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Abstract. Investigating children’s embodied learning in mixed-reality
environments, where they collaboratively simulate scientific processes,
requires analyzing complex multimodal data to interpret their learning
and coordination behaviors. Learning scientists have developed Inter-
action Analysis (IA) methodologies for analyzing such data, but this
requires researchers to watch hours of videos to extract and interpret
students’ learning patterns. Our study aims to simplify researchers’
tasks, using Machine Learning and Multimodal Learning Analytics to
support the IA processes. Our study combines machine learning algo-
rithms and multimodal analyses to support and streamline researcher
efforts in developing a comprehensive understanding of students’ scien-
tific engagement through their movements, gaze, and affective responses
in a simulated scenario. To facilitate an effective researcher-AI partner-
ship, we present an initial case study to determine the feasibility of visu-
ally representing students’ states, actions, gaze, affect, and movement on
a timeline. Our case study focuses on a specific science scenario where
students learn about photosynthesis. The timeline allows us to investi-
gate the alignment of critical learning moments identified by multimodal
and interaction analysis, and uncover insights into students’ temporal
learning progressions.

Keywords: Multimodal learning analytics · Embodied learning ·
Machine learning · Interaction analysis

1 Introduction

Embodied learning aligns with the natural ways in which humans perceive, inter-
act, and learn from the world around them. By engaging the body in the learn-
ing process, we create richer, more immersive educational experiences where our
actions, movements, and interactions contribute significantly to how we under-
stand and internalize concepts [6]. It allows students to actively explore and
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embody knowledge through perception, awareness, and exploration of their envi-
ronment. Embodiments not only enhance retention and a deeper understanding
of abstract or complex concepts; it leverages the power of immersive experiences
to make education more engaging and impactful [10].

Embodied learning data analysis presents a great challenge due to the com-
plexity of monitoring student groups spatially and temporally. Conventional edu-
cational settings focus mostly on verbal communication and digital system inter-
actions. Meanwhile, embodied learning necessitates the capture of non-verbal
cues and body movements in 3D space, along with conversations and simulation
logs [6]. Interaction Analysis (IA) is one of the main approaches employed by
learning scientists because it can unravel deep insights and nuanced interactions
captured in video data [13]. IA yields valuable insights, but its manual pro-
cesses are time-consuming and demand substantial human resources. Therefore,
recent advances in Machine Learning (ML) and Multimodal Learning Analytics
(MMLA) make it easier to leverage algorithms to support human analysis, with
the idea that the combination will allow researchers and educators to gain a
nuanced understanding of how learners engage with content, facilitating feed-
back, assessment, and an enriched comprehension of the learning process [19].

Observing and tracking embodied learning scenarios generates substantial
volumes of multimodal data, which is a reflection of the diverse sensory inputs
needed to capture movement, gestures, gaze, interactions, and coordination in
the context of learning and problem-solving tasks [2]. Motion tracking data,
detailing the positions and orientations of body parts, enables granular analysis
of physical interactions. Gaze tracking data reveals where learners direct their
attention, shedding light on points of interest or challenges. Affect detection
data adds a nuanced layer by gauging learners’ emotional states. Complement-
ing these, system logs record interactions with the learning platform, simulations,
or virtual environments, offering timestamps and details of actions taken. Man-
aging all of the heterogeneous multimodal data efficiently is a complex task,
demanding sophisticated computational analysis. The challenge for educational
methods using AI and ML lies in addressing the complexities of multimodal data
collection, alignment, and analysis to derive meaningful insights into students’
individual and collaborative behaviors in a timely manner.

Human researchers, familiar with the varied contexts of embodied learning
data, are crucial for its interpretation. Unlike technology-centric approaches, we
advocate for “AI-in-the-loop” methods, emphasizing the pivotal role of humans
in the analysis and interpretation process. This study makes two primary con-
tributions. First, it applies IA to determine the most effective modalities, anal-
yses, and visualizations for employing AI to aid human interpretation of stu-
dent behavior. Second, it introduces an interactive visual timeline that dis-
plays MMLA results, tailored to augment IA. This timeline represents students’
movements, necessitating data processing from multiple cameras for accurate
student re-identification and face tracking. Our findings reveal that these envi-
ronments provoke emotional responses distinct from those observed in tradi-
tional computer-based learning settings. Additionally, we propose an innovative
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approach for discretizing gaze toward moving objects in 3D spaces, significantly
contributing to the field of Artificial Intelligence in Education.

2 Background

2.1 Embodied Learning and Interaction Analysis

Embodied learning activities leverage the movement of students’ bodies in the
teaching and learning of conceptual and disciplinary ideas. These activities are
grounded in the assumption that parallels can be drawn between bodily experi-
ences and conceptual learning [16]. In science education, many embodied activity
designs rely on educational technologies like virtual reality (VR) and mixed real-
ity (MR) to immerse students in a particular scientific system, enabling feelings
of presence. The design of embodied activities can be approached from a cogni-
tive lens, which focuses on how individual students’ movements or gestures can
map onto underlying conceptual ideas or from a sociocultural lens, which consid-
ers the ways that youth interact with each other as socially situated. In this work,
we take a sociocultural approach to designing these kinds of embodied learning
activities [6]. This means that we are most interested in embodiment that hap-
pens between multiple learners in a social and cultural context; as youth engage
with each other, they develop meaning together through their embodiment.

As youth participate in collaborative MR embodied activities, they must
attend to and coordinate many modes, including gaze, movement, and speech
[24]. IA empirically investigates human interactions with each other and objects
in contextual settings. Learning scientists often use this analytic method to
make sense of collaborative, embodied learning environments, where multiple
students move together in a classroom or educational setting. IA’s development
is theoretically grounded in several methodologies, notably conversation analysis
and ethnography, and has become popular with the proliferation of audiovisual
recording technologies. The capability to capture learning activities from multi-
faceted views/positions and iterative playback of recordings is crucial to inter-
action analysis, as it allows close interrogation, which is the essence of IA. Thus,
the goal of interaction analysis is to look for empirical evidence of the learn-
ing and learning process by discerning patterns/ regularities in how participants
utilize resources within their natural environments and interact with each other.

2.2 Affect and Learning

In academics, the detection of learning-centric emotions − confusion, boredom,
frustration, engagement, and delight − is crucial for comprehending learner
behaviors and performance [20]. While state-of-the-art computer vision algo-
rithms can successfully identify basic and learning-centered emotions, their appli-
cation in embodied learning environments presents unique challenges [26]. In
such settings, multiple students are often captured in a single video frame. Fur-
ther, students are moving frequently, and this necessitates advanced techniques
like re-identification for accurate emotion tracking [25].
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A significant shortcoming in current emotion recognition datasets is their
focus on undergraduate students, with little data representing children’s facial
expressions, which makes it hard to detect their emotions accurately [3]. Models
like High-Speed Emotion Recognition, which are trained on diverse age groups,
including children, offer an alternative by quantifying emotions on a continuous
scale of valence and arousal [22]. These models utilize frameworks such as Rus-
sell’s circumplex model and D’Mello’s dynamics of emotion to translate contin-
uous emotional states into discrete categories [9,21]. In dynamic environments,
where students may walk, jump, and exhibit rapid movements, top-tier models
like multitask cascaded convolutional networks (MTCNN) are preferred for face
identification [28]. However, they typically lack training for rapid movements and
partial occlusions, characteristic of embodied learning. Consequently, retraining
existing models or deriving new ones tailored for these complex settings is imper-
ative for the accurate identification and analysis of student emotions.

2.3 Gaze Detection and Interactions

Gaze analysis has been a cornerstone in understanding how learners engage and
process information, revealing insights into cognitive functions and social inter-
actions that are critical for collaborative learning and problem-solving [27]. Tra-
ditionally, eye-tracking required specific hardware and controlled environments,
limiting its application in actual classroom settings and affecting the authenticity
of observed learning behaviors. To overcome these constraints, advances in eye-
tracking technology have introduced more versatile tools, such as lightweight eye-
tracking glasses like the Tobii Glasses 3. These innovations allow for observation
in more natural settings, although they face challenges like limited scalability
and adaptability for children. Computer-vision methods, such as L2CS-Net [1]
and Gaze360 [15], offer solutions that are more suitable for the dynamic nature
of classrooms, even though they may compromise some on the precision of gaze
data. Despite this, the trade-off is considered acceptable for educational research,
where the focus is on broader data interpretation rather than pinpoint accuracy.
However, applying these methods to children remains problematic because they
have not been trained on their data.

In eye-tracking research, encoding gaze data into objects of interest (OOI)
helps translate raw gaze points into meaningful insights by associating them
with elements in the learning environment, such as teaching aids or interactive
tools. The distinction between static and dynamic OOIs presents a significant
challenge, requiring sophisticated tracking and analysis techniques [8]. 3D recon-
struction emerges as a promising approach to address this, enabling detailed
spatial analysis of gaze patterns [18]. However, the task is complex, especially
when relying on monocular video capture that lacks depth information, posing
hurdles for accurately mapping gaze in three-dimensional spaces.
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2.4 Multimodal Visualizations

The visualization of multimodal data, which combines various modalities such
as facial expressions, interactions, and contextual information, is an active area
of research in education and learning analytics. Ez-zaouia’s Emodash [12] con-
tributes to this field by presenting a dashboard that visualizes learners’ emotions
inferred from facial expressions, alongside their system interactions during online
learning sessions, reinforcing how one of the main challenges in the field is find-
ing the appropriate level of detail and timescales for visualizations. This work
builds upon previous research that explored visualizing learners’ performances
and behaviors using primarily systems logs dashboards, as well as the design of
multimodal and contextual emotional dashboards for tutors [23].

Our design solution is distinct from the current literature. The timeline struc-
ture has been shaped by IA sessions conducted by researchers to identify key
modalities and analytical approaches for interpreting student actions in embod-
ied learning environments. Contrasting with prior research focused on computer-
based learning environments, our study explores the unique dynamics of embod-
ied learning within a MR context, where students’ physical movements facilitate
interaction. While our approach aligns with Ez-zaouia et al. in integrating sys-
tem interactions and affect into an interactive timeline, it further examines the
specific emotional responses elicited by the gamified aspects of embodied learn-
ing. We also incorporate gaze data to study students’ shifting attention during
activities. Our innovative presentation of multimodal data on a dynamic time-
line, synchronized with video playback, is designed to enhance IA by providing
AI-generated insights and interpretations to researchers.

3 Methods

3.1 Study Design

This study is part of a larger project entitled Generalized Embodied Modeling
to support Science through Technology Enhanced Play (GEM-STEP). In this
project, the motion-tracking technologies and mixed-reality environments dis-
play participants’ movements on a projector screen, embodying complex scien-
tific phenomena as researchers investigate individual and collaborative learning
processes [5]. The GEM-STEP research team, including two of the authors, col-
laborated with a fourth-grade science teacher to co-design and co-facilitate a 20-
day curriculum focused on food webs and photosynthesis. The participants in the
following analysis consisted of two facilitators (the teacher and one researcher)
and seven consented and assented students (four boys and three girls) from
diverse racial and linguistic backgrounds. The students included multilingual
learners, and their home languages included English, Kurdish, and Spanish.

Considering the diverse learners in our site, technology-mediated and embod-
ied learning environments can expand access to science content where conven-
tional text- or discourse-based learning may not. These environments expand
students’ sense-making resources, e.g., their bodies and emotions, often restricted
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within science learning contexts. This multimodal approach promotes students’
agency and engagement while lowering linguistic barriers [17]. The curriculum
and the models were designed based on these approaches while aligning with
local science standards. In this work we focus on the photosynthesis model,
a closed-loop system with a simulation screen which alternates from day to
night. It features a mouse and a tomato plant with zoomed-in chloroplasts and
roots (areas that cause molecule transformations). Students must move among
these locations to model interactions between the molecules they are embody-
ing (oxygen, water, sugar and carbon dioxide) and features on the screen. To
streamline data collection we employed a distributed streaming framework called
ChimeraPy [7], which supports rapid deployment in the classroom and provides
time-alignment across multiple data modalities. We collected video from four
cameras, multiple wireless microphones, screen recordings, and system logs.

3.2 Interaction Analysis by Researchers

Four authors from the learning sciences completed the IA of the videos. While
all four analysts were knowledgeable about embodiment and participated in the
design of the GEM-STEP project, two were present at data collection and two
were not, and thus were less familiar with the context and the data. We split
the videos among researchers such that two authors reviewed day 1 and two
authors reviewed day 2, paired such that one researcher had familiarity with
the site and one did not. In this way, we hoped that we might elicit multiple,
diverse perspectives on the videos. For analysis, we selected three focal students
because, on the first pass, they seemed to approach the activity in diverse ways.
We focused on how each student seemed to be moving and when they seemed
to understand the photosynthesis content.

During these co-watching sessions, researchers paused video-playing when
observing notable events, such as instances of students’ laughter or moments
when a student facilitated the modeling of others. They then discussed the sig-
nificance of these moments, including whether students demonstrated evidence
of learning, what evidence was, and how the learning was mediated. Additionally,
they discussed moments when IA supported understanding of the learning pro-
cess were highlighted, including moments of contextual interactions. Moments
when affect and gaze analysis could be important were also identified. For exam-
ple, students displayed different emotions: one student (pseudonym Rose) was
excited when the photosynthesis process was successful, while another student
(pseudonym Taylor Swift) remained very calm at these moments. One student
(pseudonym DaPaw) shifted his gaze and body away from the simulation screen
while successfully modeling. Human analysts marked those moments as interest-
ing to investigate how the AI findings might align or not with IA.

3.3 Design of Visual Timeline

By studying the IA methods applied to the embodied learning videos, it was
apparent that a contextual AI-based analysis would require documenting the
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system’s evolving state in MR, and developing algorithms for tracking and inter-
preting students’ actions and engagement in the context of the scientific process
being enacted. To visualize all of this information, we designed a visual timeline
to strategically incorporate the multimodal data and analysis methods aligned
with these requirements. It integrates data from system logs that tracked stu-
dents’ movements, including avatar shifts and interactions with objects of inter-
est in the MR scene. Another IA-driven insight was the need to understand
how system dynamics and variables, such as day-night transitions, impacted
students’ actions. Analyzing students’ engagement and focus informed the inclu-
sion of gaze, offering insights into the impact of shifts between the display screen,
teacher, and peers on subsequent student actions. Moreover, the timeline also
used facial data derived from the video analysis to capture and document stu-
dents’ emotions, acknowledging their significance for learning.

A powerful visualization driven by AI and ML algorithms can be a gateway
to recognizing and interpreting students’ individual and collective aha moments,
signaling their insights and discoveries, which in turn can be interpreted in terms
of their learning the science content. The results of our analysis had to be dis-
played in a way that merged the modalities into one visualization that should be
clear and compelling to the human researchers, while avoiding complexities and
clutter that could become tiresome. Our data visualization was initially inspired
by Clara Peni’n and Jaime Serra’s work from La Vanguardia called “Apoteosis
‘Waka Waka’” [11], which visualizes different aspects of a concert on a timeline
including lighting cues, visual effects, costumes, and lyrics; and extends Hervés
multimedia player [14].

3.4 Analysis of System Logs

The analysis of system logs served as a primary component in establishing the
nuances of student interactions and their evolution within the MR environment.
These logs serve as a temporal record, tracing the sequence of avatar changes
and movements made by students throughout the learning activity. By analyzing
them, it is possible to discern patterns and trends in how students navigate the
virtual space, interact with different elements, and transition between avatars.
Understanding the spatial and temporal aspects of students’ movements within
the learning environment played a crucial role in gauging their existing knowl-
edge and ongoing comprehension processes. Within this dataset, we extracted
timestamped information to capture three key dimensions of data to assist in
understanding students’ learning processes: (1) Students’ States: Understand-
ing which molecules students were embodying at any given time allowed us to
explore their evolving comprehension of scientific concepts much like the IA
researchers did; (2) Students’ Actions: Analyzing actions intertwined with their
embodiment of molecules was fundamental in gauging their understanding of
the photosynthesis process; (3) System State: Capturing the influencing variable
of whether the simulation was in daylight or at night and tracking students’
responses to this allowed us to discern not only if but also when they grasped
the concept that photosynthesis requires sunlight.
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3.5 Affect Detection

In this study, we analyzed students’ facial expressions in the embodied learn-
ing environment for emotion recognition. Figure 1 illustrates the process, which
involves face detection, followed by predicting continuous emotion scores on a
valence-arousal scale. These scores are then categorized into learning-centered
emotions based on Russell’s circumflex of emotions [21] and D’Mello’s dynamics
of affective states [9]. Positive emotions are assigned to the first quadrant, intense
unpleasant emotions to the second quadrant, subdued unpleasant emotions to
the third quadrant, and serene pleasant emotions to the fourth quadrant.

The system was initially configured to read input from a video file, initializing
tools for face detection, facial landmark extraction, and emotion recognition.
Notably, we fine-tuned MTCNN [28] with thresholds of 0.8 for P-Net, R-Net, and
O-Net. Additionally, we employed Dlib’s facial landmark detector to precisely
identify critical features on the face.

Fig. 1. Overview of Affect Detection Process

During the detailed frame-by-frame processing phase, each video frame was
converted from BGR to RGB color space. MTCNN scrutinized the frame for
faces, and each detected face underwent further analysis using dlib’s detec-
tor for facial landmarks. The HSEmotionRecognizer processed the face region
(enet b0 8 best afew.pt) and predicted the valance arousal values. Detailed infor-
mation about each face was recorded for every frame, forming a comprehensive
dataset for subsequent analysis. The system augmented the video with anno-
tations, marking faces with bounding boxes and indicating valence and arousal
scores, along with facial landmarks. This enriched video showcased the emotional
analysis visually. Concurrently, it compiled this data into a structured CSV file,
including the bounding boxes, valence, and arousal values. This file provided a
frame-by-frame record of the emotional metrics, supporting thorough analysis
and verification of the system’s accuracy.

Student Re-identification. We enhanced MTCNN and HSEmotion by inte-
grating a tracking algorithm that utilized CSV data containing frame numbers,
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valence, arousal, and bounding box coordinates to re-identify students across
video frames. Operating at 30 fps, the algorithm maintained spatial continu-
ity, computed bounding box centers, assigned unique IDs, and predicted posi-
tions using Euclidean distances within a set threshold. A memory component
improved accuracy by compensating for minor face displacements and main-
tained tracking even with occlusions or movements. This approach achieved
a 91% re-identification success rate, with manual adjustments addressing the
remainder.

For gaze tracking and emotion categorization, the CSV data post-re-
identification enabled the transformation of continuous emotion metrics into
discrete states, processed in 5-s intervals to align with the frame rate. Emotions
sustained over 150 frames were deemed significant, except for delight, which
required 60 frames. Minimal facial expressions were labeled as “Engaged Con-
centration,” consistent with educational emotion research [9]. Emotions were
classified into Engagement, Boredom, Confusion, Frustration, and Delight, or
by valence-arousal quadrants, with 11 labels in total, including ‘NotFound’ and
‘NoDominantEmotion’ for cases where faces were not visible (see Fig. 1).

3.6 Gaze Estimation

Fig. 2. Gaze Estimation Pipeline.

In GEM-STEP, we adopted a computer-vision approach for gaze estimation to
observe student and teacher focus within the classroom while accommodating
our logistical constraints. We encoded objects of interest (OOI) to map where
participants were looking during the embodied activity, opting for a method
that translated basic gaze data into more meaningful insights for our analysis.
This encoding process, however, faced challenges due to the spatial nature of
our learning context. To address this, we elevated our gaze analysis to a 3D
perspective through room reconstruction, which provided a more accurate and
physics-based approach for OOI encoding (Fig. 2).

For the 3D room reconstruction, we utilized depth estimation to transform
monocular video frames into three-dimensional space – given that our camera
was stationary. We employed ZoeDepth [4], a model trained on both indoor
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(NYU Depth v2) and outdoor (KITTI) datasets, for its superior depth estima-
tion capabilities. NYU Depth v2 and KITT datasets contain 1449 and 12929
RGB and depth image pairs, respectively. Through the combination of these
two datasets, ZoeDepth achieves state-of-the-art (SOTA) performance in terms
of metric (absolute) depth estimation – making it an excellent choice for recon-
structing the room. This process allowed us to reconstruct each room frame-by-
frame, aiding in the identification of both static (e.g., displays) and dynamic
(e.g., students and teachers) OOIs. For our static OOIs, we labeled these using
Vision6D, a 3D annotation tool.

To minimize computational demands, we initially tracked objects in 2D
before mapping them into a three-dimensional context. Utilizing face bound-
ing boxes and cropped images produced by the MTCNN and a re-identification
algorithm, we then applied the L2CS-Net [1], a computer-vision model designed
for gaze estimation, to calculate 3D gaze vectors for each identified face within
the GEM-STEP environment. These vectors, determined by pitch and yaw mea-
surements, were transformed into a 3D rotation matrix, denoted as R. By tak-
ing the XY centroids of the face bounding boxes and pairing them with depth
information to derive a Z value, we completed the 3D translation vector t. The
synthesis of R and t yielded a fully encompassing transformation matrix RT ,
encapsulating the origin and direction of a participant’s gaze.

Armed with the RT matrix over successive frames, we tracked the stu-
dents’ spatial positions and gaze directions in three dimensions over time. To
account for moving objects, i.e., the students, we devised human bounding boxes
anchored by the gaze’s origin point, the floor’s plane, and a predefined width.
By employing gaze ray tracing-extending the gaze vector until it intersects with
an object of interest (OOI)-and considering the room’s 3D layout, we were able
to encode OOIs based on where participants looked. Each frame resulted in a
determined OOI for every participant, with null values assigned when faces were
undetectable or gazes missed all OOIs. These OOI encodings were then compiled
over 5-s intervals. Within these intervals, we adopted a mode-based pooling tech-
nique to identify and select a predominant OOI for each participant’s dataset
throughout the given time window.

4 Results and Discussion

In our exploration of how events of IA and AI inform each other, we evaluated
how our visual timeline, shown in Fig. 3, presented findings that were consis-
tent with the interaction analysis that shaped its construction. For each video
analyzed by human researchers through IA, individual student timelines were
produced, allowing for new rounds of IA. The video and timeline are executed
together and it is possible to navigate to specific events and zoom in/out to
control the granularity of the data being shown, allowing for a more detailed or
higher-level IA analysis.

The processing of system logs provided a visual representation of the
molecules embodied by students in the photosynthesis process. This addressed

https://github.com/ykzzyk/vision6D
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Fig. 3. Visual timeline of multimodal data for IA

one of the main concerns of researchers, the ability to identify components that
informed students’ understanding of the science model over time. By observing
the molecules each student embodied and how long it took them to transition
correctly through the model, researchers could pinpoint segments where students
struggled and would benefit from scaffolds/feedback. Another aspect that inter-
ested researchers was how students moved in the real world and, subsequently,
in the simulation. Changes in movement caused by attention shifts provide us
with valuable information on how a student may be learning by interacting with
the environment. This provides important links between the cognitive and socio-
cultural aspects of learning. Since the embodied activity required them to move
around and explore the virtual environment to understand how molecules were
transformed, showing visual representations of the objects of interest and when
students moved towards them informed if and when students figured out the
correct actions that caused transformations. Furthermore, the logs also informed
system transitions of day and night time, pinpointing moments to investigate if
students grasped how light affects photosynthesis.

Currently, the temporal gaze information, which determined when and where
students were looking, is plotted on the timeline, which provides cues for
researchers to further investigate attention shifts. Gaze in this context was cal-
culated and discretized to inform when students were looking at the display
screen, the teacher, or one of their peers. Furthermore, such gaze behaviors cou-
pled with conversational information (which we did not analyze in this paper)
provide important information about student difficulties, e.g., if they were strug-
gling with a specific transition, or if they received advice but chose to ignore it.
In addition, our analysis and timeline representation allows us to study if gaze
shifts were triggered by affect changes during the activity. Such patterns allow
researchers to investigate more deeply relationships between students’ affective
states, their attention, how these might relate to previous actions, and how they
inform future actions taken. The affect data revealed important insights. Delight
was notably high among students during play, a rarity in traditional classrooms.
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A student who grasped the concept often felt frustrated when their peers ignored
their suggestions. In the collaborative part, a knowledgeable student frequently
felt sad (a subdued unpleasant emotion), seemingly due to a lack of cooperation
in progressing tasks, and this was accompanied by periods of boredom. However,
there were cases where once actively engaged in problem-solving, many students
exhibited increased positive emotions.

Temporal data presentation was important for pattern recognition. Visual
comparison of timelines from three students on the first day revealed disparate
initial interactions with the model. DaPaw1 required approximately five min-
utes for the first transition, Rose two minutes, and Taylor Swift a mere 12 s.
IA corroborated these findings, noting DaPaw’s initial hesitation and suggest-
ing Taylor Swift’s rapid transition could be explained by her prior scientific
understanding, which she used to direct her peers. Moreover, our ML analysis
generated aggregated metrics of student learning and performance. Rose com-
pleted the photosynthesis cycle thrice, with 15 successful molecule transitions.
Overall, students spent 33% of their initial time on carbon dioxide transforma-
tions and 21% of their initial time on water molecule transitions. Taylor Swift
seamlessly navigated all molecule transitions, completing the cycle eight times,
with each of the 44 successful transitions taking under 20 s. Conversely, DaPaw
completed the cycle once, with seven successful transitions, dedicating 66% of
the time to discern the correct action for the water molecule.

Following the initial evaluation, a group of 10 researchers started weekly
collaborative sessions to further refine the tool using a user-centered approach.
This process emphasized its capacity to highlight relevant segments for subse-
quent detailed examination that would have been hard to discern otherwise. The
assessment revealed that representing students’ state transitions as molecules
they embody within the simulation, coupled with their navigational choices to get
to parts of the screen that supported the transitions facilitated comprehension
by mirroring the simulation’s visual content. The tool was enhanced to permit
selective modality display aligned with the investigators’ specific research queries
to mitigate cognitive overload from excessive on-screen data. Additionally, the
tool was augmented to support the exploration of cooperative student dynam-
ics by enabling simultaneous data visualization from multiple participants. In
recognition of the activity’s embodied nature, a functionality to alter the video’s
camera perspective in conjunction with the timeline also was integrated.

5 Conclusion and Future Work

Our multimodal timeline to support IA marks a significant advance in examining
student interactions within mixed-reality learning settings. Leveraging machine
learning, the tool captures and displays data that enriches IA, suggesting its
utility in advancing IA research. It facilitates a transition from purely quali-
tative to mixed methods analysis by integrating quantitative data on student
performance and behavioral trends over time.
1 None of the names used are the students’ true names.
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Moving forward, the tool can be extended to accommodate different sci-
ence models, broadening its applicability across diverse educational contexts,
whether in embodied or computer-based learning environments and including
modalities relevant to each context. An ongoing weekly meeting of IA sessions
is currently assessing the timeline’s usefulness and informing the inclusion of
additional modalities, such as conversations that offer a more comprehensive
understanding of communication dynamics. The iterative nature of IA, cou-
pled with the versatility of the multimodal timeline, positions it as a dynamic
framework that can evolve alongside emerging research questions and technolog-
ical advancements, thereby fostering continued advancements in the field of IA
applied to learning environments. We also hope to investigate how the timeline
can be tailored towards the teachers and how the findings can be used to assist
students during the learning activities.
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