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Abstract: The incorporation of technology into primary and secondary education has 
facilitated the creation of curricula that utilize computational tools for problem-solving. 
In Open-Ended Learning Environments (OELEs), students participate in learning-by-
modeling activities that enhance their understanding of (Science, technology, 
engineering, and mathematics) STEM and computational concepts. This research 
presents an innovative multimodal emotion recognition approach that analyzes facial 
expressions and speech data to identify pertinent learning-centered emotions, such as 
engagement, delight, confusion, frustration, and boredom. Utilizing sophisticated 
machine learning algorithms, including High-Speed Face Emotion Recognition 
(HSEmotion) model for visual data and wav2vec 2.0 for auditory data, our method is 
refined with a modality verification step and a fusion layer for accurate emotion 
classification. The multimodal technique significantly increases emotion detection 
accuracy, with an overall accuracy of 87%, and an F1-score of 84%. The study also 
correlates these emotions with model building strategies in collaborative settings, with 
statistical analyses indicating distinct emotional patterns associated with effective and 
ineffective strategy use for tasks model construction and debugging tasks. These 
findings underscore the role of adaptive learning environments in fostering students' 
emotional and cognitive development. 
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1. Introduction 
The increased focus on incorporating and leveraging technology into K-12 classrooms has 
been actualized by designing curricula where students develop and solve problems using 
computational tools (Wing, 2006). As there are innate connections between science, 
technology, engineering, and mathematics (STEM) and computing (Grover & Pea, 2018), 
learning-by-modeling tasks have been designed within open-ended learning environments 
(OELEs) to support students' conceptual knowledge construction of STEM and computing 
through authentic, real-world scientific problems (Hutchins, et al., 2020). The design goals of 
OELEs often target both conceptual understanding as well as the development of problem-
solving skills that can be adapted and used in other problem spaces (Land, 2000). During 
learning-by-modeling, students develop and employ problem-solving skills such as 
abstraction, decomposition, and debugging (Grover and Pea, 2018; Hutchins, et al., 2020). 

While these skills have been identified as important for task success and student 
learning, developing and applying them is innately complex. This is particularly true within the 
learning-by-modeling paradigm where students are applying these skills while constructing 
and applying conceptual knowledge in multiple domains (i.e., STEM and computing). As such, 
students are often assigned to work collaboratively to mitigate some of the difficulties 
associated with these complex tasks. Understanding how students use problem-solving 
strategies to solve such tasks can provide insights into their learning processes and help 
educators design interventions to support effective problem-solving (Järvelä, Nguyen, & 
Hadwin, 2023). Advances in technology enable the automatic understanding of problem-



solving strategies using sequence mining, Markov chains, and other machine learning 
analytics. These computational methods can analyze students' interactions within OELEs to 
identify patterns and sequences of actions that characterize different problem-solving 
approaches. This automated analysis provides a scalable way to monitor and support student 
learning as they work in these learning environments (Järvelä, Nguyen, & Hadwin, 2023). 

Emotions play a significant role in problem-solving and learning. Learning-centered 
emotions like confusion, frustration, and boredom can hinder progress, while engagement and 
delight can enhance it (D’Mello & Graesser, 2012). Understanding the impact of emotions on 
problem-solving is crucial for designing adaptive learning environments that provide timely 
interventions to maintain motivation and engagement (Jordan & Troth, 2021). Despite their 
importance, there is a gap in research on multimodal emotion recognition in educational data 
mining. Existing studies focus on basic emotions or valence differences in collaborative 
learning, with limited exploration of learning-centered emotions using multimodal approaches 
(Törmänen et al., 2023; Dindar et al., 2020). Nonverbal speech cues are underutilized in 
OELEs for emotion recognition due to their computer-based nature. In collaborative learning, 
however, speech is crucial for understanding learning processes through interaction. 
Therefore, our study integrates speech and image data to detect and analyze learning-
centered emotions comprehensively. There is a critical need for novel methodologies to 
accurately detect learning-centered emotions in educational contexts. Traditional methods like 
manual observation and self-reports have biases that impact accuracy. Single modality 
(vision-based) models often fail in computer-based collaborative environments, where 
webcams can lose track of moving students (Järvelä, Nguyen, & Hadwin, 2023; Hutchins, et 
al., 2020). Our proposed multimodal approach leverages advances in machine learning and 
computer vision to provide a robust understanding of students' emotional states. The key 
contributions of the paper are:  

1. A Novel Multimodal Emotion Detection Methodology: We introduce a methodology for 
detecting learning-centered emotions (engagement, frustration, confusion, delight, and 
boredom) in high school students using multimodal data from facial expressions and 
speech. 

2. Establishing the relations between Emotions and Strategies: We analyze the 
relationship between detected emotions and effective/ineffective problem-solving 
strategies. 

The paper is organized as follows: Section 2 reviews the relationship between affective 
states and problem-solving strategies. Next, we describe the emotion recognition framework. 
We then present our findings on emotions and strategies. Finally, we discuss implications for 
adaptive learning environments and future research. 

  
2. Literature Review 
Previous research has identified strategies in block-based environments, such as the 
leveraging of environmental data tools to evaluate computational models, multiple reviews of 
output and code, and forward reasoning i.e. examining the program line by line (Hutchins, et 
al., 2021; Kim, et al. 2018; McCauley, 2008). For example, Hutchins, et al (2021) identified the 
following strategies students employed when building computational models of scientific 
processes using a block-based environment: (1) Depth-First, i.e., multiple code construction 
actions without assessment actions, can corresponds to a lack of insight for breaking down a 
complex task into its subparts (Grover & Pea, 2018); (2) Tinkering, i.e., trying small changes 
in the blocks making up the executable model, can be used to gain some understanding of 
code prior to making changes; (3) Multi-Visual Feedback, represented by sequence of 
simulation executions, can represent a lack of understanding if the simulations were run in 
rapid succession; and (4) Simulation-based Assessment, which typically involves using tools, 
such as plots, to understand and analyze model behavior, and in past work has been observed 
to represent a decomposition process, i.e., a build and test behavior (Basu, et al, 2017; 
Hutchins, et al, 2021).  

As students' emotional states impact their engagement and effectiveness during 
collaborative problem-solving, we aim to examine the relationship between their problem-
solving strategies and affective states (Lazarus, 1982). Learning-centered emotions like 



confusion, frustration, boredom, engagement, and delight play a crucial role in socially shared 
regulated learning (SSRL) processes (Pekrun, 2006; Panadero & Järvelä, 2015; Xu & Lou, 
2023). However, research has not adequately explored how these emotions relate to specific 
strategies used in building computational models. Understanding this relationship can provide 
deeper insights into how emotions influence learning behaviors and outcomes in collaborative 
settings (D’Mello et al., 2008). Current methods for emotion recognition in SSRL processes 
rely on self-reports or vision-based emotion recognition (Järvelä, Nguyen, & Hadwin, 2023; 
Nguyen et al., 2023; Xu & Lou, 2023). 

State-of-the-art emotion recognition often relies on single modalities like vision or 
speech. Vision-based approaches use facial expressions from webcams, while speech-based 
methods analyze vocal cues (Ahmed, Al Aghbari, & Girija, 2023; Mejbri et al., 2022). In OELEs, 
webcams can lose track of faces if students move, and relying solely on speech is insufficient 
as students do not always verbalize their thoughts (Nguyen et al., 2023; Järvelä, Nguyen, & 
Hadwin, 2023; Emara et al., 2020). This necessitates a multimodal approach combining 
speech and image data for accurate emotion detection. Multimodal recognition is crucial in 
collaborative learning with rich interactions. 

Initially, classifiers like Support Vector Machines and regression were used, but state-
of-the-art methods now employ convolutional neural network (CNN) based models for facial 
expressions and Mel-frequency cepstral coefficients (MFCC) features for speech, analyzing 
cues like pitch, intensity, and frequency for valence and arousal. These modalities are 
combined using decision-level or feature-level fusion. Advanced methods use transformers 
and self-attention models, including bi-directional long short-term memory (BLSTM) networks, 
Deep Belief Networks (DBNs), and hierarchical networks (Geetha et al., 2024; Mittal et al., 
2020; Tzirakis et al., 2017). However, these methods have not been widely explored for 
valence-arousal detection or learning-centered emotion classification. 

Research on multimodal learning-centered emotion recognition in collaborative 
learning environments is lacking. Existing studies focus on basic emotions or valence 
differences but do not integrate multiple modalities to detect learning-centered emotions 
(Ahmed, Al Aghbari, & Girija, 2023). This study addresses this gap by combining speech and 
image data to recognize emotions like engagement, frustration, confusion, delight, and 
boredom. This multimodal approach aims to provide a more accurate understanding of 
students' emotional states during collaborative learning tasks. 

 
3. Learning Environment and Data 
In our curriculum, designed to support the synergistic learning of science and computing by 
leveraging the innate connections between these two domains (Grover & Pea 2018), students 
work in the Collaborative, Computational STEM (C2STEM) block-based learning environment 
(Hutchins, et al., 2020). In C2STEM, students create models of scientific phenomena and 
simulate the motion of objects using variables within the computational model. In the 
environment, students have access to an animation to view the objects’ motion as well as 
variable inspection, graph, and table tools that are updated dynamically as the simulation runs. 
Students can leverage these tools to investigate the connection between scientific variables 
(e.g., the relationship between velocity and acceleration) as well as develop key computing 
practices such as debugging (Grover & Pea, 2018).  

Twenty-four 10th grade high school students completed a 6-week kinematics 
curriculum in which they worked on 1D and 2D kinematic modules for two hours every week. 
The curriculum was designed as a sequence of computational modeling tasks with increasing 
complexity (Hutchins, et al., 2020). Each of the 1D and 2D modules consisted of a scaffolded 
instructional task, a model building task, a hands-on activity, and a complex challenge task. 
The instructional task was completed individually while the hands-on activity was completed 
in larger groups (~6 students). In this work, we analyze four tasks that were completed by 
students working in pairs: 1D model building task (modeling the motion of a truck speeding up 
from rest to a speed limit and cruising at that speed limit before coming to a stop at a stop 
sign), 1D challenge task (modeling the motion of an autonomous truck that adapts its speed 
whenever the car in front of it does), 2D model building task (modeling the motion of a drone 
dropping a package off at a target), and 2D challenge task (modeling the motion of a drone 



dropping off two packages at two different targets).  Students were first divided into dyads 
randomly for the 1D module tasks and then assigned into different dyads for the 2D module 
tasks. Procedures for this study were approved by the University Institutional Review Board 
and included the collection of summative assessment data, logged actions in the C2STEM 
environment, and video and audio data collected using Open Broadcaster Software (OBS) 
and lapel microphones. Student actions were recorded in log files with timestamps and aligned 
with the video and audio data using system time stamps.  

Data: 1,718 problem-solving strategy instances were extracted from the log data. 
Video data was collected at 30 fps, and audio was recorded at 572 kbps bit rate with 2 stereo 
channels and a 44.100 kHz sampling rate. Due to hardware errors, student absences, or 
accidental recording interruptions, we standardized the data and removed unwanted or corrupt 
files, resulting in a total of 51 dyad datasets over 6 weeks. Initially, there were 12 groups for 6 
weeks, with 2 hours of data per week, expected to yield 60 dyad datasets, but the first week 
was used for explaining the study and preprocessing reduced it to 51 dyads. This 
preprocessing resulted in approximately 15 million image frames. The image frames were fed 
into Multi-task Cascaded Convolutional Networks (MTCNN) for face recognition and then 
passed to the valence-arousal prediction model. For audio, recordings ranged between 60 to 
120 minutes per day over five weeks. Using Deepgram, a commercial speech-to-text 
Application Programming Interface (API) service, we generated utterances with start and end 
timestamps and transcripts. Some groups had a little over 400 segments, while others 
exceeded 1000 segments. The shortest segment lasted just a second, while the longest 
extended up to 17 seconds. Overall, we had approximately 39,335 utterances. These 
utterances were used to segment each large audio file into shorter segments, ranging from 
just a second to 17 seconds. Each audio segment was standardized to the consistent sampling 
rate and format mentioned above before being fed into the valence-arousal recognition model. 
  
4. Methodology 
In this paper, we aim to better understand the relationship between students’ problem-solving 
skills and emotional states. Specifically, we study students’ problem-solving skills through 
students’ effective and ineffective construction and assessment strategies. We identified these 
strategies by processing the logged data utilizing a hierarchical task-oriented structure 
adapted from Emara et al. (2020) to abstract student actions such that the calculated action 
patterns can be mapped to students’ problem-solving strategies. The logged actions were 
categorized into five abstracted categories: (1) Build, where students are adding blocks to the 
executable model; (2) Adjust, where students are editing blocks in the executable model; (3) 
Draft, where students are moving or editing blocks not connected to the executable model 
(similar to commenting code); (4) Execute, where students are executing the model; and (5) 
Visualize, where students are using the data tools or variable inspection tool.  

Leveraging previous research that identified common computational modeling 
strategies (Hutchins, et al., 2021), we used action log patterns to  identify the time intervals 
during which students employed construction strategies: (1) Depth-first (BUILD-> BUILD -> 
BUILD -> BUILD) and (2) Tinkering (PLAY -> ADJUST -> PLAY) and assessment strategies: 
(3) Multi-visual Feedback (PLAY -> PLAY -> PLAY) and (4) Simulation-based Assessment 
(VISUALIZE -> PLAY or PLAY -> VISUALIZE).  As discussed in Section 2, Tinkering and 
Simulation-based Assessment have been identified as more effective strategies while Depth-
first and Multi-visual feedback are ineffective strategies. This detailed analysis allows us to 
map students' problem-solving strategies and their effectiveness, providing insights into their 
relationship with students’ affect and learning outcomes. The complete flow of the 
methodology is shown in Figure 1. 

Learning-centered emotion annotation: While D'Mello et al. (2007) utilized Russell's 
circumplex model (Russell, 1980) to identify discrete emotions on a valence-arousal scale in 
the education domain, these methods have not been specifically applied to multimodal 
emotion recognition. However, several studies have used valence-arousal values obtained 
from image frames to map learning-centered emotions (Fonteles, 2024). We used this 
conversion to map the annotated emotions to valence-arousal values during our annotation 
process. We manually annotated 500 utterances and their corresponding image frames for 



each learning-centered emotion. These were randomly selected from various timestamps 
during the study. Additionally, we annotated 5,000 image frames that lacked accompanying 
audio and 500 utterances where the student's image was not visible on the webcam. These 
data were chosen from the data of 10 students, ensuring an equal division of gender (5 males 
and five females) and diverse demographic backgrounds, including 5 White Americans and 5 
African Americans. Two different annotators independently annotated each emotion using 
facial expressions, and the inter-rater reliability, measured by Cohen's Kappa, was 0.89.  

 
Figure 1: Overview of the complete methodology 

Vision and Speech Emotion Recognition: Facial regions within images were detected 
using MTCNN. HSEmotion (High-Speed Face Emotion Recognition) is used in this study to 
predict the valence and arousal values (Fonteles, 2024). The HSEmotion architecture is 
trained for face identification leveraging the Visual Geometry Group Face2 (VGGFace2) 
dataset. The VGGFace2 dataset, comprising 3.31 million images across 9131 subjects 
(identities), presents diverse variations in pose, age, illumination, ethnicity, and profession. 
This dataset includes facial images of children within the age group relevant to our study's 
focus. Consequently, the models were trained and validated on images representative of the 
specific age group considered in this study. Similarly, for audio, we used the wav2vec 2.0 large 
robust (w2v2-L-robust-12) model, which outperforms state-of-the-art methods for valence and 
arousal recognition from speech. Facial regions within images were detected using MTCNN. 
HSEmotion is used in this study to predict the valence and arousal values. The HSEmotion 
architecture is trained for face identification leveraging the VGGFace2 dataset. The 
VGGFace2 dataset, comprising 3.31 million images across 9131 subjects (identities), 
presents diverse variations in pose, age, illumination, ethnicity, and profession. This dataset 
includes facial images of children within the age group relevant to our study's focus. 
Consequently, the models were trained and validated on images representative of the specific 
age group considered in this study. Similarly, for audio, we used the wav2vec 2.0 large robust 
(w2v2-L-robust-12) model (Wagner et al., 2023), which outperforms state-of-the-art methods 
for valence and arousal recognition from speech. 

Multimodal Emotion Recognition: We denote the set of modalities as 𝑀= {image, 
speech}. The feature vectors for each modality are denoted as 𝑓image and 𝑓speech, respectively. 
We denote the set of predicted emotions as 𝐸= {confusion, frustration, delight, engagement, 
boredom}. The proxy feature vectors generated for image and speech modalities are 
represented by 𝑝image and 𝑝speech, respectively. Finally, we define an indicator function 𝐼𝑒(𝑓) that 
outputs either a vector of zeroes or ones of the same dimension as 𝑓, depending on the 
conditions of the function definition. 

We present an overview of our multimodal perceived emotion recognition model. 
During training, we first extract feature vectors 𝑓image and 𝑓speech from raw inputs (video frames 
and audio segments, respectively). For image data, the HSEmotion model uses EfficientNet-
B0 to process facial images of resolution 224 × 224, outputting embeddings of dimensionality 



1280, or EfficientNet-B2 with 260 × 260 input images and 1408 output features. For speech 
data, we use the wav2vec2.0 model which processes raw waveforms normalized to have zero 
mean and unit variance, extracting features through a series of convolutional and transformer 
layers. The valence-arousal values obtained from HSEmotion for images and wav2vec 2.0 for 
audio were converted to learning-centered emotions using a predefined mapping function 
obtained from the annotation. These features are then passed through the modality check 
step to distinguish between effective and ineffectual signals, discarding the latter if any. The 
effective feature vectors are then processed through three deep-layered feed-forward neural 
network channels. Finally, we combine the modalities using a multiplicative fusion layer. 
During testing, the data point goes through the modality check step again, and if a modality is 
deemed ineffectual, we regenerate a proxy feature vector which is then passed to the network 
for emotion classification. 

Modality Check Step: To enable perceived emotion recognition in real-world scenarios 
where sensor noise is inevitable, we introduce the Modality Check step, which filters 
ineffectual data. Previous studies in emotion prediction have shown that effective emotion 
recognition relies on the correlation between modality signals. We exploit this by using 
Canonical Correlation Analysis (CCA) to compute the correlation score, 𝜌, of every pair of 
input modalities. Given feature vectors 𝑓image and 𝑓speech, we compute the projective 
transformations, 𝐻image and 𝐻speech, and obtain projected vectors. The correlation score is 
calculated as (Equation 1): 
𝜌(𝑓𝑖𝑚𝑎𝑔𝑒, 𝑓𝑠𝑝𝑒𝑒𝑐ℎ) = COV(𝐻𝑖𝑚𝑎𝑔𝑒𝑓𝑖𝑚𝑎𝑔𝑒,𝐻𝑠𝑝𝑒𝑒𝑐ℎ𝑓𝑠𝑝𝑒𝑒𝑐ℎ)

𝜎𝐻𝑖𝑚𝑎𝑔𝑒𝑓𝑖𝑚𝑎𝑔𝑒  𝜎 𝐻𝑠𝑝𝑒𝑒𝑐ℎ𝑓𝑠𝑝𝑒𝑒𝑐ℎ
                            Equation (1) 

If the correlation score for a pair of modalities is below an empirically chosen threshold 
τ, the modality is considered ineffectual. The indicator function 𝐼𝑒(𝑓) is used to filter out these 
ineffectual features. 

Regenerating Proxy Feature Vectors: When one or more modalities are deemed 
ineffectual at test time, we generate proxy feature vectors for these modalities. Generating 
exact feature vectors for missing modalities is challenging due to the non-linear relationship 
between modalities. However, by relaxing the non-linear constraint, we approximate the 
feature vectors using a linear algorithm. For instance, if the speech modality is corrupt, we 
regenerate a proxy speech vector 𝑝speech using the effective face modality vector 𝑓image. This 
involves preprocessing the inputs to construct bases from the observed face and speech 
vectors and applying a linear transformation to approximate the missing feature vector. 

Multiplicative Modality Fusion: In our approach, we use a multiplicative fusion layer to 
combine the effective feature vectors from each modality. This fusion method explicitly boosts 
the stronger modalities in the combination network, enhancing the overall emotion 
classification accuracy. The modified loss function for the 𝑖-th modality is defined as: 

𝑐(𝑦) =  ∏ (𝑝(𝑦)𝑖)
𝛽

𝑀−1log𝑝(𝑦)𝑖𝑀
𝑖=1                                    Equation (2) 

where 𝑦 is the true class label, 𝑀M is the number of modalities, 𝛽 is a hyperparameter, 
and 𝑝(𝑦)𝑖 is the prediction for class 𝑦y given by the network for the 𝑖-th modality (Equation 2). 

This methodology leverages robust feature extraction techniques from both image and 
speech modalities, applies effective noise filtering through the modality check step, and 
combines the modalities using advanced fusion techniques to achieve accurate emotion 
recognition.  
 
5. Results and Inference 
A Novel Multimodal Emotion Detection Methodology: Since the annotated data is limited, we 
performed data augmentation, as mentioned in (TS and Guddeti, 2020), this increased the 
annotated data (mentioned in Section 4) by 10-fold. The dataset was then split into training 
(70%), validation (10%), and testing (20%) sets. We used the Adam optimizer with a learning 
rate of 0.01 to train our models. The training process utilized a batch size of 256 and was 
conducted over 500 epochs. The HSEmotion model achieved an accuracy of 91%, a precision 
of 89%, a recall of 86%, and an F1-score of 88% for valence-arousal prediction. The 
wav2vec2.0 model achieved an accuracy of 81%, a precision of 79%, a recall of 76%, and an 
F1-score of 76% for valence-arousal prediction. We performed student-independent cross-



validation, and the results are in line with existing results that use HSEmotion for student data 
within the OELE learning environment. 

The overall results of our fusion model (Learning-centered Multimodal Emotion 
Recognition) show significant improvements over single-modality approaches. The overall 
accuracy for emotion recognition using the fused modalities was 87%, with a precision of 85%, 
a recall of 83%, and an F1-score of 84%. These results demonstrate the effectiveness of our 
fusion approach in improving the robustness and accuracy of emotion recognition in 
collaborative learning environments. 
Table 1. Ablation Study of proposed Multimodal Emotion Recognition 

Method Accuracy Precision Recall F1-Score 
Image Only 81% 79% 76% 77% 
Speech Only 75% 73% 71% 72% 
Fusion without Modality Check 85% 83% 80% 82% 
Full Model 87% 85% 83% 84% 

The CCA analysis results indicated strong correlations between the modalities, 
validating the effectiveness of our modality check step. The mean correlation score for 
effective modalities was significantly higher than the threshold (τ = 0.7), while the ineffectual 
modalities showed correlation scores well below the threshold. This clear distinction allowed 
us to filter out noisy data effectively. 

Ablation Study: Table 1 highlights the modality check step's importance and our fusion 
strategy's effectiveness. The full model, which includes all components, outperforms the other 
configurations, demonstrating the value of our approach in leveraging both image and speech 
data for accurate emotion recognition. 

Establishing the relations between Emotions and Strategies: For the second part of the 
results where we mapped the strategies to learning-centered emotions, we considered the 
entire data and did not consider the data augmentation. We ran the multimodal emotion 
recognition with the entire data, including cases with only utterances and both utterances and 
image frames during the period of utterances. The utterances-based multimodal data suggests 
that effective construction strategies, such as Tinkering, lead to higher engagement (14983 
instances) and more delight (180 instances) compared to ineffective construction strategies, 
such as Depth-first, which show higher confusion (1487 instances) and frustration (319 
instances). 

Effective assessment strategies, like Simulation-based Assessment, also show higher 
engagement (6881 instances) and moderate levels of delight (132 instances) compared to 
ineffective assessment strategies, like Multi-visual Feedback, which have significant 
engagement (6508 instances) but higher levels of confusion (1026 instances). The overall 
pattern indicates that effective strategies are associated with higher engagement and delight, 
whereas ineffective strategies correlate more with confusion and frustration. 

When considering only image-based emotion classification, which was 67% of the time 
in the entire data (59% with only image frames and 8% with one student out of frame), we 
observed 54% engagement, 14% confusion, 10% frustration, 5% delight, and 17% boredom. 

Effective Construction (Tinkering) shows the highest levels of engagement (60%) and 
a moderate amount of delight (8%). Confusion (12%) and boredom (10%) are relatively low, 
indicating that students are actively engaged and positively affected by this strategy. In 
contrast, Ineffective Construction (Depth-first) exhibits a significantly lower engagement level 
(40%) and higher boredom (30%) compared to Tinkering. Confusion (15%) is also slightly 
higher, while delight (5%) is lower, suggesting that students are less engaged and more likely 
to be bored when using less effective construction strategies. Effective Assessment 
(Simulation-based Assessment) also demonstrates high engagement (55%) and moderate 
levels of delight (7%). Confusion (14%) and boredom (14%) are balanced but relatively low, 
indicating a generally positive impact on student emotions. Conversely, Ineffective 
Assessment (Multi-visual Feedback) presents lower engagement (47%) and higher boredom 
(24%) compared to effective assessment strategies. Confusion (15%) remains consistent with 



ineffective construction, while delight (4%) is the lowest among all strategies. 

Figure 2. Distribution of learning centered emotions across strategies   

Our findings indicate a strong correlation between learning-centered emotions and 
students' problem-solving strategies. Effective strategies such as Tinkering and Simulation-
based Assessment are associated with higher levels of engagement and delight, while 
ineffective strategies like Depth-first and Multi-visual Feedback are linked with increased 
confusion and frustration. This correlation highlights the critical role of emotions in influencing 
problem-solving effectiveness, supporting the need for adaptive learning environments that 
can respond to students' emotional states in real-time. 

Discussion: We observe that boredom is significantly detected through images. When 
students are bored, they tend to speak less, displaying low valence and low arousal facial 
expressions. Confusion, characterized by action units like brow furrow and top-left quadrant 
valence-arousal values, is also more frequently detected in images than in utterances. The 
valence-arousal values distributed across all four quadrants align with Russell's circumplex 
model. For instance, delight had a valence of 0.9 and arousal of 0.8, while boredom had a 
valence of 0.3 and arousal of 0.2, showing clear distinctions. Engagement was mostly 
observed when both valence and arousal values were above 0.5, whereas confusion and 
frustration were identified when arousal was above 0.5 and valence was below 0.5. Several 
instances where students discussed topics had utterances that fell close to neutral; however, 
since we did not annotate for neutral, these instances were classified as either engagement 
or confusion. The distribution of valence-arousal values for each learning-centered emotion 
was more condensed in images compared to speech values. Additionally, frustration audio 
cues such as frequency, tone, and pitch were quite clear, making frustration detected in 
utterances more accurate than in facial expressions. 

We conducted a Chi-square test of independence to examine the overall differences 
between effective and ineffective strategies, specifically focusing on the four strategies and 
the distribution of learning-centered emotions. The results revealed significant variances in 
confusion and frustration between effective and ineffective strategies (Chi-square = 145.59, p 
< 0.001). Additionally, for boredom, we observed variations across categories, with the highest 
discrepancies noted (Chi-square = 124.22, p < 0.01). Delight showed consistent significant 
differences between the strategies (Chi-square = 193.45, p < 0.01). 
In ineffective strategies, we found that boredom was more prevalent than frustration. Students 
tended to become less frustrated and more bored, often moving from a state of frustration to 
boredom and remaining in that state. In contrast, for effective strategies, while students did 
experience frustration, they quickly transitioned out of boredom and resumed problem-solving. 
This pattern was confirmed through manual verification of several instances, where we 
observed that students engaged in effective strategies were able to recover from boredom 
more rapidly and continue their tasks. 

Statistically, the analysis showed that confusion and frustration had significant 
differences between effective and ineffective strategies, indicating that these emotions are 
critical markers of the strategies' effectiveness. Boredom also varied significantly across 
different strategies, reflecting its role in disengagement and its higher prevalence in ineffective 
strategies. Delight, on the other hand, consistently differed, with effective strategies showing 



higher levels of this positive emotion. The analysis of Figure 2 further elucidates the 
differences in emotional states between effective and ineffective strategies. The data indicates 
that effective strategies not only improve problem-solving outcomes but also foster more 
positive emotional experiences, thereby enhancing overall learning. These findings suggest 
that adaptive learning environments should prioritize both cognitive and emotional support to 
optimize student outcomes. 

Limitations: This study has several limitations. Firstly, sentiment analysis from the 
transcribed text was not performed; we only used non-verbal cues from image and audio data. 
Although we checked the transcribed data for one entire week and observed that most of the 
content was related to the topic of study, incorporating text-based sentiment analysis could 
provide additional insights. Secondly, individual-based, gender-based, or performance-based 
analyses were not conducted. Such analyses require person re-identification and speaker 
diarization within each webcam video dyad. Additionally, no fine-tuning was performed on the 
valence-arousal models for image and speech data, which might have improved the accuracy 
of emotion recognition. Lastly, the number of students considered in this study is relatively 
small and belongs to a single demographic group, which limits the generalizability of the 
findings. 
 
6. Conclusion 
This study demonstrates the effectiveness of a multimodal approach for detecting learning-
centered emotions in a collaborative learning environment. By integrating facial expression 
and speech data, we achieved higher emotion recognition accuracy than single-modality 
approaches. The HSEmotion and wav2vec 2.0 models, enhanced by the modality check step 
and multiplicative fusion layer, proved effective in identifying emotions such as engagement, 
frustration, confusion, delight, and boredom. Our findings show that effective problem-solving 
strategies are associated with higher engagement and delight, while ineffective strategies 
correlate more with confusion and boredom. Statistical analysis confirmed significant 
differences in emotion distribution between effective and ineffective strategies, underscoring 
the importance of adaptive learning environments that respond to students' emotional states. 
In the future, we plan to address some of the limitations that are already mentioned and 
explore different collaborative learning environments with varying sizes of groups.  
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