
Space Mechanics: A Beginner’s Guide to Programming
Fundamentals

Anh Tang
Department of Information Technology, Georgia Gwinnett

College
United States

atang1@ggc.edu

Julissa Valdez-Ramos
Department of Information Technology, Georgia Gwinnett

College
United States

jvaldezramos@ggc.edu

Anca Doloc-Mihu
Department of Information Technology, Georgia Gwinnett

College
United States

adolocmihu@ggc.edu

Cindy Robertson
Department of Information Technology, Georgia Gwinnett

College
United States

crobertson2@ggc.edu

Abstract
This project strives to foster genuine interest in technology and
computing in K-12 and non-IT undergraduate students. Using a
simple space-themed game as the teaching platform, we aim to
introduce students to fundamental programming concepts such as
variables, conditional statements, and loops, as well as algorithmic
thinking in a hands-on and engaging way.

CCS Concepts
• Applied computing → Interactive learning environments.

Keywords
Scratch, Makey Makey, project-based learning, teaching, block-
based programming, algorithm, critical thinking, sprite animation,
CS, IT, education, gamification, outreach
ACM Reference Format:
Anh Tang, Julissa Valdez-Ramos, Anca Doloc-Mihu, and Cindy Robertson.
2024. Space Mechanics: A Beginner’s Guide to Programming Fundamentals.
In The 25th Annual Conference on Information Technology Education (SIGITE
’24), October 10–12, 2024, El Paso, TX, USA.ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3686852.3687068

1 Introduction
The Technology Ambassador Program (TAP) at Georgia Gwinnett
College (GGC) is a service-learning course dedicated to boosting
student interest and participation in computing through numer-
ous outreach activities led by students at GGC. TAP faculty and
students strive to increase curiosity and enthusiasm in technology
through interactive classroom workshops in introductory Infor-
mation Technology (IT) courses on campus and through extracur-
ricular activities for K-12 students, such as the Atlanta Science
Festival.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGITE ’24, October 10–12, 2024, El Paso, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1106-0/24/10
https://doi.org/10.1145/3686852.3687068

Wedeveloped our project while enrolled in the TAP course. It was
built on results presented in a prior publication [2] focused on the
effect of our service-learning courses for underrepresentedminority
students and how these courses encouraged them to explore more
opportunities to engage in STEM.

The objective of this project is to introduce the concept of algo-
rithms and to explain how to develop an algorithm using variables,
conditional statements, and loops. It is geared toward an audience
that has little to no prior programming experience such as K-12 and
non-IT undergraduate students. We accomplish our goal through
a hands-on, beginner-friendly platform: Space Mechanic, a space-
themed role-playing game designed to turn the learning process
into something engaging and entertaining. Through this project,
we hope that we are able to give the students a crash course in
programming and inspire them to seek out more opportunities
to participate in technology-related activities in the future. Most
importantly, we hope to demonstrate to the students themselves
that they are more than capable of learning new technical skills.

The following sections include an introduction to our project
and the results of our study designed to gauge student interest in IT
after participating in a classroom workshop. Discussion and Future
Work sections will conclude this work.

2 Methodology
Our project aims to give a crash course on programming concepts
such as variables, conditional statements, and loops, along with
basic algorithmic thinking. For teaching programming, we used
Scratch [4]. To make the project more fun and interactive, we in-
corporated a Makey-Makey [5] into the game-play.

2.1 Block-Based Programming via Scratch
Scratch [4] is a block-based programming language created by the
MIT Media Lab. We chose Scratch for our project because of its
beginner-friendly features and colorful user interfaces that turn the
learning process into an experience similar to playing a video game.
For students who are not familiar with programming, a block-based
language may seem less daunting and intimidating than a text-
based language (see Figure 1). Since Scratch has pre-made blocks
of code that the students can drag and drop and then organize to

37

https://orcid.org/0009-0002-4179-3206
https://orcid.org/0009-0002-6790-9457
https://orcid.org/0000-0001-9960-5752
https://orcid.org/0009-0009-9041-3741
https://doi.org/10.1145/3686852.3687068
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3686852.3687068
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3686852.3687068&domain=pdf&date_stamp=2024-12-08


SIGITE ’24, October 10–12, 2024, El Paso, TX, USA Tang, et al.

Figure 1: Example of simple code showing a text-based pro-
gram and its corresponding block-based counterpart.

build an algorithm, they can focus on learning the concepts without
being overwhelmed by the syntax.

2.2 Boosting Engagement through
Makey-Makey

MakeyMakey [5] is an invention kit designed by theMITMedia Lab
that turns everyday objects like bananas, bread, and Play-Doh into
a controller as long as they are conductive. Students can use these
conductive items in place of the arrow keys on the keyboard. It is a
fun and simple way to demonstrate the flexibility and creativity of
technology.

2.3 Integrating Asset Packets and Creating
Game Graphics

The game’s visuals were created using an asset pack called Tech
Dungeon: Rougelite purchased from an indie developer, Trevor Pup-
kin [7]. This asset pack can be used in both free and commercial
projects and all credits belong to its creator Trevor Pupkin [7]. The
asset pack consists of a 32x32 tile set for level designs, a character
sprite with multiple idle/walking animations, and sprite sheets for
props such as treasure chests, computer monitors, workstations,
etc.

Scratch does not have a feature for integrating asset packs or
sprite sheets. Therefore, we created several game levels externally
and then imported them into the game on different layers to trans-
late depth and allow for collision.

3 Our Space Mechanic Game Project
For our project, we created a game called Space Mechanic in Scratch
where the player role-plays as a mechanic working on a spaceship.
The player can move around using the arrow keys or the Makey
Makey. The game also includes wall collision, which means the
character won’t be able to defy physics and walk through walls or
obstacles in the way.

Before playing the game the participants are taught fundamental
programming concepts such as variables, conditional statements,
and loops. Then, the game quizzes students on these concepts. The
spaceship has two rooms as shown in Figure 2. While the player can
freely move between the rooms at any time, we suggest they finish
the first room and then go to the second room. The player must
observe their surroundings and identify problems hidden within
the sprites.

Figure 2: Spaces Mechanic game developed in Scratch. (A)
Shows the first room where the player answers coding ques-
tions. (B) Shows the second room where the player animates
sprites via simple code. (C) Shows an in-game programming
question and its block coding. (D) Shows the point accumu-
lated and the star animation for a correct answer.

First room, Figure 2A: The player, role-playing as the mechanic
of the spaceship, is tasked with fixing the broken computer mon-
itor and opening treasure chests. There are some chores too, like
taking out the trash for example. The first room is designed to quiz
the player on their understanding of the programming concepts
(variables and conditional statements) they learned during the first
part of our workshop prior to playing the game. There are several
blinking objects in this room and each of them is a task that the me-
chanic must complete to earn points. Every time the player clicks
on a blinking object, a programming question will appear on the
screen (see Figure 2C). Players need to read the question and type
the answer in the dialog box at the bottom of the screen. A correct
answer to the question will earn the player a point; an animated
star appears signaling the point gained (see Figure 2D). There are
four points in total and the amount of attempts for each question
is infinite.

Second room, Figure 2B: The objective of this room is to quiz
the player on a deeper understanding of how to apply their newly
acquired knowledge of loop statements to animate the sprites. Some
of the sprites in this room are not animated. The player needs to
spot them, then go inside the code and program animation for these
sprites.

Our project is freely available on the TAP website at https://
tapggc.org//. We presented our project at several outreach events,
including classroom workshops, which we describe next.

4 Outreach Workshops
Our hour-long workshop comprises of three learning sections:

38

https://tapggc.org//
https://tapggc.org//


Space Mechanics: A Beginner’s Guide to Programming Fundamentals SIGITE ’24, October 10–12, 2024, El Paso, TX, USA

(1) A lesson on character movement in Scratch where students
learn about concepts such as variables, conditional state-
ments, and loops. They also play with the sprite movements
and are encouraged to experiment with other ways of pro-
gramming character movement.

(2) A lesson on sprite animation followed by hands-on practice
time during which students create their own sprite anima-
tions.

(3) A session where students enter Space Mechanic and answer
programming questions that help solidify the concepts they
previously learned. In addition to that, they are also tasked
with debugging sprite animations in the second room of the
game. To complete this task, students must be able to read
the code and identify the problem, which encourages their
critical thinking and problem-solving skills.

During the workshop, we provided hand-outs to students, which
included a brief introduction to every concept that we were going
to cover and a PDF file with step-by-step instructions for all work-
shop activities. We also administered pre and post-surveys at the
beginning and the end, respectively, of our classroom workshops.
The next section provides our analysis of the results obtained from
these pre and post-surveys.

5 Results
We conducted a total of four classroom workshops in our Introduc-
tion to Computing general education course at Georgia Gwinnett
College. We analyzed the data obtained from students who partici-
pated in the workshop activities to assess the results. We had a total
of 56 workshop participants; however, only 37 of them responded
to both pre and post-surveys. Therefore, we will include only the
results obtained from these 37 participants in these results.

5.1 Demographics

Figure 3: Majors of the workshop participants.

67.6% of the workshop participants were female (25) and 32.4% were
male (12). As shown in Figure 3, the workshop participants were
mostly non-IT STEM majors (43% or 16) and non-STEM majors
(41% or 15). We had only 6 IT majors and minors participating in
our workshops (16%).

Figure 4 shows that majority (62%) of our workshop participants
did not have any prior programming experience, 27% considered
themselves a novice and only 11% chose the intermediate option.
No participants picked the advanced option.

Figure 4: Workshop participants’ experience in program-
ming.

We wanted to find out how effective the classroom workshops
were at teaching the fundamental programming concepts, so we
quizzed the participants on different types of questions, including
general and programming questions.

5.2 Assessing General Concepts
Figure 5 shows the results from the pre and post-surveys for the
multiple choice questions What is block-coding? in panel A and
What is an algorithm? question in panel B. Figure 5A shows a
significant difference between the number of participants that were
able to answer correctly the What is block-coding? question before
and after our workshop, with a increase from 27% in the pre-survey
to 91.9% in the post-survey.

Figure 5: Pre and post-survey results for general concepts
questions. (*) indicates the correct answer. (A) What is block
coding? and (B) What is an algorithm?

We used the 𝜒2 test [1] to analyze the difference between our
control and experimental data results to see if there was any sig-
nificant difference between these group results. To test the inde-
pendence of the two survey results, pre and post, we used the
chi-square test of independence. The 𝑝-values were obtained us-
ing 𝑠𝑐𝑖𝑝𝑦.𝑠𝑡𝑎𝑡𝑠.𝑐ℎ𝑖2_𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 function in SciPy library [10] in
Jupyther Colab. We obtained 𝜒2 = 38.09, 𝑑 𝑓 = 4, and a p-value
𝑝 = 1.073198591987177𝑒 − 07 which is less than (𝑝 < 0.05) showing
that there was a significant difference between the answers of the
pre-survey versus the answers of the post-surveys.

Similarly, the results shown in Figure 5B for the multiple choice
questionWhat is an algorithm? reflect a noticeable improvement
as well, increasing from 35.1% of participants answering correctly
in the pre-survey to a whopping 97.3% in the post-survey. Since
the chi-square test relies on comparing observed frequencies to
expected frequencies and having zero in the expected frequencies
can lead to division by zero errors or inaccurate results, we added
a small constant of 0.5 to all of our pre and post-data to avoid

39



SIGITE ’24, October 10–12, 2024, El Paso, TX, USA Tang, et al.

divisions by zero. We obtained 𝜒2 = 32.62, 𝑑 𝑓 = 3, and a p-value
𝑝 = 3.8702317919715245𝑒−07which is less than (𝑝 < 0.05) showing
that there was a significant difference between the answers of the
pre-survey versus the answers of the post-surveys.

5.3 Assessing Programming Concepts
Figure 6 shows the results from the pre and post-surveys for the
three programming questions modeled after their in-game counter-
parts. In these questions, students are expected to state the output
of a given program using previously learned concepts such as vari-
ables and conditional statements.

According to the results in Figure 6, students demonstrated a
significant improvement on all programming questions. Figure 6B
shows that 97.3% of the participants were able to answer the first
programming question (Figure 6A) correctly in the post-survey as
opposed to the previous 35.1% in the pre-survey. We obtained 𝜒2 =
32.62, 𝑑 𝑓 = 5, and a p-value 𝑝 = 4.473726525527954𝑒 − 06 which is
less than (𝑝 < 0.05) showing that there was a significant difference
between the answers of the pre-survey versus the answers of the
post-surveys. Note that to avoid division by zero, we adjusted the
survey values obtained for this question by 0.5.

Figure 6: Three coding questions asking the output of the
block-code shown in the left panels (A, C, and E). On the
right we present the pre and post-survey results for each of
the block-code questions. (*) indicates the correct answer.

Figure 6D indicates a 45.9% increase in the number of participants
answering the second question (shown in Figure 6C) correctly. For
this question, we also obtained 𝜒2 = 34.14, 𝑑 𝑓 = 5, and a p-value
𝑝 = 2.2287377590205416𝑒−06which is less than (𝑝 < 0.05) showing

that there was a significant difference between the answers of the
pre- and post-surveys.

A similar trend is evident in Figure 6F as well, where the percent-
age goes from 5.4% in the pre-survey to 27% in the post-survey. We
obtained 𝜒2 = 33.32,𝑑 𝑓 = 5, and a p-value 𝑝 = 3.2498014687655327𝑒−
06which is less than (𝑝 < 0.05) also showing a significant difference
between the answers of the pre-survey versus the answers of the
post-surveys. Note that, as above, to avoid division by zero, we
adjusted the survey values obtained for this question by 0.5.

However, it is important to note that in the third programming
question (Figure 6E), the most popular answer choice is not in fact
the correct answer. This indicates that a large percentage of stu-
dents were confused about the difference between two if-statements
and an if-else statement. This information will help us make some
necessary adjustments for future workshops.

5.4 Workshops Effectiveness
In our post-surveys, we also asked our students several questions
about their thoughts on the workshops. On a scale of 1 to 5, students
gave us a score of 4.35 regarding how fun the workshop was and
how easy it was to follow the instructions. On a scale of 1 to 10,
students gave us a score of 2.89 out of 10 in terms of workshop
difficulty (with 10 being the most difficult) and an 8.92 regarding
how enthusiastic the presenters were.

Figure 7: Participants’ interest in learning new technology.
(A) Pre-survey. (B) Post-survey answers about the technology
learned during the workshop.

In our pre-surveys, we asked the participants if they liked learn-
ing new technologies. As shown in Figure 7A, 38% of the partici-
pants answered yes, 59% were neutral, and 3% answered no. After
the workshop, we also asked them if they enjoyed learning the new
technology and received the following results depicted in Figure
7B: 64.9% answered yes, 35.1% were neutral, and nobody answered
no. This indicates that the workshops were successful in convinc-
ing more students to learn new technologies (26.9% shifted their
answer to yes after our workshop). Even the participant who an-
swered no in the pre-survey enjoyed learning the new technology
via our workshop. We obtained 𝜒2 = 5.94, 𝑑 𝑓 = 2, and a p-value
𝑝 = 0.05115 which is slightly higher than (𝑝 < 0.05) showing that
there was not a significant difference between the answers of the
pre-survey versus the answers of the post-surveys. However, we
consider that even if one participant got to see that learning new
technology could be fun after our workshop as a success story.
Our results show that several participants were influenced by our
workshop, which was a great success for us.

40



Space Mechanics: A Beginner’s Guide to Programming Fundamentals SIGITE ’24, October 10–12, 2024, El Paso, TX, USA

When asked, 33% of the students said the workshop sparked
their interest in programming, 51% said maybe, and only 16% gave
a definite no (shown in Figure 8).

Figure 8: Participants’ interest in programming after the
workshops.

When asked what was the most difficult item they learned during
the workshop, many participants stated "coding", which is a good
indicator that coding is actually quite challenging to learn and
requires more time. Overall, the participants rated our workshops
a score of 4.78 out of 5.

6 Discussion
As stated in the Introduction section, the primary objective of this
project was to promote interest in computing and increase partici-
pation in IT and STEM fields. According to the data obtained from
our surveys, a third of our students said the classroom workshops
sparked their interest in programming. Among the students, no
one answered negatively. Most workshop participants, however,
were not decisive in their opinions, which tells us that we need to
put more effort into making the workshops more engaging for this
group of participants.

Moreover, initially, in the pre-surveys, only 38% of the partic-
ipants answered yes to the question Do you enjoy learning new
technologies?. However, in the post-surveys, there was a significant
shift in preference (an approximate 27% increase) and two-thirds
of the participants said they enjoyed learning the new technology
taught in the workshop in the post-surveys, which demonstrated
to us that we are heading in the right direction in our mission to
encourage more students to engage in technology-related fields.
These results showed us that we should continue our commitment
to service learning and outreach work to reach even more students
in the future.

The difficulty rating shown in the Workshops Effectiveness sub-
section indicated that the majority of participants regarded the
materials as being too easy. For future workshops, we may con-
sider increasing the difficulty level by adding more complex con-
cepts/questions. However, at the same time, we also noticed that
a large percentage of students answered the question shown in
Figure 6 E incorrectly, which was most likely due to them not un-
derstanding how an if-else statement works. This concept was a
crucial part of our workshops. Therefore, we must allocate more
time to explain this concept, perhaps with more examples, in future
workshops.

The results from the Assessing Programming Concepts subsec-
tion also indicate that our methods of teaching variables and if
statements were successful, as demonstrated by the large shift in
the number of correct answers (see Figures 6B and 6D). However,

we are aware that our pool of survey responses is rather small (37
participants who responded to both pre and post-surveys) so we
cannot draw any definitive conclusions. Thus, we take these results
as suggestions and we would like to hold more workshops to gather
more feedback and adjust our materials in the future.

Some of the feedback from the participants about the classroom
workshops was:

• "Everything was very fun I would not change anything"
• "Great job lots of fun"
• "Everything was great! Very fun and interesting!"
• "Nothing, you did great :)"
• "Nothing. The way the project was presented was easy for
me to understand"

• "The project was pretty fun and interesting !"
All these comments are very encouraging to us. We also received
this comment "More of an in-depth explanation on how to work
scratch", which shows us that we need to make some adjustments
on the way we introduced the Scratch workspace and features to
the students.

From chatting with the students immediately after the work-
shops, we learned that for many of the students, their favorite part
of the workshops was drawing their own sprite and programming
its animation. They loved seeing their work in action and being
creative with technology. To assess the learning of this lesson, we
asked the students a general multiple-choice question about the
type of loop they used to build their animation, and we gave four
choices to select from (results not shown). 84% of the participants
chose the correct answer, demonstrating that perhaps a better way
to teach programming is to allow students to create their own visual
and then ask them to program it to do some action.

Our study here was built upon previous work [6, 8, 9]. How-
ever, unlike [6] which taught only block coding via Scratch, we
incorporated two technologies into our workshops. Thus, our par-
ticipants had less time to learn the coding concepts. We think they
might have needed more time to thoroughly understand the coding
concepts. Similar to [6], we asked simple block-coding questions
in both pre and post-surveys to assess the difference in learning
created by our workshops. While this might not be the only fac-
tor, it definitely shows that some level of learning happens during
the course of the workshop. We believe we will need to conduct
more in-depth studies to assess what other factors play a role in
influencing the process of learning programming concepts.

7 Conclusion and Future Work
The method of using a hands-on, interactive platform like a video
game to teach programming fundamentals is efficient and effec-
tive. Despite the majority of the participants having little to no
coding experience, the students in introductory IT courses were
able to complete all workshop activities and in-game programming
challenges with ease after just learning these concepts only a few
minutes earlier. This shows that our outreach workshops are effec-
tive and useful tools for not only teaching basic programming skills
but also enticing students to change their views on programming
and IT in general.

Recently, we presented our project at the Teachers Technology
Workshop in front of teachers from several local elementary, middle,

41



SIGITE ’24, October 10–12, 2024, El Paso, TX, USA Tang, et al.

and high schools. We learned from themwhat technologies they are
allowed to use in the classroom. For example, they are not allowed
to use Scratch in the classroom, but instead they use a version of
the Scratch editor made specifically for K-12 students called CSFirst
Scratch [3], which allows students to work on the game without
needing to leave the CS First website. In the future, we plan to adapt
our game and workshop to CS First as well as other requirements
the teachers mentioned during the workshop and give them full
access to our work.

Acknowledgments
Our team wants to express our most profound gratefulness toward
the IT Department Chair and the Dean at Georgia Gwinnett College
for supporting our project. Sponsored via NSF 2315804.

References
[1] William G Cochran. 1952. The 𝜒2 Test of Goodness of Fit. The Annals of

Mathematical Statistics 23, 3 (1952), 315 – 345. https://doi.org/10.1214/aoms/
1177729380

[2] Sonal Dekhane et al. 2018. Journal of Computing Sciences in Colleges 34, 2 (2018),
147–153. https://doi.org/10.5555/3282588.3282609

[3] MIT. 2020. CSFirst. https://scratch.mit.edu/users/CSFirst/
[4] MIT. 2020. Scratch. https://scratch.mit.edu/
[5] MIT. 2024. Makey Makey. https://makeymakey.com/
[6] Valentina Mosquera-Reina, Ryan Cunico, Josiah Williams, Matthew Bauer, Anca

Doloc-Mihu, and Cindy Robertson. 2021. Introducing Programming Concepts
through Interactive Online Workshops. In SIGITE 2021. ACM, 71–72. https:
//doi.org/10.1145/3450329.3478319

[7] Trevor Pupkin. 2024. Tech Dungeon: Roguelite - Asset Pack by Pupkin. https:
//trevor-pupkin.itch.io/tech-dungeon-roguelite

[8] Cindy Robertson and Anca Doloc-Mihu. 2021. Assessing the Effectiveness of
Teaching Programming Concepts through Online Interactive Outreach Work-
shops. In SIGITE 2021. ACM, 123–128. https://doi.org/10.1145/3450329.3476861

[9] Cindy Robertson and Anca Doloc-Mihu. 2023. Understanding College Level
Student Learning of Basic Programming at an Open Access Institution. In Pro-
ceedings of the 2023 ACM Southeast Conference. ACM, 26–32. https://doi.org/10.
1145/3564746.3587007

[10] SciPy.org. [n. d.]. SciPy. https://projects.scipy.org/getting-started.html

42

https://doi.org/10.1214/aoms/1177729380
https://doi.org/10.1214/aoms/1177729380
https://doi.org/10.5555/3282588.3282609
https://scratch.mit.edu/users/CSFirst/
https://scratch.mit.edu/
https://makeymakey.com/
https://doi.org/10.1145/3450329.3478319
https://doi.org/10.1145/3450329.3478319
https://trevor-pupkin.itch.io/tech-dungeon-roguelite
https://trevor-pupkin.itch.io/tech-dungeon-roguelite
https://doi.org/10.1145/3450329.3476861
https://doi.org/10.1145/3564746.3587007
https://doi.org/10.1145/3564746.3587007
https://projects.scipy.org/getting-started.html

	Abstract
	1 Introduction
	2 Methodology
	2.1 Block-Based Programming via Scratch
	2.2 Boosting Engagement through Makey-Makey
	2.3 Integrating Asset Packets and Creating Game Graphics

	3 Our Space Mechanic Game Project
	4 Outreach Workshops
	5 Results
	5.1 Demographics
	5.2 Assessing General Concepts
	5.3 Assessing Programming Concepts
	5.4 Workshops Effectiveness

	6 Discussion
	7 Conclusion and Future Work
	Acknowledgments
	References

