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Abstract

Active Speaker Detection (ASD) aims to identify who is

speaking in each frame of a video. Solving ASD involves

using audio and visual information in two complementary

contexts: long-term intra-speaker context models the tem-

poral dependencies of the same speaker, while short-term

inter-speaker context models the interactions of speakers

in the same scene. Motivated by these observations, we

propose LoCoNet, a simple but effective Long-Short Context

Network that leverages Long-term Intra-speaker Modeling

(LIM) and Short-term Inter-speaker Modeling (SIM) in an in-

terleaved manner. LIM employs self-attention for long-range

temporal dependencies modeling and cross-attention for

audio-visual interactions modeling. SIM incorporates convo-

lutional blocks that capture local patterns for short-term inter-

speaker context. Experiments show that LoCoNet achieves

state-of-the-art performance on multiple datasets, with 95.2%

(+0.3%) mAP on AVA-ActiveSpeaker, 97.2% (+2.7%) mAP

on Talkies, and 68.4% (+7.7%) mAP on Ego4D. Moreover,

in challenging cases where multiple speakers are present,

LoCoNet outperforms previous state-of-the-art methods by

3.0% mAP on AVA-ActiveSpeaker. The code is available at

https://github.com/SJTUwxz/LoCoNet_ASD.

1. Introduction

Real-world interactive computer vision systems need to
recognize not only the physical properties of a scene, such as
objects and people, but also the social properties, including
how people interact with each other. One fundamental task
is identifying, at any moment, who is speaking in a complex
scene with multiple interacting individuals. This Active
Speaker Detection (ASD) problem [2, 3, 11, 18, 24, 25, 29,
32, 35, 39, 40, 42, 53, 58, 59, 62, 65, 70] is crucial for many
real-world applications like human-robot interaction [33,
61, 66], speech diarization [14, 16, 20, 21, 68, 73], video
re-targeting [6, 44, 74], multimodal learning [4, 7, 17, 19,
28, 30, 34, 34, 46, 49, 50, 50, 54, 55, 55, 60, 63], etc.

How can we tell whether someone is speaking? Visual
cues such as movements of the mouth and eyes, when cor-
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Figure 1. Comparison of ASD methods in terms of mean average

precision (mAP) on the AVA-ActiveSpeaker dataset, average-

FLOPs, and number of parameters. Note that average-FLOPs
is the computation required to predict the speaking activity of one
face crop.

related with audio signals, often offer direct and primary
evidence. The inter-modality synchronization over a longer
audio-visual segment also provides complementary infor-
mation [2, 39, 48, 65]. The first row of Fig 2 shows how
Long-term Intra-speaker Modeling helps discern this primary
indicator by observing one person for a long time span.

However, in a complex video, a person’s face is often
occluded, turned away, off-frame, or very small, posing
challenges for directly inferring speaking activity from visual
cues. Fortunately, valuable evidence about the target speaker
can be gleaned from the behaviors of others in the scene [61].
The second row of Fig 2 shows an example: from the left
m-frame video segment, even with a partially visible face
of the man on the right, it is easy to see that he is speaking
at Ti+m because the woman in the middle turns her head
(Ti+1 ! Ti+m) and neither of the other two people open
their mouths at Ti+m. Notably, the woman’s gaze towards
the man on the right at Ti+m does not provide substantial
information on whether the man is speaking at a distant time
Tj+1. Therefore, we argue that Inter-speaker Modeling is
sufficient in short-term temporal windows, since activities
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Figure 2. Long-term Intra-speaker Modeling (LIM), Short-term Inter-speaker Modeling (SIM), and comparison of LoCoNet with

existing long-term parallel-inference ASD methods. Red boxes show inactive speakers and green boxes show active speakers. LIM uses
the features of a single speaker across all frames to capture long-term relationships. SIM models the relationships of speakers within a
short m-frame segment to capture the conversation pattern. The speaker context modeling of the existing long-term parallel-inference ASD
methods [15, 45, 65] only focuses on LIM, while LoCoNet models LIM and SIM to learn both contexts.

of speakers within a short time range are more correlated
than speakers separated farther away in time. Cognitive
research [43, 57] also suggests that speaker-listener coupling
is more coordinated in nearby frames.

To solve this per-frame video classification task, existing
ASD methods can be put into two categories: 1) parallel-

inference methods [15, 40, 45, 65, 75] take all frames as
input and predict the results for all frames in one pass. 2)
sequential-inference methods [2, 3, 39, 42, 48] take a short
clip as input and only give prediction result of the center
frame. Thus, a sliding window strategy is often adopted
to get results for all the frames. As depicted in Fig. 1, the
average-FLOPs of parallel-inference methods [15, 45, 65] to
predict the speaking activity of one face crop are often much
lower than sequential-inference methods [2, 3, 39, 42, 48].
However, most parallel-inference methods [15, 45, 65, 72]
that take long video clips as input do not consider multi-
speaker context, which could cause performance degradation
as speakers’ interaction is crucial for ASD task.

With the above issues in mind, we propose LoCoNet, an
end-to-end Long-Short Context Network. Long-term Intra-
speaker Modeling (LIM) employs a self-attention mecha-
nism [67] for long-range dependencies modeling and a cross-
attention mechanism for audio-visual interactions. Short-
term Inter-speaker Modeling (SIM) incorporates convolu-
tional blocks to capture local conversational patterns. More-

over, while most ASD methods use vision backbones for
audio encoding [2, 3, 42, 65] due to high temporal down-
sampling in most audio backbones [12, 23, 27, 38, 56], we
propose VGGFrame to leverage pretrained AudioSet [22]
weights to extract per-frame audio features. We also use a
parallel inference strategy for more efficient video processing.

Our extensive experiments validate the effectiveness of our
approach. On the AVA-ActiveSpeaker dataset [58], LoCoNet
achieves 95.2% mAP, outperforming previous state-of-the-art
method SPELL+ [48] by 0.3% with 38⇥ less computational
cost. Furthermore, LoCoNet achieves 97.2% (+2.7%) mAP
on Talkies [42] and 68.4% (+7.7%) mAP on Ego4D’s Audio-
Visual benchmark [24]. LoCoNet works especially well in
challenging scenarios such as with multiple speakers or small
speaker faces.

2. Related Work

Most recent techniques for ASD can be characterized in
terms of three salient dimensions: frame-level processing
strategy that determines the inference speed of the method,
the extracted context information to enhance the feature
representations for prediction, and the training mechanisms.

Frame-level processing strategy. Given a long video, exist-
ing ASD methods employ two main strategies for generating
per-frame predictions. 1) Parallel-inference [15, 40, 45, 65]
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takes all frames of the video as input and predict the per-
frame results in one pass. Such methods are often fast, as
depicted in Fig. 1. However, they typically do not con-
sider interactions among multiple speakers. 2) Sequential-

inference [2, 3, 39, 42, 48] predicts one frame by sampling a
short clip centered around that frame. They need a sliding
window strategy to produce predictions for all frames, result-
ing in slower inference speed. Our proposed LoCoNet adopts
a parallel inference strategy, combining fast inference speed
with effective consideration of speakers’ interactions.
Context Modeling. ASD benefits from both intra-speaker
and inter-speaker contexts. TalkNet [65] models long-term
temporal intra-speaker context to distinguish speaking and
non-speaking frames. ASC [2] employs self-attention for
long-term inter-/intra-speaker modeling, and an LSTM for
long-term temporal refinement. ASDNet [39] aggregates
short-term features of target speaker and background speak-
ers at nearby frames, and leverages Bidirectional GRU [13]
for long-term temporal modeling. Light-ASD [45] also uses
Bidirectional GRU for temporal modeling. MAAS [42],
EASEE [3], and SPELL [48] use Graph Convolutional Net-
works [37, 69] to model relationships between the visual
nodes and audio nodes of context speakers. TS-TalkNet [31]
explores the use of reference speech to assist ASD.

In our proposed LoCoNet, we introduce Long-Short
Context Modeling (LSCM), composed of Long-term Intra-
speaker Modeling (LIM) and Short-term Inter-speaker Model-
ing (SIM) in an interleaved manner. LIM captures long-term
temporal dependencies with self-attention, and audio-visual
interactions with cross-attention. SIM incorporates inter-
speaker convolutional blocks to learn speakers’ interactions.
Training mechanisms. Training on long videos can be
memory-intensive, prompting some prior work [2, 39, 42,
48] to adopt a multi-stage training mechanism. In this
process, a short-term feature extractor is initially trained,
and subsequently, a long-term context modeling network is
trained on the features extracted by the pre-trained feature
extractor. TalkNet [65], EASEE [3], UniCon [75], light-
ASD [45], ASD-transformer [15], and ADENet [72] use
end-to-end training, fully leveraging the learning capabilities
of the model. Similarly, our proposed LoCoNet is also
trained end-to-end, enabling joint optimization of audio-
visual feature representation learning and context modeling.

3. LoCoNet

Given the stacked visual face track V 2 RS⇥T⇥H⇥W⇥1 and
the audio Mel-spectrograms A 2 R4T⇥M , LoCoNet aims to
predict the speaking activity R̂ 2 RT of the target person in
each frame. S is the number of speakers including the target
speaker and S � 1 context speakers in the same scene. T

is the temporal length of the face track. H and W are the
height and width of each visual face crop. M is the number

Inter-speaker
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Audio 
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predictions
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Audio / Visual 
Self-Attention

Audio-Visual 
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Short-term Inter-speaker Modeling (SIM)
Long-Short Context Modeling (LSCM)

Figure 3. An overview of LoCoNet. Given a sequence of face tracks
and audio of a target speaker, we sampleS�1 speakers from all other
people appearing in the scene and stack their face crops as visual
input. Our method consists of 3 components: an audio encoder, a
visual encoder, and a Long-Short Context Modeling module (LSCM)
with N blocks, where each block includes an attention-based Long-
term Intra-speaker Model (LIM) and a convolution-based Short-
term Inter-speaker Model (SIM) for speaker interaction. LIM
involves Audio-Visual Self-Attention for long-term intra-speaker
dependencies and Audio-Visual Cross-Attention for audio-visual
interaction. The final output is used to classify speaking activity of
the target person across all frames.

of frequency bins of the audio Mel-spectrograms.
As shown in Fig 3, LoCoNet consists of a visual en-

coder, an audio encoder, and a Long-Short Context Modeling
(LSCM) module with N LSCM blocks. We explain each
module in more detail below.

3.1. Encoders

Visual encoder. Given the face crop track Vi 2 RT⇥H⇥W⇥1

of speaker vi, the visual encoder yields a time sequence of
visual embeddings fvi 2 RT⇥C

, i = 1, ..., S. The stacked
visual embeddings of the target speaker and all the sampled
context speakers fv 2 RS⇥T⇥C represent temporal context
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Figure 4. An illustration of our proposed audio encoder VGGFrame.
We apply a deconvolutional layer to upsample the output feature
of block-4. The output features of block-3 (before max pooling)
and deconvolutional layer are concatenated and transformed to
per-frame output features of shape T ⇥ C.

of each speaker independently.
Audio Encoder. The audio encoder takes audio Mel-
spectrograms A 2 R4T⇥M as input. We need frame-level au-
dio features for per-frame classification, but most pretrained
audio encoders [12, 23, 27, 56] are for audio classification
and thus have a high degree of temporal downsampling. To
solve this problem, we propose VGGFrame as the audio
encoder, which can fully utilize the pretrained VGGish [27].
The architecture of VGGFrame is illustrated in Fig 4. We
remove the temporal downsampling layer after block-4 and
add a deconvolutional layer to upsample the temporal di-
mension. We concatenate the intermediate features with the
upsampled features to extract a hierarchy of representations.
VGGFrame outputs the audio embeddings fai 2 RT⇥C . To
align with S speakers, we repeat fai S times to produce the
audio embedding fa 2 RS⇥T⇥C .

3.2. Long-Short Context Modeling

The visual and audio embeddings, derived independently
by the visual and audio encoders, lack consideration of
intra/inter-speaker context. Our Long-Short Context Mod-
eling (LSCM) is designed to enhance these embeddings
by learning long-term intra-speaker and short-term inter-
speaker context in an interleaved manner. As shown in Fig. 3,
LSCM consists of N blocks, each incorporating a Long-term
Intra-speaker Modeling (LIM) module and a Short-term
Inter-speaker Modeling (SIM) module consecutively. LIM
limits the model to look at the same speaker across all frames,
encouraging it to learn speaker-independent patterns from
audio and visual interactions. In contrast, SIM constrains the
model to examine all speakers in nearby frames and capture
local interactions. Such inductive bias is instrumental in
enhancing the model’s capacity to glean valuable insights
from these contextual dimensions.

LSCM inputs audio embeddings fa and visual embed-
dings fv , and produces context-aware embeddings uN

a
, u

N

v
2

RS⇥T⇥C . These embeddings are concatenated to yield the
final embeddings uN = concat(uN

a
, u

N

v
). Via a linear layer,

u
N is used to predict the speaking activities R̂ 2 RT of the

target person. The computation process at each LSCM block

l is detailed below.

3.2.1 Long-term Intra-speaker Modeling (LIM)

LIM consists of two submodules: (i) Audio/Visual Self-

Attention models an individual person’s behavior over a
longer time period, and (ii) Audio-Visual Cross-Attention

learns the interaction between audio and visual embeddings.
Audio/Visual Self-Attention. Since the model needs large
capacity and to learn long-term dependencies, we employ the
attention mechanism [67] with a Transformer layer applied
on the temporal dimension to achieve long-term modeling,

ũ
l

v
= LN(MHA(ul�1

v
, u

l�1
v

, u
l�1
v

) + u
l�1
v

), (1)
ũ
l

v
= LN(MLP(ũl

v
) + ũ

l

v
), (2)

where u
0
v
= fv, u0

a
= fa, ul�1

v
2 RS⇥T⇥C are the output

visual embeddings of the previous LSCM block, LN(·) de-
notes Layer Normalization [5], MHA(q, k, v) is multi-head
attention [67] with query q, key k, value v, and MLP is a
multi-layer perceptron. Audio Self-Attention is applied in
the same way to u

l�1
a

to obtain the audio output ũl

a
.

Audio-Visual Cross-Attention. The visual and audio
streams are so far processed separately. To enhance visual
features with audio and vice versa, we use an Audio-Visual
dual Cross-Attention,

bul

v
= LN(MHA(ũl

v
, ũ

l

a
, ũ

l

a
) + ũ

l

v
), (3)

bul

v
= LN(MLP(bul

v
) + bul

v
), (4)

where bul

v
are audio-enhanced visual embeddings. Visual-

enhanced audio embeddings bul

a
are obtained in the same way

via Audio-Visual Cross-Attention given ũ
l

a
and ũ

l

v
.

3.2.2 Short-term Inter-speaker Modeling (SIM)

For a given moment in the video, the speaking activity of
a target person is more coordinated with other speakers
in closer frames [57], so the model should capture local
temporal inter-speaker relationships. To do this, we employ
a small Inter-speaker Convolutional Network,

u
l

v
= MLP(LN(Convs⇥k(bul

v
))) + bul

v
, (5)

u
l

a
= MLP(LN(Convs⇥k(bul

a
))) + bul

a
, (6)

where visual embeddings ul

v
2 RS⇥T⇥C and audio embed-

dings ul

a
2 RS⇥T⇥C are the output of the l-th LSCM block

that will be passed to the next block. k is the temporal
length of the receptive field and s is the number of speakers
considered. Explicitly modeling inter-speaker context in
nearby frames enables cross-frame inter-speaker information
exchange. Our SIM module with a short temporal receptive
field can help capture local dynamic patterns in interactions.
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3.3. Training and Inference

Following [1, 10, 64], we train our model with multiple
supervisions utilizing u

N 2 RS⇥T⇥2C (Sec. 3.2) and u
i

derived from each intermediate block of LSCM. For each u
i,

a fully-connected (FC) layer is applied, yielding prediction
results R̂i 2 RT corresponding to the target speaker for each
frame. All FC layers share their parameters. The overall
loss function is L =

P
N

i=1 CrossEntropy(R̂i
, R) where R

is the ground-truth. During inference, we can reduce the
computation by a factor of S by reusing speakers’ features
extracted by the visual encoder, which uses the most FLOPs.

3.4. Implementation details

Following [65], our visual encoder consists of a 3D con-
volutional layer, ResNet-18 [26], and a visual temporal
convolution network (V-TCN) [41]. Our audio encoder is the
proposed VGGFrame initialized with VGGish [12] weights
pretrained on AudioSet [22]. We sample S = 3 speakers
and T = 200 frames. In SIM, s is set to 3, which is the same
as S, and k is set to 7 frames. The face crops are resized
to 112 ⇥ 112. Visual augmentation includes randomly re-
sized cropping, horizontal flipping, and rotation. For audio
augmentation, another audio signal is randomly chosen from
the rest of the training set and added as noise to the target
audio. We train LoCoNet with Adam [36] for 25 epochs on
4 RTX6000 GPUs with batch size 4 using PyTorch [51]. The
learning rate is 5⇥ 10�5 and reduced by 5% each epoch.

4. Experimental Setup

4.1. Datasets

AVA-ActiveSpeaker [58] is a standard benchmark for ASD,
consisting of 262 videos from Hollywood movies with 3.65
million frames and 5.3 million face crops. Following [3, 15,
31, 45, 47, 48], we evaluate on the validation set.
Talkies [42] is an in-the-wild ASD dataset with 23,507 face
tracks extracted from 421,997 labeled frames. It focuses on
challenging cases with more speakers, diverse actors and
scenes, and more off-screen speech.
Ego4D [24]’s Audio-Visual benchmark has 3,670 hours
of egocentric video of unscripted daily activities in many
environments. It includes many challenges that complement
exocentric benchmarks, including unusual viewpoints and
speakers who are off-screen.

4.2. Evaluation Metric

Following [2, 3, 39, 42, 65], we use the official ActivityNet [9]
evaluation tool to compute mean average precision (mAP) and
evaluate on the AVA-ActiveSpeaker [58]. We also compute
AUC [8] as another evaluation metric using Sklearn [52].
We use mAP to evaluate on Talkies [42] and Ego4D [24].

Method Vid. Enc. Params
average-

mAP AUC
FLOPs

Multi-Stage

ASC [2] R-18 [26] 23.0M 1.0G 87.1 -
MAAS [42] R-18 23.0M 1.6G 88.8 -
ASDNet [39] 3DRNext-101 51.0M† 13.2G† 93.5 -
SPELL [48] R-18+TSM 23.5M† 8.7G† 94.2 -
SPELL+ [48] R-50+TSM 51.23M† 19.6G† 94.9 -

End-to-End

UniCon [75] R-18 23.8M 3.0G† 92.2 97.0
TalkNet [65] R-18+VTCN 15.7M 0.51G 92.3 96.8
ASD-Trans [15] R-18+VTCN 15.0M 0.55G 93.0 -
EASEE [3] 3D R-50 26.8M† 4.3G† 94.1 -
Light-ASD [45] (2+1)D Conv 1.02M 0.2G 94.1 -
TS-TalkNet [31] R-18+VTCN 36.8M 2.3G 93.9 -
LoCoNet(Ours) R-18+VTCN 34.3M 0.51G 95.2 98.0

Table 1. Comparison with SOTAs on AVA-ActiveSpeaker.
3DRNext denotes 3D ResNext [71]. R denotes 2D ResNet [26].
average-FLOPs represents the averaged FLOPs needed to process
a single face crop. † denotes our estimates based on their visual
encoders. Most methods incur higher costs by extracting features
for each frame through stacking multiple adjacent frames (i.e., 11 in
SPELL). LoCoNet achieves the highest mAP with modest FLOPs.

5. Results and Analysis

We first compare the proposed method LoCoNet with previ-
ous state-of-the-art methods on multiple datasets and chal-
lenging scenarios. Then we validate our hypotheses of
long-term intra-speaker and short-term inter-speaker mod-
eling. Finally, following [2, 39, 45, 65, 75], we conduct
extensive ablations on each component of LoCoNet (on
AVA-ActiveSpeaker [58] unless otherwise noted).

5.1. Comparison with State-of-the-Art

In this section, we compare our approach with state-of-the-art
methods on the three datasets.
AVA-ActiveSpeaker. From Table 1, end-to-end methods
exhibit fewer FLOPs while maintaining competitive mAP
compared to multi-stage methods. The higher FLOPs of
multi-stage methods stem from their sequential-inference
processing strategy (Sec. 2) of stacking multiple neighboring
frames centered at time t. LoCoNet achieves a 95.2% mAP,
surpassing the best-performing end-to-end ASD method
Light-ASD [45] by 1.1% while using modest average-FLOPs.
Moreover, LoCoNet outperforms previous state-of-the-art
multi-stage method SPELL+ [48] by 0.3% with about 32%
fewer parameters and over 38⇥ fewer average-FLOPs.
Talkies set. We evaluate LoCoNet with other methods under
three training settings: (i) AVA-ActiveSpeaker, (ii) Talkies,
and (iii) pretrained on AVA-ActiveSpeaker and finetuned on
Talkies. As shown in Table 2, LoCoNet outperforms EASEE
by 1.7%, 2.5%, and 2.7% in these three settings, respectively.
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Method
Train Set

mAP

AVA Talkies (%)

MAAS [42] 3 7 79.7
EASEE [3] 3 7 86.7
LoCoNet 3 7 88.4

EASEE [3] 7 3 93.6
light-ASD[45] 7 3 93.9

LoCoNet 7 3 96.1

EASEE [3] 3 3 94.5
LoCoNet 3 3 97.2

Table 2. Comparison on Talkies dataset under three training
settings: train on AVA-ActiveSpeaker alone, train on Talkies alone,
or train on AVA-ActiveSpeaker and finetune on Talkies.

Method mAP (%)

TalkNet [65] 51.7
Challenge Winner [47] 60.7

LoCoNet 68.4

Table 3. Comparison on Ego4D dataset. The challenge winner
is not specifically optimized for ASD but the large improvement
(+7.7%) still shows the strong generalizability of LoCoNet. The
result of TalkNet was obtained by us with their released code.

It also outperforms light-ASD by 2.2% when both models
are trained on Talkies only.
Ego4D dataset. We evaluate our method on Ego4D Audio-
Visual benchmark [24]. LoCoNet achieves 68.4% mAP, out-
performing TalkNet and Challenge Winner [47] (SPELL [48]-
based) by 16.7% and 7.7% respectively. Egocentric videos,
characterized by constant camera motion, lower clarity, and
more complex scenes compared to exocentric videos, demon-
strate the potential of the proposed Long-Short Context
Modeling in real-life scenarios. Our approach benefits from
capturing both multi-speaker interaction and single-speaker
behavior.

5.2. Challenging Scenario Evaluation

Quantitative analysis. We report the performance of Lo-
CoNet on AVA-ActiveSpeaker under different face sizes: (i)
Small: faces with width less than 64 pixels; (ii) Medium:
faces with width between 64 and 128 pixels; (iii) Large: faces
with width larger than 128 pixels. We also study the effect
of the number of visible faces in a video frame (1, 2, or 3).

The results, along with the portions of each category, are
shown in Tables 4 and 5 respectively. LoCoNet consistently
performs the best across all scenarios, exhibiting the most
significant improvement in the challenging multi-speaker
case: +3.0% for 3 faces. This suggests that our method more
effectively models both the target speaker’s speaking pattern
and the interactions of context speakers, allowing accurate

Method
Face Size

Small
(18%)

Medium
(30%)

Large
(52%)

ASC [2] 56.2 79.0 92.2
MAAS [42] 55.2 79.4 93.0
TalkNet [65] 63.7 85.9 95.3
ASDNet [39] 74.3 89.8 96.3
EASEE [3] 75.9 90.6 96.7

light-ASD [45] 77.5 91.2 96.5
LoCoNet 77.8 93.0 97.3

Table 4. Results as a function of face size. LoCoNet achieves the
highest mAP among all face sizes.

Method # Faces
1

(45%)
2

(33%)
3

(11%)

ASC [2] 91.8 83.8 67.6
MAAS [42] 93.3 85.8 68.2
TalkNet [65] 95.4 89.6 80.3
ASDNet [39] 95.7 92.4 83.7
EASEE [3] 96.5 92.4 83.9

light-ASD [45] 96.2 92.6 84.4
LoCoNet 97.0 94.6 87.4

Table 5. Results as a function of visible faces in the scene. Larger
improvements are observed on more challenging cases (i.e., 3 faces).

inference of the speaking activity of the target person.

Qualitative analysis. Fig 5 visualizes the results of Lo-
CoNet and TalkNet [65] on AVA-ActiveSpeaker [58] with
the groundtruth labels. The video on the left shows four
visible speakers talking, posing a challenge in distinguishing
the active speaker amid multiple discussions in the same
scene. LoCoNet accurately locates the active speakers in this
case, whereas TalkNet fails to recognize some of them. The
first two columns of the video on the right shows a woman
with a very small visible face as the active speaker, while
the man with a large visible face is not speaking. TalkNet
fails to locate the active speaker while LoCoNet succeeds.
By combining long-term intra-speaker context to compare
the speaking pattern of each individual and short-term inter-
speaker context to examine the conversations, our approach
better overcomes this challenging speaking scenarios. How-
ever, in the last column, both methods fail to recognize
the active speaker at the back. This scenario is especially
challenging as the two active speakers are in separate conver-
sations with one being far less salient than the other, making
it difficult to infer the speaking activity of the less salient
speaker.
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Figure 5. Results comparison of LoCoNet and TalkNet on challenging scenarios of AVA-ActiveSpeaker. Red boxes denote not-active
speaker. Green box denote active speaker. Orange circles refer to false predictions. The video on the left shows a multi-people conversation
with four speakers, and separate conversation of two. The video on the right shows an active speaker with a small face. Both scenes are
challenging, and LoCoNet predicts accurately in most cases.

5.3. Attention visualizations of LIM and SIM

We next visualize the effectiveness of Long-term Intra-
speaker Modeling (LIM) and Short-term Inter-speaker Mod-
eling (SIM). The left part of Fig. 6 visualizes the attention
weights across different frames of a single speaker in LIM.
It is evident that speaking and non-speaking activities are
distinctly separated, with clear boundaries when speaking
activities change. This verifies that LIM contributes to ac-
curate speaking activity detection. The right part of Fig. 6
shows the portions of information (measured by L2-norm, as
convolutions are used for SIM) drawn by the target speaker
at target frame from all speakers at nearby frames (and in-
formation flows with very small portions are not shown).
The woman on the left gradually turns her face to the target
speaker, which is the most indicative sign that the target
speaker has started speaking. The distribution of information
flow reveals that SIM infers from the behaviors of context
speakers, assigning more attention to the woman on the left.

5.4. Context Modeling Analysis

Does Intra-speaker Modeling require long-term? We
train LoCoNet by keeping the number of speakers S as 1,
and varying the temporal length of input frames T from 20
to 400. Table 6 indicates that the network performs worst
when trained with the shortest video segments of 20 frames
(0.8 sec). Performance improves as video segments become
longer, with a 5.0% mAP increase at 100 frames (4 sec)
and an additional 0.4% at 200 frames. This underscores the
importance of long-term temporal context in intra-speaker
modeling, aligning with findings from TalkNet [65] and
ASC [2] that long-term temporal context provides better
evidence of a speaking episode. We found 200 frames to be
a good balance between performance and memory cost.

Is Short-term Inter-speaker Modeling Sufficient? We first
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Figure 6. Visualization of LIM and SIM. Left: attention weights
of one speaker in LIM, showing the ability to capture long-term
intra-speaker context. Right: to predict the speaking activity of
the target speaker at target frame, we show the information drawn
from not-speaking target and speaking target and context speakers
at nearby frames.

# Frames 20 100 200 300 400

mAP (%) 87.8 92.8 93.2 93.2 OOM

Table 6. Temporal Length in Long-term Intra-speaker Modeling.
We set S = 1 so the context is intra-speaker only.

Speakers 1 2 3

mAP (%) 93.2 94.6 95.2

Table 7. Number of Speakers S in Short-term Inter-speaker
Modeling. We set the number of frames T to 200.

validate the importance of inter-speaker context. Keeping
the temporal length at 200 frames, we vary the number of
speakers S from 1 to 3. Larger S values were not considered
because > 99% of videos in AVA-ActiveSpeaker [58] have
at most 3 speakers in the same scene. Table 7 demonstrates
that performance increases with more speakers included in
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Receptive Field 1 7 15 31 101

GFLOPs 0.28 0.98 1.93 3.82 12.1

mAP(%) 94.5 95.2 95.2 95.0 94.9

Table 8. Temporal Receptive Field k in SIM, indicating how many
neighboring frames each speaker can explicitly query on in the SIM
module. S is set as 3 and T as 200.

Ablation Settings mAP
R-34 VGGFrame LIM SIM (%)

3 91.2
3 92.8
3 3 94.1
3 3 94.0
3 3 3 95.2

Table 9. Ablations on components of LoCoNet. We study
the efficacy of audio encoder (ResNet-34 or VGGFrame), Long-
term Intra-speaker Modeling (LIM) and Short-term Inter-speaker
Modeling (SIM). LIM and SIM are stacked 3 times if applied.

training. This supports our hypothesis that modeling multiple
speakers in the inter-speaker context is necessary for ASD.

Next, with S = 3, we vary the temporal receptive field
k of SIM from 1 (40 msec) to 101 (4 sec). Table 8 shows
a 0.7% performance increase when increasing k from 1
to 7, confirming our assumption that motion in short-term
inter-speaker context is more valuable than in-frame context.
Performance saturates with further increases in the receptive
field, and the computation cost increases drastically. This
reinforces our hypothesis in Sec.1 that short-term inter-
speaker modeling is sufficient.

5.5. Other Ablations

Does each component of LoCoNet help? In Table 9,
replacing ResNet-34 [26] with VGGFrame as the audio
encoder enhances mAP by 1.6%, showing the effectiveness
of an audio encoder pretrained on audio datasets compared
to a common vision encoder. With VGGFrame as audio
encoder, adding 3 Long-term Intra-speaker Modeling (LIM)
modules increases the performance by 1.3%, while 3 Short-
term Inter-speaker Modeling (SIM) modules adds 1.2%.
Both together improve mAP by 2.4%.
Convolution versus Window Self-Attention in SIM. Be-
sides Convolution, we also try Window Self-Attention to
capture local patterns for SIM (Eqn. 5). In Table 10, Con-
volution outperforms Window Self-Attention by 0.8% mAP,
highlighting the superiority of Convolution in modeling local
patterns of speakers’ interaction.
Number of blocks in LSCM. We vary the number of blocks
N in Long-Short Context Modeling (Sec. 3.2). Adding 1
block of LSCM yields a performance gain of 1.5%, showing

Design mAP(%)

Convolution 95.2

Window Self-Attention 94.4

Table 10. Ablation on designs of Short-term Inter-speaker

Modeling. We implement SIM using Convolution or Window
Self-Attention (Eqn. 5). We keep the reception field the same (i.e.,
7 frames) and stack it three times (N = 3).

N 0 1 2 3 4 5

mAP(%) 92.8 94.3 95.0 95.2 95.0 95.0

Table 11. Ablation on the number of blocks in LSCM (N ).

N = 0 refers to LoCoNet with no context modeling.

the effectiveness of LIM and SIM. Adding two more blocks
further increases by 0.7%, but results saturate at N = 3.

6. Conclusion

In this work, we observe that speaker activity can be more
efficiently inferred from long-term intra-speaker context
and short-term inter-speaker context. We thus design an
end-to-end long-short context ASD framework that uses self-
attention and cross-attention mechanisms to model long-term
intra-speaker context and a convolutional network to model
short-term inter-speaker context. With a simple backbone
network, our method achieves state-of-the-art performance
on 3 mainstream ASD benchmarks and significantly outper-
forms previous state of the art methods by 7.7% on Ego4D.
We also show that in challenging scenarios where multiple
speakers are in the same scene or speakers have small faces,
our proposed method also outperforms previous methods.
All of these results show the robustness and effectiveness of
our method. Similar to existing long-term ASD methods,
our method utilizes 8 sec of context. Future work should
study how to implement larger contexts. Additionally, en-
hancing ASD in egocentric datasets could include adding
other modalities, such as eye gaze.
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