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Synchronization of Networked Brachiating Robots
Praneel Acharya, Kim-Doang Nguyen*

Abstract: This paper investigates the motion synchronization of underactuated brachiating robots that communi-

cate with each other over a network represented by a digraph. The synchronization is accomplished by leveraging

the concept of a virtual leader, which leads to synchronization in stride time. For motion synchronization, three

controllers are proposed: two model-dependent controllers and a model-free sliding-mode controller. All of the

proposed controllers lead to a stable network operation. With a stable network, it is mathematically illustrated that

all nodes synchronize their motion to the virtual leader. The performance of motion synchronization is evaluated

quantitatively through measurements of errors and error rates for each physical robot in the network. Over time,

a decrease in these metrics signifies improved synchronization and reduced deviation from the synchronized state.

Simulation results demonstrate the efficacy of the controllers in achieving and maintaining synchronization across

the network of physical robots. Model-based controllers can be limited because of the need to accurately know the

system parameters for better performance. In this regard, we discuss a parameters estimation technique to approxi-

mate lumped parameters of the system.

Keywords: Bioinspired locomotion, Brachiation, Network control, Parameter estimation, Robust control, Under-

actuated robotics.

1. INTRODUCTION

The seamless integration of multiple robots into a sin-

gle collaborative cyber-physical system to accomplish a

shared goal has been an outstanding challenge in robotics

that attracts a significant robotics research task force.

Though substantial research efforts have focused on for-

mation control [1–5], one equally interesting problem

is motion synchronization. Accomplishing a cooperative

task among multiple robots requires motion synchroniza-

tion in many cases [6]. Early work on synchronization,

such as the study of coupled oscillators detailed in [7],

laid foundational groundwork for subsequent advance-

ments in the field. Much of the research on network syn-

chronization and consensus has traditionally emphasized

the dynamics of agents with simple models, as noted in

[8]. Noteworthy contributions include studies by [9–11],

which focus on synchronization and consensus within

linear systems. Recent developments have extended the

scope to encompass weighted consensus to one-sided Lip-

schitz nonlinear fractional-order multiagent systems, as

explored in [12]. While recent attention in controlled net-

work synchronization has predominantly concentrated on

Lagrangian systems, a significant portion of the literature

has limited its focus to fully actuated systems [13, 14].

To fill this gap, this work targets the synchronization

of networked underactuated brachiating robots. Underac-

tuated brachaiting robots are class of underactaued euler

lagrangian systems. Very few contributions have been pro-

duced to address motion synchronization of underactauted

systems. For example, work in [15–18] discusses con-

trol strategy for multiple underactuated Lagrangian sys-

tems. However, these papers [16–18] considered underac-

tuated dynamics that act as external disturbances to the

system dynamics, i.e. manipulators mounted on an un-

deractuated platform whose dynamics are influenced by

uneven terrains or by waves in a high-sea state. In addi-

tion, work such as [19] are rooted in the fact that the in-

teraction between neighboring oscillators is assumed to be

anti-symmetric and proportional to the coupling strengths.

Similarly, motion synchronization work in [20–22] does

not consider different network topologies. Recent research

focused on multilink single brachiating robots includes

[23–26].

Since this work addresses the motion synchronization

problem and incorporates brachiating and networked as-

pects, marking a notable departure from existing research

primarily focused on single robot brachiation (see [23–26]

for references). This study discusses synchronizing multi-

ple brachiating robots capable of traveling in a networked

setting. We have yet to find any other work that precisely

matches these criteria. To the best of our knowledge, this

study on motion synchronization of networked brachiat-
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ing robots represents the first of its kind in this domain.

In that regard, the key scientific contributions of this work

are listed as follows:

• This is only work to best of our knowledge address-

ing the synchronization of networked, underactuated

brachiating robots.

• The design of both model-dependent and model-

free controllers is presented, and simulation results

demonstrate their effectiveness.

• The proposed controller is distributed, requiring state

information only from neighboring robots rather than

the entire network.

• This work mathematically illustrates the controller’s

capability to synchronize the motion of any number

of brachiating robots, scalable to any network size.

• Lumped parameter estimation using an iterative ap-

proach is discussed to approximate the physical prop-

erties of a brachiating robot.

The rest of the paper is organized as follows. Section 2

provides the background on how graphs can be used to de-

scribe the way different brachiating robots would commu-

nicate with each other. Section 3 describes two controllers

that depend on the model parameters and Section 4 de-

scribes the model-free sliding mode controller. Section 5

proves the rigorous stability analysis of the proposed con-

trollers. Section 6 illustrates that all nodes converge to the

virtual leader achieving motion synchronization indepen-

dent of how robots communicate with each other. Section

7 illustrates the simulation results for all the proposed con-

trollers. Section 8 put forward an idea of lumped param-

eter estimation for model-dependent controllers. Finally,

Section 9 provides several concluding remarks.

2. DYNAMIC BRACHIATION

2.1. Information flow

We consider a continuous-time multi-agent system with

leader-follower dynamics. Leader dynamics differ from

follower dynamics; only one leader exists, and any num-

ber of followers can exist. This work leader is a virtual

oscillator, and followers are two link brachiating robots.

Control inputs are applied to the robots; each robot can

have different input values at a given time. The controller

aims to achieve motion synchronization and brachiation

of each robot with the leader. One way to synchronize the

motion of robots and achieve brachiation is to learn how

nature does it, which is to use a distributed method. In par-

ticular, each robot makes decisions based on the informa-

tion received from its neighbor and how information flows

among robots. This information flow can be described us-

ing directed graphs, as shown in Fig. 1, for example.

Information flow among multiple robots can be rep-

resented with a directed graph G with N nodes. Di-

rected graph G is defined as G = (V,E). Here, V =

v1

v2

v3

v4

v5

v6

E12

E23 E43

E45

E64

E36

E56

Fig. 1. Example of information flow in a directed graph.

{v1,v2,v3, ...vn} is the set of all the vertices or nodes

where each vertex/node represents a robot and n is the

total number of robots in the network. Ei j represents

the edge connecting vi node to another v j node where

i ̸= j, describing the information flow between these

nodes. Matrix L = [li j] ∈ RN×N which plays a simi-

lar role as the Laplacian matrix is defined as l j j =
|{Ei j | Ei j ∈ E and Ei j ends at node v j}|, l ji = −1 if there

is an edge Ei j (starting at node vi and ending at node v j)

and 0 otherwise. This enables the development of directed

graphs with different topologies that dictate how informa-

tion flows among robots.

In the case of a node connecting to multiple edges, in-

formation can be flowing from multiple edges to a node.

For example (refer to Fig. 1), E23 and E43 indicate node

v3 receives information from nodes v2 and v4. Multiple

edges Ei j can be used to completely define the informa-

tion flow in a network. This enables the construction of a

variety of weakly connected digraph network topologies,

including directed acyclic graphs (DAGs) and digraphs

with strongly connected components, where all nodes ex-

cept the leader node are reachable from the leader. With

information flow being defined, we will now define the

dynamics that govern each node in a network.

2.2. System Dynamics

Each node in the directed graph describes a brachiating

robot (Fig. 2) whose dynamics are governed by the fol-

lowing underactuated equation of motion:

Mi(qi)q̈i +Ni(qi, q̇i) =

[
0

τi

]

, (1)

where i represents node vi (vi ∈V ), qi := [q1,i,q2,i] defined

in Fig. 2, Mi(qi) is the mass inertia matrix for the robot in

vi node, and Ni(qi, q̇i) represents the nonlinearity, gravity,

and disturbances for that node.

This paper focuses on the synchronization of stride time

for all the brachiating robots in the network. Stride time is
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Fig. 2. Left: brachiating robot in v j node; Right: virtual

oscillator in vi node.

defined as the time taken to complete a brachiation swing

as the brachiating robot moves forward. To achieve syn-

chronization, we use the concept of a virtual leader. The

notion of a virtual leader to command a brachiator is in-

spired by the fact that the slow brachiation of apes can be

approximated by the pendulum motion [27]. To be precise,

the virtual leader is an oscillator governed by the follow-

ing dynamics as discussed in [28].

θ̈ j(t)+ω2θ j(t) = 0, (2)

where subscript j means the system belongs to the v j node

in the network. One important highlight is that in the case

of motion synchronization, the virtual leader does not re-

ceive information about the state of other robots in the net-

work.

3. MODEL-BASED CONTROLLER

With information flow defined in section 2 and dynam-

ics for each robot defined in section 2.2, we develop sev-

eral controllers independent of how information flows be-

tween the nodes. To do so, we look into each node vi and

the edges pointing to that node. The notion of considering

a particular node vi and edges pointing towards that node

rather than the entire network topology fits with our mo-

tivation that vi knows the state information of itself and

its neighboring nodes that send their state measurements

to vi. Let Si denote the set of robots that send their state

measurements to the ith robot (i /∈ Si). Then, the desired

trajectory for the ith robot is defined as:

θides
=

(θi +∑ j∈Si
θ j)

|Si|+1
=

(θi + ri)

pi +1
(3)

For compactness of equations to be derived later on, ri =

∑ j∈Si
θ j and pi = |Si|, the size of Si, are introduced. The

desired trajectory (as shown in equation (3)) for each robot

in the network is computed based on the state information

that a robot receives from its neighboring robots. As an ex-

ample, the desired trajectory for node v6 as shown in Fig.

1 would be: θ6des
= θ6+θ3+θ5)/(2+1). Thus, the node’s

desired trajectory is influenced by the state information of

predecessor nodes. In this example, nodes v5 and v3 are

predecessor nodes to nodes v6. For a brachiator with equal

link lengths, we have θi = q1,i + 0.5q2,i. For brachiating

robots with different lengths, geometry can be used to ex-

press θi in the form of link lengths and qi. Refer to [28]

which explores the geometry of robots with unequal link

lengths. All nodes in the network will employ the same

controller as the rest of the nodes as a result we lay the

foundation for ith node to track the desired trajectory θides
.

3.1. Partial feedback-linearization controller (Con-
troller A):

To design a partial feedback linearization-based con-

troller, we construct the following auxiliary variable for

vi node:

xi = θ̇i − θ̇ides
+λ1,i(θi −θides

), (4)

where λ1,i is a gain for the ith manipulator, θides
is defined

in (3), and θ̇i = dθi/dt. Now taking the time derivative of

(4) and substituting (1) yields following:

ẋi =−pi

(
2m̄11,i + m̄12,i

2(pi +1)

)

n1,i −
r̈i

(pi +1)
+λ1,i(θ̇i − θ̇ides

)

−pi

(
m̄22,i +2m̄12,i

2(pi +1)

)

(n2,i − τi)

(5)

where m̄11,i, m̄12,i, m̄22,i are the components of the inverse

of the inertia matrix of the node vi. Similarly, n1,i and n2,i

are the vector components of the Ni(qi, q̇i). We pick the

controller shown below for node vi.

τi =
pi(2m̄11,i + m̄12,i)n1,i − (2piq̇1,i −2ṙi + piq̇2,i)(λ12,i)

pi(2m̄12,i + m̄22,i)

+
pi(2m̄12,i + m̄22,i)n2,1 − (2q1,i −2ri +q2,i)λ1,iλ2,i +2r̈i

pi(2m̄12,i + m̄22,i)

(6)

where λ12,i = (λ1,i +λ2,i) and λ2,i is another positive gain

associated with ith manipulator. Substituting the torque

formulation (6) into (5) leads to ẋi =−λ2,ixi. Thus, torque

(τi) commanded to node vi drags θi to converge exponen-

tially to θides
. The convergence rate is influenced by the

value of the positive number λ2,i.

Acceleration data from neighboring nodes is essen-

tial to implementing the Controller A. In our simulation,

when evaluating results for Controller A, each node stores

its current acceleration to be passed to neighbors in the

next iteration. This introduces a delay, but to minimize

its effect, the simulation computes the new state every
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0.001 seconds. This controller is ideal for real applica-

tions where the model information is known and accel-

eration can be accurately estimated. For instance, Kalman

Differentiator method, discussed in [29] can estimate joint

velocity and acceleration using only position measure-

ments from an encoder. Additionally, acceleration can be

approximated by differentiating velocity, with appropriate

filtering to remove noise, as discussed in [30]. Further-

more, acceleration-based feedback has demonstrated fea-

sibility and effectiveness in various robotic applications.

For instance, in the work [31], an underactuated quadro-

tor control method utilizing direct acceleration feedback is

proposed. Experimental tests demonstrate the controller’s

capability to achieve precise positioning under varying

conditions. Similarly, research work in [32] employs ac-

celeration feedback in parallel manipulators for trajectory

tracking. So, the proposed controller is feasible in motion

synchronization and brachiation of networked brachiat-

ing robots. However, we next propose two controllers that

do not require acceleration information from neighboring

nodes to compute the torque of the given node.

3.2. Partial feedback linearization with lin-
ear–quadratic regulator (Controller B)

Alternative to numerically computing the acceleration,

we propose a new controller that relies on nodes transmit-

ting their torque information, which is computed by each

robot in every loop. To build this controller, we substitute

q̈1,i and q̈2,i from (1) in θ̈i = q̈1,i + 0.5q̈2,i which leads to

the following equation:

θ̈i =
−(2m̄11,i + m̄12,i)n1,i − (2m̄12,i + m̄22,i)(n2,i − τi)

2
(7)

Now, we define the torque equation as follows:

τi = unon,i +
2

2m̄12,i + m̄22,i
usync,i, (8)

where unon,i =
(2m̄11,i+m̄12,i)n1,i+(2m̄12,i+m̄22,i)n2,i

(2m̄12,i+m̄22,i)
. By substitut-

ing unon,i into the system dynamics equation, we obtain:

θ̈i = usync,i. (9)

The above equation for each node can be represented us-

ing the state equation as follows:

ẏi = Ayi +Busync,i, (10)

where yi = [θi, θ̇i]
T , A =

[
0 1

0 0

]

and B =

[
0

1

]

. With each

node dynamics represented in the state-space form, the

next step is to relate information flowing into the ith node.

To do so, we manipulate equation (10) to have two equa-

tions as listed below: one capturing the dynamics of node

vi and another capturing the dynamics of nodes sending

the information to node vi.

pi

(pi +1)
ẏi = A

pi

(pi +1)
yi +B

pi

(pi +1)
usync,i, (11)

where, (11) is obtained by multiplying (10) by a constant
pi

(pi+1) . Similarly, summing (11) associated with all nodes

sending information to ith node leads to the following:

1

(pi +1) ∑
j∈Si

ẏ j = A
1

(pi +1) ∑
j∈Si

y j +B
1

(pi +1) ∑
j∈Si

usync, j

(12)

Let x̄i be an auxiliary variable defined as:

x̄i =
pi

(pi +1)
yi −

1

(pi +1) ∑
j∈Si

y j (13)

The controller for node vi is designed in the form listed

below

usync,i =
(

−Kix̄i +
1

(pi +1) ∑
j∈Si

usync, j

) pi +1

pi

, (14)

where Ki ∈ R2 is the gain matrix. From (11), (12), and

(14), we have the following auxiliary dynamics:

˙̄xi = (A−BKi)x̄i (15)

The gain Ki can be designed such that (A−BKi) is a nega-

tive definite matrix which makes the auxiliary dynamics

in (15) exponentially stable.

In implementation on real hardware, robot j calculates

its control input and sends this value, along with its state,

in a package to its neighbor i. Although there may be de-

lays in the communication channels, these delays are typ-

ically very small unless the physical distances between

robots are substantial, especially given today’s commu-

nication and network technology. We assume that these

communication delays are negligible and do not affect

control stability.

The controllers designed so far (Controller A and Con-

troller B) are dependent on the system parameters. As a

result, the control performance depends on the accuracy

of the dynamical model used. Uncertainties in system pa-

rameters and disturbances may affect the control perfor-

mance. Therefore, a model-free controller is proposed in

the next section for improved robustness.

4. MODEL FREE SLIDING MODE CONTROL

Designing the model-free sliding mode controller re-

quires a sliding surface. Formulation (4) is used as a slid-

ing surface, whose time derivative in (5) can be written in

the form
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ẋi = gi

(
fi

gi

+ τi

)

, (16)

where

fi

gi

=
p(2m̄11,i + m̄12,i)n1,i + p(m̄22,i +2m̄12,i)n2,1 + ki

−p(2m̄12,i + m̄22,i)
,

ki =
2r̈i −2λ1,i(θ̇i − θ̇ides

)

p(2m̄12,i + m̄22,i)
.

In addition to the system being under-actuated, if the sys-

tem is designed such that gi is zero, then the control input

will be meaningless. As a result, the brachiator is designed

such that gi is greater than zero.

The control input τi is designed based upon the bounded

property of fi/gi and inspired by our previous work in

[28]. Considering the brachiating robot as a rigid body:

m̄11,i, m̄12,i, m̄22,i are function of cos(q2,i) and its square.

Nonlinear components n1,i and n2,i are function of (q̇i)
2

with coefficients as functions of sin(qi). Thus, m̄11,i, m̄12,i,

m̄22,i,n1,i,n2,i are bounded. Besides the difference in the

angles (θi − θides
) is also bounded. Thus, the term fi/gi

can be written as:
∣
∣
∣
∣

fi

gi

∣
∣
∣
∣
< c1 + c2||q̇i||

2
2 (17)

where, c1, c2 are positive numbers. With the above anal-

ysis, the controller is designed in the form,

τi =−(c0 + c1 + c2||q̇i||
2
2)sat(xi/ε), (18)

where ε is the width of a boundary layer and c0,c1,c2 are

the user-defined control parameter. Besides, the saturation

function is defined as

sat(zi) =

{

zi, |zi| f 1,

sgn(zi), |zi|> 1.
(19)

Saturation function and bounding layer reduce the chatter-

ing problem associated with the sliding mode control.

We define the Lyapunov function candidate for a given

node as

Vi = 0.5x2
i ⇒ V̇i = ẋixi = gi

(
fi

gi

+ τi

)

xi. (20)

When |xi|> ε

V̇i = gi

(
fi

gi

− (c0 + c1 + c2||q̇i||
2
2)sat(

xi

ε
)

)

|xi|sgn(xi)

f−gi|xi|(c0)< 0

(21)

Thus, (21) guarantees when xi is outside the boundary

layer, it is driven towards the boundary layer. Once the

system is inside the boundary layer, it is driven to the de-

sired state governed by the first-order dynamics described

in (4). Compared to Controller A and Controller B, Con-

troller C does not use information about its neighbors’ ac-

celeration or torque.

5. ERROR DYNAMICS FOR THE NETWORK

So far three controllers have been proposed for a given

node to track its desired trajectory. The goal of this section

is to illustrate that if all nodes in the network implement

any of the above-designed controllers, the stability of the

networked system will be guaranteed, i.e. the error and er-

ror rates for all the physical brachiating robots decay over

time. Out of (n) nodes, there are (n− 1) physical brachi-

ating robots in the network. Node v1 is the virtual leader

throughout this work that does not take any input from any

other nodes. Error for nodes except the virtual leader can

be computed as follows:

ei(t) = θi(t)−θides
(t) ∀i ∈ 2,3, . . . ,n. (22)

As a result, the error and error rates for all the phys-

ical nodes in the network can be represented as e =
[e2,e3, ...,en, ė2, ė3, ..., ėn]

T .

5.1. Error dynamics for networks with controller A:

Using equation (4) and ẋi = −λ2,ixi following can be

obtained:

ė =

[
On In

F1 F2

]

e = ξ e (23)

Here, F1 and F2, defined as follows:

[F1,i j] =

{

−λ1,iλ2,i i = j

0 i ̸= j
(24)

[F2,i j] =

{

−(λ1,i +λ2,i) i = j

0 i ̸= j
(25)

It is obvious that both F1 and F2 are negative definite

matrices.

Theorem 1: The error dynamics governed by (23) ex-

ponentially converge to zero.

Proof: Let [⃗a1, a⃗2]
T be a eigenvector and the corre-

sponding eigenvalue be α for the matrix ξ . Then:

[
On In

F1 F2

][
a⃗1

a⃗2

]

= α

[
a⃗1

a⃗2

]

⇐⇒

{

a⃗2 = α a⃗1

F1a⃗1 +F2a⃗2 = α a⃗2

(26)

Using substitution:
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(F1 +αF2)⃗a1 = α2a⃗1 (27)

Thus, a⃗1 is also a eigenvector for F1 +αF2 with the cor-

responding eigenvalue of α2. Let Ps be the set containing

all the eigenvalues of F1 +αF2 where each eigenvalue in

the set is represented by α2
i (for any i from 1 to |Ps|). If

α ̸= −
λ1,iλ2,i

λ1,i+λ2,i
then those eigenvalues in the set will be as

follows:

α2
i =−(λ1,iλ2,i +αi(λ1,i +λ2,i)) (28)

Solving for αi we get the following:

αi =−λ1,i or −λ2,i (29)

This implies the eigenvalues of ξ1 are all negative. As a

result, the network’s collective error and error rates con-

verge exponentially to zero when Controller A is applied.

□

5.2. Error dynamics for networks with Controller B:

The same approach as discussed in section (5.1) can be

used to show that the errors and error rates for the network

when using Controller B exponentially converge to zero.

In this case, F1 and F2 are defined as follows:

[F1,i j] =

{

−K1,i i = j

0 i ̸= j
(30)

[F2,i j] =

{

−K2,i i = j

0 i ̸= j
(31)

where K1,i and K2,i are the first and second entry of vec-

tor Ki. Thus, the conclusions established in section (5.1)

are applied to the network with controller B. Next, we in-

vestigate the stability of the network when the model-free

sliding mode controller is applied.

5.3. Error dynamics for the model-free sliding mode
controller

The Lyapunov function candidate for the entire network

can be written as follows:

V =V2 + . . .+Vn, (32)

where, Vi is defined in (20). From (20), when xi > 0 then

Vi > 0 and from (21) when xi is outside the boundary layer

ε (i.e |xi|> ε), we have V̇i < 0. The following conclusion

can be made in light of (20) and (21).

• Vi = 0 if and only if xi = 0.

• Vi > 0 if and only if xi ̸= 0.

• When |xi|> ε then V̇i < 0.

• V = 0 if and only if [x2, . . . ,xn]
T = 0.

• V > 0 if and only if [x2, . . . ,xn]
T ̸= 0.

• When min
2fifn

|xi|> ε then V̇2 + . . .+V̇n < 0.

Here, ε is the control parameter that a user can choose to

define the boundary layer, i.e. the size of the neighborhood

of zero that the system states converge to. In this work, we

choose ε = 0.001. When min
2fifn

|xi|> ε , all nodes are driven

towards the neighborhood of zero due to the negative V̇ .

6. SYNCHRONIZATION WITH THE LEADER

To this point, it has been clearly shown that with Con-

troller A and Controller B, the error converges to zero

(a neighborhood of zero in the case of the sliding-mode

controller) when times goes to infinity and represented as

follows:

lim
t→∞

(

θi(t)−θides
(t)

)

= 0 (33)

Substituting the definition of θides
as presented in (3) in

(33), we can get following equation:

lim
t→∞

(

piθi − ∑
j∈Si

θ j

)

= 0 (34)

In light of this, the collective error for the entire network

can be written as follows:

lim
t→∞

[
0 Z1×(n−1)

L2,(n−1)×1 L1,(n−1)×(n−1)

]

︸ ︷︷ ︸

L






θ1

...

θn




=






0
...

0




 (35)

where θ = [θ1,θ2, . . . ,θn]
T . Z1×(n−1) is a zero matrix with

1 row and (n−1) columns. We arrive at the following re-

sult in terms of leader-follower coordination.

Lemma 1: Physical nodes state θi in the network as

expressed in (35) converge to θ1 of the virtual leader.

Proof: Matrix L1 is diagonally dominant with positive

entries (pi) along the diagonal. In light of the Gershgorin

disk theorem [33], the eigenvalues of L1 will be centered

around the positive real part. Matrix L1 is nonsingular as it

has negative off-diagonal entries and its eigenvalues have

real positive parts [34]. In addition, the property of L that

the sum of entries along each row being zero can be math-

ematically written as L2 + L11n−1 = 0n−1, where 1n−1 is

the column vector of 1 and 0n−1 is the column vector 0.

This leads to −L−1
1 L2 = 1n−1.

It follows from (35) that

lim
t→∞

L1[θ2,θ3, ...,θn]
¦ =− lim

t→∞
θ1L2

lim
t→∞

[θ2,θ3, ...,θn]
¦ =− lim

t→∞
θ1(L

−1
1 L2)

(36)
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Therefore we have:

lim
t→∞

[θ2,θ3, ...,θn]
T = lim

t→∞
θ1 (37)

Equation (37) indicates that all the nodes in the network

have their state θi converged to the virtual leader θ1 as

time goes to infinity. Despite introducing the concept of a

virtual leader, any node can act as a leader, and all other

nodes synchronize their motion to that leader using the

proposed controllers. This study emphasizes the concept

of a virtual leader, ensuring the leader’s performance re-

mains unaffected by external factors. This raises the per-

tinent question: What happens without a virtual leader?

Upon investigation without a virtual leader (a leaderless

network), all nodes were observed to synchronize their

motion; however, brachiation did not occur. This observa-

tion is supported by [35], which states, "In the absence of

a leader, networked agents, when stable, often settle into

a consensus state." A consensus state is usually a con-

stant value. However, achieving brachiation, particularly

the swinging motion, requires a leader to guide and coor-

dinate the motion effectively. This highlights the critical

role of a leader that initiates the brachiation motion. In

the next section, we implement the proposed controllers

for multiple nodes communicating with each other to il-

lustrate the motion synchronization of followers with the

virtual leader.

□

7. SIMULATION RESULTS

In the simulations, we select the brachiating robots with

properties shown in Table 1. All controllers are tested with

two different networks describing the information flow

as shown in Fig. 3 and Fig. 4. In the network in Fig. 3,

each node receives information from one node and fol-

lows a tree-like structure. In the network in Fig. 4, the

nodes receive information from multiple nodes and fol-

low a loop-like structure. In these examples, node v1 rep-

resents the virtual leader which is an oscillator and the

other nodes represent the brachiating robots. Additionally,

all brachiating robots have the same geometric properties.

The initial conditions of the virtual leader are as follows:

θ(0) = − π
2

rad, θ̇(0) = 0.0rad/sec and ω = 3.4Hz. The

initial conditions for different nodes as described by dif-

ferent networks are listed in Table 2 and 3, respectively.

Table 1. Brachiating robot physical properties.

mass length inertia center of gravity

link 1 3.499 0.5 0.090 0.414

link 2 1.232 0.5 0.033 0.333

Table 2. Randomly generated initial condition for robots

with information flow represented in Fig. 3.

q1 (deg) q2 (deg) q̇1 (deg) q̇2 (deg)

v2 25.1238 30.5624 -0.8959 0.7188

v3 18.6118 -40.4866 -1.524 -0.0065

v4 55.1693 -19.1537 0.3411 -1.1048

v5 30.152 -29.3886 0.0238 0.7963

v6 46.9084 55.115 0.1889 -1.4455

v7 -42.0847 -29.099 1.3629 -0.9829

v8 37.7142 -30.777 1.7171 -0.6001

v9 -36.4086 -29.8699 0.4642 -0.1068

v10 -17.8009 39.6994 0.3411 0.1989

Table 3. Randomly generated initial condition for robots

with information flow represented in Fig. 4.

q1 (deg) q2 (deg) q̇1 (deg) q̇2 (deg)

v2 23.3794 -21.9481 1.8009 -1.8622

v3 -7.3507 -14.213 1.0621 1.1808

v4 -37.5753 -1.2283 -0.2177 0.5853

v5 25.1238 30.5624 -0.8959 0.7188

v6 18.6118 -40.4866 -1.524 -0.0065

v7 55.1693 -19.1537 0.3411 -1.1048

v8 30.152 -29.3886 0.0238 0.7963

v9 46.9084 55.115 0.1889 -1.4455

v10 -42.0847 -29.099 1.3629 -0.9829

7.0.1 Controller A results

The control parameters values (λ1,i,λ2,i) discussed in

Section 3.1 are selected to be λ1,i = 6.5 and λ1,i = 7 for

all nodes. In addition, these gain values are kept fixed for

two different networks illustrated in Fig. 3 and Fig. 4. The

result of applying controller to two networks is illustrated

by Figs. 5 and 6.

As seen in Fig. 5, all nodes connected as in Fig. 3 syn-

chronize their motion with respect to the virtual leader v1

within 1 second of the motion despite nodes starting from

different initial condition. Similar results are obtained in

Fig. 6 where nodes are communicating with each other as

described in Fig. 4. After every stride, though the states

are disturbed by the switching of vector fields and im-

pact, they again quickly synchronize their motion with the

leader.

7.0.2 Controller B results

The controller is designed in (8). The gain values for all

nodes are selected as Ki = [121,22]T . The simulation re-

sult is shown in the Fig. 7, which shows the nodes’ motion

synchronized after 3 seconds, equivalent to three strides.

Similar observations were observed for the network in Fig.

4 with gain values of Ki = [1000,205]T .
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Fig. 3. Tree-like network connection with node v1 being

the virtual leader and other physical brachiating

robots.

7.0.3 Results for the model-free sliding mode con-
troller

The controller is formulated in (18). We select c0+c1 =
5 and c2 = 0.9 for the network in Fig. 3. The results are

shown in Fig. 9, where all nine robots synchronize their

motion within 4 seconds. Similar results are observed in

Fig. 10 for the network topology in Fig. 4.

Up to this point, we have discussed three different

controllers, ranging from model-dependent to model-free,

which have been demonstrated to achieve synchronized

motion and brachiation with a virtual leader within a spec-

ified network. As this is the only work we are aware of that

addresses networked brachiating robots, we currently lack

direct comparisons with other methods. To facilitate such

comparisons, we are exploring literature discussing con-

trol strategies for single brachiating robots rather than net-

works of robots. One relevant study is presented in [28],

where a control algorithm is proposed for the brachia-

tion of a single robot. The proposed controller achieves

brachiation within 1 second for a single brachiating robot

starting from a fixed initial condition. Simulation results

in Fig. 5 and 6 demonstrate that controller A, defined in

equation (6), enables all nine robots to brachiate within

one second, unlike previous methods that achieve this for

only a single robot. These nine robots begin from various

random initial conditions and are interconnected based

on different network graphs. Therefore, controller A ac-

complishes both motion synchronization and brachiation

within one second rather than just achieving brachiation

Fig. 4. Cyclic network connection with node v1 being

the virtual leader and other physical brachiating

robots.

Fig. 5. Synchronization of robots communicating as

shown in network Fig. 3 with controller (6) ap-

plied. All nodes have λ1,i = 6.5 and λ1,i = 7.

alone. This indicates that the model-dependent controllers

perform better than the model-free controller. However,

they require precise knowledge of the system parameters.

Motivated to address this drawback, we will discuss a

data-enabled method to estimate these system parameters

in the next section.

8. PARAMETER ESTIMATION

The goal of this section is to discuss a tool for accu-

rately estimating the model parameters (“lumped param-

eters") of the system. As a result, controllers that rely on

accurate parameter values can still be a desirable option

when applied with parameter estimation in real systems.

For any node, this method can be carried out to estimate its

parameters and does not rely on interactions between the
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Fig. 6. Synchronization of robots communicating as

shown in network Fig. 4 with controller (6) ap-

plied. All nodes have λ1,i = 6.5 and λ1,i = 7.

nodes. In light of the property that the Lagrange equation

of motion of a multi-body system is affine in the lumped

parameters, The dynamical system represented in (1) for a

given brachiating robot can be rewritten as follows [36]:

Y (q, q̇, q̈)p =

[
0

τ

]

, (38)

where Y (q, q̇, q̈) is the data matrix, whose values are ob-

tained from state measurement data, and defined in (39).

The task now is to estimate the value of the lumped pa-

rameters in (39) via an iterative approach. A brachiating

robot is simulated for 5 seconds and the true values of

lumped parameters used in the simulation are listed in the

last column of the table 4. The input to the dynamics is a

control signal τ = 5+ 0.1(4+ t)+ sin(t)+ sin(0.5+ 3t).
We record the discrete τ values and the state response to

the input. The joint accelerations are computed by numeri-

cal derivative while simulating the system. Gaussian noise

of magnitude 0.001 was added to the joint velocity and ac-

celeration measurements from the simulation to emulate

sensor noise.

We randomly sample N points from the outputs of the

simulation and run the code presented in algorithm 1. The

algorithm aims to find the set of values for p̂, which is the

estimate of p, that minimizes the following quadratic cost

function:

cost =
1

2N

k=N

∑
k=1

∥
∥
∥
∥

Yk p̂−

[
0

τk

]∥
∥
∥
∥

2

2

; with lb f p̂ f ub. (40)

The lower bounds lb and upper bounds ub for the cost

Fig. 7. Synchronization of robots communicating as

shown in network Fig. 3 with controller (8) ap-

plied. All nodes have Ki = [121,22]T .

function are defined as 50% below and 50% above the ac-

tual lumped parameter value. These bounds help the op-

timization algorithm with initial guesses close enough to

the actual values to guarantee convergence.

The summary of the result is presented in Table 4,

which shows very close estimations. Through our test-

ing, it was observed that lower noise magnitudes result in

closer estimation of the lumped parameters than the pre-

sented estimates.

Algorithm 1 Secure introspection

1: while iteration f maxIteration do

2: randomly select N points and compute cost from

(40).

3: value(iteration) = argmin
p̂

cost from (40).

4: p̂ = min(value)

9. DISCUSSION AND CONCLUSION

This paper proposes control schemes to synchronize

the motion of multiple underactuated robots in a network

that leads to the synchronization of brachiation stride time

independent of the network topology. Three controllers

were developed for underactuated robot synchronization:

one with partial feedback linearization, one with a lin-

ear–quadratic regulator, and one with sliding mode. The

efficacy of these synchronization controllers is verified

through a series of simulations with different network

topologies. The proposed method is independent of the
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Table 4. Summary of parameter estimation.

Lumped parameters N = 10 N = 20 N = 30 N = 40 N = 50 True value

I1 0.08999821 0.089999355 0.090000738 0.090000169 0.090001207 0.09

I2 0.033000622 0.03299969 0.033000046 0.033000399 0.033000124 0.033

m1r2
1 0.599827503 0.599725592 0.599728299 0.599753341 0.599805237 0.5997

m2r2
2 0.136620952 0.136603307 0.136616683 0.136631339 0.136616522 0.1366

gm1r1 14.20576946 14.20806744 14.21405206 14.17628303 14.21646778 14.2106

gm2r2 4.023087837 4.025743909 4.024618111 4.023820674 4.023949987 4.0246

l1m2r2 0.205138769 0.205131906 0.205111391 0.205149567 0.205166007 0.2051

gl1m2 6.049503698 6.044481769 6.047888486 6.077792586 6.045614833 6.043

m2l2
1 0.307971725 0.308003085 0.308007047 0.307968716 0.307958267 0.308

Fig. 8. Synchronization of robots communicating as

shown in network Fig. 4 with controller (8) ap-

plied. All nodes have Ki = [1000,205]T .

number of brachiating robots, creating a general frame-

work that can be scaled. The paper also elaborates on a

data-enabled algorithm for estimating the system model

parameters, which can be used with model-dependent syn-

chronization controllers. The proposed method is inde-

pendent in terms of network topology and the number of

brachiating robots. A future research direction would be to

integrate machine learning techniques, e.g. reinforcement

learning or recursive neural networks, with the proposed

controllers to accomplish complicated coordination tasks

with a network of underactuated systems.
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