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Abstract. Metaproteomics is an increasingly popular

methodology that provides information regarding the

metabolic functions of specific microbial taxa and has po-

tential for contributing to ocean ecology and biogeochemi-

cal studies. A blinded multi-laboratory intercomparison was

conducted to assess comparability and reproducibility of tax-

onomic and functional results and their sensitivity to method-

ological variables. Euphotic zone samples from the Bermuda

Atlantic Time-series Study (BATS) in the North Atlantic

Ocean collected by in situ pumps and the autonomous un-

derwater vehicle (AUV) Clio were distributed with a paired

metagenome, and one-dimensional (1D) liquid chromato-

graphic data-dependent acquisition mass spectrometry anal-

ysis was stipulated. Analysis of mass spectra from seven lab-

oratories through a common bioinformatic pipeline identified

a shared set of 1056 proteins from 1395 shared peptide con-

stituents. Quantitative analyses showed good reproducibility:

pairwise regressions of spectral counts between laboratories

yielded R2 values averaged 0.62±0.11, and a Sørensen sim-

ilarity analysis of the top 1000 proteins revealed 70 %–80 %

similarity between laboratory groups. Taxonomic and func-

tional assignments showed good coherence between techni-

cal replicates and different laboratories. A bioinformatic in-

tercomparison study, involving 10 laboratories using eight

software packages, successfully identified thousands of pep-

tides within the complex metaproteomic datasets, demon-

strating the utility of these software tools for ocean metapro-

teomic research. Lessons learned and potential improve-

ments in methods were described. Future efforts could ex-

amine reproducibility in deeper metaproteomes, examine ac-

curacy in targeted absolute quantitation analyses, and de-

velop standards for data output formats to improve data in-

teroperability. Together, these results demonstrate the repro-

ducibility of metaproteomic analyses and their suitability for

microbial oceanography research, including integration into

global-scale ocean surveys and ocean biogeochemical mod-

els.

1 Introduction

Microorganisms within the oceans are major contributors to

global biogeochemical cycles, influencing the cycling of car-

bon, nitrogen, phosphorus, sulfur, iron, cobalt, and other el-

ements (Falkowski et al., 2008; Moran et al., 2022; Worden

et al., 2015). Omic methodologies can provide an expansive

window into these communities, with genomic approaches

characterizing the diversity and potential metabolisms and

with transcriptomic and proteomic methods providing in-

sights into the expression and function of that potential. Sim-

ilarly to other omic approaches, proteomics is increasingly

being applied to natural ocean environments and the diverse

microbial communities within them. When proteomics is ap-

plied to such mixed communities, it is generally referred

to as metaproteomics (Wilmes and Bond, 2006). Metapro-

teomic samples contain an extraordinary level of complex-

ity relative to single-organism proteomes (at least 1–2 or-

ders of magnitude) due to the simultaneous presence of many

different organisms in widely varying abundances (McCain

and Bertrand, 2019). In particular, ocean metaproteome sam-

ples are significantly more complex than the human pro-

teome, the latter of which is itself considered to be a highly

complex sample (Saito et al., 2019). Proteomics (including

metaproteomics) provides a perspective distinct from other

omic methods: as a direct measurement of cellular functions,

it can be used to examine the diversity of ecosystem biogeo-

chemical capabilities, to determine the extent of specific nu-

trient stressors by measurement of transporters or regulatory

systems, to determine cellular resource allocation strategies

in situ, to estimate biomass contributions from specific mi-

crobial groups, and even to estimate potential enzyme activ-

ity (Bender et al., 2018; Bergauer et al., 2018; Cohen et al.,

2021; Fuchsman et al., 2019; Georges et al., 2014; Hawley

et al., 2014; Held et al., 2021; Leary et al., 2014; McCain

et al., 2022; Mikan et al., 2020; Moore et al., 2012; Morris

et al., 2010; Saito et al., 2020; Sowell et al., 2009; Williams

et al., 2012). The functional perspective that metaproteomics

allows is often complementary to metagenomic and meta-

transcriptomic analyses and can provide biological insights

that are distinct from organisms studied in the laboratory

(Kleiner, 2019). Moreover, the measurement of microbial

proteins in environmental samples has improved greatly in

recent years, due to the advancements in nanospray liquid

chromatography and high-resolution mass spectrometry ap-

proaches (Mueller and Pan, 2013; Ram et al., 2005; McIlvin

and Saito, 2021).

With increasing interest in the measurement of proteins

and their biogeochemical functions within the oceans, the

metaproteomic data are being established as a valuable re-

search and monitoring tool. However, given rapid changes

in technology and methods and the overall youth of the

metaproteomic field, demonstrating the reproducibility and

robustness of metaproteomic measurements to microbial

ecology and oceanographic communities is an important

goal. This is particularly true as applications for metapro-

teomics expand in research and monitoring of the changing

ocean environment, for example, in global-scale efforts such

as the developing BioGeoSCAPES program (https://www.

biogeoscapes.org, last access: 18 October 2024; Tagliabue,

2023), which aims to characterize the ocean metabolism and

nutrient cycles on a changing planet. As a result, there is a

pressing need to assess interlaboratory consistency and to un-

derstand the impacts of sampling, extraction, mass spectrom-

etry, and bioinformatic analyses on the biological inferences

that can be drawn from the data.

There have been efforts to conduct intercomparisons of

metaproteomic analyses in both biomedical and environ-

mental sample types in recent years that provide a prece-

dent for this study. A recent community best-practice effort
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in ocean metaproteomic data sharing also identified major

challenges in ocean metaproteomic research, including sam-

pling, extraction, sample analysis, bioinformatic pipelines,

and data sharing, and conducted a quantitative assessment

of sample complexity in ocean metaproteome samples (Saito

et al., 2019). A previous benchmark study, driven by the

Metaproteomics Initiative (Van Den Bossche et al., 2021),

was the Critical Assessment of Metaproteome Investigation

(CAMPI) study that employed a laboratory-assembled mi-

crobiome and human fecal microbiome sample to success-

fully demonstrate the reproducibility of results between lab-

oratories. CAMPI found robustness in results across datasets

while also observing variability in peptide identifications

largely attributed to sample preparation. This observation

was consistent with prior findings on single-organism sam-

ples that determined > 70% of the variability was due to

sample processing rather than chromatography and mass

spectrometry (Piehowski et al., 2013). Finally, the Proteome

Informatics Research Group (iPRG) from the Association of

Biomolecular Resource Facilities (ABRF) conducted a study

examining the influence of informatic pipelines on metapro-

teomic analyses that found consistency among research

groups in taxonomic attributions (Jagtap et al., 2023), and

previous research has demonstrated the impact of database

choices on final functional annotations and biological impli-

cations (Timmins-Schiffman et al., 2017).

Here we describe the results from the first ocean metapro-

teomic intercomparison. In this study, environmental ocean

samples were collected from the euphotic zone of the North

Atlantic Ocean and partitioned into subsamples and dis-

tributed to an international group of laboratories (Fig. 1).

The study was designed to examine interlaboratory con-

sistency rather than maximal capabilities, stipulating one-

dimensional (1D) chromatographic analyses from each labo-

ratory (with optional deeper analysis). Users were invited to

use their preferred extraction, analytical, and bioinformatic

procedures. The effort focused on the data-dependent analy-

sis (DDA) methods, also known as global proteomics, where

the targets are unknown; hence there is a discovery element

to the approach. DDA is currently common in ocean and

other environmental and biomedical metaproteomics, and its

spectral abundance units of relative quantitation have been

shown to be reproducible in metaproteomics (Kleiner et al.,

2017; Pietilä et al., 2022). Blinded results were submitted,

compared, and discussed at a virtual community workshop in

September 2021. An additional bioinformatic pipeline com-

parison study was also conducted, where participants were

provided metaproteomic raw data and associated metage-

nomic sequence database files and were encouraged to use

the bioinformatic pipeline of their choice.

2 Methods

2.1 Sample collection and metadata

Ocean metaproteome filter samples for the wet lab com-

parison (Fig. 1) were collected at the Bermuda Atlantic

Time-series Study (BATS; 31°40′ N, 64°10′ W) on expedi-

tion BATS 348 on 16 June 2018, between 01:00 and 05:00 am

local time. In situ (underwater) large-volume filtration was

conducted using submersible pumps to produce replicate

biomass samples at a single depth in the water column for

intercomparisons. All filter subsamples are matched for lo-

cation, time, and depth. To collect the samples, two horizon-

tal McLane pumps were clamped together (Fig. 1c) and at-

tached at the same depth (80 m) with two filter heads (Mini-

MULVS design) on each pump and a flow meter downstream

of each filter head. This depth was chosen to correspond to

a depth with abundant chlorophyll and photosynthetic or-

ganisms. Each filter head contained a 142 mm diameter Su-

por filter of 0.2 µm pore size (Pall Inc.) with an upstream

142 mm diameter Supor filter of 3.0 µm pore size (Fig. 1b,

d). Only the 0.2–3.0 µm size fraction was used in this study.

The pumps were set to run for 240 min at 3 L min−1. Volume-

filtered was measured by three gauges on each pump, one

downstream of each pump head, and one on the total outflow

(Table S2). Individual pump head gauges summed to the total

gauge for pump 1 (within 1: 447 and 446.2 L) but deviated by

89 L on pump 2 (478 and 388.9 L). Given that the total gauge

is further downstream, we report the pump head gauges as

being more accurate.

The pump heads were removed from the McLane pumps

immediately upon retrieval, decanted of excess seawater by

vacuum, placed in coolers with ice packs, and brought into a

fabricated clean-room environment on board the ship. The

filters of 0.2 µm pore size were cut into eight equivalent

pieces and frozen at −80 °C in 2 mL cryovials, creating 16

samples per pump that were co-collected temporally and in

very close proximity (< 1 m) to each other for a total of 32

samples used in this study (Fig. 1d). The filters of 3.0 µm pore

size are not included in this study but are archived for future

efforts. The sample-naming scheme associated with the dif-

ferent pumps and pump heads is described in Table S2. Note

that pump samples 1A and 1B accidentally had two 3.0 µm

filters superimposed above the 0.2 µm filter and that 1B had a

small puncture in it, although neither of these issues seemed

to affect the biomass collected; presumably the puncture oc-

curred after sampling was completed.

Samples for the bioinformatic component were collected

by the autonomous underwater vehicle (AUV) Clio. The ve-

hicle and its sampling characteristics were used as previ-

ously described (Breier et al., 2020; Cohen et al., 2023).

Specifically, samples Ocean-8 and Ocean-11 were also in

the northwestern Atlantic Ocean on R/V Atlantic Explorer

with the expedition identifier AE1913 (also described as

BATS validation track BV55; Station 2 at 32.75834° N,

https://doi.org/10.5194/bg-21-4889-2024 Biogeosciences, 21, 4889–4908, 2024
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Figure 1. Ocean metaproteomic intercomparison experimental design and sample collection. (a) The laboratory component (left) consisted

of the collection of field samples, one-dimensional (1D) chromatographic separation followed by data-dependent analysis (DDA) uniformly

employing Orbitrap mass spectrometer analyses by participating laboratories, and the submission of raw and processed data. The bioin-

formatic (right) component consisted of the distribution of two 1D DDA files, peptide-spectrum matches (PSMs), and the submission and

compilation of results. (b) Size-fractionated sample collection on a filter of 3.0 µm pore size followed by a Supor filter of 0.2 µm pore size,

and the 0.2–3.0 µm size fraction was used for the intercomparison study. (c) Two horizontal in situ McLane pumps were bracketed together

with two Mini-MULVS filter head units each and deployed on a synthetic line. (d) The four 142 mm filters were sliced into eighths (inset),

and two slices were distributed to each participating laboratory.

65.7374° W). The samples were collected by the AUV Clio

on 19 June 2019, dive Clio020, with samples collected at

20 m (Ocean-11) and 120 m (Ocean-8) with 66.6 and 92.6 L,

respectively, filtered for this study. These depths were cho-

sen to reflect the near-surface (high-light) and deep chloro-

phyll maximum (low-light) communities present in the strat-

ified summer conditions. These samples were analyzed by

1D DDA analysis using extraction and mass spectrometry for

laboratory 438 within their laboratory (Tables S5–S7). Sam-

ple metadata for both arms of this intercomparison study and

the corresponding repository information are provided in Ta-

ble S3, and repository links are in the Code and data avail-

ability statement.

2.2 Metagenomic extraction, sequencing, and assembly

A metagenomic (reference sequence) database was created

for peptide-spectrum matches (PSMs) for the metaproteomic

studies using a one-eighth sample split from the exact sam-

ple used in the intercomparison as described above. Samples

were shipped on dry ice to the Naval Research Laboratory

in Washington, D.C. (USA), where DNA was extracted and

sequenced. Preserved filters were cut into smaller pieces us-

ing a sterile blade and placed into a PowerBead tube with

a mixture of zirconium beads and lysis buffer (CD1) from

the Dneasy PowerSoil Pro Kit (Qiagen, Hilden, Germany).

The bead tube with filter sample was heated at 65 °C for

10 min then placed on a vortex adapter and vortexed at max-

imum speed for 10 min. After sample homogenization/lysis,

the bead tube was centrifuged at 16k × g for 2 min. The su-

pernatant was transferred to a DNA LoBind tube and pro-

cessed using the manufacturer’s recommendations. The pu-

rified DNA was further concentrated by adding 10 µL3 M

NaCl and 100 µL cold 100 % ethanol. The sample was incu-

bated at −30 °C for 1 h, followed by centrifugation at 16k×g

for 10 min. The supernatant was removed, and precipitated

DNA was air-dried and resuspended in 10 mM Tris. DNA

concentration was quantified with the Qubit dsDNA High-

Sensitivity Assay Kit (Thermo Fisher Scientific, Waltham,

MA, USA), and DNA quality was assessed using the Nan-

Biogeosciences, 21, 4889–4908, 2024 https://doi.org/10.5194/bg-21-4889-2024
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oDrop (Thermo Fisher) and gel electrophoresis. Processing

controls included reagent-only and blank filter samples.

Sequencing libraries were created from purified sample

DNA using the Ion Xpress Plus gDNA Fragment Library Kit

(Thermo Fisher) for a 200 bp library insert size. No ampli-

fication of the library was required, as determined by qPCR

using the Ion Library TaqMan Quantitation Kit. A starting

library concentration of 100 pM was used in template gen-

eration and chip loading with the Ion 540 Chip Kit on the

Ion Chef instrument prior to single-end sequencing on the

S5 benchtop sequencer.

Sequencing used a mix of Ion Torrent and Oxford

Nanopore sequencing, and resulting sequencing reads were

assembled using SPAdes v.3.13.1 with Python v.3.6.8. Fol-

lowing metagenome assembly, contigs smaller than 500

bases were discarded. Open reading frame (ORF) calling

was performed on contigs 500 bps or longer using Prodi-

gal v.2.6.3 (Hyatt et al., 2010) run with metagenomic set-

tings and MetaGeneMark by submitting to the MetaGene-

Mark server (http://exon.gatech.edu/meta_gmhmmp.cgi, last

access: 2 January 2024) using the GeneMark.hmm prokary-

otic program v.3.25 on 11 August 2019. ORFs called from

both programs were combined and made non-redundant us-

ing in-house Python scripts that utilize Biopython v.1.73.

Non-redundant ORFs were annotated using the sequence

alignment program DIAMOND (v.0.9.29) with the NCBI nr

database (downloaded 17 December 2019). ORFs were also

annotated with InterProScan (v.5.29) and with GhostKOALA

(Kanehisa et al., 2016) (submitted to server 2 January 2020).

Taxonomy lineages were generated by using the best DIA-

MOND (Buchfink et al., 2015) hit and pulling lineage infor-

mation from the NCBI Taxonomy database using Biopython

v.1.73.

2.3 Proteomic methodologies: extraction,

instrumentation, and bioinformatics

Some basic protocol stipulations were provided to study

participants regarding analytical conditions to set a uni-

formity of experimental design. While users were encour-

aged to use the extraction method of their preference, con-

straints on chromatography and mass spectrometry condi-

tions were set, limiting the number of chromatographic di-

mensions (1D), the total length of the chromatographic run,

and the amount of protein injected (as proteolytic digests), as

well as enforcing a single mass spectrometry injection rather

than gas-phase fraction approaches (Table S4). Each labo-

ratory group’s specific approach is summarized in the Sup-

plement, with extraction in Table S5 and with chromatog-

raphy and mass spectrometry equipment and parameters in

Tables S6 and S7. While there are more sophisticated meth-

ods, such as two-dimensional (2D) chromatography and gas-

phase fractionations, that have been demonstrated to provide

deeper metaproteomes (McIlvin and Saito, 2021), these often

require specialized equipment and/or additional instrument

time. As a result, the study constraints were provided to en-

sure a single simple method that all labs could utilize. Lab-

oratories were invited to submit additional data from more

complex analytical setups if they first completed the 1D anal-

yses.

2.4 Compilation, analysis, and re-analysis of

laboratory data submissions

Results from individual laboratories’ data submissions were

analyzed in two ways, as shown in the flowchart of Fig. 1a.

Firstly, submitted processed data reports (i.e., PSMs, tax-

onomic, functional annotations) were compiled and inter-

preted. Secondly, raw data files (i.e., spectra directly from

instruments) from each group were put through a sin-

gle bioinformatic pipeline using SEQUEST HT/Percola-

tor within Proteome Discoverer v.2.2.0.388 (Thermo Sci-

entific) and Scaffold v.5.2.1 (Proteome Software) to isolate

variability associated with bioinformatic processing. Note

that Scaffold ignores the Percolator output from Proteome

Discoverer when re-running in Scaffold. This re-analysis

(single-pipeline re-analysis hereon) allowed detailed cross-

comparisons of laboratory practices to assess the influence

of the extraction and mass spectrometry components. Spe-

cific parameters of the latter included the following: parent

tolerances of 10 ppm were used on all instruments (all Orbi-

traps), and fragment tolerances of 0.02 and 0.6 Da were used

for Orbitrap MS2 instruments and for ion trap MS2 instru-

ments, respectively. Fixed and variable modifications of +57

on C (fixed), +16 on M (variable), and +42 on the peptide

N-terminal (variable) were used. Peptide and protein false

discovery rates (FDRs) were set to lower than 1.0 % using

a decoy database, with one minimum peptide per protein,

and the resulting peptide FDR was 0.1 %. The database used

for PSMs was Intercal_ORFs_prodigal_metagenemark.fasta

based on the metagenomic sequencing described above

with 197 824 protein entries. The re-analysis was conducted

within Scaffold using total spectral counts and allowing sin-

gle peptides to be attributed to proteins. In addition to the

total number of protein identifications, the number of protein

groups identified by Scaffold was also provided. Each protein

group represented proteins identified with identical peptides,

collapsed into a single protein entry with the highest proba-

bility and number of spectral counts.

2.5 Data analysis methods

Several analyses were conducted using data from the single-

pipeline re-analysis. Firstly, pairwise comparisons of protein

identifications were conducted using spectral abundance re-

ports produced in Scaffold and were loaded, analyzed, and

visualized in MATLAB (MathWorks Inc). Two-way (inde-

pendent) linear regressions were conducted using the script

linfit.m. The R2 on the seven datasets was averaged, and

the standard deviation was calculated for shared proteins

https://doi.org/10.5194/bg-21-4889-2024 Biogeosciences, 21, 4889–4908, 2024
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in each dataset. Secondly, a Sørensen similarity (Sørensen,

1948) was calculated where a matrix was generated that con-

sisted of the unique proteins or peptides identified across all

technical replicates from the various labs with the relative

abundance per replicate (percentage contribution of each pro-

tein/peptide per technical replicate total). The Bray–Curtis

dissimilarity pairwise distance was calculated on this ma-

trix using Python and the SciPy library (v.1.4.1; Virtanen et

al., 2020) and then 1; the Bray–Curtis dissimilarity was cal-

culated across the matrix to generate the Sørensen pairwise

similarity across all replicates. The resulting similarities per

replicate were clustered and visualized using the clustermap

function in the Seaborn library (v.0.10.0; Waskom, 2021).

Thirdly, shared peptides and proteins were visualized using

UpSet plots and using the R package UpSetR (Conway et al.,

2017) to determine the number of unique peptide sequences

and annotated proteins in intersecting sets between all labs,

all permutations of lab subsets, and all lab pairs.

2.6 Bioinformatic intercomparison methods

The methods used for the bioinformatic intercomparison

study are described by each laboratory using their unique

three-digit identifier code. All laboratories used the metage-

nomic database generated in the laboratory study (see

Sect. 2.2). In Lab 109, the raw files were searched against

the metagenomic database employing a two-round search

using PEAKS Studio X. The initial database search was

performed to focus the metagenomic database for protein

sequences with peptide sequence matches at 5 % FDR.

The focused database was further used for a second-round

search, which allowed a parent mass error tolerance of

10.0 ppm and a fragment mass error tolerance of 0.6 Da. The

search considered up to three missed cleavages, with car-

bamidomethylation as fixed and with methionine oxidation

and N-terminal acetylation as variable modifications. The

cRAP protein sequences (http://ftp.thegpm.org/fasta/cRAP./,

last access: 1 October 2020) were included as a contaminant

database. Finally, PSMs were filtered for 1 % FDR and an-

notated with taxonomic lineages (obtained from the metage-

nomic experiments). Non-unique peptide matches were an-

notated with the LCA of the respective lineages.

In Lab 321, SearchGUI (Galaxy v.3.3.10.1) was used to

search using multiple search algorithms (X!Tandem, MS-

GF+, and Comet). For each search algorithm, a precursor

tolerance of 10.0 ppm was used, a fragment ion tolerance

of 0.6 Da was used, and trypsin was used as an enzyme for

proteolytic cleavage. Searches were performed allowing two

missed cleavages: fixed modification of carbamidomethyla-

tion at cysteine and variable modifications of acetylation of

protein N-term and oxidation of methionine. PeptideShaker

(v.1.16.36) was used to filter peptides with a length of 8–

50 aas and a precursor m/z tolerance of 10.0 ppm. Detected

peptide-spectrum matches, peptides, and proteins were re-

ported at 1 % global FDR. The entire analysis was performed

within the Galaxy platform.

In Lab 321, MaxQuant (Galaxy v.1.6.17.0+galaxy3) was

used to search the datasets. A fixed modification of car-

bamidomethylation at cysteine and variable modifications of

acetylation of protein N-term and oxidation of methionine

were applied along with allowing two missed cleavages. The

detection peptides and proteins were reported at 1 % FDR.

In Lab 362, the raw files were converted using Ther-

moRawFileParserGUI (v.1.4.1) to peak lists (.mgf files) us-

ing “native Thermo library peak picking” as the peak pick-

ing option and “Ignore missing instrument properties” as

the error option. The peak lists (.mgf files) obtained from

MS/MS spectra were identified using X! Tandem (Vengeance

V.2015.12.1) using SearchGUI v.4.1.0. Here, the parameters

provided and suggested by the study were used: tolerances

of 10 ppm for MS1 and 0.6 Da for MS/MS, dynamic modifi-

cations of oxidation of M and acetyl on the N-terminus, and

a static modification of carbamidomethylation of C. Identi-

fication was conducted against a concatenated target/decoy

database of the provided database.

The X!Tandem files were used as input in MS2Rescore

(https://github.com/compomics/ms2rescore, last access:

1 October 2020), a machine-learning-based post-processing

tool that improves upon Percolator rescoring of peptide-

spectrum matches (PSMs). Here, the search-engine-

dependent features of Percolator were appended with MS2

peak intensity features by comparing the PSM with the

corresponding MS2 PIP-predicted spectrum. All reported

MS2Rescore PSM identifications have a q value < 0.01. No

protein grouping algorithm was applied, and all identified

taxa and functions are extracted from the provided database.

In Lab 458, the Proteome Discoverer 2.5 platform was

used (SequestHT + Percolator (MPS)). Fully tryptic peptides

with a minimum length of six peptides and a maximum of

two missed cleavages were required. A precursor tolerance of

10.0 ppm and a fragment ion tolerance of 0.6 Da were used,

carbamidomethylation was fixed, and methionine oxidation

was set as a variable modification. Filtering was performed

at a 1 % PSM- and peptide-level FDR. The MaxQuant con-

taminant list was used as a contaminant database.

In Lab 501, we first appended the database with a set of

common contaminants (Global Proteome Machine Organiza-

tion common Repository of Adventitious Proteins). Then, we

used MSGF+ (Kim and Pevzner, 2014) to match mass spec-

tra with peptide sequences, with cysteine carbamidomethy-

lation as a fixed modification and with methionine oxida-

tion, glutamine modified to pyroglutamic acid, deamidated

asparagine, and deamidated glutamine as variable modi-

fications. Peptides were searched for with a target-decoy

approach, with a 1 % false discovery rate at the peptide-

spectrum match level. For spectral counts, we summed MS2

spectra that identified a peptide and normalized all spectral

counts to the total spectral counts per sample. Proteins were

quantified using the median spectral count for all proteotypic
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peptides (those peptides which uniquely correspond to a pro-

tein), specifically using the OpenMS tool ProteinQuantifier.

This approach requires at least one proteotypic peptide, but,

if more are identified, those peptides are also used for quan-

tification.

In Lab 828, the raw files were analyzed using Proteome

Discoverer. MS/MS spectra were searched against the pro-

vided database using the SEQUEST-HT engine. MS/MS

spectrum searches were performed with a precursor ion tol-

erance of 10.0 ppm and a fragment ion tolerance of 0.6 Da.

Carbamidomethyl cysteine was specified as a fixed modifi-

cation, whereas oxidation (M), deamidation (N/Q), and N-

terminal protein acetylation were set as variable modifica-

tions. Trypsin was specified as the proteolytic enzyme, al-

lowing two missed cleavages. Percolator-based scoring was

chosen to improve the discrimination between correct and in-

correct spectrum identifications, learning from the results of

a decoy and a target database. Settings were as follows: max-

imum delta Cn of 0.05, strict false-discovery rate of 0.01, and

validation based on q values.

In Lab 902, SEQUEST-HT was used within Proteome

Discoverer 2.2 using the following settings: two maximum

missed cleavages, a minimum peptide length of 6 and a

maximum peptide length of 122, a precursor mass toler-

ance of 10 ppm, and a fragment mass tolerance of 0.6 Da.

The dynamic modifications were M oxidation and acetyl

on N-terminus, and the static modification was C car-

bamidomethyl. A Percolator PSM validator (within Pro-

teome Discoverer) was used with following settings: maxi-

mum delta Cn 0.05, target FDR strict 0.01, target FDR re-

laxed 0.05, and validation based on PEP. Scaffold 5.0 was

used to analyze files generated with Proteome Discoverer

with following settings: a scoring system in prefiltered mode,

standard experiment-wide protein grouping, a protein thresh-

old of 1.0 % FDR, a peptide threshold of 0.1 % FDR, and a

minimum of one peptide.

In Lab 932, mass spectrometry data were transformed

from Thermo RAW format (v.66) to mzML and Mas-

cot Generic (MGF) formats using ThermoRawFileParser

(v.1.2.0; Hulstaert et al., 2019). Experimental metadata were

extracted from mass spectrometry data using the MAR-

MoSET program (Kiweler et al., 2019). Mascot Server

(v.2.6.2; Matrix Science, LTD) software performed peptide-

spectrum matching between experimental data and a ref-

erence sequence database. Reference sequences included

a total of 197 824 predicted protein-coding ORFs from a

metagenome assembly. Peptides matching an in-house cu-

rated inventory of contaminant protein sequences, mass stan-

dards, and proteolytic enzyme sequences were removed from

the results. Mascot search parameters included the follow-

ing settings: +10.0 ppm monoisotopic precursor mass tol-

erance, +0.6 Da monoisotopic fragment ion tolerance, one

fixed modification (+57 to C residues), two variable mod-

ifications (+16 to M residues and +42 to peptide amino-

termini), the digestion enzyme trypsin, two missed cleav-

ages, peptide charges +2 ± 7, and electrospray ionization

coupled to Fourier-transform ion cyclotron resonance (ESI-

FTICR). Mascot search results containing peptide-spectrum

matches (PSMs) were exported for downstream data anal-

ysis. Scaffold Q+S (v.4.8.9) was used to validate MS/MS-

based peptide- and protein-level peptide-spectrum matches

with the PeptideProphet algorithm. Mascot PSM data were

imported into Scaffold Q+S with the following settings spec-

ified: a quantitative metric of spectrum counting, legacy

PeptideProphet scoring (high-mass accuracy), and standard

experiment-wide protein grouping. Optional loading steps

were to pre-compute false discovery rate (FDR) thresholds

and to use local gene ontology (GO) annotations (UniProt

GO annotation data retrieved 25 June 2020). Scaffold Q+S

identification criteria were set at greater than or equal to

99.9 % probability by the PeptideProphet algorithm (Keller

et al., 2002.) and > 99.9% probability by the ProteinProphet

algorithm (Nesvizhskii et al., 2003) with more than two pep-

tides at the protein level.

In Lab 957, MSFragger 3.3 searches were performed with

FragPipe 16.0 and Philosopher 4.0.0. A concatenated tar-

get/reverse database was searched with a 50 PPM precur-

sor and a 0.4 Da fragment mass tolerance. Automatic mass

calibration and parameter optimization were enabled, and

precursor mass errors for up to +2 neutrons were consid-

ered. Peptide candidates were generated from database pro-

tein sequences assuming tryptic digestion, allowing up to one

missed cleavage. Peptides were required to have between 8–

50 amino acids and range from 500 to 5000 m/z. Cysteines

were assumed to be fully carbamidomethylated, and peptides

were searched considering variable n-terminal pyroglutamic

acid formation and methionine oxidation. PeptideProphet

was used for FDR validation with the following default op-

tions: “–decoy probs”, “–ppm”, “–accmass”, “–nonparam”,

and “–expectscore”, which allow additional high-mass accu-

racy analysis and non-parametric distribution fitting. Protein-

Prophet was used for protein-level FDR validation with the

following default option: “–maxppmdiff 2000000”. Filtering

was performed using a 1 % peptide-level and a 1 % protein-

level FDR threshold.

3 Results

3.1 Experimental design

This ocean metaproteomic intercomparison consisted of two

major components: a laboratory component, where inde-

pendent labs processed identical ocean samples simultane-

ously collected from the North Atlantic Ocean (Fig. 1a; see

Sect. 2.1), and a subsequent bioinformatic component. Par-

ticipating institutions and persons at those institutions are

listed in Table S1 in the Supplement, with all participants also

listed as co-authors. Both arms of the study were conducted

under blinded conditions, where correspondence with partic-
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ipants was conducted by an individual not involved in either

study and where submitted results and data were anonymized

prior to sharing with the consortium. Within both arms of the

study, participants were provided the location of the study

site and metadata about the sampling locations, time, and

depth at the onset of the study. The laboratory study involved

two biomass-laden filter slices collected from the North At-

lantic Ocean Bermuda Atlantic Time-series Study site at

80 m depth being sent to each participating group for pro-

tein extraction, mass spectrometry, and bioinformatic anal-

yses (see Sect. 2.1). This depth was chosen to correspond

to a depth with abundant chlorophyll and associated photo-

synthetic organisms. The bioinformatic effort was indepen-

dent of the laboratory effort and involved the distribution and

bioinformatic analysis of two metaproteomic raw data files

generated from samples also from the North Atlantic Ocean

upper-water-column BATS station (20 and 120 m depths;

see Sect. 2.1). These depth were chosen to reflect the near-

surface (high-light) and deep chlorophyll maximum (low-

light) communities present in the stratified summer condi-

tions. These files were distributed after labs had submitted

their laboratory-extracted raw data files. The raw files from

the bioinformatic study were distinct from the samples used

in the laboratory intercomparison study to avoid any biases

from groups that analyzed those samples previously. Sub-

mitted results from both components were anonymized and

assigned three-digit lab identifiers generated randomly, with

laboratory and bioinformatic results from the same lab being

assigned distinct identifiers.

We report results for two study components: part 1

(Sect. 3.2) involves the data generation intercomparison of

distributed subsamples from the North Atlantic Ocean (Fig.

1, Sect. 2.1). Part 2 (Sect. 3.3) was a bioinformatic in-

tercomparison, where metaproteomic raw files were shared

with participants and processed results were submitted. Both

components were conducted as blinded studies, where each

dataset was assigned a three-digit randomly generated iden-

tifier, with those identifiers used throughout the Results and

Discussion.

3.2 Mass spectrometry data generation

intercomparison

Nine laboratories submitted raw and processed datasets from

the analysis of the distributed Atlantic Ocean field samples

(Table S1). The processed data submissions were hetero-

geneous in output format, statistical approach, and parame-

ter definition. Because of the challenges of comparing data

derived from different types of statistical approaches used

for peptide and protein identification and inference and of

the varying output formats from various software packages,

the user-generated data submissions were difficult to com-

pile and compare, resulting in variability in the number of

identifications depending on the statistical approaches and

thresholds applied. These results are further discussed in the

Supplement (Fig. S1, Table S8). Despite these challenges,

an average of 7142 ± 2074 peptides was identified across

the pairwise comparisons (Fig. S1c), representing 20 % of

the 35 715 total unique peptides detected across all labs. To-

gether, these findings implied a consistency in peptide identi-

fication across participants. The variability in proteome depth

reflected the combination of differing parameters employed

by software and laboratory approaches.

To remove this variability associated with user-selected

bioinformatic pipelines, a single-pipeline re-analysis of the

submitted raw mass spectral data was conducted. Raw data

files were processed together within a single bioinformatic

pipeline consisting of SEQUEST-HT, Percolator, and Scaf-

fold software and evaluated to a false discovery rate threshold

of < 0.1% for peptides and 1.0 % for proteins (see Sect. 2.4).

Two datasets were found to have had issues during extrac-

tion and analysis that affected the results in both processed

and raw data (labs 593 and 811; Table S8). Notably, these

two laboratories differed from the others in that they did not

use SDS as a protein-solubilizing detergent (Table S5). This

likely resulted in inefficient extraction of the bacteria that

dominated the sample biomass (e.g., picocyanobacteria and

Pelagibacter) embedded within the membrane filter slices.

Further examination showed polyethylene glycol contamina-

tion of one dataset (Lab 811) and low yield from sample pro-

cessing and extraction from the other (Lab 593). As a result,

those datasets were not included in the single-pipeline re-

analysis. The standardized pipeline included calculations of

shared peptides and proteins, quantitative comparisons, and

consistency of taxonomic and functional results.

The total number of peptide and protein identifications

and PSMs in the single-bioinformatic-pipeline analysis var-

ied by laboratory (Table S9), with unique peptides ranging

by more than a factor of 3 from 3354 to 16 500 and with

27 346 total unique peptides identified across laboratories.

This variability was likely due to different extraction, chro-

matographic, and mass spectrometry hardware and parame-

ters employed used by each laboratory, resulting in a varying

depth of metaproteomic results. However, as with the user-

submitted results, there was considerable overlap in identifi-

cations between all datasets. An intersection analysis found

the numerous shared peptides between all combinations of

laboratories, with 1395 peptides shared between all seven

laboratory datasets (Fig. 2a). Laboratories with deeper pro-

teomes shared numerous peptides; for example, the two lab-

oratories with the most discovered unique peptides shared

∼ 3000 peptides between them, implying that shared pep-

tides is a useful metric for intercomparability. They also had

the largest numbers of peptides that were not found by any

other labs (3617 and 2819, respectively). The fourth-largest

intersection size (1395) represented the unique peptides dis-

covered by all labs. Beyond that, there were 12 different

groupings of peptides that were shared among at least four

laboratories. Consistent with this, three-way Venn diagrams

of labs 135, 209, and 438 had an intersection of 2398 pep-

Biogeosciences, 21, 4889–4908, 2024 https://doi.org/10.5194/bg-21-4889-2024



M. A. Saito et al.: Effects of LC-MS acquisition and data analysis procedures 4897

Figure 2. Shared peptides and proteins between laboratory groups using laboratory submissions processed through a single bioinformatics re-

analysis pipeline. (a) The total number of discovered unique peptides varied by more than 3-fold among seven laboratory groups (horizontal

bars) due to varying extraction and analytical schemes (FDR 0.1 %). The number of intersections between datasets across all seven datasets

was 1395 (fourth blue bar from left), and various sets of intersections of peptides were observed amongst the data. (b) The total number

of discovered proteins (FDR < 1%) varied more than 4-fold from 1586 to 6221 among labs (horizontal bars). The number of intersections

between datasets across all seven laboratories was 1056, with various sets of intersections of proteins observed, similar to the peptides.

(c) Seven-way Venn diagrams of shared unique peptides between laboratories showed 1056 shared peptides between the seven laboratories.

(d) Three-way Venn diagrams showed 2398, 2304, and 3016 shared unique peptides between laboratories.

tides; labs 652, 729, and 774 shared 3016 peptides; and labs

127, 135, and 309 shared 2304 peptides (Fig. 2d).

A similar analysis was conducted at the protein level (see

Sect. 2, Methods), where 8043 unique proteins in total were

identified across all laboratories, with 1056 of those observed

in all seven labs (see seven-way Venn diagram in Fig. 2c).

Three-way Venn diagram comparisons among labs 135, 209,

and 438 had an intersection of 1254 proteins, and labs 652,

729, and 774 shared 1925 proteins (data not shown).

Optional deeper metaproteome results were submitted by

three laboratories using either a long gradient of 12 h or

two-dimensional chromatographic methods (Table S10). The

number of discovered peptide and protein identifications was

higher in each case, with as many as 18 477 unique pep-

tides and 7765 protein identifications from an online two-

dimensional chromatographic analysis of a 5 µg single injec-

tion.

The mapping of identified peptides to protein sequences

forms the basis for protein identification in the form of DDA

bottom-up proteomics employed here. The relationship be-

tween peptides and protein identification was explored in

Fig. 3 and found to be correlated by two-way linear regres-

sion with R2 values of 0.97 and 0.98 for total protein identi-

fications and protein groups, respectively. Together, the fact

that there is a linear relationship between peptides and pro-

teins across all laboratories (including labs employing deeper

https://doi.org/10.5194/bg-21-4889-2024 Biogeosciences, 21, 4889–4908, 2024



4898 M. A. Saito et al.: Effects of LC-MS acquisition and data analysis procedures

Figure 3. Comparison of unique peptides and discovered proteins.

Comparison as total protein identifications and protein groups from

the single-pipeline re-analysis based on submissions from nine lab-

oratories. Increasing sample depth is linear with mapping to pro-

teins (R2 of 0.97 and 0.98 for total protein IDs and protein groups,

respectively, with slopes of 0.37 and 33), implying that additional

peptide discovery leads to proportionally more protein discovery

and that protein discovery has not yet begun to saturate with more

peptides mapping to each protein. Because simple 1D analyses were

stipulated in the intercomparison experimental design, peptide and

protein discovery were correspondingly limited in depth.

methods) could imply that the number of protein identifica-

tions has not begun to plateau and has reached “saturation”,

likely due to the immense biological diversity and lower

abundance of peptides within these samples. This approach

has some similarities to rarefaction curves used in metage-

nomic sequencing to determine if the majority of species di-

versity has been sampled, although, in this case, the num-

ber of peptides is used as a metric for sampling depth in-

stead of the additional number of DNA sequencing sam-

ples typically used for rarefaction curves. This indicated

that, with a greater depth of analysis by some laboratories,

there was no fall-off in the increase in protein identifica-

tion that might be attributed to additional peptides mapping

to already-discovered protein sequences. In addition, the 2D

and long-gradient additional analyses conducted by several

laboratories fell upon this line, consistent with the “more

peptides, more proteins” observation, implying more room

for improvement in the depth of metaproteomic analyses.

A quantitative analysis of spectral counts from the wet-lab

re-analysis showed broad coherence among the seven labora-

tories. Pairwise comparisons of protein spectral counts were

conducted for each of the seven labs against the other six

(visualized in a 7 × 7 matrix, with duplicate comparisons re-

moved (e.g., A vs. B and B vs. A)), where each data point

reflects the spectral counts for a protein shared between labo-

ratories (Fig. 4a). When a dataset was compared with itself, a

unity line of data points was observed along the diagonal axis

as expected. Two-way linear regressions were conducted on

each of these pairwise comparisons. The slopes ranged from

0.33 to 5.5 (Fig. S2), implying a varying dynamic range in

spectral counts across laboratories, likely due to variations

in instrument parameterizations selected by each laboratory,

and consistency with the lack of normalization between lab-

oratories. The coefficient of determination R2 values from

0.43 to 0.84 with an average of 0.63 ± 0.11 show coher-

ence among results for these large metaproteomic datasets

(Fig. 4b, Table S12). To provide a sense of coherence be-

tween each laboratory and the others, the R2 values of a lab

against the other six laboratories were averaged and the stan-

dard deviation was calculated. All of these average R2 val-

ues were higher than 0.5, which showed overall quantitative

consistency despite the size and complexity of these datasets

(Fig. 4d).

A comparative taxonomic and functional analysis was also

conducted using a single bioinformatic pipeline (see metage-

nomic sequencing methods for annotation pipeline). A low-

est common ancestor (LCA) analysis of peptides identified

from datasets from seven laboratories showed consistent pat-

terns of taxonomic distribution using the METATRYP pack-

age (Fig. 5a; Saunders et al., 2020). Cyanobacteria and al-

phaproteobacteria were the top two taxonomic groups in all

laboratory submissions, consistent with the abundant pico-

cyanobacteria Prochlorococcus and the heterotrophic bac-

terium Pelagibacter ubique known to be dominant compo-

nents of the Sargasso Sea ecosystem (Sowell et al., 2009;

Malmstrom et al., 2010). For example, Prochlorococcus is

consistently present between 104 and 105 cells per milliliter

in this region and has been observed to contribute to carbon

export from the euphotic zone (Casey et al., 2007). Pelag-

ibacter cells can also be in excess of 105 cells per milliliter

at the BATS North Atlantic location (Carlson et al., 2009).

These results are broadly similar to the representation of

phyla within the metagenome annotations, where Proteobac-

teria (including Pelagibacter) and Cyanobacteria (including

Prochlorococcus and Synechococcus) were major compo-

nents, although Bacteriodetes (including Flavobacteria) are

more prevalent in the metagenome annotations than in the

metaproteome. Some differences may also be due to the in-

corporation of protein abundances in Fig. 5a versus the sim-

ple taxonomic attribution of non-redundant assembled open

reading frames in the metagenome analysis and to the use of

multiple sequencing platforms and gene-calling algorithms

(Sect. 2.2, Fig. S4).

Similarly, KEGG Orthology (KO) group analysis of those

datasets also showed highly similar patterns of protein func-

tional distributions across laboratories (Fig. 5b). Notably,

the PstS phosphate transporter protein from Prochlorococ-

cus was the most abundant protein in all datasets, consistent

with observations of phosphorus stress in the North Atlantic

oligotrophic gyre and its biosynthesis in marine cyanobac-

teria (Scanlan et al., 1997; Coleman and Chisholm, 2010;
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Figure 4. Quantitative comparison of intercomparison results. (a) Pairwise comparisons of quantitative abundance across six laboratories

in units of spectral counts (the comparison of each lab with itself shows unison diagonals). (b) R2 values from pairwise linear regressions.

(c) Total proteins identified in each laboratory. (d) Average of each laboratory’s R2 values from pairwise regression with the other six

laboratories (error bars are standard deviation). In all cases, the average R2 value is higher than 0.5. (e) Occurrences of R2 values in pairwise

comparisons spanning 0.4 to 0.9. Potential causes of this range are outlined in the Discussion.

Ustick et al., 2021). These findings demonstrate the repro-

ducibility in the primary functional and taxonomic conclu-

sions from the metaproteome datasets. Finally, a Sørensen

similarity analysis of the 1000 proteins with highest spectral

counts revealed 70 %–80 % similarities between most lab-

oratory groups in the data re-analysis (Fig. 6). When con-

ducted on the full dataset with all peptides and proteins, the

Sørensen similarity analysis showed peptides had lower sim-

ilarity than proteins, implying variability is ameliorated when

aggregated to the protein level (Fig. S3).

3.3 Bioinformatic data analysis intercomparison

Two metaproteomic raw files were provided to intercompar-

ison participants and were searched, with each laboratory’s

preferred database searching the bioinformatic pipeline. The

samples that generated the data for these files were col-

lected by AUV Clio during a single dive at the Bermuda

Atlantic Time-series Study station (Breier et al., 2020) and

were distinct from the samples associated with the labora-

tory intercomparison component. However, they were also

from the North Atlantic Ocean, allowing the same metage-
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Figure 5. Taxonomic and functional analysis of metaproteomic intercomparison. (a) The percentage of spectral counts by taxonomy was

similar across laboratories and technical replicates within laboratories. The sample was dominated by cyanobacteria and alphaproteobacteria,

corresponding primarily to Prochlorococcus and Pelagibacter, respectively. (b) The percentage of spectral counts per KEGG Orthology group

showed the functional diversity of the sample.

nomic database to be used. This database was not collected

simultaneously with the bioinformatics samples, so it was

not as representative as that used in the laboratory inter-

comparison. However, the BATS region is known to main-

tain similar major taxonomic composition throughout the

year (e.g., Prochlorococcus and SAR11; see discussion in

Sect. 3.2), hence enabling many protein identifications. This

bioinformatic study component was not launched until after

the laboratory-based intercomparison submission deadline to

avoid influencing that part of the study by sharing similar raw

data. Samples were named Ocean 8 and Ocean 11 and were

taken from 120 and 20 m depths, respectively.

The bioinformatic intercomparison involved 10 laborato-

ries utilizing eight different software pipelines, including

the PSM search engines SEQUEST, X!Tandem, MaxQuant,

MSGF+, Mascot, MSFragger, and PEAKS (Table S11; see

Methods Sect. 2.6). As with the user-supplied laboratory re-

sults, the results were challenging to compile due to differ-

ent types of data outputs, approaches used in protein infer-

ence, and statistical approaches applied within each pipeline.

Unique peptide discoveries served as a useful base unit of

comparison, as they were less subject to these comparison

challenges. The number of peptides ranged from 1724 to

6369 in Ocean 8 and 3019 to 8288 in Ocean 11 (Fig. 7, Ta-

ble S11). The difference in the number of peptides was likely

due to parameters used in software; for example, Lab 932

had the lowest number of peptides identified in both samples
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Figure 6. Quantitative Sørensen similarity analysis. Analysis of the top 1000 proteins (∼ 75% of all proteins) showed 70 %–80 % similarity

between most laboratory groups. Technical triplicates for each laboratory group are shown.

but also used a highly stringent 99.9 % probability cutoff that

likely influenced this result.

4 Discussion

4.1 Assessment of ocean metaproteomic reproducibility

Given the recent establishment of complex metaproteomic

techniques, intercomparisons are valuable in demonstrating

their suitability for ocean ecological and biogeochemistry

studies. Synthesizing the results of the laboratory and mass

spectrometry blinded intercomparison study (Sect. 3.2) pro-

cessed with a single bioinformatic pipeline (Sect. 2.4), we

observed consistent reproducibility with regard to three at-

tributes of ocean metaproteomics analyses: (1) the identity

of discovered peptides and proteins (Fig. 2), (2) their rel-

ative quantitative abundances (Figs. 4 and 6), and (3) the

taxonomic and functional assignments within intercompared

samples (Fig. 5). With over 1000 proteins identified across

seven laboratories and Sørensen similarity indexes typically

higher than 70 %–80 % (Fig. 6), the results demonstrate con-

sistent detection and quantitation of major proteins in the

sample. These results provide confidence that multiple labo-

ratories can generate reproducible results describing the ma-

jor proteome composition of ocean microbiome samples to

assess their functional and biogeochemical activity.

While there is good agreement, this congregation of data

allows further exploration of the influence of methods on the

results. In particular, as mentioned above, the range of pair-

wise comparisons had correlation coefficients ranging from

0.43 to 0.84, with most values falling between 0.6 and 0.8

(Fig. 4b and e, Table S12). This average of all correlation co-

efficients described above (0.63 ± 0.11) implied good repro-

ducibility between laboratories in general. We can explore

what might have influenced the variability and lower range of

coefficients. The correlation coefficients of Lab 209 had two

of the three R2 values below 0.499 in pairwise comparisons

(0.431 and 0.475) yet also had values that ranged from 0.61
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Figure 7. Intercomparison of bioinformatic pipelines among lab-

oratories. Unique peptide identifications for sample Ocean 8 from

120 m depth (a) and Ocean 11 from 20 m depth (b), both from the

North Atlantic Ocean (Table S3), using a variety of pipelines and

PSM algorithms.

to 0.70. Why would this variability exist? Lab 209’s meth-

ods differed from other labs in several ways: it used the old-

est and slowest instrument of the group (Thermo Orbitrap

Elite), used CID instead of HCD for fragmentation and rapid

scan mode, and used an unusually long column of 200 cm to

compensate for the older instrument (Table S6). As a result,

Lab 209 had the lowest number of peptide (3354) and protein

(1586) IDs of the seven labs (Table S9), which was several-

fold lower than the lab with the highest number and reduced

the number of shared peptides across all laboratories. In pair-

wise comparisons, Lab 209 had the lowest number of shared

peptides at an average of 1304. Interestingly, however, Lab

209 did not have the lowest number of total spectral counts

(63 198) but was close to the average (70843 ± 27455), im-

plying that more abundant peptides were detected relative to

rarer ones.

We initially suspected that the lower R2 values in pairwise

comparisons with Lab 209 may have been related to com-

parisons to laboratories with similarly lesser peptide depth,

but this was not the case: the two lowest correlation coeffi-

cients for Lab 209 were with labs 135 and 774 (the 0.431

and 0.475 values), the latter of which had the highest num-

ber of peptide identifications. The answer for this difference

in quantitative values may be within the selection of parame-

ters used to sample peptide peaks: both Lab 135 and Lab 774

used 60 s dynamic exclusion, whereas the other five labs used

dynamic exclusions between 10 and 30 s in length (Table S7).

This higher dynamic exclusion likely contributed to provid-

ing greater peptide discovery depth but at the cost of quanti-

tative consistency with other laboratories, since this param-

eter selects against repeat counting of abundant peaks and

would reduce spectral counts of the more abundant peptides

that Lab 209 was detecting. This result demonstrates the in-

fluence of the mass spectrometer parameters in quantitative

reproducibility when using global proteomic DDA mode.

4.2 Metrics in metaproteomics: core versus rare

“long-tail“ proteins

While abundant proteins were consistently detected across

the seven laboratories’ submissions, there was substantial

variability in the less abundant proteins (Fig. 2). This is ev-

ident in Fig. 8, where most of the 1063 proteins across the

seven laboratories in the re-analysis were in the upper half

of proteins when ranked by abundance. This simultaneous

consistency in abundant proteins and diversity in rare pro-

teins (and their respective peptide constituents) was likely a

result of several factors. Firstly, the intercomparison experi-

mental design stipulated 1D chromatography in order to pro-

vide straightforward comparisons that all laboratories could

accomplish. This contributed to study consistency but also

resulted in lesser proteome depth compared to more elaborate

methods commonly in use, such as 2D chromatography and

gas-phase fractionation. Secondly, the sample complexity of

ocean metaproteomes has been shown to be enormous, with

a far greater number of low-abundance peptides present than

HeLa human cell lines (Saito et al., 2019). The combined ef-

fect of these factors meant that, while laboratories were able

to detect abundant proteins consistently, there was consider-

able stochasticity associated with the detection of less abun-

dant peptides resulting in a long tail of lower-abundance pro-

teins discovered.

Mass spectrometer settings, such as dynamic exclusion,

chromatography conditions, and variation in sample prepara-

tion methods, all likely contributed to this stochastic variabil-

ity in rare peptide detection among laboratories. Moreover,

while all participating laboratories used Thermo Orbitrap

mass spectrometers, there were seven variants of instrument

model, including some with Tribrid multiple detector capa-

bility (Table S6). While testing other mass spectrometry plat-

forms is of interest, the trend of community Orbitrap usage in

this study is consistent with the broader proteomic commu-

nity, where 9 of the top 10 instruments currently used in Pro-

teomeXchange consortium repository data submissions uti-

lize Orbitraps as of the article submission date (Deutsch et

al., 2019). When conducting analysis of environmental sam-

ples, choices can be made about instrument setup and pa-

rameters based on the scientific objectives, for example, if

maximal proteome depth or robust quantitation while using a

discovery approach is desired. Future intercalibration efforts

enlisting more sensitive metaproteomic methods such as 2D

chromatography (McIlvin and Saito, 2021), more sensitive

instruments (Stewart et al., 2023), and other emerging meth-

ods can greatly improve the detection and quantitation of

rarer proteins in metaproteomes, allowing exploration of the

depths of state-of-the-art capabilities rather than our present
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Figure 8. Variability in discovered proteins between laboratories occurs in lower-abundance proteins. Top seven panels: abundance of pro-

teins as a percentage of total protein spectral counts within each laboratory (y axis is percentage), with proteins on the x axis shown by ranked

abundance as the sum of spectral counts across all laboratories. Almost all proteins fall below 1 % of spectral counts within the sample, and

deeper proteomes have lower percentages due to the sharing of percent spectral counts across more discovered proteins. Bottom panel: shared

proteins were found early within the long tail of discovered proteins; the 1056 proteins shared between all laboratory groups are almost all

found on the left-hand side, indicating their higher abundance in all seven datasets. Scale is binary in the seventh panel, indicating presence

or lack thereof in the seven labs.

emphasis on interlaboratory consistency. Moreover, the de-

velopment and adoption of best practices in sample collec-

tion, extraction, chromatographic separation, mass spectrom-

etry analyses, and bioinformatic approaches will contribute

to interlaboratory consistency.

Despite the interlaboratory variability in the detected sets

of rarer peptides and proteins, we interpret these to be largely

robust identifications. The stringent 0.1 % peptide-level FDR

threshold we use here is determined by scoring decoys:

reverse-sequenced peptides that are not in our samples. Pep-

tide assignments to these decoys model the score distribu-

tion of all incorrect peptide-spectrum matches (PSMs) in our

study such that FDRs can be estimated in an unbiased way

for each laboratory. However, these estimates are compli-

cated by subtle sequence diversity within a population’s pro-

teome, which is typically not considered by proteomic soft-

ware designed to analyze a single species (Schiebenhoefer et

al., 2019). This diversity within metaproteomic samples re-

sults in the presence of highly similar peptides with nearly

identical precursor masses that produce many of the same

b- and y-ions, and this similarity is not well modeled by de-

coy peptides. The influence of microdiversity on metapro-

teomic FDR estimation using strain-specific proteogenomic

databases is an important area of future exploration (Wilmes

et al., 2008).

4.3 Bioinformatic intercomparison assessment

The discovery of peptide constituents of proteins within a

complex ocean metaproteomic matrix was successful across

all software packages tested (Fig. 7), where the metric for

success is a comparable number of peptide identifications.

This is a notable finding due to the highly complex mass

spectra, large number of chimeric peaks present (Saito et al.,

2019), and large database sizes involved in ocean metapro-

teomes. To our knowledge, some of these software packages

had not yet been applied to ocean metaproteomes. There was

also variability associated with the stringency of statistical

parameters employed, which points to the challenges in as-

sembling datasets from multiple laboratories with different

depths of proteome identification.
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Despite the success of this intercomparison component

across software packages, there is likely considerable room

for improvement in the future. As mentioned previously,

ocean samples are highly complex, and there are likely ad-

ditional peptides that remain unidentified using current tech-

nology, due to low-intensity peaks and co-elution with other

peptides resulting in the chimeric spectra. Significant im-

provements in depth of analysis can be achieved through in-

creased chromatographic sample separation and optimized

(or alternative) mass spectrometry data acquisition strate-

gies. However, there is also room for bioinformatic improve-

ments: most DDA database-searching algorithms are unable

to identify multiple peptides within a single fragmentation

spectrum. Moreover, when in DDA collection mode, mass

spectrometry software typically does not isolate and frag-

ment peptides that cannot be assigned a charge state, which

is a common occurrence for the low-abundance peaks within

ocean samples. As a result, there is considerable room for im-

provement in bioinformatic pipelines to discover additional

peptides. Although the application of data-independent ap-

proaches (DIAs) to oceanographic metaproteomic analysis

has been limited (e.g., Morris et al., 2010), the systematic na-

ture of ion selection and fragmentation allows a greater num-

ber of low-abundance peptides to be quantified when enough

ions can be isolated to produce robust MS2 spectra.

4.4 Lessons learned and future efforts in ocean

metaproteomic intercomparisons and

intercalibrations

As the first interlaboratory ocean metaproteomic study, we

chose to describe this study as an intercomparison rather than

an intercalibration, and it served as a vehicle with which

to assess the extent of reproducibility. There were several

lessons learned that can be summarized here. These include

the efficacy of an SDS detergent and heat treatment in lysing

and solubilizing marine microbial cells embedded on mem-

brane filters; the significant problem of data intercompara-

bility between PSM software outputs and the need for data

output standardization; and the influence of different hard-

ware capabilities (Orbitrap generation) and their parameter

settings, such as dynamic exclusion on proteome depth and

quantitative comparisons of spectral counts. The develop-

ment of best practices associated with sample collection, ex-

traction, and analysis would be valuable, while also encour-

aging methodological improvements and backward compati-

bility through the use of reference samples.

Future intercalibration efforts could aim to further assess

and improve upon the level of accuracy, reproducibility, and

standardization in ocean metaproteome measurements. In

particular, alternative modes of data collection and quanti-

tation could also be tested in future interlaboratory compar-

isons, including parallel reaction monitoring (PRM), mul-

tiple reaction monitoring (MRM), quantification using iso-

topic labeling or tagging, and DIA methods. PRM and MRM

methods allow sensitive targeted measurements of absolute

quantities of peptides (e.g., copies per liter of seawater in

the ocean context). As many omic methodologies applied in

environmental settings operate in relative abundance modes,

adding the ability to measure absolute quantities would be

particularly valuable for comparisons of environments across

space and time. Targeted metaproteomic methods have been

deployed in marine studies using stable-isotope-labeled pep-

tides for calibration, achieving femtomoles per liter of sea-

water estimates of transporters, regulatory proteins, and en-

zymes (Saito et al., 2014, 2015, 2020; Bertrand et al., 2013;

Joy-Warren et al., 2022; Wu et al., 2019). These methods are

not yet widely adopted, but, with growing interest, they could

be deployed to other laboratories and incorporated into fu-

ture iterations of intercomparison and intercalibration stud-

ies. DIA also has great potential in ocean metaproteome stud-

ies and is increasingly being deployed in laboratory and field

studies of marine systems. Similar to this DDA intercompari-

son, the methodological and bioinformatic challenges of DIA

could be explored during intercomparisons of analyses of

ocean samples. Finally, as mentioned above, all participants

of this study used Orbitrap mass spectrometers for DDA sub-

missions, but new instrumentation, such as trapped ion mo-

bility spectrometry time-of-flight (timsTOF) mass spectrom-

eters, may be applied to ocean metaproteome analyses and

would be important to intercompare with Orbitrap platforms.

As noted above, there were also challenges in collating

and comparing data outputs from various software, along

with variation in how those programs conducted protein in-

ference. For example, peptide-level data from different re-

search groups were reported as either unmodified peptide

sequences or various peptide analytes (where modifications

and charge states were included with the peptide sequence),

making compilation of peptide reports difficult. Similarly, at

the protein level, reported proteins could be counted either

before or after protein grouping, e.g., applying Occam’s razor

logic to peptide groupings into proteins, with the former re-

flecting the set of all proteins in the database that could be in

the sample and the latter reflecting the minimum set required

to explain the peptide data. Such issues will also contribute to

challenges in the integration and assembly of data from dif-

ferent laboratories for large ocean datasets. While best prac-

tices for metadata and data types have been described by the

community, including specific attributes important for envi-

ronmental and ocean samples such as geospatial location and

sample collection information (Saito et al., 2019) similar to

the metadata standard recently put forward in the human pro-

teome field (Dai et al., 2021), this study also demonstrated

that there is a need for standardization of data output formats

for metaproteomic results.

4.5 Metaproteomics in global ocean surveys

Understanding how the oceans are responding to the rapid

changes driven by human alteration of ecosystems is a high
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priority. Ocean and environmental sciences have a long his-

tory of chemical measurements that are critical to assessing

ecosystems and climatic change. Such measurements have

been straightforward for discrete measurements, such as tem-

perature, pH, chlorophyll, phosphate, dissolved iron, and nu-

merous other variables. When collected over large spatial

(ocean basin) or temporal (seasonal or decadal spans) scales,

these datasets have been powerful in identifying major (both

cyclical and secular) changes. Omic measurements represent

a more complex data type, where each discrete sample can

generate thousands (if not more) of units of information. This

study demonstrates the power and potential for collaborative

metaproteomic studies to identify key functional molecules

and relate them to their taxonomic microbial sources within

the microbiome from multiple lab groups. Moreover, multi-

lab metaproteomics results in vastly enhanced identification

of low-abundance proteins that are not identified by all re-

search groups. Such low-abundance proteins can be more

likely to change in abundance with changing environmen-

tal conditions and nutrient limitations, resulting in a more

nuanced and richer investigation of marine microbial ecol-

ogy and biogeochemistry with collaborative metaproteomic

research. The implementation of such voluminous data is be-

ginning to be applied on larger scales and holds great promise

in improving not only our understanding of the functioning

of the current system, but also the way we assess how envi-

ronments are changing with continued human perturbations.

Intercomparison and intercalibration are critical activities

to undertake in order to allow the comparison of omic results

across time and space dimensions. With major programs un-

derway and being envisioned, such as the BioGEOTRACES,

AtlantECO, Bio-GO-SHIP, and BioGeoSCAPES efforts, the

imperative for such intercalibration has grown and the need

for best practices is urgent. This ocean metaproteomic in-

tercomparison study is a valuable step in assessing metapro-

teomic capabilities across a number of international laborato-

ries, demonstrating a clear consistency in measurement capa-

bility while also pointing to the potential for continued com-

munity development of metaproteomic capacity and technol-

ogy.

Code and data availability. The raw files, metagenome database

(Intercal_ORFs_prodigal_metagenemark.fasta), and associ-

ated annotations (Intercal_assembly_annotations.csv) for this

project summarized in Table S3 are available in the ProteomeX-

change and PRIDE repository with the dataset identifiers

PXD043218 (https://doi.org/10.6019/PXD043218, Participants

of the Ocean Metaproteome Intercomparison Consortium,

2024) and PXD044234 (https://doi.org/10.6019/PXD044234,

McIlvin and Saito, 2024). Co-located information about

these datasets is available at the Biological and Chemi-

cal Oceanography Data Management Office under project

765945 (https://www.bco-dmo.org/project/765945, last access:

5 November 2024 and https://doi.org/10.26008/1912/bco-

dmo.934706.1, Saito and Cohen, 2024) and on the BATS page

(https://doi.org/10.26008/1912/bco-dmo.3782.6, Johnson et al.,

2024). The metagenomic reads are listed under BioProject ac-

cession number PRJNA932835 in the NCBI BioProject database

(https://www.ncbi.nlm.nih.gov/bioproject/, last access: 5 Novem-

ber 2024), and SRA accession numbers SRX19315480 and

SRX19315479.

Supplement. Methods for the bioinformatic intercomparison study

are available in the Supplemental Methods. Supplemental In-

formation is available as Tables S1–S11 and Figs. S1–S3.

The supplement related to this article is available online

at: https://doi.org/10.5194/bg-21-4889-2024-supplement.
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