
Citation: Pham, T.-H.; Aikins, G.;

Truong, T.; Nguyen, K.-D. Adaptive

Compensation for Robotic Joint

Failures Using Partially Observable

Reinforcement Learning. Algorithms

2024, 17, 436. https://doi.org/

10.3390/a17100436

Academic Editor: Antonio Della

Cioppa

Received: 21 August 2024

Revised: 26 September 2024

Accepted: 29 September 2024

Published: 1 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Adaptive Compensation for Robotic Joint Failures Using
Partially Observable Reinforcement Learning

Tan-Hanh Pham 1,* , Godwyll Aikins 1 , Tri Truong 2 and Kim-Doang Nguyen 1,*

1 Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
2 Department of Fundamentals of Machine Design, HCMC University of Technology and Education,

HCM City 700000, Vietnam; tri.truongquang@hcmute.edu.vn

* Correspondence: tpham2023@my.fit.edu (T.-H.P.); knguyen@fit.edu (K.-D.N.)

Abstract: Robotic manipulators are widely used in various industries for complex and repetitive

tasks. However, they remain vulnerable to unexpected hardware failures. In this study, we address the

challenge of enabling a robotic manipulator to complete tasks despite joint malfunctions. Specifically,

we develop a reinforcement learning (RL) framework to adaptively compensate for a nonfunctional

joint during task execution. Our experimental platform is the Franka robot with seven degrees

of freedom (DOFs). We formulate the problem as a partially observable Markov decision process

(POMDP), where the robot is trained under various joint failure conditions and tested in both seen and

unseen scenarios. We consider scenarios where a joint is permanently broken and where it functions

intermittently. Additionally, we demonstrate the effectiveness of our approach by comparing it with

traditional inverse kinematics-based control methods. The results show that the RL algorithm enables

the robot to successfully complete tasks even with joint failures, achieving a high success rate with an

average rate of 93.6%. This showcases its robustness and adaptability. Our findings highlight the

potential of RL to enhance the resilience and reliability of robotic systems, making them better suited

for unpredictable environments.

Keywords: deep reinforcement learning; inverse kinematics; partial observability; fault-tolerant

control

1. Introduction

Robotic manipulators are transforming industries across the board, from manufac-
turing and logistics to healthcare and agriculture. Their precision, versatility, and ability
to handle complex tasks make them indispensable in modern automation. As artificial
intelligence and sensing technologies advance, these robots are becoming increasingly
adaptable, promising even greater impact in the future. The global market for industrial
robots reached 16.5 billion USD in 2020, with manipulators being the most widely adopted
type [1].

However, like any complex system, robotic manipulators are prone to faults. These
faults can lead to performance issues, task failures, or even safety hazards. In critical appli-
cations such as medical surgery or space exploration, a malfunction could have catastrophic
consequences. For instance, incidents involving collaborative robots in automotive plants
led to temporary halts in production and raised concerns about the safety of human–robot
interactions [2]. This vulnerability underscores the importance of fault-tolerant control
(FTC) in robotic systems. FTC is crucial for ensuring continuous operation despite faults
or failures, enhancing robotic manipulators’ reliability and safety. As these machines
become more prevalent in high-stakes environments, the need for robust fault-tolerance
mechanisms becomes increasingly vital.

FTC approaches can be broadly categorized into traditional model-based methods
and emerging learning-based techniques [3,4]. Model-based FTC relies on mathematical
representations of the robotic system to detect and address faults [5]. These methods

Algorithms 2024, 17, 436. https://doi.org/10.3390/a17100436 https://www.mdpi.com/journal/algorithms



Algorithms 2024, 17, 436 2 of 16

typically employ observers or estimators to monitor performance and identify deviations
from expected behavior, signaling potential faults. While effective, they may struggle
with highly complex systems due to the need for detailed fault models [6]. In contrast,
learning-based FTC leverages machine learning algorithms to enhance fault tolerance [7].
This approach can adapt to new and unforeseen faults by learning from data, potentially
offering better scalability for complex systems. By utilizing large datasets and sophisti-
cated algorithms, learning-based methods can potentially overcome some limitations of
traditional approaches, especially in handling intricate or unexpected fault scenarios.

Learning-based FTC methods show significant potential, but their current imple-
mentation often involves layering machine learning algorithms onto existing control
systems [8–10]. These algorithms monitor system performance and adjust control actions
based on fault detection and diagnosis. This approach offers advantages in modularity,
allowing for easier updates or replacements of individual components without overhauling
the entire control system. However, this integration strategy has limitations. Response
times may be slower due to the additional communication layer between modules [11].
The system also requires extensive tuning and training for various operating conditions,
potentially limiting its adaptability. Moreover, its effectiveness can be compromised if the
underlying mathematical model of the robotic system is inaccurate.

To address these challenges, we propose an innovative end-to-end learning-based
framework for fault-tolerant control of robotic manipulators. This approach harnesses the
power of deep reinforcement learning (DRL) to create a unified, adaptive, and efficient
control system capable of dynamically handling faults. Our proposed system learns to
manage faults directly from raw sensory inputs, eliminating the need for separate fault
detection, diagnosis, and control modules.

Importantly, we frame this problem as a partially observable Markov decision process
(POMDP). In a POMDP, the agent does not have full information about the state of the
environment. This partial observability is particularly relevant in our scenario, where joint
malfunctions may occur without explicit notification. The robot must infer the state of its
joints from its observations and actions, making decisions under uncertainty.

This integration offers several advantages:

1. Unified approach: By combining fault detection, diagnosis, and control into a single
system, we potentially reduce complexity and improve response times.

2. Adaptability: The DRL agent can learn to handle a wide range of faults, including
those not explicitly modeled during training, enhancing the system’s robustness.

3. Efficiency: The direct processing of raw sensory data eliminates the need for complex
feature engineering or intermediate representations.

4. Scalability: As the complexity of the robotic system increases, the DRL approach
can potentially scale more effectively than traditional methods when given sufficient
training data and computational resources.

5. Continuous learning: The system is designed to update its policies in real time, allow-
ing for ongoing adaptation to new fault scenarios or changing operating conditions.

Our novel framework aims to push the boundaries of fault-tolerant control in robotics,
potentially offering a more robust and flexible solution for increasingly complex robotic
systems. The rest of the paper is organized as follows. Section 2 reviews the related work
on fault-tolerant control strategies and RL in robotic systems. Section 3 presents the details
of our proposed methodology, including the problem formulation, the DRL algorithm for
fault-tolerant control, and the simulation setup. Compared against the traditional method,
Section 4 illustrates the failure of inverse kinematic control when one of the joints of a
robot is broken. Section 5 describes the experimental results obtained from various fault
scenarios, demonstrating the effectiveness of our approach. Finally, Section 6 provides
concluding remarks and discusses potential future work.



Algorithms 2024, 17, 436 3 of 16

2. Literature Review

The increasing complexity and autonomy of robotic systems necessitate robust FTC
strategies to ensure reliable operation, even in the presence of faults [5]. FTC encompasses
strategies and algorithms that enable robotic systems to adapt to faults and continue op-
eration, potentially with degraded performance, rather than experiencing catastrophic
failure [12]. Faults can arise from various sources within a robotic system. Actuator faults,
including partial or complete loss of effectiveness, stuck actuators, and total actuator fail-
ures, can significantly impair a robot’s ability to execute desired movements and interact
with its environment [13]. Sensor faults, ranging from bias, noise, and drift to complete
sensor failures, can compromise a robot’s perception of its surroundings, leading to inac-
curate localization and decision making [14]. Structural faults, such as physical damage
or degradation to robot components, can induce changes in dynamic behavior, affecting
stability and control performance [15]. The core objective of FTC is to detect, isolate, and
accommodate these faults to maintain overall system stability, performance, and safety.
Broadly, FTC approaches are classified into two main categories. Passive FTC methods
leverage robust control techniques to design controllers that are inherently tolerant to a
pre-defined range of faults [16]. While not requiring explicit fault detection and isolation
(FDI), their fault tolerance capacity is often limited. Active FTC methods, on the other hand,
hinge on real-time FDI to accurately identify and isolate faults [3]. Based on the detected
fault information, the controller is reconfigured or adapted online to preserve stability and
achieve the desired performance under the given fault conditions.

FTC strategies have been successfully applied to a wide range of robotic systems,
demonstrating their versatility in mitigating the impact of various fault types. Sun et al. [17]
proposed an innovative incremental nonlinear FTC method for quadcopters experiencing
a catastrophic failure: the complete loss of two opposing rotors. This critical scenario
typically renders such aerial vehicles inoperable. However, by implementing this advanced
FTC strategy, the quadcopter could maintain stable flight and control, albeit with reduced
maneuverability, preventing otherwise catastrophic failure.

Ali et al. [18] proposed an innovative FTC approach that simultaneously addressed
both actuator and sensor faults. Their method employed nonlinear backstepping control
coupled with friction compensation, enhancing the manipulator’s ability to maintain pre-
cise movements and positioning even when faced with sensor inaccuracies or actuator
inefficiencies. Researchers tackled the complex challenge of controlling uncrewed under-
water vehicles in the presence of multiple system uncertainties and disturbances. They
developed a novel sensor-active FTC scheme that achieved trajectory tracking without
relying on linear and angular velocity measurements [19].

Traditional fault-tolerant control systems have several limitations, including their reliance
on accurate system models, their difficulty in handling complex nonlinear systems, and their
limited adaptability to unforeseen faults or changing conditions. These systems often strug-
gle with uncertainty and may fail when encountering scenarios not explicitly accounted for
in their design [20]. In contrast, learning-based methods offer a more robust and flexible ap-
proach to fault-tolerant control. By leveraging data-driven techniques, learning-based FTC can
adapt to new situations, learn from experience, and handle complex, nonlinear systems more
effectively [21].

Machine learning (ML) has significantly impacted various areas, greatly improving
efficiency and capabilities. In healthcare, ML has enhanced diagnostic accuracy and treat-
ment personalization by analyzing vast patient data and medical images [22–24]. In finance,
it aids fraud detection and risk assessment, leading to more secure transactions and invest-
ment decisions [25,26]. In transportation, machine learning enables autonomous vehicles to
navigate complex environments and optimize traffic flow for improved efficiency [27–29].
Additionally, machine learning has revolutionized agriculture, enabling precision farming
techniques that optimize resource allocation and crop yield prediction [30–33]. Overall,
machine learning’s ability to learn from data and make intelligent predictions has greatly
enhanced fault-tolerant control strategies for robotic systems, offering improved accuracy



Algorithms 2024, 17, 436 4 of 16

and adaptability in fault detection, isolation, and accommodation. These methods can
potentially identify and respond to a wider range of faults, including those not antici-
pated during the design phase, and they can continuously improve their performance over
time [7]. Additionally, machine learning approaches can better handle the high dimension-
ality and uncertainty inherent in many modern control systems, making them particularly
well-suited for applications in areas such as autonomous vehicles, robotics, and advanced
manufacturing [7].

Researchers in [34] demonstrated the use of radial basis neural networks for detecting
faults in robotic manipulators, achieving high accuracy by training the network on data from
normal and faulty operations. In their work, Ref. [35] proposed a fault identification method
that utilizes multiple source domains to enhance diagnostic accuracy in real-world scenarios.
The method effectively learns and transfers generalized diagnostic knowledge from these
diverse sources, improving the model’s ability to identify faults in new, unseen scenarios.

Supervised and unsupervised ML methods have primarily been used for fault detec-
tion, diagnosis, and isolation in robotics. Reinforcement learning is used for developing
adaptive control policies that can respond to faults in real time. However, RL has emerged
as a powerful tool for developing adaptive control policies that can respond to faults in
real time. RL involves training an agent to make decisions by rewarding desired behaviors
and penalizing undesired ones, making it particularly suitable for fault-tolerant control. Re-
searchers compared an RL-based fault-tolerant controller with a model predictive controller
(MPC) on a C-130 aircraft fuel tank model. They aimed to test the controllers’ adaptabil-
ity to evolving system changes during operation. Their experiments revealed that the
RL-based controller performed more robustly than the MPC under various challenging
conditions, including faults, partially observable system models, and fluctuating sensor
noise levels [36].

Recent research has demonstrated the effectiveness of RL in various robotic applica-
tions. For instance, in [37], researchers proposed an adaptive curriculum RL algorithm
with dynamics randomization to train a quadruped robot to adapt to random actuator
failures. Similarly, Zhu et al. [38] presented a model-free adaptive fault-tolerant control
algorithm based on RL for a multi-joint Baxter robot. Their approach used parameter
estimation and neural networks to identify and compensate for actuator faults and spring
interference, thereby improving the robot’s tracking performance. RL has also shown
promise in optimizing control parameters in the presence of faults. In [11], researchers
developed an innovative method to optimize proportional–integral control coefficients
specifically for motor position control. This RL-based approach demonstrated superior
performance, computational efficiency, and user-friendly implementation compared to the
traditional Ziegler–Nichols method, making it accessible even to nonexperts. Expanding
the application of RL to aerial robotics, researchers in [39] developed a fault-tolerant control
system for UAV landing on a moving target. Their approach, which combines robust policy
optimization and long short-term memory neural networks, effectively handled sensor
failures and noise during the critical landing phase.

While the examples highlight the versatility and effectiveness of machine learning in
addressing various aspects of fault-tolerant control in robotics, most learning-based FTC
approaches fuse machine learning algorithms with existing model-based control systems.
This integration, although beneficial in many aspects, still presents several challenges and
limitations. The hybrid approach relies on the accuracy of the underlying model-based
control system. If the initial model is flawed or oversimplified, the machine learning
component may struggle to compensate fully for these inaccuracies.

This study addresses several key limitations and gaps in previous fault-tolerant control
research for robotic manipulators. While prior work has explored model-based approaches
and machine learning techniques layered on top of existing control systems, this study
proposes a novel end-to-end reinforcement learning framework that directly learns adap-
tive control policies from raw sensory inputs. Unlike traditional methods that rely on
accurate system models or separate fault detection and diagnosis modules, our approach



Algorithms 2024, 17, 436 5 of 16

unifies fault handling and control into a single adaptive system. By framing the prob-
lem as a POMDP and leveraging the state-of-the-art RL algorithm, we enable the robot
to dynamically compensate for both permanent and intermittent joint failures without
requiring explicit fault models. Furthermore, our extensive evaluation in both seen and
unseen failure scenarios, including challenging cases of partial joint functionality, demon-
strates the robustness and generalizability of the proposed approach. By comparing against
traditional inverse kinematics methods, we highlight the superior adaptability of our
learning-based solution.

3. Methodology

3.1. Problem Formulation

Markov decision processes (MDPs) are mathematical frameworks used to make opti-
mal decision in situations where outcomes are partly random and partly under the control
of a decision maker [40]. An MDP is defined by a set of states, a set of actions, a transition
function that determines the probability of moving from one state to another given an
action, and a reward function that assigns a numerical reward for each action taken in a
given state. The goal in an MDP is to find a policy—a mapping from states to actions—that
maximizes the expected sum of rewards over time.

In many real-world scenarios, however, the agent does not have full observability
of the environment’s state. This leads to the framework of partially observable Markov
decision processes [41]. POMDPs extend MDPs by incorporating a set of observations
and an observation function. This function provides a probability distribution over pos-
sible observations, given the actual state and action taken. The agent maintains a belief
state, a probability distribution over all possible states, based on the history of actions
and observations. This belief state serves as a sufficient statistic for making decisions in
a POMDP.

In this study, we frame the problem of a robotic manipulator completing tasks with
joint malfunctions as a POMDP. This formulation allows us to account for uncertainties in
joint functionality and train the robot to adapt to varying conditions. Our experimental
platform utilizes the Isaac Lab environment, which provides a high-fidelity simulation
for robotic manipulation tasks [42]. The platform allows for precise control and the mea-
surement of the robot’s movements, as well as the ability to simulate various joint failure
scenarios. The robot used in our experiments is Franka Emika’s Panda, a 7-DOF robotic
manipulator known for its precision and dexterity. The Franka robot modeled in Isaac
Lab has been accurately simulated with high fidelity to match the physical characteristics
and kinematic properties of the real robot. The task environment was set up to simulate a
typical industrial workspace where the Franka robot would be required to open a drawer.
The following subsections describe details of the RL framework and reward functions.

3.1.1. Observation Space

The observation st at time t comprises the current joint angles and velocities of both the
robot and the drawer, as well as the distance between the robot’s gripper and the drawer.
Formally, the observation can be represented as follows:

st = [θ1, θ2, . . . , θ9, θ̇1, θ̇2, . . . , θ̇9, δd, δ̇d, x̄b, ȳb, z̄b], (1)

where θi and θ̇i represent the angle and velocity of the ith joint of the robot, respectively. δd

and δ̇d are the position and velocity of the drawer. x̄b, ȳb, and z̄b are the distance between
the robot gripper and the drawer in the x, y, and z directions, respectively.

3.1.2. Action Space

The action at at time t consists of the control inputs to the robot’s joints and the
end-effector positions. The action space is defined as follows:

at = [θ1, θ2, . . . , θ9]. (2)



Algorithms 2024, 17, 436 6 of 16

It is important to note that we cannot apply any arbitrary angle or velocity to the
joints. Therefore, we need to trim the angles to their respective upper and lower limits
for each joint. To ensure that the angles remain within their allowed range, we apply the
following constraints:

θmin
i f θi f θmax

i for i = 1, 2, . . . , 9, (3)

where θmin
i is the minimum allowed angle for the ith joint. θmax

i is the maximum allowed
angle for the ith joint. By applying these constraints, we ensure that the control inputs are
feasible and within the physical limitations of the robot’s joints.

3.1.3. Reward Function

The distance reward is designed to encourage the robot to minimize the distance
between the robot’s gripper and the drawer’s handle. It is calculated as follows:

d = ∥pgripper − pdrawer∥2, (4)

rdist =
1

1 + d2
, (5)

where pgripper is the position of the robot’s grasp, pdrawer is the position of the drawer’s
handle, and ∥ · ∥2 denotes the Euclidean distance.

The rotation reward is designed to align the robot’s gripper orientation with the
drawer’s handle. It is calculated using the dot products of the forward and up axes:

dot1 = (a1 · a2) (6)

dot2 = (a3 · a4), (7)

where a1 and a2 are the gripper forward axis of the Franka and the inward axis of the
drawer, respectively. a3 and a4 are the gripper upper axis and the drawer, respectively.
Eventually, the reward for matching the orientation of the hand to the drawer is expressed
as follows:

rrot = 0.5
(

sign(dot1)× dot2
1 + sign(dot2)× dot2

2

)

. (8)

The around-handle reward ensures that the robot’s fingers are positioned appropri-
ately around the drawer’s handle. If the left finger of the Franka is above the drawer handle
and the right below the drawer, we bonus a value of 0.5 for the reward function.

rhandle =

{

0.5 if pleft_finger,z > pdrawer,z and pright_finger,z < pdrawer,z

0 otherwise,
(9)

where pleft_finger,z and pright_finger,z are the z coordinates of the left and right fingers, respec-
tively. pdrawer,z is the z coordinate of the drawer’s grasp position.

The open reward is designed to encourage the robot to open the drawer, which means
how far the cabinet has been opened out.

ropen = posdrawer_top × rhandle + posdrawer_top, (10)

where posdrawer_top is the position of the drawer that we want the robot to open.
The overall reward function is a combination of the above components scaled by their

respective factors:

r = wdist · rdist + wrot · rrot + whandle · rhandle + wopen · ropen, (11)

where wdist, wrot, whandle, wopen are the scaling factors for the distance reward, rotation
reward, around-handle reward, and open reward, respectively.



Algorithms 2024, 17, 436 7 of 16

This reward structure ensures that the robot is incentivized to minimize the distance
to the drawer handle, align its gripper orientation correctly, position its fingers around the
handle, and ultimately open the drawer.

3.2. Reinforcement Learning Framework

3.2.1. PPO Algorithm

In this study, we leveraged the Proximal Policy Optimization (PPO) algorithm to train
the Franka robot for robust tasks, enabling robust task completion even in the presence of
joint malfunctions. PPO is an on-policy RL algorithm that balances ease of implementation
with strong empirical performance. It achieves stable learning by optimizing a clipped
surrogate objective, which prevents large, potentially destabilizing updates to the policy.

For PPO, we employed two neural networks—actor and critic networks—as illustrated
in Figure 1. The policy network outputs the robot’s action (at), which represents the angles
for each joint (θi) of the robot given its current state (st). Meanwhile, the value network
estimates the expected return Vϕ(st) from a given state (st). Both networks share the same
architecture comprising three fully connected layers. The hidden dimensions of each layer
are 256, 128, and 64, respectively, followed by ReLU activations. The final layer’s output
is either the action or the expected return, depending on whether it is the actor or critic
network, and it uses a Tanh activation function [43].

��ሶ��
ሶ����ҧý�തþ�ҧÿ�

Āþ

�� ሶ�� ሶ���� ҧý� തþ� ҧÿ�Āþ
��(ý�) Āþ)ÿþ)

�þ)

Figure 1. Our framework addresses the issue of joint malfunction in robot manipulators using the

PPO algorithm. The actor takes in the observation from the environment and outputs action for joints.

The critic estimates the value of a state, helping the actor learn by providing feedback on the quality

of its actions.

3.2.2. Agent Training

The agent’s training process involves several key steps, with each being critical for
optimizing the policy and value networks. The workflow for training the agent using the
PPO algorithm is as follows:

Initialization: Initialize the policy network πϑ with parameters ϑ. Initialize the value
network Vϕ with parameters ϕ. Set the initial parameters for the learning rate, discount
factor γ, and clipping parameter ϵ.

Collecting Trajectories: Interact with the environment to collect trajectories of states
st, actions at, and rewards rt. The interaction involves executing actions sampled from the
policy network and observing the resulting states and rewards.



Algorithms 2024, 17, 436 8 of 16

Computing Returns and Advantages: Calculate the discounted returns Rt from each
time step t:

Rt =
T−t

∑
k=0

γkrt+k, (12)

where Rt is the return at time step t, γ is the discount factor, and rt+k is the reward at time
step t + k.

Compute the advantage estimates At using the Generalized Advantage Estimation (GAE):

At = δt + (γ¼)δt+1 + . . . + (γ¼)T−t+1δT , (13)

where
δt = rt + γVϕ(st+1)−Vϕ(st). (14)

Here, At is the advantage estimate at time step t, ¼ is the GAE smoothing parameter, δt

is the temporal difference error, Vϕ(st) is the value estimate at state st, and rt is the reward
at time step t.

To calculate the objective loss function of the policy, first of all, we need to calculate
the ratio of action probabilities rt(ϑ) between the new and old policies:

rt(ϑ) =
πϑ(at|st)

πϑold
(at|st)

(15)

where πϑ(at|st) is the probability of action at given state st under the new policy, and
πϑold

(at|st) is the probability under the old policy. The clipped surrogate objective LCLIP(ϑ)
is as follows:

LCLIP(ϑ) = Et[min(rt(ϑ)At, clip(rt(ϑ), 1− ϵ, 1 + ϵ)At)] (16)

where Et denotes the expectation over time steps t, and clip(rt(ϑ), 1− ϵ, 1 + ϵ) restricts
rt(ϑ) to the range [1− ϵ, 1 + ϵ].

The total loss for PPO includes both the policy loss (clipped objective) and the squared-
error value function loss, as well as an entropy bonus to encourage exploration. The
squared-error value function loss is defined as

Lvalue(ϕ) = Et

[

(Vϕ(st)− Rt)
2
]

, (17)

L(ϑ) = LCLIP(ϑ)− c1Lvalue(ϕ) + c2Et[Entropy(πϑ(st))]. (18)

Here, c1 and c2 are coefficients that balance the value loss and entropy bonus.
After calculating the loss function, we update the policy network parameters by

computing the gradients of the total loss L(ϑ). Similar to the policy network, we also
update the parameters in the value network based on the value loss Lvalue(ϕ).

ϑ← ϑ− ³ϑ∇ϑL(ϑ) (19)

ϕ← ϕ− ³ϕ∇ϕL
value(ϕ). (20)

Repeat the update process for a fixed number of epochs or until convergence.

3.3. Simulation Setup and Evaluation

We utilized NVIDIA’s Isaac Lab as the simulation environment for our robotic ma-
nipulation tasks. Isaac Lab provides a high-fidelity physics simulation that allows us to
accurately model the Franka Emika Panda robot and its interactions with the environment.
The entire simulation and training process is implemented within Isaac Lab. We leverage
PyTorch to implement the PPO algorithm for training the RL agent. The experiments are



Algorithms 2024, 17, 436 9 of 16

conducted on a high-performance computing system equipped with an NVIDIA RTX 2070
Super GPU to accelerate the training process.

To evaluate the robustness of our RL framework, we simulated two realistic types of
joint malfunctions:

• Permanently broken joint: One of the robot’s joints is completely nonfunctional
throughout the task execution.

• Intermittently functioning joint: One of the robot’s joints operates intermittently,
randomly switching between functional and nonfunctional states.

The trained policy was evaluated under both seen and unseen joint failure scenarios
to assess its robustness and adaptability. In addition to the intermittent function scenario,
we considered two additional test cases for a faulty functioning joint. In the first test case,
the joint is set to be nonfunctional during the first half of the testing period. In the second
test case, the joint is set to be nonfunctional during the second half of the testing period.

The primary metrics for evaluation include the following:

• The success rate of completing the task (opening the drawer).
• The time taken to complete the task.

These metrics provide a comprehensive evaluation of the robot’s performance under
different joint malfunction scenarios. In addition, the performance was compared with a
traditional inverse kinematics-based control method to demonstrate the effectiveness of
our RL approach.

4. Inverse Kinematics

In this section, we describe the kinematic modeling and analysis of the Franka Emika
Panda robot used in our experiments. The Denavit–Hartenberg (DH) convention was
employed to derive the kinematic equations and inverse kinematics solution for the robotic
manipulator. We demonstrate the impact of a joint malfunction by fixing one of the robot’s
joints and evaluating its ability to perform the task of reaching the desired trajectory, as
well as to open a drawer.

4.1. Denavit–Hartenberg Parameters and Inverse Kinematics Solving

The Franka Emika Panda robot is a 7-DOF manipulator. Each joint is associated with a
DH parameter set (θ, d, a, ³), which defines the transformations between consecutive links.
The DH parameters for Franka Emika’s Panda are summarized in Table 1.

Table 1. DH Parameters for the Franka Emika Panda.

Joint i di (m) ai (m) αi (rad) θi (rad)

1 0.333 0 0 1.157
2 0 0 −π/2 −1.066
3 0.316 0 π/2 −0.155
4 0 0.0825 π/2 −2.239
5 0.384 −0.0825 −π/2 −1.841
6 0 0 π/2 1.003
7 0 0.088 0 0.469

The forward kinematics of the manipulator is obtained by multiplying the homo-
geneous transformation matrices of each link, derived from the DH parameters. The
transformation matrix Ai for the ith joint is given by the following:

Ai =









cos θi − sin θi cos ³i sin θi sin ³i ai cos θi

sin θi cos θi cos ³i − cos θi sin ³i ai sin θi

0 sin ³i cos ³i di

0 0 0 1









. (21)



Algorithms 2024, 17, 436 10 of 16

The overall transformation from the base frame to the end-effector frame is as follows:

T7
0 = A1 A2 A3 A4 A5 A6 A7. (22)

The inverse kinematics involve finding the joint angles θi given the desired position
and orientation of the end effector. This is typically a more complex problem than forward
kinematics due to nonlinearity and requires iterative numerical methods or analytical
solutions. For the Franka robot, we used an iterative approach based on the Jacobian
pseudoinverse method [44,45]. The goal is to minimize the error between the current
end-effector position/orientation and the desired position/orientation. The update rule for
the joint angles is given by the following:

∆θ = J+(xd − x), (23)

where ∆θ is the change in joint angle, J+ is the pseudoinverse of the Jacobian matrix
J, xd is the desired end-effector position/orientation, and x is the current end-effector
position/orientation.

4.2. Inverse Kinematics Simulation and Joint Failure Scenario

In comparison with the DRL algorithm, we modeled the problem of the end effector of
a robotic manipulator moving from its initial position to a drawer, grasping it, and pulling it
open. In the scenario where one of the joints is malfunctioning, the robot deviates from the
calculated trajectory. The desired end-effector motion is formulated as the path connecting
three key points—the initial position (pi), the drawer position (pd), and the pulled-out
position (pp)—ignoring the internal motion of grippers. This setup is compatible with the
motion of the robot in the simulation environment.

The robot’s parameters are shown in Table 1. The robot’s base is located at the coordinates
of X = 0 and Y = 0. The end effector moves through the initial position, the drawer position,
and the pulled-out position, sequentially. The positions and Euler angles representing the
configuration of the end effector at each point are listed in Table 2. The end-effector trajectory
was solved using the iterative Newton–Raphson numerical method with a step size of 0.01
and a convergence tolerance of 1× 10−4.

Table 2. Position of the three points constructing the end-effector trajectory: the initial position (pi),

the drawer position (pd), and the pulled-out position (pp). Euler angles (Ex, Ey, Ez) and translation

vectors (x, y, z).

Ex (rad) Ey (rad) Ez (rad) x y z

pi 0.5π 0 π 0.500 0 0.625
pd 0 0 0.5π 0.750 0 0.317
pp 0.5π 0 π 0.371 0 0.317

To demonstrate the impact of a joint malfunction, we simulated the scenario where
one of the joints was fixed (the third joint), i.e., it was not actuated during the task. This
is equivalent to constraining the corresponding joint angle to a constant value. We then
analyzed the reachability and performance of the robot in completing the task of opening
a drawer. The kinematic analysis was performed by solving the inverse kinematics and
evaluating whether the end effector could reach the desired position and complete the
expected trajectory.

5. Results and Discussion

5.1. RL Training Results

We trained the robot for 24,000 episodes, as described in Section 3.3 utilizing an
NVIDIA GeForce 2070 Super GPU. The training, which took approximately 40 min, aimed to
optimize the robot’s performance on drawer-opening tasks under various joint malfunction



Algorithms 2024, 17, 436 11 of 16

scenarios. The reward plot of the robot training is shown in Figure 2, in which we show the
four reward functions that we describe in Section 3.1.3.

(a) (b)

(c) (d)

Figure 2. Reward from the training. (a) Distance reward. (b) Rotation reward. (c) Opening reward.

(d) Total reward.

As illustrated in Figure 2a, the distance reward showed a sharp increase initially,
stabilizing around the 1.8 to 1.9 log value range after approximately 2000 steps. This indi-
cates that the robot quickly learned to minimize the distance required to open the drawer,
achieving and maintaining high performance early in the training process. However, the
rotation reward showed a more variable trend, with an initial increase peaking around
0.05 log value, followed by a decrease and some fluctuations, as shown in Figure 2b. The
value eventually stabilized around −0.075 to −0.025 log value after 20,000 steps. This
variability suggests that the robot had more difficulty optimizing the rotational aspect of
the task compared to the distance, which is likely due to the complexity of the rotation
movements required for the task.

Figure 2c shows that the opening reward showed a consistent increase, stabilizing
around a log value of 2.0 after 7500 steps. This indicates a steady improvement in the
robot’s ability to perform the opening action of the drawer, reflecting the effectiveness
of the training in teaching the robot this aspect of the task. The total reward shown in
Figure 2d, which likely aggregated the individual rewards, demonstrated a steady increase,
stabilizing around a log value of 3.5 to 4.0 after 20,000 steps. This overall upward trend
indicates successful training, with the robot improving its performance across all aspects of
the task over time.

In addition to showing task completion rewards, we conducted experiments under
different fault conditions to evaluate the performance of our RL framework under various
joint malfunction scenarios. Following previous research [46], we calculated the successful
task completion rate under different fault scenarios, including permanently broken joints,



Algorithms 2024, 17, 436 12 of 16

intermittently functioning joints, the joint working in the first half of testing and not
working in the second half of testing, and vice versa. For the task completion rate, this
metric was used to measure the effectiveness of the robot’s ability to complete the drawer-
opening task, even in the presence of joint malfunctions. A higher completion rate indicates
a more reliable and adaptable system, demonstrating the robot’s capacity to overcome joint
failures. Additionally, we analyzed the time taken to complete the task to assess the robot’s
efficiency. A lower time suggests more efficient performance, while an increase in time
indicates that the robot had to adjust its strategy to compensate for joint malfunctions. The
success rate and average completion time for each scenario are presented in Table 3.

Table 3. Task completion performance under different fault scenarios.

Fault Scenario Success Rate (%) Average Completion Time (s)

No Fault 98.00 3.54
Permanently Broken Joint 96.00 4.62
Intermittently Functioning Joint 96.00 3.77
Joint Works First Half 96.00 4.11
Joint Works Second Half 82.00 8.02

The results presented in Table 3 provide valuable insights into the robustness and
efficiency of our RL framework when subjected to various joint malfunction scenarios. In
the no-fault scenario, the RL algorithm demonstrated a high success rate of 98.00% with
an average completion time of 3.54 s. This served as the baseline for our experiments,
indicating the algorithm’s effectiveness in completing the task efficiently when there were
no joint malfunctions.

In addition, when a joint was permanently broken, the success rate remained high at
96.00%, although the average completion time increased to 4.62 s. This increase suggests
that while the algorithm compensated for the loss of functionality by adjusting its strategy,
it did so at the cost of increased time.

In the case of an intermittently functioning joint, the success rate was also 96.00%,
with a slightly higher average completion time of 3.77 s compared to the no-fault scenario.
This indicates that the algorithm could quickly adapt to intermittent faults and maintain
efficiency without significant delays.

When the joint functioned only during the first half of the task, the success rate
remained at 96.00%, with an average completion time of 4.11 s. This result implies that
the RL algorithm effectively utilized the functional period of the joint to complete the task,
demonstrating its ability to optimize performance under partial functionality.

However, the scenario where the joint worked only in the second half presented the
most significant challenge. The success rate dropped to 82.00%, and the average completion
time increased substantially to 8.02 s. The reduced success rate and longer completion
time indicate that the algorithm struggled more when the joint only functioned in the latter
part of the task. This difficulty likely arose from the initial lack of joint functionality in the
first half, requiring the algorithm to employ more complex strategies to compensate and
leading to longer task completion times and lower success rates. Figure 3 shows two cases:
one where the robot successfully opened the cabinet and the other where the robot failed to
open the cabinet.

Generally, our framework demonstrated strong adaptability and robustness across
different fault scenarios, maintaining high success rates in most cases. The completion
time varied depending on the type and timing of the joint malfunction, with intermittent
faults and partial functionality scenarios resulting in moderate increases in time. The
scenario where the joint worked only in the second half posed the greatest challenge,
highlighting an area for potential improvement in the algorithm’s adaptability to late-
functioning components. However, these results underscore the effectiveness of the RL
algorithm in handling joint malfunctions, ensuring reliable task completion even under
adverse conditions.



Algorithms 2024, 17, 436 13 of 16

(a) (b)

Figure 3. Example of successful task completion and failed task completion. (a) The robot successfully

opened the cabinet. (b) The robot failed to open the cabinet.

5.2. Kinematics Results

This section also demonstrates that when a joint malfunctions, the robot’s end effector
is unable to follow the programmed trajectory with a traditional inverse kinematic controller.
The details of the experimental setup are discussed in Section 4.2, and intuitive results
are presented in Figure 4. Figure 4a shows that the robot followed the trajectory from the
initial position to the drawer position and opened it, which went through the three points
pi, pd, and pp. However, as shown in Figure 4b, when one joint was faulty (its angle was
fixed)—typically joint 3—the robot was unable to reach the desired end-effector trajectory,
hence failing to open the drawer.

��
����

(a)

��
����

(b)

Figure 4. Comparison of the trajectories of the end effector when one of the joints of the robot is

broken and when all the joints work properly. The robot body is illustrated in blue color, and the

orientation of the end-effector is indicated at pi with the red color being the x direction, the green

color being the y direction, and the dark blue color being the z direction. When the robot operates

properly, it must follow the desired trajectory light blue color in (a) or orange lines in (b) constructed

by three joints: the initial position (pi), the drawer position (pd), and the pulled-out position (pp).

(a) The end effector followed the desired trajectory when all joints of the robot worked properly.

(b) The end effector failed to follow the expected trajectory when one of the joints was broken as

illustrated in light blue color.



Algorithms 2024, 17, 436 14 of 16

The results demonstrate that the traditional inverse kinematics controller required
all joints to be operational properly in order to complete a task. The kinematic analysis
using DH parameters and inverse kinematics highlights the critical role of each joint in
the Franka robot’s ability to perform complex tasks. The demonstrated impact of a joint
malfunction underscores the importance of developing robust control algorithms that can
compensate for such failures [21]. By developing a DRL algorithm based on our proposed
framework as described in the previous sections, we demonstrate that joint failures can be
effectively handled for robotic manipulators.

6. Conclusions and Future Work

In this study, we addressed the challenge of enabling a robotic manipulator to complete
tasks despite joint malfunctions by developing an RL framework. Our experimental
platform, a Franka robot with seven degrees of freedom, was used to test the framework
under various joint failure conditions, including permanently broken and intermittently
functioning joints. By framing the problem as a partially observable Markov decision
process, we successfully trained the robot to adapt to these varying conditions.

In the downstream task, we tested the RL algorithm in both seen and unseen cases,
including the joint working in the first half of the time and vice versa. To evaluate the
robot’s performance, we calculated the task completion rate and the time taken. Our results
demonstrate that the RL-trained robot was able to complete the drawer opening task even
with joint failures, achieving a high success rate, with an average rate of 93.6% and an
average operation time of 3.8 s. The results highlight the adaptability and resilience of our
approach. Furthermore, the RL algorithm showed strong performance in both the seen
and unseen failure scenarios, indicating its potential for real-world applications where
unexpected hardware failures are common. Compared to the traditional inverse kinematic
controller, if one of the joints is nonfunctional, the robot’s end effector is unable to follow
the desired trajectory, leading to task failure.

This study underscores the potential of RL to enhance the reliability of robotic systems,
making them better suited for unpredictable environments. By integrating RL with ad-
vanced simulation environments like Isaac Lab, we have shown that it is possible to create
robust and adaptable robotic solutions that can maintain functionality despite hardware
malfunctions. While our approach shows promise for practical applications, there are still
limitations to deploying RL-based systems in real-world manufacturing environments.
The computational complexity and training time required for RL can present challenges,
especially for completing complex tasks.

In the future, we aim to transition our framework from simulation to real-world
applications. Furthermore, future efforts could extend this approach to other types of
robotic tasks such as pick-and-place objects or part assembly. The integration of more
sophisticated RL algorithms and neural networks such as Transformer-based models or
CNN-based models could be considered to further improve performance and adaptability.

Author Contributions: T.-H.P.: Conceptualization, Investigation, Methodology, Formal analysis, Vali-

dation, Visualization, Writing—original draft, Writing—review and editing. G.A.: Conceptualization,

Formal analysis, Writing—original draft. T.T.: Investigation, Formal analysis, Writing—review and

editing. K.-D.N.: Conceptualization, Methodology, Formal analysis, Writing—review and editing,

Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. National Science Foundation grant number #2138206.

Data Availability Statement: The data that support the findings of this study are available online.

https://hanhpt23.github.io/franka-IK/ (accessed on 28 September 2024).

Conflicts of Interest: The authors declare no conflict of interest.



Algorithms 2024, 17, 436 15 of 16

References

1. International Federation of Robotics. World Robotics; International Federation of Robotics: Frankfurt, Germany, 2021.

2. Vasic, M.; Billard, A. Safety issues in human-robot interactions. In Proceedings of the 2013 IEEE International Conference on

Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 197–204. [CrossRef]

3. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 2008, 32, 229–252.

[CrossRef]

4. Venkatasubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S.N. A review of process fault detection and diagnosis: Part I:

Quantitative model-based methods. Comput. Chem. Eng. 2003, 27, 293–311. [CrossRef]

5. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer: Berlin/Heidelberg, Germany,

2006. [CrossRef]

6. Ding, S.X. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2008.

7. Amin, A.A.; Sajid Iqbal, M.; Hamza Shahbaz, M. Development of Intelligent Fault-Tolerant Control Systems with Machine

Learning, Deep Learning, and Transfer Learning Algorithms: A Review. Expert Syst. Appl. 2024, 238, 121956. [CrossRef]

8. Piltan, F.; Prosvirin, A.E.; Sohaib, M.; Saldivar, B.; Kim, J.M. An SVM-based neural adaptive variable structure observer for fault

diagnosis and fault-tolerant control of a robot manipulator. Appl. Sci. 2020, 10, 1344. [CrossRef]

9. Fei, F.; Tu, Z.; Xu, D.; Deng, X. Learn-to-recover: Retrofitting uavs with reinforcement learning-assisted flight control under

cyber-physical attacks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,

France, 31 May–31 August 2020; IEEE: New York, NY, USA, 2020; pp. 7358–7364.

10. Wang, Y.; Wang, Z. Model free adaptive fault-tolerant tracking control for a class of discrete-time systems. Neurocomputing 2020,

412, 143–151. [CrossRef]

11. Sardashti, A.; Nazari, J. A learning-based approach to fault detection and fault-tolerant control of permanent magnet DC motors.

J. Eng. Appl. Sci. 2023, 70, 109. [CrossRef]

12. Chen, J.; Patton, R.J. Robust Model-Based Fault Diagnosis for Dynamic Systems; The International Series on Asian Studies in

Computer and Information Science; Springer: New York, NY, USA, 1999. [CrossRef]

13. Yao, X.; Tao, G.; Ma, Y.; Qi, R. An adaptive actuator failure compensation scheme for spacecraft with unknown inertia parameters.

In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012;

pp. 1810–1815. [CrossRef]

14. Zhuo-Hua, D.; Zi-Xing, C.; Jin-Xia, Y. Fault diagnosis and fault tolerant control for wheeled mobile robots under unknown

environments: A survey. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona,

Spain, 18–22 April 2005; IEEE: New York, NY, USA, 2005; pp. 3428–3433.

15. Ahmed, S.; Azar, A.T.; Tounsi, M. Adaptive Fault Tolerant Non-Singular Sliding Mode Control for Robotic Manipulators Based

on Fixed-Time Control Law. Actuators 2022, 11, 353. [CrossRef]

16. Zhou, K.; Ren, Z. A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Trans. Autom.

Control 2001, 46, 1613–1618. [CrossRef]

17. Sun, S.; Wang, X.; Chu, Q.; Visser, C.D. Incremental Nonlinear Fault-Tolerant Control of a Quadrotor with Complete Loss of Two

Opposing Rotors. IEEE Trans. Robot. 2021, 37, 116–130. [CrossRef]

18. Ali, K.; Mehmood, A.; Iqbal, J. Fault-tolerant scheme for robotic manipulator—Nonlinear robust back-stepping control with

friction compensation. PLoS ONE 2021, 16, e0256491. [CrossRef]

19. Wang, X. Active Fault Tolerant Control for Unmanned Underwater Vehicle with Sensor Faults. IEEE Trans. Instrum. Meas. 2020,

69, 9485–9495. [CrossRef]

20. Blanke, M.; Christian Frei, W.; Kraus, F.; Ron Patton, J.; Staroswiecki, M. What is Fault-Tolerant Control? IFAC Proc. Vol. 2000,

33, 41–52. [CrossRef]

21. Abbaspour, A.; Mokhtari, S.; Sargolzaei, A.; Yen, K.K. A Survey on Active Fault-Tolerant Control Systems. Electronics 2020, 9,

1513. [CrossRef]

22. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer

with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]

23. Kim, J.W.; Zhao, T.Z.; Schmidgall, S.; Deguet, A.; Kobilarov, M.; Finn, C.; Krieger, A. Surgical Robot Transformer (SRT): Imitation

Learning for Surgical Tasks. arXiv 2024, arXiv:2407.12998 .

24. Pham, T.H.; Li, X.; Nguyen, K.D. seUNet-Trans: A Simple Yet Effective UNet-Transformer Model for Medical Image Segmentation.

IEEE Access 2024, 12, 122139–122154. [CrossRef]

25. Whiting, D.G.; Hansen, J.V.; McDonald, J.B.; Albrecht, C.; Albrecht, W.S. Machine learning methods for detecting patterns of

management fraud. Comput. Intell. 2012, 28, 505–527. [CrossRef]

26. Al Ayub Ahmed, A.; Rajesh, S.; Lohana, S.; Ray, S.; Maroor, J.P.; Naved, M. Using Machine Learning and Data Mining to Evaluate

Modern Financial Management Techniques. In Proceedings of the Second International Conference in Mechanical and Energy

Technology: ICMET 2021, Greater Noida, India, 28–29 October 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 249–257.

27. Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; de Albuquerque, V.H.C. Deep learning for safe autonomous driving: Current

challenges and future directions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4316–4336. [CrossRef]



Algorithms 2024, 17, 436 16 of 16

28. Aloufi, N.; Alnori, A.; Basuhail, A. Enhancing Autonomous Vehicle Perception in Adverse Weather: A Multi Objectives Model

for Integrated Weather Classification and Object Detection. Electronics 2024, 13, 3063. [CrossRef]

29. Aikins, G.; Jagtap, S.; Gao, W. Resilience analysis of deep q-learning algorithms in driving simulations against cyberattacks. In

Proceedings of the 2022 1st International Conference on AI in Cybersecurity (ICAIC), Victoria, TX, USA, 24–26 May 2022; IEEE:

New York, NY, USA, 2022; pp. 1–6.

30. Pham, T.H.; Nguyen, K.D. Enhanced Droplet Analysis Using Generative Adversarial Networks. arXiv 2024, arXiv:2402.15909.

31. Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review.

IEEE Access 2020, 9, 4843–4873. [CrossRef]

32. Pham, T.H.; Nguyen, K.D. Soil Sampling Map Optimization with a Dual Deep Learning Framework. Mach. Learn. Knowl. Extr.

2024, 6, 751–769. [CrossRef]

33. Pham, T.H.; Acharya, P.; Bachina, S.; Osterloh, K.; Nguyen, K.D. Deep-learning framework for optimal selection of soil sampling

sites. Comput. Electron. Agric. 2024, 217, 108650. [CrossRef]

34. Eski, I.; Erkaya, S.; Savas, S.; Yildirim, S. Fault detection on robot manipulators using artificial neural networks. Robot. Comput.

Integr. Manuf. 2011, 27, 115–123. [CrossRef]

35. Zheng, H.; Wang, R.; Yang, Y.; Li, Y.; Xu, M. Intelligent Fault Identification Based on Multisource Domain Generalization Towards

Actual Diagnosis Scenario. IEEE Trans. Ind. Electron. 2020, 67, 1293–1304. [CrossRef]

36. Ahmed, I.; Khorasgani, H.; Biswas, G. Comparison of model predictive and reinforcement learning methods for fault tolerant

control. IFAC-PapersOnLine 2018, 51, 233–240. [CrossRef]

37. Okamoto, W.; Kera, H.; Kawamoto, K. Reinforcement Learning with Adaptive Curriculum Dynamics Randomization for

Fault-Tolerant Robot Control. arXiv 2021, arXiv:2111.10005 .

38. Zhu, J.W.; Dong, Z.Y.; Yang, Z.J.; Wang, X. A New Reinforcement Learning Fault-Tolerant Tracking Control Method with

Application to Baxter Robot. IEEE/ASME Trans. Mechatron. 2024, 29, 1331–1341. [CrossRef]

39. Aikins, G.; Jagtap, S.; Nguyen, K.D. A Robust Strategy for UAV Autonomous Landing on a Moving Platform under Partial

Observability. Drones 2024, 8, 232. [CrossRef]

40. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

41. Albrecht, S.V.; Christianos, F.; Schäfer, L. Multi-Agent Reinforcement Learning: Foundations and Modern Approaches; MIT Press:

Cambridge, MA, USA, 2024.

42. Mittal, M.; Yu, C.; Yu, Q.; Liu, J.; Rudin, N.; Hoeller, D.; Yuan, J.L.; Singh, R.; Guo, Y.; Mazhar, H.; et al. Orbit: A Unified

Simulation Framework for Interactive Robot Learning Environments. IEEE Robot. Autom. Lett. 2023, 8, 3740–3747. [CrossRef]

43. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark.

Neurocomputing 2022, 503, 92–108. [CrossRef]

44. Dulęba, I.; Opałka, M. A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators. Int. J. Appl.

Math. Comput. Sci. 2013, 23, 373–382. [CrossRef]

45. Whitney, D.E. Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 1969, 10, 47–53.

[CrossRef]

46. Zhao, T.Z.; Kumar, V.; Levine, S.; Finn, C. Learning fine-grained bimanual manipulation with low-cost hardware. arXiv 2023,

arXiv:2304.13705.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Literature Review
	Methodology
	Problem Formulation
	Observation Space
	Action Space
	Reward Function

	Reinforcement Learning Framework
	PPO Algorithm
	Agent Training

	Simulation Setup and Evaluation

	Inverse Kinematics
	Denavit–Hartenberg Parameters and Inverse Kinematics Solving
	Inverse Kinematics Simulation and Joint Failure Scenario

	Results and Discussion
	RL Training Results
	Kinematics Results

	Conclusions and Future Work
	References

