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Synchronization of Networked Brachiating Robots

Praneel Acharya, Kim-Doang Nguyen*

Abstract: This paper investigates the motion synchronization of underactuated brachiating robots that communi-
cate with each other over a network represented by a digraph. The synchronization is accomplished by leveraging
the concept of a virtual leader, which leads to synchronization in stride time. For motion synchronization, three
controllers are proposed: two model-dependent controllers and a model-free sliding-mode controller. All of the
proposed controllers lead to a stable network operation. With a stable network, it is mathematically illustrated that
all nodes synchronize their motion to the virtual leader. The performance of motion synchronization is evaluated
quantitatively through measurements of errors and error rates for each physical robot in the network. Over time,
a decrease in these metrics signifies improved synchronization and reduced deviation from the synchronized state.
Simulation results demonstrate the efficacy of the controllers in achieving and maintaining synchronization across
the network of physical robots. Model-based controllers can be limited because of the need to accurately know the
system parameters for better performance. In this regard, we discuss a parameters estimation technique to approxi-
mate lumped parameters of the system.

Keywords: Bioinspired locomotion, Brachiation, Network control, Parameter estimation, Robust control, Under-

actuated robotics.

1. INTRODUCTION

The seamless integration of multiple robots into a sin-
gle collaborative cyber-physical system to accomplish a
shared goal has been an outstanding challenge in robotics
that attracts a significant robotics research task force.
Though substantial research efforts have focused on for-
mation control [1-5], one equally interesting problem
is motion synchronization. Accomplishing a cooperative
task among multiple robots requires motion synchroniza-
tion in many cases [6]. Early work on synchronization,
such as the study of coupled oscillators detailed in [7],
laid foundational groundwork for subsequent advance-
ments in the field. Much of the research on network syn-
chronization and consensus has traditionally emphasized
the dynamics of agents with simple models, as noted in
[8]. Noteworthy contributions include studies by [9—11],
which focus on synchronization and consensus within
linear systems. Recent developments have extended the
scope to encompass weighted consensus to one-sided Lip-
schitz nonlinear fractional-order multiagent systems, as
explored in [12]. While recent attention in controlled net-
work synchronization has predominantly concentrated on
Lagrangian systems, a significant portion of the literature
has limited its focus to fully actuated systems [13, 14].

To fill this gap, this work targets the synchronization
of networked underactuated brachiating robots. Underac-

tuated brachaiting robots are class of underactaued euler
lagrangian systems. Very few contributions have been pro-
duced to address motion synchronization of underactauted
systems. For example, work in [15-18] discusses con-
trol strategy for multiple underactuated Lagrangian sys-
tems. However, these papers [16—18] considered underac-
tuated dynamics that act as external disturbances to the
system dynamics, i.e. manipulators mounted on an un-
deractuated platform whose dynamics are influenced by
uneven terrains or by waves in a high-sea state. In addi-
tion, work such as [19] are rooted in the fact that the in-
teraction between neighboring oscillators is assumed to be
anti-symmetric and proportional to the coupling strengths.
Similarly, motion synchronization work in [20-22] does
not consider different network topologies. Recent research
focused on multilink single brachiating robots includes
[23-26].

Since this work addresses the motion synchronization
problem and incorporates brachiating and networked as-
pects, marking a notable departure from existing research
primarily focused on single robot brachiation (see [23-26]
for references). This study discusses synchronizing multi-
ple brachiating robots capable of traveling in a networked
setting. We have yet to find any other work that precisely
matches these criteria. To the best of our knowledge, this
study on motion synchronization of networked brachiat-
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ing robots represents the first of its kind in this domain.
In that regard, the key scientific contributions of this work
are listed as follows:

* This is only work to best of our knowledge address-
ing the synchronization of networked, underactuated
brachiating robots.

e The design of both model-dependent and model-
free controllers is presented, and simulation results
demonstrate their effectiveness.

* The proposed controller is distributed, requiring state
information only from neighboring robots rather than
the entire network.

» This work mathematically illustrates the controller’s
capability to synchronize the motion of any number
of brachiating robots, scalable to any network size.

* Lumped parameter estimation using an iterative ap-
proach is discussed to approximate the physical prop-
erties of a brachiating robot.

The rest of the paper is organized as follows. Section 2
provides the background on how graphs can be used to de-
scribe the way different brachiating robots would commu-
nicate with each other. Section 3 describes two controllers
that depend on the model parameters and Section 4 de-
scribes the model-free sliding mode controller. Section 5
proves the rigorous stability analysis of the proposed con-
trollers. Section 6 illustrates that all nodes converge to the
virtual leader achieving motion synchronization indepen-
dent of how robots communicate with each other. Section
7 illustrates the simulation results for all the proposed con-
trollers. Section 8 put forward an idea of lumped param-
eter estimation for model-dependent controllers. Finally,
Section 9 provides several concluding remarks.

2. DYNAMIC BRACHIATION

2.1. Information flow

We consider a continuous-time multi-agent system with
leader-follower dynamics. Leader dynamics differ from
follower dynamics; only one leader exists, and any num-
ber of followers can exist. This work leader is a virtual
oscillator, and followers are two link brachiating robots.
Control inputs are applied to the robots; each robot can
have different input values at a given time. The controller
aims to achieve motion synchronization and brachiation
of each robot with the leader. One way to synchronize the
motion of robots and achieve brachiation is to learn how
nature does it, which is to use a distributed method. In par-
ticular, each robot makes decisions based on the informa-
tion received from its neighbor and how information flows
among robots. This information flow can be described us-
ing directed graphs, as shown in Fig. 1, for example.

Information flow among multiple robots can be rep-
resented with a directed graph G with N nodes. Di-
rected graph G is defined as G = (V,E). Here, V =

Fig. 1. Example of information flow in a directed graph.

{vi,v2,v3,...v,} is the set of all the vertices or nodes
where each vertex/node represents a robot and n is the
total number of robots in the network. E;; represents
the edge connecting v; node to another v; node where
i # j, describing the information flow between these
nodes. Matrix L = [/;;] € RV which plays a simi-
lar role as the Laplacian matrix is defined as [;; =
{Eij | Eij € E and E;; ends at node v; }|, I;; = —1 if there
is an edge E;; (starting at node v; and ending at node v;)
and 0 otherwise. This enables the development of directed
graphs with different topologies that dictate how informa-
tion flows among robots.

In the case of a node connecting to multiple edges, in-
formation can be flowing from multiple edges to a node.
For example (refer to Fig. 1), E>3 and E43 indicate node
v3 receives information from nodes v, and v4. Multiple
edges E;; can be used to completely define the informa-
tion flow in a network. This enables the construction of a
variety of weakly connected digraph network topologies,
including directed acyclic graphs (DAGs) and digraphs
with strongly connected components, where all nodes ex-
cept the leader node are reachable from the leader. With
information flow being defined, we will now define the
dynamics that govern each node in a network.

2.2.  System Dynamics
Each node in the directed graph describes a brachiating

robot (Fig. 2) whose dynamics are governed by the fol-
lowing underactuated equation of motion:

0
M;(qi)gi +Ni(qi, i) = L} ; 1

where i represents node v; (v; € V), q; := [q1,,92,] defined
in Fig. 2, M;(g;) is the mass inertia matrix for the robot in
v; node, and N;(g;, ¢;) represents the nonlinearity, gravity,
and disturbances for that node.

This paper focuses on the synchronization of stride time
for all the brachiating robots in the network. Stride time is
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Fig. 2. Left: brachiating robot in v; node; Right: virtual
oscillator in v; node.

defined as the time taken to complete a brachiation swing
as the brachiating robot moves forward. To achieve syn-
chronization, we use the concept of a virtual leader. The
notion of a virtual leader to command a brachiator is in-
spired by the fact that the slow brachiation of apes can be
approximated by the pendulum motion [27]. To be precise,
the virtual leader is an oscillator governed by the follow-
ing dynamics as discussed in [28].

6,(t) + »6;(r) =0, 2)

where subscript j means the system belongs to the v; node
in the network. One important highlight is that in the case
of motion synchronization, the virtual leader does not re-
ceive information about the state of other robots in the net-
work.

3. MODEL-BASED CONTROLLER

With information flow defined in section 2 and dynam-
ics for each robot defined in section 2.2, we develop sev-
eral controllers independent of how information flows be-
tween the nodes. To do so, we look into each node v; and
the edges pointing to that node. The notion of considering
a particular node v; and edges pointing towards that node
rather than the entire network topology fits with our mo-
tivation that v; knows the state information of itself and
its neighboring nodes that send their state measurements
to v;. Let S; denote the set of robots that send their state
measurements to the ith robot (i ¢ S;). Then, the desired
trajectory for the ith robot is defined as:

(it Yjes, 0;)  (6;i+r)

6. = =
des |Sz‘+1 p1+1

(€)

For compactness of equations to be derived later on, r; =
Yjes, 0 and p; = |Sj|, the size of S;, are introduced. The
desired trajectory (as shown in equation (3)) for each robot
in the network is computed based on the state information
that a robot receives from its neighboring robots. As an ex-
ample, the desired trajectory for node v as shown in Fig.

1 would be: 6, = 6+ 65+ 65)/(2+1). Thus, the node’s
desired trajectory is influenced by the state information of
predecessor nodes. In this example, nodes vs and v3 are
predecessor nodes to nodes ve. For a brachiator with equal
link lengths, we have 6; = g, ; + 0.5¢;. For brachiating
robots with different lengths, geometry can be used to ex-
press 6; in the form of link lengths and ¢g;. Refer to [28]
which explores the geometry of robots with unequal link
lengths. All nodes in the network will employ the same
controller as the rest of the nodes as a result we lay the
foundation for ith node to track the desired trajectory 6.

3.1. Partial feedback-linearization controller (Con-
troller A):

To design a partial feedback linearization-based con-
troller, we construct the following auxiliary variable for
v; node:

xi=6;—0;,, +1(6,—6,,), 4)
where A, ; is a gain for the ith manipulator, 6;,, is defined
in (3), and 6, = d6; /dt. Now taking the time derivative of
(4) and substituting (1) yields following:

) 2y, + Mo, Fi s
i=—pi| 5 i~ tALi(6i— 6,
* p< 2(pi+1) >nl' (pi+1) il )
Moo i + 212
—Di|l Y i— T
() )
(5)

where 111 ;, 12, My,; are the components of the inverse
of the inertia matrix of the node v;. Similarly, n; ; and n, ;
are the vector components of the N;(g;,¢;). We pick the
controller shown below for node v;.

pi(2myy i+ )n i — (2pigri — 27 + piga,i) (Ma,i)
pi(2mn;+ M)
" Pi(2m2 M i)y — (2q1, — 21+ qai) M A + 27
pi(2myp;+ ;)

T =

6)

where A12; = (A1, + A2;) and A, is another positive gain
associated with ith manipulator. Substituting the torque
formulation (6) into (5) leads to X; = —A; ;x;. Thus, torque
(1;) commanded to node v; drags 6; to converge exponen-
tially to 6;,,. The convergence rate is influenced by the
value of the positive number A, ;.

Acceleration data from neighboring nodes is essen-
tial to implementing the Controller A. In our simulation,
when evaluating results for Controller A, each node stores
its current acceleration to be passed to neighbors in the
next iteration. This introduces a delay, but to minimize
its effect, the simulation computes the new state every
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0.001 seconds. This controller is ideal for real applica-
tions where the model information is known and accel-
eration can be accurately estimated. For instance, Kalman
Differentiator method, discussed in [29] can estimate joint
velocity and acceleration using only position measure-
ments from an encoder. Additionally, acceleration can be
approximated by differentiating velocity, with appropriate
filtering to remove noise, as discussed in [30]. Further-
more, acceleration-based feedback has demonstrated fea-
sibility and effectiveness in various robotic applications.
For instance, in the work [31], an underactuated quadro-
tor control method utilizing direct acceleration feedback is
proposed. Experimental tests demonstrate the controller’s
capability to achieve precise positioning under varying
conditions. Similarly, research work in [32] employs ac-
celeration feedback in parallel manipulators for trajectory
tracking. So, the proposed controller is feasible in motion
synchronization and brachiation of networked brachiat-
ing robots. However, we next propose two controllers that
do not require acceleration information from neighboring
nodes to compute the torque of the given node.

3.2. Partial feedback linearization with lin-
ear—quadratic regulator (Controller B)

Alternative to numerically computing the acceleration,
we propose a new controller that relies on nodes transmit-
ting their torque information, which is computed by each
robot in every loop. To build this controller, we substitute
¢1; and g ; from (1) in 6, = ¢1,;+0.5¢,; which leads to
the following equation:

(2im12,;+ ) (M2 — Ti)
2

G, — —(2my 1+ i)n i —

(N

Now, we define the torque equation as follows:

Ti = Unon,i + A= = Usynciiy (8)
T 2myn

(211 i+mi0,i)ny i+ (2 4mn i)noi .
O timy) . By substitut

ing uy,,,,; into the system dynamics equation, we obtain:

where upon; =

éi = Usync,i- 9

The above equation for each node can be represented us-
ing the state equation as follows:

Vi :Ayi+Busyllc,ia (10

o of e}

node dynamics represented in the state-space form, the
next step is to relate information flowing into the i’ node.
To do so, we manipulate equation (10) to have two equa-
tions as listed below: one capturing the dynamics of node

where y; = [6;,6]7, A = . With each

v; and another capturing the dynamics of nodes sending
the information to node v;.

Di . Pi Pi
P .+ B s (11
(Pi+1)yl (Pi+1)y (pi+1) " (an

where, (11) is obtained by multiplying (10) by a constant
(pﬁl). Similarly, summing (11) associated with all nodes
sending information to ith node leads to the following:

+1 Y vi=A +1 Li+B

pit 1) Z Usync, j

JES /65 JESi
(12)
Let X; be an auxiliary variable defined as:
- Pi
Xi = Yi— Z yj (13)

(pi+ 1) Pz /ES

The controller for node v; is designed in the form listed
below

1 pit+1
Ugyne,i = <_Kvixi+ Y us’nc.'>77 (14)
" (Pi+1),§s". ") b
where K; € R? is the gain matrix. From (11), (12), and
(14), we have the following auxiliary dynamics:

f = (A—BK)x, (15)

The gain K; can be designed such that (A — BK;) is a nega-
tive definite matrix which makes the auxiliary dynamics
in (15) exponentially stable.

In implementation on real hardware, robot j calculates
its control input and sends this value, along with its state,
in a package to its neighbor i. Although there may be de-
lays in the communication channels, these delays are typ-
ically very small unless the physical distances between
robots are substantial, especially given today’s commu-
nication and network technology. We assume that these
communication delays are negligible and do not affect
control stability.

The controllers designed so far (Controller A and Con-
troller B) are dependent on the system parameters. As a
result, the control performance depends on the accuracy
of the dynamical model used. Uncertainties in system pa-
rameters and disturbances may affect the control perfor-
mance. Therefore, a model-free controller is proposed in
the next section for improved robustness.

4. MODEL FREE SLIDING MODE CONTROL

Designing the model-free sliding mode controller re-
quires a sliding surface. Formulation (4) is used as a slid-
ing surface, whose time derivative in (5) can be written in
the form
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b= g (ﬁ m-) , (16)

8i

where

fi _ p Qi) nitp (i +2min) o +ki
gi —p(2r2,; + 1)

)

2 —221,4(6: — 6;,.,)

(2 +iy;)

In addition to the system being under-actuated, if the sys-
tem is designed such that g; is zero, then the control input
will be meaningless. As a result, the brachiator is designed
such that g; is greater than zero.

The control input 7; is designed based upon the bounded
property of f;/g; and inspired by our previous work in
[28]. Considering the brachiating robot as a rigid body:
M1y, M2, Mo, are function of cos(gz;) and its square.
Nonlinear components 7 ; and ny; are function of (g;)?
with coefficients as functions of sin(g;). Thus, 1y ;, 112,
My ,n1i,12; are bounded. Besides the difference in the

ki=

angles (6; — 6;,..) is also bounded. Thus, the term f;/g;
can be written as:
Ll vl a7

where, ¢y, ¢, are positive numbers. With the above anal-
ysis, the controller is designed in the form,

& = —(co+c1 -+l B)sat(xi/fe), (18)

where € is the width of a boundary layer and cp, ¢y, c, are
the user-defined control parameter. Besides, the saturation
function is defined as

|lzil <1,

19
> 1. (19

R EE
sat(z) = { sgn(z;),

Saturation function and bounding layer reduce the chatter-
ing problem associated with the sliding mode control.

We define the Lyapunov function candidate for a given
node as

Vi= 05)6[2 = V, =XXi=g; (fl + Tl‘) X;. (20)
i

When |x;| > €

. i Xi
vi=a (L (ot allalBsar ) ) ilsents)

< —gilxil(co) <0
2n

Thus, (21) guarantees when x; is outside the boundary
layer, it is driven towards the boundary layer. Once the

system is inside the boundary layer, it is driven to the de-
sired state governed by the first-order dynamics described
in (4). Compared to Controller A and Controller B, Con-
troller C does not use information about its neighbors’ ac-
celeration or torque.

5.  ERROR DYNAMICS FOR THE NETWORK

So far three controllers have been proposed for a given
node to track its desired trajectory. The goal of this section
is to illustrate that if all nodes in the network implement
any of the above-designed controllers, the stability of the
networked system will be guaranteed, i.e. the error and er-
ror rates for all the physical brachiating robots decay over
time. Out of (n) nodes, there are (n— 1) physical brachi-
ating robots in the network. Node v; is the virtual leader
throughout this work that does not take any input from any
other nodes. Error for nodes except the virtual leader can
be computed as follows:

ei(t) = 0,(t) — 0, (1)

As a result, the error and error rates for all the phys-
ical nodes in the network can be represented as e =

. . T
[62,637...,en,€27337...,en] .

Vi€2,3,....n. (22)

5.1.  Error dynamics for networks with controller A:
Using equation (4) and x; = —A,;x; following can be
obtained:
,_|On Li|
é= |:Fl Fz]e—ée (23)

Here, F| and F, defined as follows:

) Mk i=

[F] = {0 Iy (24)
L) it Ay i=

[FZ.,U] - {0 i j (25)

It is obvious that both F; and F, are negative definite
matrices.

Theorem 1: The error dynamics governed by (23) ex-
ponentially converge to zero.

Proof: Let [d;,d]” be a eigenvector and the corre-
sponding eigenvalue be ¢ for the matrix £. Then:

L | =0, | <
F B |a a Fida, + Fd, = ady

(26)
Using substitution:
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(F +ak)d, = o’d 27)

Thus, d; is also a eigenvector for F] + aF, with the cor-
responding eigenvalue of . Let P, be the set containing
all the eigenvalues of F; + oF, where each eigenvalue in
the set is represented by o (for any i from 1 to |B). If

2'1.1‘2'2.1' . . .
o #£ — yrp then those eigenvalues in the set will be as
follows:

0 = — (A idai+ 0G(Ar i+ Aay)) (28)
Solving for ¢; we get the following:

o = —2,1,1' or — 127,' (29)

This implies the eigenvalues of &; are all negative. As a
result, the network’s collective error and error rates con-
verge exponentially to zero when Controller A is applied.

]

5.2.  Error dynamics for networks with Controller B:

The same approach as discussed in section (5.1) can be
used to show that the errors and error rates for the network
when using Controller B exponentially converge to zero.
In this case, F; and F> are defined as follows:

[ i
LKy i=
[FZ,U]_{O l#j (31)

where K ; and K;; are the first and second entry of vec-
tor K;. Thus, the conclusions established in section (5.1)
are applied to the network with controller B. Next, we in-
vestigate the stability of the network when the model-free
sliding mode controller is applied.

5.3.  Error dynamics for the model-free sliding mode
controller

The Lyapunov function candidate for the entire network
can be written as follows:

V=Vot...4+V, (32)

where, V; is defined in (20). From (20), when x; > 0 then
V; > 0 and from (21) when x; is outside the boundary layer
€ (i. |x;| > €), we have V; < 0. The following conclusion
can be made in light of (20) and (21).

e V;=0if and only if x; = 0.
* V; > 0if and only if x; # 0.

¢ When |x;| > € then V; < 0.

e V =0if and only if [x,...,x,]7 =0.

¢ V > 0ifand only if [xa,...,x,]" #0.

* When min lxi| > € then V2 +...+V, <O0.

Here, € is the control parameter that a user can choose to
define the boundary layer, i.e. the size of the neighborhood
of zero that the system states converge to. In this work, we
choose € =0.001. When zrgjgn |x;| > €, all nodes are driven

towards the neighborhood of zero due to the negative V.

6. SYNCHRONIZATION WITH THE LEADER

To this point, it has been clearly shown that with Con-
troller A and Controller B, the error converges to zero
(a neighborhood of zero in the case of the sliding-mode
controller) when times goes to infinity and represented as
follows:

lim (ei(f) — B, (f)) =0 (33)
Substituting the definition of 8;,, as presented in (3) in
(33), we can get following equation:

fim (i@~ L, 0:) =0 3

JES;

In light of this, the collective error for the entire network
can be written as follows:

6, 0
thm |:L O L le(nfl) :| : — : (35)
—° | L2 (n—1)x1 1,(n—1)x(n—1 . i
[(n—=1)x (n—1)x(n—1) 6, 0
L
where 6 = [6,,6,,...,6,]". Z)y(n—1) is a zero matrix with

1 row and (n — 1) columns. We arrive at the following re-
sult in terms of leader-follower coordination.

Lemma 1: Physical nodes state 6; in the network as
expressed in (35) converge to 0; of the virtual leader.

Proof: Matrix L, is diagonally dominant with positive
entries (p;) along the diagonal. In light of the Gershgorin
disk theorem [33], the eigenvalues of L; will be centered
around the positive real part. Matrix L; is nonsingular as it
has negative off-diagonal entries and its eigenvalues have
real positive parts [34]. In addition, the property of L that
the sum of entries along each row being zero can be math-
ematically written as L, + L;1,_; = 0,_, where 1,,_; is
the column vector of 1 and 0,_; is the column vector O.
This leads to le_le =1,_;.

It follows from (35) that

limL,[65,65,...,6,] " = —1im 6,L,
t—o0 t—o0 (36)
lim[6,, 65, ...,6,] " = —1im 6, (L;'Ly)
{—yo0 [—o0
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Therefore we have:

}Lm[92,63,...,6n]T = lim 6, (37)

—yo0

Equation (37) indicates that all the nodes in the network
have their state 6; converged to the virtual leader 8; as
time goes to infinity. Despite introducing the concept of a
virtual leader, any node can act as a leader, and all other
nodes synchronize their motion to that leader using the
proposed controllers. This study emphasizes the concept
of a virtual leader, ensuring the leader’s performance re-
mains unaffected by external factors. This raises the per-
tinent question: What happens without a virtual leader?
Upon investigation without a virtual leader (a leaderless
network), all nodes were observed to synchronize their
motion; however, brachiation did not occur. This observa-
tion is supported by [35], which states, "In the absence of
a leader, networked agents, when stable, often settle into
a consensus state." A consensus state is usually a con-
stant value. However, achieving brachiation, particularly
the swinging motion, requires a leader to guide and coor-
dinate the motion effectively. This highlights the critical
role of a leader that initiates the brachiation motion. In
the next section, we implement the proposed controllers
for multiple nodes communicating with each other to il-
lustrate the motion synchronization of followers with the
virtual leader.

|

7. SIMULATION RESULTS

In the simulations, we select the brachiating robots with
properties shown in Table 1. All controllers are tested with
two different networks describing the information flow
as shown in Fig. 3 and Fig. 4. In the network in Fig. 3,
each node receives information from one node and fol-
lows a tree-like structure. In the network in Fig. 4, the
nodes receive information from multiple nodes and fol-
low a loop-like structure. In these examples, node v, rep-
resents the virtual leader which is an oscillator and the
other nodes represent the brachiating robots. Additionally,
all brachiating robots have the same geometric properties.
The initial conditions of the virtual leader are as follows:
6(0) = —Zrad, 6(0) = 0.0rad/sec and @ = 3.4Hz. The
initial conditions for different nodes as described by dif-
ferent networks are listed in Table 2 and 3, respectively.

Table 1. Brachiating robot physical properties.

mass length inertia center of gravity
link1 3499 0.5 0.090 0414
link2 1.232 0.5 0.033  0.333

Table 2. Randomly generated initial condition for robots
with information flow represented in Fig. 3.

q1 (deg) g2 (deg) ¢ (deg) ¢ (deg)
Vo 25.1238  30.5624  -0.8959 0.7188
V3 18.6118 -40.4866 -1.524  -0.0065
V4 55.1693 -19.1537 0.3411  -1.1048
Vs 30.152 -29.3886 0.0238 0.7963
Ve 46.9084 55.115 0.1889  -1.4455
vy -42.0847 -29.099 1.3629  -0.9829
Vg 37.7142 -30.777 1.7171  -0.6001
Vg -36.4086 -29.8699 0.4642 -0.1068
vio -17.8009 39.6994 0.3411 0.1989

Table 3. Randomly generated initial condition for robots
with information flow represented in Fig. 4.

g1 (deg) g2 (deg)  ¢1(deg) g (deg)
v, 23.3794 -21.9481  1.8009 -1.8622
V3 -7.3507  -14213  1.0621  1.1808
vy -37.5753  -1.2283 -0.2177  0.5853
vs  25.1238  30.5624 -0.8959  0.7188
ve  18.6118 -40.4866  -1.524 -0.0065
v, 55.1693 -19.1537 03411 -1.1048
Vg 30.152  -29.3886  0.0238  0.7963
v 469084  55.115 0.1889 -1.4455
vip -42.0847  -29.099  1.3629 -0.9829

7.0.1 Controller A results

The control parameters values (4;;,A,;) discussed in
Section 3.1 are selected to be A;; = 6.5 and A, ; = 7 for
all nodes. In addition, these gain values are kept fixed for
two different networks illustrated in Fig. 3 and Fig. 4. The
result of applying controller to two networks is illustrated
by Figs. 5 and 6.

As seen in Fig. 5, all nodes connected as in Fig. 3 syn-
chronize their motion with respect to the virtual leader v,
within 1 second of the motion despite nodes starting from
different initial condition. Similar results are obtained in
Fig. 6 where nodes are communicating with each other as
described in Fig. 4. After every stride, though the states
are disturbed by the switching of vector fields and im-
pact, they again quickly synchronize their motion with the
leader.

7.0.2 Controller B results

The controller is designed in (8). The gain values for all
nodes are selected as K; = [121,22]”. The simulation re-
sult is shown in the Fig. 7, which shows the nodes’ motion
synchronized after 3 seconds, equivalent to three strides.
Similar observations were observed for the network in Fig.
4 with gain values of K; = [1000,205] .
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Fig. 3. Tree-like network connection with node v; being
the virtual leader and other physical brachiating
robots.

7.0.3 Results for the model-free sliding mode con-
troller

The controller is formulated in (18). We select ¢o+c¢; =
5 and ¢; = 0.9 for the network in Fig. 3. The results are
shown in Fig. 9, where all nine robots synchronize their
motion within 4 seconds. Similar results are observed in
Fig. 10 for the network topology in Fig. 4.

Up to this point, we have discussed three different
controllers, ranging from model-dependent to model-free,
which have been demonstrated to achieve synchronized
motion and brachiation with a virtual leader within a spec-
ified network. As this is the only work we are aware of that
addresses networked brachiating robots, we currently lack
direct comparisons with other methods. To facilitate such
comparisons, we are exploring literature discussing con-
trol strategies for single brachiating robots rather than net-
works of robots. One relevant study is presented in [28],
where a control algorithm is proposed for the brachia-
tion of a single robot. The proposed controller achieves
brachiation within 1 second for a single brachiating robot
starting from a fixed initial condition. Simulation results
in Fig. 5 and 6 demonstrate that controller A, defined in
equation (6), enables all nine robots to brachiate within
one second, unlike previous methods that achieve this for
only a single robot. These nine robots begin from various
random initial conditions and are interconnected based
on different network graphs. Therefore, controller A ac-
complishes both motion synchronization and brachiation
within one second rather than just achieving brachiation

Fig. 4. Cyclic network connection with node v; being
the virtual leader and other physical brachiating
robots.

0 1 2 3 4 5 6
Time (second)

— V1 —— V2 V3 —— V4 —— Vs
— Vs U7 Us V9 —— V10

Fig. 5. Synchronization of robots communicating as
shown in network Fig. 3 with controller (6) ap-
plied. All nodes have A;; =6.5 and A;; = 7.

alone. This indicates that the model-dependent controllers
perform better than the model-free controller. However,
they require precise knowledge of the system parameters.
Motivated to address this drawback, we will discuss a
data-enabled method to estimate these system parameters
in the next section.

8. PARAMETER ESTIMATION

The goal of this section is to discuss a tool for accu-
rately estimating the model parameters (“lumped param-
eters") of the system. As a result, controllers that rely on
accurate parameter values can still be a desirable option
when applied with parameter estimation in real systems.
For any node, this method can be carried out to estimate its
parameters and does not rely on interactions between the
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0 1 2 3 1 5 6

Time (second)

— V1 —— V2 V3 —— Vg —— Vs
— V¢ ——Ur Ug Vg —— V10

Fig. 6. Synchronization of robots communicating as
shown in network Fig. 4 with controller (6) ap-
plied. All nodes have A;; =6.5and A,; =7.

nodes. In light of the property that the Lagrange equation
of motion of a multi-body system is affine in the lumped
parameters, The dynamical system represented in (1) for a
given brachiating robot can be rewritten as follows [36]:

0
Y(q,4,4)p = M , (38)

where Y (g,4,¢) is the data matrix, whose values are ob-
tained from state measurement data, and defined in (39).

The task now is to estimate the value of the lumped pa-
rameters in (39) via an iterative approach. A brachiating
robot is simulated for 5 seconds and the true values of
lumped parameters used in the simulation are listed in the
last column of the table 4. The input to the dynamics is a
control signal T =5+0.1(4 +1¢) + sin(¢) + sin(0.5 + 3¢).
We record the discrete T values and the state response to
the input. The joint accelerations are computed by numeri-
cal derivative while simulating the system. Gaussian noise
of magnitude 0.001 was added to the joint velocity and ac-
celeration measurements from the simulation to emulate
sensor noise.

We randomly sample N points from the outputs of the
simulation and run the code presented in algorithm 1. The
algorithm aims to find the set of values for p, which is the
estimate of p, that minimizes the following quadratic cost

function:
=N
. 0

t= E
Cost = N 1

. with1b < p < ub. (40)
2

The lower bounds /b and upper bounds ub for the cost

2
= ' R B
g j
g0 ,f [
§ i i
h /)]
y 4 7

0 1 2 3 4 5 6

Time (second)

— U1 —— V2 V3 —— Vg —— Us
— Vg — Ut Ug Vg9 —— V10

Fig. 7. Synchronization of robots communicating as
shown in network Fig. 3 with controller (8) ap-
plied. All nodes have K; = [121,22]7.

function are defined as 50% below and 50% above the ac-
tual lumped parameter value. These bounds help the op-
timization algorithm with initial guesses close enough to
the actual values to guarantee convergence.

The summary of the result is presented in Table 4,
which shows very close estimations. Through our test-
ing, it was observed that lower noise magnitudes result in
closer estimation of the lumped parameters than the pre-
sented estimates.

Algorithm 1 Secure introspection

1: while iteration < maxIteration do

2: randomly select N points and compute cost from
(40).
3: value(iteration) = argmin cost from (40).
p

4: p =min(value)

9. DISCUSSION AND CONCLUSION

This paper proposes control schemes to synchronize
the motion of multiple underactuated robots in a network
that leads to the synchronization of brachiation stride time
independent of the network topology. Three controllers
were developed for underactuated robot synchronization:
one with partial feedback linearization, one with a lin-
ear—quadratic regulator, and one with sliding mode. The
efficacy of these synchronization controllers is verified
through a series of simulations with different network
topologies. The proposed method is independent of the



10

Table 4. Summary of parameter estimation.
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Lumped parameters N =10 N=20 N =30 N =40 N =50 True value
I 0.08999821  0.089999355 0.090000738  0.090000169  0.090001207 0.09
L 0.033000622  0.03299969  0.033000046  0.033000399 0.033000124  0.033
myr? 0.599827503  0.599725592  0.599728299  0.599753341 0.599805237 0.5997
myr3 0.136620952  0.136603307 0.136616683 0.136631339 0.136616522 0.1366
gmyry 14.20576946  14.20806744 14.21405206 14.17628303 14.21646778 14.2106
gmar 4.023087837 4.025743909 4.024618111 4.023820674 4.023949987 4.0246
limyry 0.205138769  0.205131906 0.205111391  0.205149567 0.205166007  0.2051
ghmy 6.049503698  6.044481769 6.047888486 6.077792586 6.045614833 6.043
myl? 0.307971725 0.308003085 0.308007047 0.307968716 0.307958267 0.308
2
[
1
1 [
[ /

|
i
i
i ! g
' { /
|
{

i
i
H

|
H
{
{

!

|
/]

!
i
i
H

0 1 2 3 4 5 6 0 1 2. 3 4 5 6
Time (second) Time (second)
- —— V1 —— V2 V3 —— Vg —— Vs
— U1 — "2 U3 V4 —— Us v o ; v
— Vg v7 U8 V9 —— V10 6 7 8 9 10

Fig. 8. Synchronization of robots communicating as
shown in network Fig. 4 with controller (8) ap-
plied. All nodes have K; = [1000,205]".

number of brachiating robots, creating a general frame-
work that can be scaled. The paper also elaborates on a
data-enabled algorithm for estimating the system model
parameters, which can be used with model-dependent syn-
chronization controllers. The proposed method is inde-
pendent in terms of network topology and the number of
brachiating robots. A future research direction would be to
integrate machine learning techniques, e.g. reinforcement
learning or recursive neural networks, with the proposed
controllers to accomplish complicated coordination tasks
with a network of underactuated systems.
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