogAni Ana + €N tr, (6)

A priori, the 3-form above is valued in A[g~!]. The next proposition tells us that it restricts to an
element of A\* B*.

Proposition 3.3. Restricting the 3-form p to B — B[q™'] induces a 3-form p € /\:9’4 B*. In other
words, p takes values in A when restricted to B.

Proof. Consider the A-basis of B given by
{1,2% 2'2: i =1,2,3}.
This differs from the A[g~!]-basis o
{fo,z",2'z:i=1,2,3}
of Blqg~!] only by scaling fo. As p is valued in A on the A-linear span of the latter basis, it suffices to
check the contraction ¢1p of p along 1 € B is valued in A. We compute
e

1
2772 Ans+ g(trz — 01 A0y + gég N O3 — ig3 try Ae+ Eimtrz A€)

tip=m1A\n2— 2

e 1 e
=m ANy — 5772/\773"‘ {a(trz—dl/\52+§(52/\53) —thrz/\e}

Rewriting the latter in terms of a dual basis &, i = 0,...,6 for the A-basis {z°: i =0,...,6} of B, we
see that the expression in square brackets above is

3e
Llp:eg/\eﬁ—l—e4/\e5—?e5/\e5

whose image lies in A. O



As the previous proposition illustrates, working with the form p requires significantly more compu-
tational effort. As such, Propositions 3.4 and 3.5 will be checked primarily with computer algebra
packages. These computations were done in Macaulay?2; explicit code for each calculation is referred
to in Appendix A.

Proposition 3.4. Let v be the bilinear form associated to p as in equation (1) and let w € S%B* be
the symmetric, nondegenerate form given by the formula (5). Then, v = —2%32w.

Proposition 3.5. The form p is compatible with the endomorphism [z], in the sense that

p(zby, b2, b3) + p(b1, xba, bg) + p(b1, b2, xb3) = 0.

As such, the form p together with a trivialization of the determinant gives a map [z]: ¢ — [g2/Ga2].

4 Special components

In the previous section, we gave explicit formulas for the tensors defining the reduction of the vector
bundle O, s, to G so that the companion section for GL,, induces the companion section for classical
group GG. These explicit formulas may feel like miracles, especially in the G9 case where a computer
algebra system is needed. In this section, we will derive them from the geometry of spectral covers,
which makes the construction more conceptual, especially in the G5 case. In subsequent work, we use
this approach to construct the companion section uniformly.

4.1 Special form and component associated with a subcover

Let A be a k-algebra, B a finite flat A-algebra of degree n generated by one element b € B, and
A’ C B an A-subalgebra of B such that A’ is finite flat of degree m over A generated by one element
a' € A" and B is a finite flat A’-algebra of degree d generated by b. Under these assumptions, we
have B ~ Alz]/P(x) where P(x) is the characteristic polynomial of the A-linear b : B — B defined
as the multiplication by b. Similarly we have A" ~ A[x]/(P;(x)) where P;(z) is the the characteristic
polynomial of the A-linear operator @’ : A" — A’ and B ~ A'[x]/Ps(x) where P(z) is the characteristic
polynomial of the A’-linear operator b : B — B.

Assuming that the characteristic of k is greater than d, we want to construct an alternating d-form
wa - /\iB — A

supported on a special component of Spec(S4 B) isomorphic to Spec(A’). We explain what this means.
As far as we know, the concept of non-degeneracy for d-forms is not yet defined for d > 3 and thus
we can prove the it only for d = 1 or d = 2. However, we expect that the form we construct is non-
degenerate for a reasonable definition of this concept. As to the special component, /\fl4 B is a module
over the ring of symmetric tensors (®‘f4 B)®4, We will construct a surjective homomomorphism of
A-algebras (®% B)®¢ — A’ which realizes Spec(A’) as an irreducible component of Spec((®% B)S?)
if B is generically étale over A and A’ is a domain.

The homomorphism of A-algebras (®% B)®¢ — A’ is constructed as follows. Let Py(x) = z%4a 91+
-+ 4 a/, be the characteristic polynomial of the A’-linear map b : B — B. Then we have

B = A'lz]/(z¢ 4+ djz¥t + -+ d))).



We consider the polynomial ring R = k[z1,...,24] and the subring S of invariant polynomials under
the symmetric group &,. We have

S = k‘[l’l,...,l‘d}ed = k[al,...,ad]

with A
Ozi:(—l)l Z Qg v Oy
1< << <d

Since R and S are regular, and R is a finite generated S-module, R is a finite flat S-algebra of degree
d!. We consider the homomorphism of algebras S — A’ given by «; +— a} and the base change A’ ®g R
which is a finite flat A’-algebra of degree d! equipped with an action of G4. We have (A’ ®g R)% = A’
Moreover, for every i € {1,...,d} we have a homomorphism of A’-algebras B — R ®g A’ given by
x — x; which together give rise to a surjective homomorphism of A’-algebras ®i/ B — A'®g R, which
is &4-equivariant. We derive a &g-equivariant surjective homomorphism of A-algebras

d d
X)B—-QRB— A @R (7)
A Al

By taking the &g-invariant, we obtain the desired homomorphism of algebras

d
S4B =(QB)% — A,
A

which is surjective because taking & 4-invariants is an exact functor under the characteristic assumption.

We will now construct a special d-form on B
d
WA’ /\B — A
A

supported on the special component. As above, we have a surjective homomorphism of algebras
Sg-equivariant surjective homomorphisms of A-algebras ®?4B — ®ii4,B — A’ ®s R which induces a
surjective A-linear maps of the alternating parts /\iB — /\i, B — A ®g R%" where R®" is the
direct factor of R as S-module in which &, acts as the sign character. It is known that R%9" is a free
S-module generated by [[;<;;<4(®i — z;). We thus obtains a surjective A-linear map /\ff‘B — A
By composing it with the generator of Hom4(A’, A) constructed in 3.2 we obtain the special d-form
Wy /\fi4 B — A which is supported by the special by construction.

Let us discuss the non-degeneracy of the special d-form wy: : /\ji4 B — A. For d = 1, this follows from
Lemma 3.2. We can check that it is also non-degenerate everywhere for d = 2. For d > 3, we don’t
know a general definition of non-degeneracy but it easy to see that the special form w4/ is everywhere
non-zero. In dimension 6 and 7 where the definition of non-degeneracy is available, we will check that
the special d-form is everywhere non-degenerate by direct calculation.

4.2 Sp,, case
We recall in the case G = Sp,,,, we have ¢ = Spec(A4) with A = kfag,...,a2,]. The spectral cover

s = Spec(B) where
B = Alz]/(z®" 4 apz® 2 + - + agy)
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is a free A-module of rank 2n, is equipped with an involution 7 : B — B given 7(x) = —x. We consider
the subalgebra A’ of B consisting of elements fixed under 7

A= Alyl/ (" + ay™ + -+ agn).

We then have B = A'[z]/(2? — y).

The construction of the special form and special component in 4.1 gives rise to an alternating form
war - /\?43 — A

supported in the special component ¢/ = Spec(A’) of (s x5)// S where s = Spec(B) and ¢ = Spec(A).
The homomorphism (7) Sym?(B) — A’ can be explicitly computed elements of the form:

b@al+1®@ab trg a(b).

In particular, x ® 4 1 + 1 ® 4 « be long to the kernel of Symi (B) — A’, and in fact on can verify that
it is a generator of the kernel. Since z ® 4 1 + 1 ® 4 « annihilates w4/ we have

wA/(xbl, bQ) + wA/(bl, l‘bg) =0

for every by,by € B. By Lemma 3.2, the 2-form w4 is everywhere non-degenerate. We can also see by
explicit calculation that the form wys is the same as the 2-form we constructed in subsection 3.2 by
means of the Euler formula.

4.3 (G4 case

In the case Go, the invariant quotient is A = kle,q] with deg(e) = 2 and deg(q) = 6. The spectral
cover § = Spec(B) with

2
B=Al)/ (xfy) for fo=2°—ex' + S0 g

is a reducible cover of A with two components corresponding to the quotient maps
B — B'= A[z]/(fo) and B — A
We will define a canonical 3-form on B out of a 3-form and a 2-form on B’ associated to subalgebras
AC A=A/ (*+4q) =kle,y] ¢ B =A[2]/(=" - gm —2)

Ac A" =Apyl/ (yg —ey’ + ezy + q) =kle,2] ¢ B =A"[z]/(=* —vy).

Since both A" and A” are regular algebras, they are finite flat A-modules of rank 2 and 3, respectively,
whereas B are finite flat A’-module and A”-module of rank 3 and 2, respectively. The construction of
the special form associated with a subcover gives rise to

war: AAB = Aand war : A3B — A

supported on the special components ¢/ = Spec(A’) and ¢’ = Spec(A”) of 5X§//63 and 5X%//62,
respectively. By arguing as in the symplectic case, we see that w4/ is annihilated by * ® 41 ®4 1 +
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1®A2R414+1R@41® 42 and wy by x®41+1® 4 x. It follows that as alternating forms, they satisfy
the relations:

wA/(acbl, ba, bg) + WA’(bla by, b3) + WA’(bla bs, ;Ub3)
war(xby, by) +war(by, xby) =

for all by, b9, b3 € B.

The form w4 agrees with the restriction of the form p calculated by Macaulay 2 when restricted to
B’ — B, with the inclusion given by multiplication by x: Indeed, the restriction of p takes value 1 on
each of:

z/\x/\xQ, x/\z:v/\xQ, 1Az A za?

and —q on z A zz A zz?. This exactly detects the coefficient of z when these wedges are written in

terms of the A’ basis 1 Az A 2% for A3, B’, which matches w4 since the generator of Hom(4', A) as
an A” module detects the coefficient of A’.

We now build a 3-form on B out of the 3-form wx/ and 2-form wyr on B’. Since B = Alz]/(z fo),
B’ = Alz]/(fo) we have exact sequences of free A-modules

0A—-B—>B —-0and0—>B —-B—>A4-0

where the map A — B in the first sequence is given by 1 — fy and the map B’ — B in the second
sequence is given by 1 — z. It follows an exact sequences

0A®B -B—-Q—=0and0—+B—-A®B —Q—0
where Q = A/(q) = B'/(x). Tt follows an exact sequence
0= AYB* = NY(B)* @ AA(B')* = A(B')/(q) = 0

where the map A% (B')* — A?(B’)*/(g) is the reduction modulo ¢, and the map A% (B’)* — A%(B")*/(q)
is obtained by the composition

NA(B')" = NAB* — NAB™ = NA(B')" — NA(B')"/(q)

where the first map is induced by the projection B — B’, the second is given by contraction with fo,
the third map is induced by the inclusion B’ — B sending 1 — x, and the final map is the quotient
map. Since g A2 (B’)* ~ A?(B’)* is a free, rank 1 module over the special component of S%(B’), there
is a unique generator as an A” module. The 3-form wy and the 2-form w4~ do not have the same
image in A%(B’)*/(g); however, the form zw4r is and it gives a generator for the A” submodule of
2-forms compatible with w4/. The pair (war, zwar) comes from an element of /\3AB* which agrees with
the 3-form calculated by Macaulay?2.

5 Lattice description of affine Springer fibers of classical groups

Let us recall Kazhdan-Lusztig’s definition [KL88| of affine Springer fibers. Let G be a split reductive
group defined over a field k and g its Lie algebra. Let F' = k((w)) the field of Laurent formal series
and O = k[[w]] its ring of integers. Let v € g(F) be a regular semisimple element. The affine Springer
fiber associated with v is an ind-scheme defined over k whose set of k-points is

My (k) = {g € G(F)/G(O)[ad(9) "' € 3(O)}.
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We note that M, is non-empty only if the image a € ¢(F) lies in ¢(O) where ¢ = g/ G is the invariant
theoretic quotient of g by the adjoint action of G. As argued in [Ngo10], using the Kostant section, we
can define an affine Springer fiber M, depending only on a instead of v, which is isomorphic to M,.

For G = GL,,, the affine Springer fiber M, has a well-known lattice description. In this case, ¢ = A".
If a = (a1,...,a,) € Oy, we form the finite flat O-algebra

By = Olz]/(fa)

where f, = 2™ + a1z ' + -+ + a, by the base change from the universal spectral cover. As v € g(F)
is a regular semisimple element, B, ® F is finite and étale over F. We have a well-known lattice
description of the affine Springer fiber M, in this case.

Theorem 5.1. For G = GL,, and a € ¢*(F) N ¢(O), the set My(k) consists of lattices V in the
n-dimensional vector space V = B, @ F which are also By-modules.

See for example, Section 2 of [Yunl6| for an exposition.

For computational purposes, it is desirable to have a lattice description of affine Springer fibers similar
to Theorem 5.1 for classical groups, which is as simple as in the linear case. This is possible due to the
construction of the companion matrix, and in fact, this was our original motivation.

In the cases we have investigated in the paper, i.e., symplectic, special orthogonal, and G2, we have
constructed a finite, flat spectral cover s = Spec(B) of the invariant theoretic quotient ¢ = Spec(A)
which is étale over the regular semisimple locus of ¢. The degree d = deg(B/A) is the degree of the
standard representation which is 2n for Spy,, 2n+1 for SOg,41, 2n for SOg, and 7 for G3. In the case
SO(2n), we must consider the normalization B of B. In each of these cases, we constructed a form w,
which is

e a non-degenerate symplectic form w : B x B — A satisfying w(zb, b)) + w(b1, xbe) = 0 for Spy,,
e a non-degenerate symmetric form w : Bx B — A satisfying w(xb1, be) +w(b1, xby) = 0 for SO9,41
e a non-degenerate symmetric form w : B x B — A satisfying w(zby, by) + w(by, xby) = 0 for SOy,
e a non-degenerate alternating form w : B x B x B — A satisfying
w(xby,ba, b3) + w(by, xbe, bg) + w(by, by, zbg) =0
for Go

We also constructed a trivialization of the determinant /\fi4 B = A in all these cases.

For every a € ¢(O) N¢"(F), we construct a finite flat O-algebra B, by base change from the spectral
cover 5§ — ¢. Because a € ¢"*(F), the generic fiber V, = B, ®o F' is a finite étale F-algebra of degree
d. By pulling back w, we get a form w, which is a non-degenerate alternating F-bilinear form on
V. in the symplectic case, a non-degenerate symmetric F-bilinear form on V, in the orthogonal case,
and a non-degenerate alternating F-trilinear form on V, in the Gy case. Moreover, it extends to a
non-degenerate form valued in O on B, in Spy,, SO2,4+1 and Ga cases and on Ba in the SO9,-case.

Theorem 5.2. The set of k-points of the affine Springer fiber M, is the set of O-lattices V of V,,
which are By-modules, such that the restriction of w, has value in O and such that deg(V : B,) = 0 in
Spans SO2y+1, Go cases and deg(V : B,) = 0 in the SOq, case.

The proof of this result follows immediately from the proof of Theorem 5.1, as lattices preserved by the
nondegenerate form w, constructed above are exactly those for which there is a reduction of structure
to the classical group G.
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6 Application to the Hitchin fibration

Let X be a smooth, projective curve over an algebraically closed field k and let G be a reductive group
over k with Lie algebra g. Fix a line bundle L on X such that either deg(L) > 29 —2 or L = K is the
canonical bundle. Denote by M the moduli stack of Higgs bundles on X, whose k points are given by
the set of Higgs bundles

M(k) = {(E,¢): E— X is a G bundle, ¢ € I'(X,ad(E) ® L)}

More succinctly, M is the mapping stack M = Maps(X, [g1,/G]) where g;, = g A®™ L is the twisted
bundle of Lie algebras on X.

Recall that under mild hypotheses on the characteristic of k (char(k) > 2 for G = SO,, and Sp,,, and
char(k) > 3 for G = G3), the Chevalley isomorphism shows

g/G ~tJW ~ A"
is an affine space with G,, action by weights di,...,d,. Let
A= Maps(X, 91/ G) ~ @ T(X, L)

Hitchin, in [Hit87], studied the space M, with appropriate stability conditions imposed, through the
fibration that now bears his name:

h: M — A, (E,¢) + char(¢)

where char(¢) is given by composition with the quotient map [g/G] — g/ G. Let M, denote the fiber
of the map h over a point a € A. In the case that G = GL,, d; = i and char(¢) = >, a;2" is the
characteristic polynomial of ¢, whose coefficients are then sections a; € T'(X, L®i).

The companion section [z] : g/G — [g/G] can be used to construct an explicit section to the Hitchin
map after extracting a square root of L. This section in many cases is almost the same as the section
constructed by Hitchin [Hit87] and [Hit07]|, but can be different from the section constructed in [Ngo10|
which is based on the Kostant section. In every case, the Higgs bundle constructed from the companion
section will be built out of the structural sheaf of the spectral curve. Note that the following assumes
basic G, equivariance properties of the relevant forms. For example, in the case of G = Sp,,,, we have
constructed a canonical alternating form w: A% B — A which satisfies w(\¢) = A 72"w(€) for any
A€ G, and £ € /\1243.

In [Ngol0], it is shown that over a large open subset of A, there is a close connection, depending on
a choice of section, between Hitchin fibers and affine Springer fibers given by the Product Formula.
More precisely, let © = (J, t°* /W be the divisor consisting of the union of the image of each root
hyperplane in t; in particular, the complement of © in ¢ is the regular, semisimple locus ¢"*. Fix a € A
such that a(X) ¢ ©, and let U C X be the preimage of ¢"* in X. Given trivialization of the line
bundle D on some neighborhood of each point v € X \ U, we have a map

H My o — M,
veX\U

from the product of affine Springer fibers at the points # € X \ U to the Hitchin fiber, which consists
of gluing with the companion section restricted to U. It it induces a universal homeomorphism

I Mya ALV Py M,
yeX\U
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The groups P, (J,) and P, are discussed in detail in [Ngol0|; we will not describe them here. This
is proved in [Ngol0] under the assumption that m(P,) is finite, and by Bouthier and Cesnavicius in
[BC22] under the only assumption that a(X) ¢ ©.

As Section 5 describes the affine springer fibers M, 4, the product formula above gives an explicit
description of Hitchin fibers in the case that a(X) ¢ ©. Namely, we have the following descriptions
for Hitchin fibers under this assumption.

A

for G = GL,,, and a € A we have a spectral cover p, : Y, — X embedded in the total space |L| of
L. We then associate with a the Higgs bundle E, = p,.Oy, and the Higgs fields ¢ : £, = E, ® L
given by the structure of Oy, as an Oj-module.

for G = Sp,,,, and a € A, we have a spectral cover p, : Y, — X embedded in the total space
|L| of L. If B, = pa«Qy, then we have a canonical symplectic form A2E, — L®1=2%) If I/ is
a square root of L then E/, = E, ® L’ ®1721 Wil be equipped with a canonical symplectic form
with value in Ox and also equipped with a Higgs fields derived from the the structure of Oy, as
a O -module.

for G = SO9,,41, and a € A, we have a spectral cover p, : Y, — X embedded in the total space | L]
of L. If B, = pa+Oy, then we have a canonical non-degenerate symmetric form S2E, — L®(=2n)
so that the vector bundle E, = E, ® L®" affords a canonical no-degenerate symmetric form with
value in Ox, and also equipped with a Higgs fields derived from the the structure of Oy, as
a Ojp-module. It also affords a trivialization of the determinant depending on the choice of a
square root of L.

for G = SOg,, and a € A, we have a spectral cover p, : Y, — X embedded in the total space |L| of
L. Using the normalization of the universal spectral cover, we obtain a partial normalization Y, of
Y, If B, = pa*Of,a then we have a canonical non-degenerate symmetric form S2E, — L®2-2n)
so that the vector bundle E/, = E, @ L®'~" affords a canonical non-degenerate symmetric form
with values in Oy, and also equipped with a Higgs fields derived from the the structure of Oy,
as a Ojp-module. It also affords a canonical trivialization of the determinant depending on the
choice of a square root of L.

for G = G9, and a € A, we have a spectral cover p, : Y, — X embedded in the total space |L|
of L. If E, = pa*(’)f,a then we have a canonical non-degenerate 3-form A3E, — L™ so that the
vector bundle E! = E, ® L®3 affords a canonical non-degenerate 3-form with value in Oy, and
also equipped with a Higgs fields derived from the the structure of Oy, as a Oj-module. It also
affords a canonical trivialization of the determinant depending on the choice of a square root of
L.

Computer algebra code and GG» computations

In this appendix, we give the computer code used to compute the 3-form p in Section 3.5.

A.1 Construction of p

To construct p, we will use the connection between nondegenerate alternating 3-forms and cross prod-
ucts. Let V' be a vector space with a nondegenerate, symmetric bilinear form v.
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Definition A.1. A cross product on (V,v) is a bilinear map
c: VRV -V

satisfying the following three properties for all vi,vy € V:

1. (Skew symmetry) c(vi,ve) = —c(va,v1);
2. (Orthogonality) v(c(vy,ve),v1) = 0;

o v(vy,v1) V(vl,vg)>
3. (N lizat ,V2), , = det
(Normalization) v(c(vi,va), c(v1,v2)) e <1/(U1,v2) V(v v3)

The data of a cross product on (V,v) is equivalent to the data of a nondegenerate 3-form on V' whose
associated symmetric bilinear form (see equation (1)) is a scalar multiple of v. Indeed, to a cross
product ¢, one associates the 3-form

p(v1,v2,v3) = v(c(v1,v2),v3) (8)

while for any non-degenerate 3-form p, there is a unique cross product ¢ satisfying equation (8).

Now, consider the free, rank 7 A-module B as in Section 3.5 equipped with the symmetric, nondegen-
erate form w defined by the formula

917(g2)
fl
as in the SO7 case. Here, 7(z) = —z is the natural involution on B, and the trace is taken after

inverting f’ in A. To construct a 3-form on B which is nondegenerate over every k point of A, it
suffices to construct a cross product

w(g1,92) = trp/a <

c: B®sB— B
for (B,w). Moreover, the equation
p(zg1,92,93) + p(91, 92, 93) + p(91, 92, 2g3) = 0

is equivalent to the condition

c(xgr, g2) + c(g1,1g2) = wc(g1, 92)- 9)

To simplify computations further, we note that any form c: B ® 4 B — B satisfying the conditions of
Definition A.1 and equation (9) can be recovered from its trace:

tc: Ba B — A, (gl,gg)HtrB/A(c(gl,gg))
Indeed, if we express

6
c(z’,x)) = cggxl
=0

then cgﬁj) = te(z?,27) and

1
trB/A(xc ' x] Z( ) 2T T
T

r=0
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(

can be expressed in terms of ¢;
downward induction on [.

?) for 6 — 1 < m < 6. This allows us to recover the coefficients cfl]) by

This idea is implemented in the following Macaulay2 code. There is a one-dimensional solution space,
which is specialized at a particular point to give the form stated in equation (6). Note that it is
immediate from the computer calculation that the form p is valued in B and satisfies the conclusion
of Proposition 3.5.

S=QQle,ql;

F=frac(S);

R=F[p_(0,0) .. p_(6,6)]; -- ring with p_(i,j)=tc(x"i,x7j),
O\leq i,j\leq 6

-- The following three commands define tc(x~i,x"j) for i or j between
7 and 12 using the relation x"7-e*x"5+e~4/4*x~3+q*x=0.

for 1 from 0 to 5 do [for k from 0 to 6 do p_(k,7+1)=exp_(k,5+1)-
(1/4)*e~2*p_(k,3+1) -g*p_(k,1+1)];

for 1 from O to 5 do [for k from O to 6 do p_(7+1,k)=e*p_(5+1,k)-
(1/4)*e~2*p_(3+1,k) -q*p_(1+1,k)]1;

for 1 from 0 to 5 do [for k from 7 to 12 do p_(k,7+1)=e*p_(k,5+1)-
(1/4)*e~2*p_(k,3+1) -q*p_(k,1+1)];

-- I encodes orthogonality:
I = ideal(flatten for a from O to 6 list for k from O to 6 list
sum(0. .k, j->binomial (k,j) *p_(k+j,a+tk-j)));

-- J encodes skew symmetry:
J = ideal( flatten for a from O to 6 list for b from O to 6 list
p_(a,b)+p_(b,a) );

-- The following encodes the normalization condition:
B=R[x]/(x"7-exx~5+(1/4)*e"2xx"3+q*x) ;

-- determinant of norms of x7i,x7j:

f = (i,j) -> coefficient(x~6,(-1) i*x~(2%i))*coefficient(x~6,(-1)"j*
x~(2%j))-coefficient (x76, (-1) ~j*x~(i+j))*coefficient (x~6, (-1)~j*
x~(i+3));

-- norm of c(x~i,x~j):

g = (i,j) -> coefficient(x76, (p_(i,j)*(x"6-exx"4+(1/4)*e 2+x"2+q)+
sum(0..1,1->binomial (1,1)*p_(i+1,j+1-1))*(x~5-e*xx~3+(1/4)*e~2xx)+
sum(0..2,1->binomial(2,1) *p_(i+l, j+2-1)) *(x~4-exx~2+(1/4)*e~2)+
sum(0..3,1->binomial (3,1)*p_(i+1,j+3-1))*(x~3-e*x)+sum(0..4,1->
binomial (4,1)*p_(i+1,j+4-1))*(x~2-e)+sum(0..5,1->binomial (5,1)*
p_(i+l,j+5-1))*(x)+sum(0..6,1->binomial (6,1)*p_(i+1,j+6-1)))
*(p_(1,j)*((-x)~6-e*x(-x)~4+(1/4)*e~2%(-x) ~2+q) +sum(0..1,1->
binomial (1,1)*p_(i+1,j+1-1))*((-x)~5-ex(-x)~3+(1/4)*e~2x(-x))+
sum(0..2,1->binomial (2,1)*p_(i+1,j+2-1))*((-x) ~4-e*x(-x)~2+(1/4)*
e~2)+sum(0..3,1->binomial (3,1)*p_(i+1l, j+3-1))*((-x)~3-e*(-x))+
sum(0..4,1->binomial (4,1)*p_(i+1,j+4-1))*((-x)~2-e)+sum(0..5,1->
binomial(5,1)*p_(i+1,j+5-1))*(-x)+sum(0..6,1->binomial(6,1)*
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p_(i+1,j+6-1))) );

-- K encodes the normalization condition:

K = ideal(flatten for i from O to 6 list for j from O to 6 list
£(1,3)-g(1,3));

Q=R/(I+J+K); -- imposing the relations on our ring of variables
Q2=Q/ideal (p_(6,3)-1,p_(6,4) ,p_(6,5)-5%e/2); -- specializes to our
particular form rho

-- Computation of c¢ from tc:

P=Q2[x]/(x~7-exx~5+e~2/4xx"3+q) ;

C=table(for k from 0 to 6 list k, for k from O to 6 list k, (i,j) ->
(p_(i,j)*(x~6-exx~4+(1/4) xe~2%x~2+q) +sum(0. .1,1->binomial (1,1)*
p_(i+l,j+1-1))*(x~5-e*x~3+(1/4) *e~2xx)+sum(0. .2,1->binomial (2,1) *
p_(i+l,j+2-1))*(x~4-e*x~2+(1/4)*e~2)+sum(0. .3,1->binomial (3,1) *
p_(i+l,j+3-1))*(x~3-e*x)+sum(0. .4,1->binomial (4,1) *p_(i+1,j+4-1))*
(x~2-e)+sum(0..5,1->binomial (5,1)*p_(i+1,j+5-1))*(x)+sum(0..6,1->
binomial(6,1)*p_(i+1,j+6-1))));

-- This is the matrix for c with respect to the basis x7i, i=0,..,6
netlist C -- displays C

A.2 Nondegeneracy of p

Let p be the form computed in the previous section, stated explicitly in equation (6). Note that since we
specialized to a particular form in the previous section, it is not yet clear that this form is nondegenerate.
For this, we produce the following code in Macaulay2 to explicitly compute the associated bilinear form
is as in Proposition 3.4. The following uses some basic operations on permutations from the package
SpechtModule authored by Jonathan Nino in Macaulay2.

T=permutations {0,1,2,3,4,5,6};

n = (v,w) -> sum(0..7!-1, k-> permutationSign(T_k)*coefficient(x"6,

v (C_((T_k)_0))_((T_k)_1))*coefficient (x~6,w*(C_((T_k)_2))_((T_k)_3))
xcoefficient (x~6, (-x)~((T_k)_4)*(C_((T_k)_5))_((T_k)_6)) );
S=table(for k from 0 to 6 list k, for k from O to 6 list k, (i,j) ->
n((-x)"1,(-x)");

netlList S
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