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Abstract: The incorporation of technology into primary and secondary education has
facilitated the creation of curricula that utilize computational tools for problem-solving.
In Open-Ended Learning Environments (OELEs), students participate in learning-by-
modeling activities that enhance their understanding of (Science, technology,
engineering, and mathematics) STEM and computational concepts. This research
presents an innovative multimodal emotion recognition approach that analyzes facial
expressions and speech data to identify pertinent learning-centered emotions, such as
engagement, delight, confusion, frustration, and boredom. Utilizing sophisticated
machine learning algorithms, including High-Speed Face Emotion Recognition
(HSEmotion) model for visual data and wav2vec 2.0 for auditory data, our method is
refined with a modality verification step and a fusion layer for accurate emotion
classification. The multimodal technique significantly increases emotion detection
accuracy, with an overall accuracy of 87%, and an F1-score of 84%. The study also
correlates these emotions with model building strategies in collaborative settings, with
statistical analyses indicating distinct emotional patterns associated with effective and
ineffective strategy use for tasks model construction and debugging tasks. These
findings underscore the role of adaptive learning environments in fostering students'
emotional and cognitive development.
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1. Introduction
The increased focus on incorporating and leveraging technology into K-12 classrooms has
been actualized by designing curricula where students develop and solve problems using
computational tools (Wing, 2006). As there are innate connections between science,
technology, engineering, and mathematics (STEM) and computing (Grover & Pea, 2018),
learning-by-modeling tasks have been designed within open-ended learning environments
(OELEs) to support students' conceptual knowledge construction of STEM and computing
through authentic, real-world scientific problems (Hutchins, et al., 2020). The design goals of
OELEs often target both conceptual understanding as well as the development of problem-
solving skills that can be adapted and used in other problem spaces (Land, 2000). During
learning-by-modeling, students develop and employ problem-solving skills such as
abstraction, decomposition, and debugging (Grover and Pea, 2018; Hutchins, et al., 2020).
While these skills have been identified as important for task success and student
learning, developing and applying them is innately complex. This is particularly true within the
learning-by-modeling paradigm where students are applying these skills while constructing
and applying conceptual knowledge in multiple domains (i.e., STEM and computing). As such,
students are often assigned to work collaboratively to mitigate some of the difficulties
associated with these complex tasks. Understanding how students use problem-solving
strategies to solve such tasks can provide insights into their learning processes and help
educators design interventions to support effective problem-solving (Jarvela, Nguyen, &
Hadwin, 2023). Advances in technology enable the automatic understanding of problem-



solving strategies using sequence mining, Markov chains, and other machine learning
analytics. These computational methods can analyze students' interactions within OELEs to
identify patterns and sequences of actions that characterize different problem-solving
approaches. This automated analysis provides a scalable way to monitor and support student
learning as they work in these learning environments (Jarvela, Nguyen, & Hadwin, 2023).

Emotions play a significant role in problem-solving and learning. Learning-centered
emotions like confusion, frustration, and boredom can hinder progress, while engagement and
delight can enhance it (D’Mello & Graesser, 2012). Understanding the impact of emotions on
problem-solving is crucial for designing adaptive learning environments that provide timely
interventions to maintain motivation and engagement (Jordan & Troth, 2021). Despite their
importance, there is a gap in research on multimodal emotion recognition in educational data
mining. Existing studies focus on basic emotions or valence differences in collaborative
learning, with limited exploration of learning-centered emotions using multimodal approaches
(Térmanen et al., 2023; Dindar et al., 2020). Nonverbal speech cues are underutilized in
OELEs for emotion recognition due to their computer-based nature. In collaborative learning,
however, speech is crucial for understanding learning processes through interaction.
Therefore, our study integrates speech and image data to detect and analyze learning-
centered emotions comprehensively. There is a critical need for novel methodologies to
accurately detect learning-centered emotions in educational contexts. Traditional methods like
manual observation and self-reports have biases that impact accuracy. Single modality
(vision-based) models often fail in computer-based collaborative environments, where
webcams can lose track of moving students (Jarveld, Nguyen, & Hadwin, 2023; Hutchins, et
al., 2020). Our proposed multimodal approach leverages advances in machine learning and
computer vision to provide a robust understanding of students' emotional states. The key
contributions of the paper are:

1. A Novel Multimodal Emotion Detection Methodology: We introduce a methodology for
detecting learning-centered emotions (engagement, frustration, confusion, delight, and
boredom) in high school students using multimodal data from facial expressions and
speech.

2. Establishing the relations between Emotions and Strategies: We analyze the
relationship between detected emotions and effective/ineffective problem-solving
strategies.

The paper is organized as follows: Section 2 reviews the relationship between affective
states and problem-solving strategies. Next, we describe the emotion recognition framework.
We then present our findings on emotions and strategies. Finally, we discuss implications for
adaptive learning environments and future research.

2. Literature Review
Previous research has identified strategies in block-based environments, such as the
leveraging of environmental data tools to evaluate computational models, multiple reviews of
output and code, and forward reasoning i.e. examining the program line by line (Hutchins, et
al., 2021; Kim, et al. 2018; McCauley, 2008). For example, Hutchins, et al (2021) identified the
following strategies students employed when building computational models of scientific
processes using a block-based environment: (1) Depth-First, i.e., multiple code construction
actions without assessment actions, can corresponds to a lack of insight for breaking down a
complex task into its subparts (Grover & Pea, 2018); (2) Tinkering, i.e., trying small changes
in the blocks making up the executable model, can be used to gain some understanding of
code prior to making changes; (3) Multi-Visual Feedback, represented by sequence of
simulation executions, can represent a lack of understanding if the simulations were run in
rapid succession; and (4) Simulation-based Assessment, which typically involves using tools,
such as plots, to understand and analyze model behavior, and in past work has been observed
to represent a decomposition process, i.e., a build and test behavior (Basu, et al, 2017;
Hutchins, et al, 2021).

As students' emotional states impact their engagement and effectiveness during
collaborative problem-solving, we aim to examine the relationship between their problem-
solving strategies and affective states (Lazarus, 1982). Learning-centered emotions like



confusion, frustration, boredom, engagement, and delight play a crucial role in socially shared
regulated learning (SSRL) processes (Pekrun, 2006; Panadero & Jarveld, 2015; Xu & Lou,
2023). However, research has not adequately explored how these emotions relate to specific
strategies used in building computational models. Understanding this relationship can provide
deeper insights into how emotions influence learning behaviors and outcomes in collaborative
settings (D’Mello et al., 2008). Current methods for emotion recognition in SSRL processes
rely on self-reports or vision-based emotion recognition (Jarvela, Nguyen, & Hadwin, 2023;
Nguyen et al., 2023; Xu & Lou, 2023).

State-of-the-art emotion recognition often relies on single modalities like vision or
speech. Vision-based approaches use facial expressions from webcams, while speech-based
methods analyze vocal cues (Ahmed, Al Aghbari, & Girija, 2023; Mejbri et al., 2022). In OELEs,
webcams can lose track of faces if students move, and relying solely on speech is insufficient
as students do not always verbalize their thoughts (Nguyen et al., 2023; Jarvela, Nguyen, &
Hadwin, 2023; Emara et al., 2020). This necessitates a multimodal approach combining
speech and image data for accurate emotion detection. Multimodal recognition is crucial in
collaborative learning with rich interactions.

Initially, classifiers like Support Vector Machines and regression were used, but state-
of-the-art methods now employ convolutional neural network (CNN) based models for facial
expressions and Mel-frequency cepstral coefficients (MFCC) features for speech, analyzing
cues like pitch, intensity, and frequency for valence and arousal. These modalities are
combined using decision-level or feature-level fusion. Advanced methods use transformers
and self-attention models, including bi-directional long short-term memory (BLSTM) networks,
Deep Belief Networks (DBNs), and hierarchical networks (Geetha et al., 2024; Mittal et al.,
2020; Tzirakis et al., 2017). However, these methods have not been widely explored for
valence-arousal detection or learning-centered emotion classification.

Research on multimodal learning-centered emotion recognition in collaborative
learning environments is lacking. Existing studies focus on basic emotions or valence
differences but do not integrate multiple modalities to detect learning-centered emotions
(Ahmed, Al Aghbari, & Girija, 2023). This study addresses this gap by combining speech and
image data to recognize emotions like engagement, frustration, confusion, delight, and
boredom. This multimodal approach aims to provide a more accurate understanding of
students' emotional states during collaborative learning tasks.

3. Learning Environment and Data

In our curriculum, designed to support the synergistic learning of science and computing by
leveraging the innate connections between these two domains (Grover & Pea 2018), students
work in the Collaborative, Computational STEM (C2STEM) block-based learning environment
(Hutchins, et al., 2020). In C2STEM, students create models of scientific phenomena and
simulate the motion of objects using variables within the computational model. In the
environment, students have access to an animation to view the objects’ motion as well as
variable inspection, graph, and table tools that are updated dynamically as the simulation runs.
Students can leverage these tools to investigate the connection between scientific variables
(e.g., the relationship between velocity and acceleration) as well as develop key computing
practices such as debugging (Grover & Pea, 2018).

Twenty-four 10th grade high school students completed a 6-week kinematics
curriculum in which they worked on 1D and 2D kinematic modules for two hours every week.
The curriculum was designed as a sequence of computational modeling tasks with increasing
complexity (Hutchins, et al., 2020). Each of the 1D and 2D modules consisted of a scaffolded
instructional task, a model building task, a hands-on activity, and a complex challenge task.
The instructional task was completed individually while the hands-on activity was completed
in larger groups (~6 students). In this work, we analyze four tasks that were completed by
students working in pairs: 1D model building task (modeling the motion of a truck speeding up
from rest to a speed limit and cruising at that speed limit before coming to a stop at a stop
sign), 1D challenge task (modeling the motion of an autonomous truck that adapts its speed
whenever the car in front of it does), 2D model building task (modeling the motion of a drone
dropping a package off at a target), and 2D challenge task (modeling the motion of a drone



dropping off two packages at two different targets). Students were first divided into dyads
randomly for the 1D module tasks and then assigned into different dyads for the 2D module
tasks. Procedures for this study were approved by the University Institutional Review Board
and included the collection of summative assessment data, logged actions in the C2STEM
environment, and video and audio data collected using Open Broadcaster Software (OBS)
and lapel microphones. Student actions were recorded in log files with timestamps and aligned
with the video and audio data using system time stamps.

Data: 1,718 problem-solving strategy instances were extracted from the log data.
Video data was collected at 30 fps, and audio was recorded at 572 kbps bit rate with 2 stereo
channels and a 44.100 kHz sampling rate. Due to hardware errors, student absences, or
accidental recording interruptions, we standardized the data and removed unwanted or corrupt
files, resulting in a total of 51 dyad datasets over 6 weeks. Initially, there were 12 groups for 6
weeks, with 2 hours of data per week, expected to yield 60 dyad datasets, but the first week
was used for explaining the study and preprocessing reduced it to 51 dyads. This
preprocessing resulted in approximately 15 million image frames. The image frames were fed
into Multi-task Cascaded Convolutional Networks (MTCNN) for face recognition and then
passed to the valence-arousal prediction model. For audio, recordings ranged between 60 to
120 minutes per day over five weeks. Using Deepgram, a commercial speech-to-text
Application Programming Interface (API) service, we generated utterances with start and end
timestamps and transcripts. Some groups had a little over 400 segments, while others
exceeded 1000 segments. The shortest segment lasted just a second, while the longest
extended up to 17 seconds. Overall, we had approximately 39,335 utterances. These
utterances were used to segment each large audio file into shorter segments, ranging from
just a second to 17 seconds. Each audio segment was standardized to the consistent sampling
rate and format mentioned above before being fed into the valence-arousal recognition model.

4. Methodology

In this paper, we aim to better understand the relationship between students’ problem-solving
skills and emotional states. Specifically, we study students’ problem-solving skills through
students’ effective and ineffective construction and assessment strategies. We identified these
strategies by processing the logged data utilizing a hierarchical task-oriented structure
adapted from Emara et al. (2020) to abstract student actions such that the calculated action
patterns can be mapped to students’ problem-solving strategies. The logged actions were
categorized into five abstracted categories: (1) Build, where students are adding blocks to the
executable model; (2) Adjust, where students are editing blocks in the executable model; (3)
Draft, where students are moving or editing blocks not connected to the executable model
(similar to commenting code); (4) Execute, where students are executing the model; and (5)
Visualize, where students are using the data tools or variable inspection tool.

Leveraging previous research that identified common computational modeling
strategies (Hutchins, et al., 2021), we used action log patterns to identify the time intervals
during which students employed construction strategies: (1) Depth-first (BUILD-> BUILD ->
BUILD -> BUILD) and (2) Tinkering (PLAY -> ADJUST -> PLAY) and assessment strategies:
(3) Multi-visual Feedback (PLAY -> PLAY -> PLAY) and (4) Simulation-based Assessment
(VISUALIZE -> PLAY or PLAY -> VISUALIZE). As discussed in Section 2, Tinkering and
Simulation-based Assessment have been identified as more effective strategies while Depth-
first and Multi-visual feedback are ineffective strategies. This detailed analysis allows us to
map students' problem-solving strategies and their effectiveness, providing insights into their
relationship with students’ affect and learning outcomes. The complete flow of the
methodology is shown in Figure 1.

Learning-centered emotion annotation: While D'Mello et al. (2007) utilized Russell's
circumplex model (Russell, 1980) to identify discrete emotions on a valence-arousal scale in
the education domain, these methods have not been specifically applied to multimodal
emotion recognition. However, several studies have used valence-arousal values obtained
from image frames to map learning-centered emotions (Fonteles, 2024). We used this
conversion to map the annotated emotions to valence-arousal values during our annotation
process. We manually annotated 500 utterances and their corresponding image frames for




each learning-centered emotion. These were randomly selected from various timestamps
during the study. Additionally, we annotated 5,000 image frames that lacked accompanying
audio and 500 utterances where the student's image was not visible on the webcam. These
data were chosen from the data of 10 students, ensuring an equal division of gender (5 males
and five females) and diverse demographic backgrounds, including 5 White Americans and 5
African Americans Two different annotators independently annotated each emotion using
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Figure 1: Overview of the complete methodology

Vision and Speech Emotion Recognition: Facial regions within images were detected
using MTCNN. HSEmotion (High-Speed Face Emotion Recognition) is used in this study to
predict the valence and arousal values (Fonteles, 2024). The HSEmotion architecture is
trained for face identification leveraging the Visual Geometry Group Face2 (VGGFace2)
dataset. The VGGFace2 dataset, comprising 3.31 million images across 9131 subjects
(identities), presents diverse variations in pose, age, illumination, ethnicity, and profession.
This dataset includes facial images of children within the age group relevant to our study's
focus. Consequently, the models were trained and validated on images representative of the
specific age group considered in this study. Similarly, for audio, we used the wav2vec 2.0 large
robust (w2v2-L-robust-12) model, which outperforms state-of-the-art methods for valence and
arousal recognition from speech. Facial regions within images were detected using MTCNN.
HSEmotion is used in this study to predict the valence and arousal values. The HSEmotion
architecture is trained for face identification leveraging the VGGFace2 dataset. The
VGGFace2 dataset, comprising 3.31 million images across 9131 subjects (identities),
presents diverse variations in pose, age, illumination, ethnicity, and profession. This dataset
includes facial images of children within the age group relevant to our study's focus.
Consequently, the models were trained and validated on images representative of the specific
age group considered in this study. Similarly, for audio, we used the wav2vec 2.0 large robust
(w2v2-L-robust-12) model (Wagner et al., 2023), which outperforms state-of-the-art methods
for valence and arousal recognition from speech.

Multimodal Emotion Recognition: We denote the set of modalities as M= {image,
speech}. The feature vectors for each modality are denoted as fimage and fspeech, respectively.
We denote the set of predicted emotions as E= {confusion, frustration, delight, engagement,
boredom}. The proxy feature vectors generated for image and speech modalities are
represented by pimage and pspeech, respectively. Finally, we define an indicator function I.(f) that
outputs either a vector of zeroes or ones of the same dimension as f, depending on the
conditions of the function definition.

We present an overview of our multimodal perceived emotion recognition model.
During training, we first extract feature vectors fimage and fspeech from raw inputs (video frames
and audio segments, respectively). For image data, the HSEmotion model uses EfficientNet-
BO to process facial images of resolution 224 x 224, outputting embeddings of dimensionality




1280, or EfficientNet-B2 with 260 x 260 input images and 1408 output features. For speech
data, we use the wav2vec2.0 model which processes raw waveforms normalized to have zero
mean and unit variance, extracting features through a series of convolutional and transformer
layers. The valence-arousal values obtained from HSEmotion for images and wav2vec 2.0 for
audio were converted to learning-centered emotions using a predefined mapping function
obtained from the annotation. These features are then passed through the modality check
step to distinguish between effective and ineffectual signals, discarding the latter if any. The
effective feature vectors are then processed through three deep-layered feed-forward neural
network channels. Finally, we combine the modalities using a multiplicative fusion layer.
During testing, the data point goes through the modality check step again, and if a modality is
deemed ineffectual, we regenerate a proxy feature vector which is then passed to the network
for emotion classification.

Modality Check Step: To enable perceived emotion recognition in real-world scenarios
where sensor noise is inevitable, we introduce the Modality Check step, which filters
ineffectual data. Previous studies in emotion prediction have shown that effective emotion
recognition relies on the correlation between modality signals. We exploit this by using
Canonical Correlation Analysis (CCA) to compute the correlation score, p, of every pair of
input modalities. Given feature vectors fimage and fspeech, We compute the projective
transformations, Himage and Hspeech, @nd obtain projected vectors. The correlation score is
calculated as (Equation 1):

COV(HimagefimageHspeechfspeec
p(ﬁmage‘fSpeeCh) - UHi(mage;zimage gd Hs:eec:fs:eec:)

If the correlation score for a pair of modalities is below an empirically chosen threshold
7, the modality is considered ineffectual. The indicator function I.(f) is used to filter out these
ineffectual features.

Regenerating Proxy Feature Vectors: When one or more modalities are deemed
ineffectual at test time, we generate proxy feature vectors for these modalities. Generating
exact feature vectors for missing modalities is challenging due to the non-linear relationship
between modalities. However, by relaxing the non-linear constraint, we approximate the
feature vectors using a linear algorithm. For instance, if the speech modality is corrupt, we
regenerate a proxy speech vector pspeech USiNg the effective face modality vector fimage. This
involves preprocessing the inputs to construct bases from the observed face and speech
vectors and applying a linear transformation to approximate the missing feature vector.

Multiplicative Modality Fusion: In our approach, we use a multiplicative fusion layer to
combine the effective feature vectors from each modality. This fusion method explicitly boosts
the stronger modalities in the combination network, enhancing the overall emotion
classification accuracy. The modified loss function for the i-th modality is defined as:

B
c( = [ (()DM-1logp(y)i Equation (2)

where y is the true class label, MM is the number of modalities, g is a hyperparameter,
and p(y): is the prediction for class yy given by the network for the i-th modality (Equation 2).

This methodology leverages robust feature extraction techniques from both image and
speech modalities, applies effective noise filtering through the modality check step, and
combines the modalities using advanced fusion techniques to achieve accurate emotion
recognition.

Equation (1)

5. Results and Inference

A Novel Multimodal Emotion Detection Methodology: Since the annotated data is limited, we
performed data augmentation, as mentioned in (TS and Guddeti, 2020), this increased the
annotated data (mentioned in Section 4) by 10-fold. The dataset was then split into training
(70%), validation (10%), and testing (20%) sets. We used the Adam optimizer with a learning
rate of 0.01 to train our models. The training process utilized a batch size of 256 and was
conducted over 500 epochs. The HSEmotion model achieved an accuracy of 91%, a precision
of 89%, a recall of 86%, and an F1-score of 88% for valence-arousal prediction. The
wav2vec2.0 model achieved an accuracy of 81%, a precision of 79%, a recall of 76%, and an
F1-score of 76% for valence-arousal prediction. We performed student-independent cross-




validation, and the results are in line with existing results that use HSEmotion for student data
within the OELE learning environment.

The overall results of our fusion model (Learning-centered Multimodal Emotion
Recognition) show significant improvements over single-modality approaches. The overall
accuracy for emotion recognition using the fused modalities was 87 %, with a precision of 85%,
a recall of 83%, and an F1-score of 84%. These results demonstrate the effectiveness of our
fusion approach in improving the robustness and accuracy of emotion recognition in
collaborative learning environments.

Table 1. Ablation Study of proposed Multimodal Emotion Recognition

Method Accuracy Precision Recall F1-Score
Image Only 81% 79% 76% 77%
Speech Only 75% 73% 71% 72%
Fusion without Modality Check 85% 83% 80% 82%
Full Model 87% 85% 83% 84%

The CCA analysis results indicated strong correlations between the modalities,
validating the effectiveness of our modality check step. The mean correlation score for
effective modalities was significantly higher than the threshold (1 = 0.7), while the ineffectual
modalities showed correlation scores well below the threshold. This clear distinction allowed
us to filter out noisy data effectively.

Ablation Study: Table 1 highlights the modality check step's importance and our fusion
strategy's effectiveness. The full model, which includes all components, outperforms the other
configurations, demonstrating the value of our approach in leveraging both image and speech
data for accurate emotion recognition.

Establishing the relations between Emotions and Strategies: For the second part of the
results where we mapped the strategies to learning-centered emotions, we considered the
entire data and did not consider the data augmentation. We ran the multimodal emotion
recognition with the entire data, including cases with only utterances and both utterances and
image frames during the period of utterances. The utterances-based multimodal data suggests
that effective construction strategies, such as Tinkering, lead to higher engagement (14983
instances) and more delight (180 instances) compared to ineffective construction strategies,
such as Depth-first, which show higher confusion (1487 instances) and frustration (319
instances).

Effective assessment strategies, like Simulation-based Assessment, also show higher
engagement (6881 instances) and moderate levels of delight (132 instances) compared to
ineffective assessment strategies, like Multi-visual Feedback, which have significant
engagement (6508 instances) but higher levels of confusion (1026 instances). The overall
pattern indicates that effective strategies are associated with higher engagement and delight,
whereas ineffective strategies correlate more with confusion and frustration.

When considering only image-based emotion classification, which was 67% of the time
in the entire data (59% with only image frames and 8% with one student out of frame), we
observed 54% engagement, 14% confusion, 10% frustration, 5% delight, and 17% boredom.

Effective Construction (Tinkering) shows the highest levels of engagement (60%) and
a moderate amount of delight (8%). Confusion (12%) and boredom (10%) are relatively low,
indicating that students are actively engaged and positively affected by this strategy. In
contrast, Ineffective Construction (Depth-first) exhibits a significantly lower engagement level
(40%) and higher boredom (30%) compared to Tinkering. Confusion (15%) is also slightly
higher, while delight (5%) is lower, suggesting that students are less engaged and more likely
to be bored when using less effective construction strategies. Effective Assessment
(Simulation-based Assessment) also demonstrates high engagement (55%) and moderate
levels of delight (7%). Confusion (14%) and boredom (14%) are balanced but relatively low,
indicating a generally positive impact on student emotions. Conversely, Ineffective
Assessment (Multi-visual Feedback) presents lower engagement (47%) and higher boredom
(24%) compared to effective assessment strategies. Confusion (15%) remains consistent with




ineffective construction, while delight (4%) is the lowest among all strategies.

Distribution of Learning Centered Emotions across Strategies (Image-based Data) Distribution of Learning Centered Emotions across Strategies (Multimodal Data)

601 Strategy
mmm Effective Construction
Ineffective Construction
so0{ WEE Effective Assessmenl t
m |neffective Assessment 120004

Strategy
W Effective Construction
Ineffective Construction
B Effective Assessment
. neffective Assessment

14000 {

404 10000 {

Percentage
8
Frequency
@
g
2
s

6000

N
=

5

b ——ee S —
Boredom Confusion Delight Engagement Frustration Boredom Confusion Delight Engagement Frustration
Learning Centered Emotions Learning Centered Emotions

Figure 2. Distribution of learning centered emotions across strategies

Our findings indicate a strong correlation between learning-centered emotions and
students' problem-solving strategies. Effective strategies such as Tinkering and Simulation-
based Assessment are associated with higher levels of engagement and delight, while
ineffective strategies like Depth-first and Multi-visual Feedback are linked with increased
confusion and frustration. This correlation highlights the critical role of emotions in influencing
problem-solving effectiveness, supporting the need for adaptive learning environments that
can respond to students' emotional states in real-time.

Discussion: We observe that boredom is significantly detected through images. When
students are bored, they tend to speak less, displaying low valence and low arousal facial
expressions. Confusion, characterized by action units like brow furrow and top-left quadrant
valence-arousal values, is also more frequently detected in images than in utterances. The
valence-arousal values distributed across all four quadrants align with Russell's circumplex
model. For instance, delight had a valence of 0.9 and arousal of 0.8, while boredom had a
valence of 0.3 and arousal of 0.2, showing clear distinctions. Engagement was mostly
observed when both valence and arousal values were above 0.5, whereas confusion and
frustration were identified when arousal was above 0.5 and valence was below 0.5. Several
instances where students discussed topics had utterances that fell close to neutral; however,
since we did not annotate for neutral, these instances were classified as either engagement
or confusion. The distribution of valence-arousal values for each learning-centered emotion
was more condensed in images compared to speech values. Additionally, frustration audio
cues such as frequency, tone, and pitch were quite clear, making frustration detected in
utterances more accurate than in facial expressions.

We conducted a Chi-square test of independence to examine the overall differences

between effective and ineffective strategies, specifically focusing on the four strategies and
the distribution of learning-centered emotions. The results revealed significant variances in
confusion and frustration between effective and ineffective strategies (Chi-square = 145.59, p
< 0.001). Additionally, for boredom, we observed variations across categories, with the highest
discrepancies noted (Chi-square = 124.22, p < 0.01). Delight showed consistent significant
differences between the strategies (Chi-square = 193.45, p < 0.01).
In ineffective strategies, we found that boredom was more prevalent than frustration. Students
tended to become less frustrated and more bored, often moving from a state of frustration to
boredom and remaining in that state. In contrast, for effective strategies, while students did
experience frustration, they quickly transitioned out of boredom and resumed problem-solving.
This pattern was confirmed through manual verification of several instances, where we
observed that students engaged in effective strategies were able to recover from boredom
more rapidly and continue their tasks.

Statistically, the analysis showed that confusion and frustration had significant
differences between effective and ineffective strategies, indicating that these emotions are
critical markers of the strategies' effectiveness. Boredom also varied significantly across
different strategies, reflecting its role in disengagement and its higher prevalence in ineffective
strategies. Delight, on the other hand, consistently differed, with effective strategies showing



higher levels of this positive emotion. The analysis of Figure 2 further elucidates the
differences in emotional states between effective and ineffective strategies. The data indicates
that effective strategies not only improve problem-solving outcomes but also foster more
positive emotional experiences, thereby enhancing overall learning. These findings suggest
that adaptive learning environments should prioritize both cognitive and emotional support to
optimize student outcomes.

Limitations: This study has several limitations. Firstly, sentiment analysis from the
transcribed text was not performed; we only used non-verbal cues from image and audio data.
Although we checked the transcribed data for one entire week and observed that most of the
content was related to the topic of study, incorporating text-based sentiment analysis could
provide additional insights. Secondly, individual-based, gender-based, or performance-based
analyses were not conducted. Such analyses require person re-identification and speaker
diarization within each webcam video dyad. Additionally, no fine-tuning was performed on the
valence-arousal models for image and speech data, which might have improved the accuracy
of emotion recognition. Lastly, the number of students considered in this study is relatively
small and belongs to a single demographic group, which limits the generalizability of the
findings.

6. Conclusion

This study demonstrates the effectiveness of a multimodal approach for detecting learning-
centered emotions in a collaborative learning environment. By integrating facial expression
and speech data, we achieved higher emotion recognition accuracy than single-modality
approaches. The HSEmotion and wav2vec 2.0 models, enhanced by the modality check step
and multiplicative fusion layer, proved effective in identifying emotions such as engagement,
frustration, confusion, delight, and boredom. Our findings show that effective problem-solving
strategies are associated with higher engagement and delight, while ineffective strategies
correlate more with confusion and boredom. Statistical analysis confirmed significant
differences in emotion distribution between effective and ineffective strategies, underscoring
the importance of adaptive learning environments that respond to students' emotional states.
In the future, we plan to address some of the limitations that are already mentioned and
explore different collaborative learning environments with varying sizes of groups.
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