

Main Manuscript for

Light-Induced H₂ Generation in a Photosystem I-O₂-tolerant [FeFe] Hydrogenase Nanoconstruct

Tristen Rumbaugh¹, Michael J. Gorka^{1*}, Carol S. Baker², John H. Golbeck^{1,2*}, Alexey Silakov^{1*}

¹Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

²Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

* Michael J. Gorka, Email: mjg382@psu.edu

* John H. Golbeck, Email: jhg5@psu.edu

* Alexey Silakov, Email: aus40@psu.edu

Author Contributions:

designed research: MG, JG, AS

performed research: TR, MG, CB

contributed new reagents or analytic tools: MG, CB, AS

analyzed data: TR, MG, AS

wrote the paper: TR, MG, CB, JG, AS

Competing Interest Statement: N/A

Classification: Biochemistry

Keywords: Hydrogenase, Photosystem I, dihydrogen generation, protein fusion, PsaE

This PDF file includes:

Main Text with 6 figures
Figures 1 to 6

Abstract

The fusion of hydrogenases and photosynthetic reaction centers has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) reaction centers, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H_2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O_2 sensitivity, binding specificity, or H_2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O_2 tolerant [FeFe] hydrogenase from *Clostridium beijerinckii* using a flexible [GGS]₄ linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated *in vitro* to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H_2 at a rate of $84.9 \pm 3.1 \mu\text{mol } H_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$. Further, when prepared and illuminated in the presence of O_2 , the nanoconstruct retains the ability to generate H_2 , though at a diminished rate of $2.2 \pm 0.5 \mu\text{mol } H_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O_2 -tolerant [FeFe] hydrogenase opens the possibility for an *in vivo* H_2 generating system that can function in the presence of O_2 .

Significance Statement

Finding ways to generate dihydrogen (H_2) in an environmentally friendly way is an important challenge. The recent discovery of a robust, O_2 -stable [FeFe] hydrogenase presents a unique opportunity for redirecting energy produced by Photosystem I to H_2 production in a phototrophic biological system that only requires sunlight and earth-abundant elements. Our study presents a strategy to couple such an [FeFe] hydrogenase to Photosystem I by fusing the former with a stromal subunit of Photosystem I (PsaE). Not only does the chimeric nanoconstruct generate reasonably high rates of H_2 when illuminated, but it also functions in the presence of O_2 . By investigating catalytic properties and drawbacks of the nanoconstruct, this work sets the stage for engineering sustainable biofuel production *in vivo*.

Main Text

INTRODUCTION

Oxygenic photosynthesis drives a large fraction of life on earth by storing solar energy within chemical bonds through the act of CO_2 fixation and ATP formation. Central to this process are the two photosynthetic reaction centers (RCs), Photosystem I (PS I) and Photosystem II (PS II). These large pigment-protein complexes are found only in the thylakoid membranes of cyanobacteria, algae, and higher plants.

PS I is unique among Type I (iron-sulfur cluster) RCs, as its core is heterodimeric, containing a pseudo-symmetric arrangement of electron transfer cofactors (see Fig. 1A) (1, 2). The key electron transfer molecules bound to PsaA/PsaB core include six pseudo-symmetrical chlorophyll (Chl) *a* molecules consisting of a Chl dimer termed the primary donor P_{700} and the primary acceptors, $A_{\text{A}}/A_{\text{B}}$ and $A_{0\text{A}}/A_{0\text{B}}$ ("A" and "B" denote the subunit) (3). Following the absorption of a photon of light by a core or antenna Chl pigment, the excitation energy is transferred to P_{700} . The excited singlet state of P_{700} is followed by a donation of an electron to $A_{\text{A}}/A_{\text{B}}$ or $A_{0\text{A}}/A_{0\text{B}}$, thereby initiating a charge-separated state. The electron is subsequently transferred through a phylloquinone ($A_{1\text{A}}$ or $A_{1\text{B}}$), an [4Fe-4S] cluster, F_x , and finally to a pair of [4Fe-4S] clusters, F_{A} , and F_{B} , located in the PsaC subunit. The $P_{700}^{+}/[F_{\text{A}}/F_{\text{B}}]^{-}$ charge-separated state has a sufficient lifetime to allow for a soluble [2Fe-2S] (plant-type) ferredoxin (Fd) to accept the electron from the $[F_{\text{A}}/F_{\text{B}}]^{-}$ clusters. The oxidized P_{700}^{+} is subsequently reduced by plastocyanin or cytochrome (Cyt) c_6 , thereby recovering the P_{700} ground state and resetting the system for a subsequent light-induced turnover.

An extensive chlorophyll antenna in PS I ensures a high cross-sectional area for photon capture with a quantum efficiency approaching unity, which means that virtually every photon is transferred to the core chlorophylls and converted into a charge-separated state. PS I (and PS II) are so efficient that during periods of high light intensity, the downstream processes of CO₂ fixation and ATP production cannot keep up with the reducing equivalents produced (4, 5). The efficiency of PS I presents an opportunity to direct the excess energy to alternative (engineered) pathways to power chemical transformations, such as the reduction of protons to produce dihydrogen (H₂).

Previous attempts to generate H₂ using PS I *in vitro* involved deposition of Au, Ru, Ir, Os, or Pt metals onto the stromal side of thylakoid membranes (6–10), implantation of Au and Pt nanoparticles (11–15), and the binding of cobaloxime and Ni-based catalysts (16). The use of metals has proven effective for the light-induced production of H₂. However, the need for expensive metals and the difficulty of generating these nanoconstructs *in vivo* present a significant drawback of this approach for utilization in commercially viable H₂ production. Engineering sustainable H₂-generating microorganisms by coupling PS I to an enzymatic H₂-producing system could be a rational alternative.

Hydrogenases are enzymes catalyzing the reversible oxidation of H₂. For PS I-based nanoconstructs, two superfamilies have been considered: [FeFe] hydrogenases and [NiFe] hydrogenases, named after the metal composition of their active site. [NiFe] hydrogenases are found in a wide variety of anaerobic and aerobic bacteria and archaea (17–19). [FeFe] hydrogenases comprise a functionally and structurally diverse superfamily typically found in obligate anaerobes (20). However, some green algae have been shown to express [FeFe] hydrogenases and produce H₂ under anaerobic conditions (21, 22). The ability of [FeFe] hydrogenases to produce H₂ at a higher rate than the energy throughput of PS I sparked widespread interest in this family of enzymes for biohydrogen production engineering efforts (23, 24).

Lubner et al. assembled a highly efficient nanoconstruct by directly coupling a [FeFe] hydrogenase from *Clostridium acetobutylicum* (CaHydA1) to PS I using a molecular wire *in vitro* (23). This PS I-CaHydA1 nanoconstruct achieved high rates of light-induced H₂ generation (up to 105 e⁻ PS I⁻¹ s⁻¹, see table S1 in supporting information), outperforming electron transfer rates in natural photosynthesis by a factor of two. More recent work by Gorka et al. demonstrated an alternative strategy of utilizing A_{1A}/A_{1B}-based molecular wires to afford extraction of the electron from PS I (11, 12). One primary obstacle in utilizing wire-based coupling *in vivo* is the establishment of a molecular wire-S-[4Fe-4S] bond. It is thus unsurprising that despite the extraordinary success of these *in vitro* studies, no reports exist, to our knowledge, demonstrating the implementation of molecular-wire coupling strategies *in vivo*.

A more promising strategy for coupling PS I complex with a hydrogenase *in vivo* is by engineering a genetic fusion of the latter and one of the stromal subunits of PS I. Ihara et al. reported fusing a [NiFe] hydrogenase from the β -proteobacterium *Cupriavidus necator* H16 (formerly known as *Ralstonia eutropha* H16) to PsaE from *Thermosynechococcus elongatus* (25). More recently, Appel et al. demonstrated coupling of the native cyanobacterial [NiFe] hydrogenase from *Synechocystis* sp. PCC 6803 to PS I by fusion with PsaD (26). Unfortunately, these studies demonstrated low rates of light-driven H₂ evolution, most likely due to the bias of [NiFe] hydrogenases for H₂ uptake (27–29). Kanygin et al. generated chimera proteins formed between PsaC and [FeFe] hydrogenases HydA1 and HydA2 from *Chlamydomonas reinhardtii* (Cr) that complexed with PS I *in vivo* and generated H₂ in the light (30, 31). While the constructs performed exceptionally well in an anaerobic environment (see Table S1 in the supporting information), the authors reported a loss of hydrogenase activity under aerobic conditions, likely due to the O₂-induced degradation of the algal [FeFe] hydrogenases (30).

The sensitivity of [FeFe] hydrogenases to O₂ is well documented and, until recently, was thought to be a universal property of this class of enzymes that stems from the unique construction of the

active site (32–35). The active site of the [FeFe] hydrogenases (H-cluster) is composed of a [4Fe-4S] subcluster bound via a bridging cysteine thiolate to a labile [2Fe] subcluster. The Fe atoms of the subcluster are ligated by CO and CN[−] and a bridging azadithiolate moiety (29, 36). In the presence of O₂, the H-cluster irreversibly degrades, likely involving a generation of reactive oxygen species at the open coordination site of the [2Fe] subcluster. Therefore, the presence of O₂ under photoautotrophy would inevitably result in an irreversible loss of hydrogenase activity (27, 32, 37).

It would seem as though the choice is between O₂ tolerance at the expense of H₂ generation or high rates of H₂ production in strictly anaerobic environments. However, the emergence of a subclass of O₂ tolerant [FeFe] hydrogenases (24, 32, 38) might allow PS I-[FeFe] hydrogenase nanoconstructs to be viable for light-driven H₂ generation in phototrophs. We have shown that [FeFe] hydrogenase from *Clostridium beijerinckii* (*CbHydA1*) enters an O₂-protected state (termed H_{inact}) upon exposure to air. Notably, the reactivation requires a simple one-electron reduction of H_{inact} state. While the details of what confers O₂ stability are still under investigation, a structural study of *CbA5H*, a close homolog of *CbHydA1*, in the O₂-protected state suggests that Cys367 can act as a labile and protective cap, shielding the subcluster from O₂ (39). In support of this hypothesis, our recent Electron Paramagnetic Resonance (EPR) investigation provided evidence for enhanced protein mobility around the H-cluster in *CbHydA1* (40). Taken in concert with the recent work by the Happe group (41), these results suggest that protein flexibility may play a vital role in the ability of *CbHydA1* to access the O₂-protected H_{inact} state. Therefore, understanding whether a protein modification, e.g., fusion with PsaE, affects its O₂ tolerance and activity is paramount to the prospects for employing this enzyme or its homologs in phototrophic H₂ production.

In this work, we sought to investigate the feasibility of coupling *CbHydA1* to PS I complex from *Synechococcus sp.* PCC 7002 (hereafter *S. 7002*) by fusing *CbHydA1* with PsaE. We chose PsaE as the fusion counterpart due to the viability of PsaE-deletion variants of cyanobacteria (PS I_{ΔPsaE}) (42). Aside from the [NiFe] hydrogenase-PsaE fusion, PsaE has also been used successfully for engineering PS I-based chimeric nanoconstructs for non-hydrogenase systems (43, 44).

We describe the design of the construct consisting of a modified *CbHydA1* connected to a 6X-His tagged PsaE protein via a flexible amino acid linker (4-times repeat of Gly-Gly-Ser), hereafter termed *CbHydA1-PsaE*. We show that with the addition of the linker group and PsaE moiety, the hydrogenase retains bidirectional activity, albeit with some modification of activity. We also show that the presence of *CbHydA1* does not interfere with the binding of PsaE to PS I_{ΔPsaE}. This PS I-*CbHydA1* nanoconstruct generates H₂ upon illumination in both anaerobic and aerobic conditions, opening the door to the creation of *in vivo* H₂-generating systems that utilize natural photosynthetic machinery.

RESULTS

Characterization of CbHydA1-PsaE Fusion Protein

The *CbHydA1-PsaE* fusion protein was designed by combining the amino acid code for *CbHydA1* followed by a [GGS]₄ linker, the code for wild-type PsaE from *S. 7002*, and a C-terminus His₆ tag to aid in purification (see Fig. 1 and Fig. S1). We truncated the *CbHydA1* domain at the N-terminus by 21 amino acids as this portion of the sequence is designated as a signaling sequence and thus may hinder the expression. To account for the potential differences in H-cluster assembly efficiency during synthetic maturation, we estimated the concentration of the fusion protein containing fully assembled H-cluster by incubating samples under a carbon monoxide atmosphere and subsequently quantifying the amount of H_{ox}-CO state by continuous wave (CW) EPR (see materials and methods and Fig. S9).

Intriguingly, the hydrogenase activity analysis indicates that the enzymatic activity of the *CbHydA1-PsaE* fusion protein obtained using this methodology is about 3-fold lower than that of *CbHydA1_{WT}* (see Fig. 2). We estimated the rate of H₂ uptake to be $524 \pm 156 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{prot}}^{-1}\text{min}^{-1}$ and $173 \pm 33 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{prot}}^{-1}\text{min}^{-1}$ for holo-*CbHydA1_{WT}* (Fig. S3) and holo-*CbHydA1-PsaE* (Fig. S4), respectively. H₂ evolution assays provided a specific activity of $1087 \pm 92 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{prot}}^{-1}\text{min}^{-1}$ and $534 \pm 70 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{prot}}^{-1}\text{min}^{-1}$ for holo-*CbHydA1_{WT}* (Fig. S3) and holo-*CbHydA1-PsaE* (Fig. S4) fusion proteins, respectively.

To investigate whether the difference in the activity of the wild-type and fusion proteins is due to a difference in the electronic structure of the H-cluster, we performed a series of Fourier-transform infrared (FTIR) spectroscopy measurements, focusing on CO and CN⁻ stretching bands of the H-cluster (38). The *CbHydA1-PsaE* fusion protein obtained immediately after activation with the synthetic [2Fe]_H precursor (labeled "as prepared") exhibited a mixture of IR signals characteristic of the H_{ox}, the H_{red}H⁺, and H_{ox}-CO states with the CO/CN⁻ band positions matching well those reported in the literature for *CbHydA1_{WT}* (see Figs. 3A, S5) (38). Upon exposure to air for 20 min, FTIR spectra of the fusion protein (Fig. 3B) exhibit a complete conversion of the H-cluster to the inactive state (H_{inact}) identical to that of *CbHydA1_{WT}* (38). We were able to reactivate the H-cluster by incubation with 1 atm H₂ after exposure to air (Fig. 3C). We also observed that the *CbHydA1-PsaE* fusion protein can be inhibited with CO, exhibiting a typical IR spectrum of the H_{ox}-CO state (Fig. 3C). Finally, as for *CbHydA1_{WT}*, the H_{ox}-CO state of *CbHydA1-PsaE* fully converts into the H_{inact} state (Fig. 3E) upon consequent exposure to air. Overall, this set of experiments demonstrates that the fusion of *CbHydA1* with *PsaE* does not noticeably affect the electronic structure of the H-cluster and its interaction with diatomic gases (H₂, O₂, and CO). Furthermore, it appears that *CbHydA1-PsaE* retains the ability to convert into the H_{inact} state under aerobic conditions, either from the active or the CO-inhibited states.

The catalytic ability of the *CbHydA1-PsaE* fusion protein was further analyzed using protein film voltammetry (PFV), in which protein is adsorbed on a rotating disk electrode. In cyclic voltammetry (CV) experiments using a protein-coated working electrode, a positive current indicates H₂ uptake, while a negative current signifies H⁺ reduction (45–47). In the case of *CbHydA1_{WT}*, a drop of current at higher potentials is expected due to the enzyme's conversion to the H_{inact} state (38). We evaluated the *CbHydA1-PsaE* fusion protein at various pH values to assess potential differences in the pH dependence of the catalysis from the wild-type counterpart (see Fig. 4). Overall, the pH dependence of CV traces are remarkably similar to the typical response observed for *CbHydA1_{WT}*. Importantly, the fusion protein inactivates with a forward sweep to higher potentials and reactivates with a backward sweep. Quite intriguingly, a comparison between *CbHydA1_{WT}* and *CbHydA1-PsaE* shows a shift of the reactivation wave to lower potentials for the latter. This discrepancy is more prominent at higher pH values, with about 95 mV downshift of the mid-point of reactivation (E_{switch} (48)), but it is still noticeable at lower pH values (60–74 mV difference). A lower apparent mid-point potential for the reactivation of *CbHydA1-PsaE* suggests a higher propensity of *CbHydA1-PsaE* to remain in the H_{inact} state relative to *CbHydA1_{WT}* (41, 49). This increased tendency to inactivate may contribute to the lower activity of the fusion protein in the *in vitro* activity assays described above, although further investigation is needed to confirm this point.

Binding of *CbHydA1-PsaE* Fusion Protein to PS I_{ΔPsaE}

To assess the ability of the *CbHydA1-PsaE* fusion protein to bind to the ΔPsaE variant of PS I (PS I_{ΔPsaE}), and to assess the efficacy of forward electron transfer in this orthogonal pathway, we performed time-resolved optical experiments. The time-resolved absorption at 830 nm reports on the reduction of P₇₀₀²⁺ after a 7-ns, single-turnover actinic laser flash at 532 nm. P₇₀₀²⁺ reduction can occur from either a reduced acceptor in the electron transfer chain (termed charge recombination), or an exogenous electron donor (ascorbate, DCPIP, Cyt c₆, etc.). Charge recombination kinetics from every cofactor in the acceptor chain have been well characterized for

PS I_{WT} and numerous PS I variants (50–53). Deviations from those values serve as a reliable diagnostic tool for understanding changes in cofactor energetics within the complex (30, 51).

The kinetics of P₇₀₀⁺ decay after an actinic flash in the presence of ascorbate as an electron donor are shown in Fig. 5, along with the respective component analysis. The complete set of P₇₀₀⁺ decay is shown in the supporting information (see Fig. S6). To provide a model-free assessment of the decay traces, we employed inverse Laplace transformation analysis by CONTIN (see materials and methods) (54). As expected, PS I_{WT} displays a largely monophasic decay with a lifetime of ~100 ms, closely matching the previously measured recombination between [F_A/F_B][−] and P₇₀₀⁺ (see Fig. S6). The PS I_{ΔPsaE} variant (Fig. 5A) appears to display a largely monophasic P₇₀₀⁺ reduction but with a noticeably slower decay with a dominant lifetime of 381 ms (58%). This change is consistent with previous reports in an *in vivo* PsaE deletion mutant of S. 7002 (55).

Although the origin of the alterations to P₇₀₀⁺ decay kinetics imposed by the absence of PsaE is not understood (see discussion), the change is a reliable reporter for the binding of PsaE to PS I. We used this finding to investigate the binding of the CbHydA1-PsaE fusion protein to PS I_{ΔPsaE} *in vitro*. First, we performed binding experiments on the apo-form of the fusion protein lacking the H-cluster (apo-CbHydA1-PsaE). Upon anaerobic addition of apo-CbHydA1-PsaE fusion protein to PS I_{ΔPsaE} in a 3-fold excess, the P₇₀₀⁺ reduction kinetics remain mostly monophasic and closely resemble those of PS I_{WT} (see Fig. 5B and Fig. S6), with lifetimes of 122 ms (~54%) and a smaller contribution from a faster decay kinetic with lifetime of 25 ms (~20%). The absence of the 381 ms reduction phase suggests a near-quantitative binding of the fusion protein to PS I.

Next, we performed similar experiments on the active fusion protein, expecting a significant elongation of the P₇₀₀⁺ lifetime due to the loss of e[−] to H₂ production by the hydrogenase domain. In this case, regeneration of the P₇₀₀ ground state is only possible via reduction by an exogenous electron donor. Slow donors, such as ascorbate, reduce P₇₀₀⁺ in a matter of several seconds. However, the holo-CbHydA1-PsaE:PS I_{ΔPsaE} complex (Fig. 5B,D) kept under a 3% H₂ + 97% N₂ atmosphere exhibited a somewhat faster P₇₀₀⁺ decay than that of PS I_{WT}. As shown by iLT, the kinetic decay is heterogeneous, with a dominant process consisting of two phases at 43 ms and 96 ms (together contributing ~68% to the total decay) and a smaller contribution from a slower bi-phasic decay (~23%). This is a stark departure from the apo-CbHydA1-PsaE:PS I_{ΔPsaE} sample, suggesting an alteration to the charge recombination pathways in the presence of the active hydrogenase domain. Most notably, the CONTIN analysis of this dataset reveals the complete absence of a >1s charge recombination. We hypothesized that holo-CbHydA1-PsaE acts as a reductant of the FeS clusters in PsaC in the presence of H₂ effectively shutting down forward electron transfer. Consequently, we repeated the same experiments under a pure He atmosphere, which should bias the evidently bidirectional hydrogenase domain (see PFV experiments above) towards H₂ evolution. Under this condition, the PS I-CbHydA1 complexes (Fig. 5B,D, Fig. S6) display a noticeably different multiphasic decay of P₇₀₀⁺. The kinetics with lifetimes of 28.5 ms (17.5%) and 128 ms (40%) are highly similar to that of apo-CbHydA1-PsaE:PS I_{ΔPsaE}. In addition, there is another substantial phase at >3 sec (28.0%). This long-lived phase indicates P₇₀₀⁺ reduction via ascorbate, suggesting electron loss due to forward electron transfer from PS I to the [FeFe] hydrogenase domain. Note that we have estimated a 32% yield of the fully assembled H-cluster (see materials and methods). This fraction of active fusion protein matches well with the 28% contribution of the long-lived phase, suggesting a high efficacy of the forward electron transfer to the H-cluster in the holo-CbHydA1-PsaE:PS I_{ΔPsaE} nanoconstruct. However, as we will discuss below, such extrapolation must be done with care.

Light-Induced H₂ Generation by the Nanoconstruct

We next sought to quantify the amount of H₂ generated by the PS I-CbHydA1 complex by conducting gas chromatography (GC) analysis of the sample's headspace in a capped vial under illumination with a 100 W xenon arc lamp. Before the analysis, the headspace of each sample vial

was purged in the dark with ultra-pure He (UHP He) for 20 minutes to remove residual H₂ from the anaerobic chamber atmosphere. The rate obtained for the anaerobically prepared PS I-CbHydA1 nanoconstruct (Figs. 6A, S8A) is $84.9 \pm 3.1 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ ($4.05 \text{ e}^{-} \text{ PS I}^{-1} \text{ sec}^{-1}$). We detected small amounts ($0.44\text{--}0.74 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$) of H₂ in control experiments, including the blank buffer sample. The detection of H₂ in controls is likely due to outgassing residual dissolved H₂ in the sample solution (prepared under 3% H₂ / 97% N₂ atmosphere) after purging with UHP He. The sample lacking PS I_{ΔPsaE} is the exception, showing an increased rate equivalent to $1.8 \pm 0.4 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ under identical sample conditions, indicating some residual hydrogenase activity likely due to the presence of a large excess of ascorbate in the sample.

To assay aerobic H₂ generation by the designed nanoconstruct, we repeated the above experiments, but allowing samples to incubate on air for at least 2 hours prior to capping the GC vial to accumulate H₂. The rate of light-induced H₂ production for these samples was noticeably lower than the anaerobically prepared samples, $2.2 \pm 0.5 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ ($0.10 \text{ e}^{-} \text{ PS I}^{-1} \text{ sec}^{-1}$), (see Figs. 6B, S8B). As expected, we detected no H₂ generated in most control experiments since the sample vials were kept in the air outside an anaerobic chamber with no possibility of H₂ leaching into the sample space. However, the PS I_{ΔPsaE} sample (“no fusion” in Fig. 6) did show small amounts of H₂ produced when prepared at 12-fold higher concentrations than the anaerobically prepared samples. Under these conditions, the rate of H₂ production was estimated to correspond to $0.053 \pm 0.005 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$. It should be noted that minor H₂ production by PS I_{ΔPsaE} alone parallels observations by Ihara et al., who observed small amounts of H₂ produced from a Cyt c₃/PS I complex (56). Also, in the high-concentration sample of CbHydA1-PsaE fusion protein (no PS I_{ΔPsaE}), we were able to observe detectable H₂ production that would correspond to $0.0036 \pm 0.0001 \text{ }\mu\text{mol H}_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ (calculated with an equimolar fusion:PS I ratio) indicating that a small fraction of hydrogenases remains active, even under aerobic conditions in the presence of ascorbate.

DISCUSSION

Fusion of PsaE to CbHydA1 changes its catalytic activity.

Our experiments indicate a measurable impact of the fusion of PsaE on the activity of CbHydA1, as evident from two- to three-fold lower H₂ oxidation and proton reduction rates than that of a wild-type protein. In protein film voltammetry experiments, we observed an increased propensity of the CbHydA1 for inactivation in the PsaE-fusion variant compared to the wild-type enzyme. The shift of the reactivation CV wave to a lower potential in the CbHydA1-PsaE fusion protein can be a consequence of either a lower mid-point reduction potential of the H_{inact} state or faster kinetics of inactivation (39, 40). Recently, using EPR, we demonstrated the existence of two structural isoforms of CbHydA1. We proposed that the unique-to-CbHydA1 isoform 1 (EPR signals H_{ox}(1) and H_{ox}-CO(1)) is the inactivation-preceding form that relates to the aberrant position of the Cys367 facilitated by a rearrangement of the respective flexible loop (39, 40). The dominance of the isoform 1 in EPR measurements of CO-inhibited CbHydA1-PsaE variant (see Fig. S7) is in line with the observed downshift of the reactivation wave in PFV. Therefore, we consider it likely that adding PsaE to CbHydA1 affects the mobility of the core protein structure around the H-cluster, resulting in an increased propensity for inactivation in the fusion protein and, thus, lower activity. Furthermore, isoform 1 may naturally be less active since it supposedly relates to an off-H⁺-pathway arrangement of Cys367 (40).

We also cannot exclude the possibility that the fusion of PsaE to CbHydA1 could affect the electronic structure of the two accessory [4Fe-4S] clusters (F-clusters) present in the enzyme. Indeed, there is a slight but noticeable shift in the ratio between H₂ evolution and H₂ uptake towards the former in the fusion protein. Also, as-prepared WT and fusion enzymes obtained under identical conditions show somewhat different ratios of H_{ox} and H_{redH⁺} states in IR (see Fig S5), possibly due to a somewhat different catalytic bias causing a shift of equilibrium between the two states.

However, as both catalytic rates are lower in the fusion protein, further investigation into the redox potentials of the F-clusters is needed to understand this effect fully. Such experiments are underway in our laboratory.

Electron transfer in the modified PS I complexes.

Our study of the P_{700}^{++} reduction kinetics after an actinic laser pulse provided invaluable insights into the electron transfer mechanisms with the modified PS I complexes. First, the experiments confirmed the early report by Yu, et al. (55) that the absence of PsaE elongates the lifetime of $P_{700}^{++}\text{-}[F_A/F_B]^-$ charge-separated state. Charge recombination rates are inextricably tied to the redox potential of the bound cofactors, the reorganization energies associated with the site, and the distance between the cofactors. Hence, our working hypothesis is that the lack of a PsaE subunit affects the mobility of the PsaC and PsaD subunits, ultimately resulting in a shift in the redox potential of either F_A and F_B or their distance from F_x and thus causing a change in the lifetime of the charge-separated state. While understanding this effect is outside the scope of this work, it is an important line of research to address in the future, as the structural modifications imposed on PsaE by the fusion with *CbHydA1* may pose additional effects on the electron transfer pathways within the PS I complex.

Incubation of PS I_{ΔPsaE} with apo- and holo-*CbHydA1-PsaE* results in a shift to PS I_{WT}-like $P_{700}^{++}\text{-}[F_A/F_B]^-$ recombination lifetimes, thus indicating a near-quantitative formation of the PS I_{ΔPsaE}:*CbHydA1-PsaE* complex. It is somewhat surprising that when we incubate PS I_{ΔPsaE} with the apo-form of the fusion protein (F-clusters present, but no active site), there is very little of the long-lived phase, implying almost no electron transfer from PS I to the hydrogenase. However, it is important to note that the resulting data is averaged over 512 traces. Without an electron acceptor such as the active center (H-cluster), the F-clusters will likely remain reduced after the first couple of flashes for the duration of the experiment, assuming a high quantum yield of electron transfer. As a result, forward electron transfer from F_A/F_B to the hydrogenase domain will be effectively blocked. The time-resolved optical experiments on PS I_{ΔPsaE}:holo-*CbHydA1-PsaE* nanoconstruct in the presence of H_2 demonstrate that the electron transfer from $[F_A/F_B]^-$ to the F-cluster is not entirely unidirectional. Were that the case, H_2 oxidation by the H-cluster would result in a reduction of the F-cluster but not the $[F_A/F_B]$ pair, and hence, we would expect kinetic traces to be similar to that of PS I_{ΔPsaE}:apo-*CbHydA1-PsaE*. To the contrary, our time-resolved experiments showed that under a 3% H_2 atmosphere, the charge recombination is substantially more complex. CONTIN analysis shows a complex multiphasic kinetic profile with the dominant decay phase being faster than that observed in the PS I_{ΔPsaE}:apo-*CbHydA1-PsaE* nanoconstruct. Therefore, the data indicate that the H_2 -uptake by the hydrogenase domain not only saturates the F-cluster, but also partially reduces the $[F_A/F_B]$ couple. This "backfire" effect could inhibit forward electron transfer within PS I, potentially accelerating charge recombination. In line with this suggestion, the removal of H_2 from the headspace resulted in a substantial elongation of the charge recombination lifetime. In this case, two primary decay phases are the PS I_{WT}-like lifetime of ~100 ms and a long-lived charge-separated state >3 sec. The long-lived phase, whereby P_{700}^{++} is reduced by ascorbate, increases in amplitude from ~4% of the total signal to ~30%. This increase provides compelling evidence for the forward electron transfer from PS I to hydrogenase with the consequent loss of the electron to proton reduction. The remaining 100 ms phase is likely wherein the fusion protein is bound, but forward electron transfer is not occurring in PS I. We note that in our spin-quantification experiments, only a third of *CbHydA1-PsaE* fusion proteins contain a fully assembled H-cluster (see supporting information). This alone could be sufficient to explain why forward electron transfer is only 31% efficient. However, whether there is a preference for binding holo-*CbHydA1-PsaE* rather than apo-*CbHydA1-PsaE* to PS I_{ΔPsaE} is not known, as discussed below.

Comparison with other nanoconstructs

The H_2 production rate we observe for our nanoconstruct is $84.9 \pm 3.1 \text{ } \mu\text{mol } H_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ is similar to other PS I-nanoconstructs tested under roughly comparable conditions (see Table S1) (11–15, 23, 25, 56–63). Due to sub-par H-cluster incorporation rate of ~31% for the *CbHydA1-PsaE* fusion protein, the maximum theoretical rate could be upwards of $\sim 250 \text{ } \mu\text{mol } H_2 \text{ mg}_{\text{chl}}^{-1} \text{ hr}^{-1}$ or $\sim 12 \text{ e}^- (\text{PS I})^{-1} \text{ s}^{-1}$. However, we refrain from using such an extrapolation as many factors can contribute to the overall quantum yield. While data suggests a near-quantitative binding of a fusion protein to PS I_{ΔPsaE}, it is possible that there is a binding preference of apo- vs holo-proteins, or steric limitations on the trimer affecting the number of *CbHydA1* domains able to interact with *PsaC* while bound. Also the ratio between forward electron transfer and charge recombination rates may play a role, as well as the “backfire” effect discussed above.

When discussing related PS I-based nanoconstructs, perhaps the most appropriate comparison would be that with the *PsaC*-fusion variants of [FeFe] hydrogenases 1 and 2 from *Chlamydomonas reinhardtii* (30, 31). The overall electron throughput of these systems, as determined experimentally, appears to be 8–70 times higher than that observed in our case (see Table S1). However, these measurements were carried out under *in vivo* conditions where reduction of P₇₀₀⁺ occurs via natural and efficient electron transport, while we utilized a soluble Cyt *c*₆ as an electron donor *in vitro*. Hence, the H_2 production rate is likely rate-limited in the latter by the recycling of P₇₀₀ rather than by the performance of the active chimeric nanoconstructs. Note that crosslinking Cyt *c*₆ to PS I resulted in a nearly 7-fold increase in H_2 production rate in the PS I-wire-CaHydA1 nanoconstructs reported by the Golbeck group under comparable conditions, with a maximum 70-fold increase achieved by lowering pH (up to 2200 $\mu\text{mol } H_2/\text{mg}_{\text{chl}}/\text{hr}$, see Table S1) (23). It would thus be interesting to perform similar Cyt *c*₆ crosslinking experiments for our nanoconstructs to estimate the maximum possible H_2 production rate for the *CbHydA1-PsaE:PS I_{ΔPsaE}* nanoconstruct.

The nanoconstruct can generate H_2 under aerobic conditions.

Demonstrating detectable H_2 production by the nanoconstruct under aerobic conditions is highly encouraging. It is important to note that there are several avenues by which O₂ can interrupt energy and electron transfer both within PS I and between PS I and the hydrogenase. Within PS I complex, O₂ can react with Chl triplet states during light harvesting (64). O₂ can also accept low-potential electrons from [F_A/F_B][–] cluster pair and even from the A₁ phylloquinones (65–67). A gradual reduction in O₂ concentration in the headspace (Figure S8B) supports this notion. Therefore, electron transfer from [F_A/F_B][–] to *CbHydA1* is in competition not only with charge recombination but also with the reduction of molecular oxygen. For *CbHydA1*, O₂ will also functionally inactivate the active site, requiring reducing equivalents from PS I for periodic reactivation. Given this combination of factors, it is not surprising that the rates of H_2 production by the *CbHydA1-PsaE:PS I* nanoconstruct are lower than for anaerobically prepared samples. It may be possible to improve the efficiency of the forward electron transfer by varying the length and rigidity of the linker group to increase both protein activation, specific activity, and electron transfer from PS I. Further investigation into the interaction of O₂ with the parts of the nanoconstructs will be required to parse out the contributing factors and devise a mitigation strategy. Nonetheless, even with reduced rates in the presence of O₂, the *CbHydA1-PsaE:PS I* nanoconstruct shows promise for an *in vivo* system that functions in the presence of constantly changing levels of O₂.

In summary, we have successfully generated a unique chimeric protein nanoconstruct through the fusion of a 7.6 kDa stromal subunit of PS I (PsaE) from the cyanobacterium *Synechococcus* sp. PCC 7002 onto the C-terminus of an oxygen-tolerant [FeFe] hydrogenase from *Clostridium beijerinckii* (*CbHydA1*) via a flexible [GGS]₄ linker group. We show that *CbHydA1* can be synthetically activated *in vitro* and retain native-like bidirectional hydrogenase activity. Our transient absorption studies demonstrate that the PsaE substituent provides a mode for selective and nearly quantitative binding of the fusion protein to available PS I_{ΔPsaE}-cores. We were able to detect light-induced H_2 evolution even in an aerobic environment. Our findings provide confidence in PsaE as a viable scaffold for the binding of exogenous proteins to PS I cores. The detailed investigation of the H_2 -producing chimeric nanoconstruct presented here establishes an important basis for

future engineering *in vivo* H₂-generating systems that can function within O₂-evolving photosynthetic pathways.

MATERIALS AND METHODS

Preparation of Protein Samples. *CbHydA1-PsaE* and *CbHydA1_{WT}* were expressed and purified similarly to methods found in the literature (38). In short, the protein was expressed in *Escherichia coli* BL21 (DE3) Δ iscR strain (The Pennsylvania State University, Golbeck lab) (68). Luria-Bertani (LB) growth medium (3L) was supplemented with 100 mM MOPS pH 7.4, 2 mM ferric ammonium citrate, 2 mM L-cysteine, and 100 μ g/mL ampicillin. Cultures were first grown aerobically at 37°C to an O.D.₆₀₀ of 0.6 ± 0.2. Then, placed on ice, further supplemented with 0.5% glucose and 25 mM sodium fumarate, and brought inside an anaerobic chamber. Cultures were induced anaerobically with the addition of 1.5 mM IPTG and allowed to express for 20 hours at 20°C. The cells were lysed via anaerobic sonication for 1 hour with continuous stirring. After centrifugation, the *CbHydA1-PsaE* fusion protein was purified using a Co-NTA affinity chromatography (Fig. S2). The purified protein was buffer-exchanged using a PD-10 column into a buffer containing 100 mM HEPES, pH 7.5, 5 mM dithiothreitol, 300 mM KCl. Protein yields averaged ~3.5 mg per L of cell growth. Reconstitution of the iron-sulfur clusters was performed through a slow addition of 15-fold excess FeCl₃•6H₂O and Na₂S•9H₂O, consecutively, over the course of 30 minutes and 60 minutes, respectively. Synthetic maturation using a [2Fe]_H synthon Fe₂[μ -S₂C₂H₄NH](CO)₄(CN)₂ was performed according to previously published procedures (38). PS I_{WT} and the PS I_{ΔPsaE} variant were isolated from variants of *Synechococcus* sp. PCC 7002 using previously reported methods (Fig. S10) (55, 69), with some modifications as described in detail in the supporting information.

Quantification of H-cluster Incorporation. To account for a potentially inefficient H-cluster assembly during synthetic maturation, we estimated concentrations of the fully assembled H-cluster by incubating samples with CO and subsequently quantifying the amount of the H_{ox}-CO state by continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy. The fusion protein was incubated under CO gas for 30 minutes before analysis via CW EPR (Fig. S7). We used FTIR to confirm the complete conversion of the H-cluster to the H_{ox}-CO state. The power dependence of the double integral of the H_{ox}-CO EPR signals was compared to that of the standard (321 μ M MbN₃, Fig. S9), from which the concentration of the H-cluster in the sample was extracted. This concentration was then compared against the concentration of protein determined by the Bradford assay to calculate the percent of H-cluster incorporation. For the samples used in the experiments presented here, H-cluster synthesis efficiency was estimated to be 63% and 31% for *CbHydA1_{WT}* and *CbHydA1-PsaE*, respectively. These correction factors were used in all reported hydrogenase activity values.

EPR and FTIR spectroscopy. EPR spectra reported were obtained using Magnetech MS5000 X-band spectrometer augmented with a liquid He flow cryostat (Oxford Instruments ESR900). For the measurements, 250 μ L of samples were placed in a 4mm OD clear fused quartz tube.

FTIR measurements were made on a Nicolet is50 FTIR (Thermos Scientific) spectrometer equipped with an LN₂-cooled MCT-A detector with a 3.6 μ m long-pass filter (Edmund Optics). Experiments were conducted in a home-built cell consisting of two 32 mm OD, 2 mm thick CaF₂ windows, with a 40 μ m PTFE spacer. All samples were prepared and measured at room temperature. Data sets were collected with 2000 scans with a resolution of 2 cm⁻¹. All EPR and FTIR spectra were processed in MATLAB using home-build software (Kazan viewer, <https://github.com/AlexeySilakov/KazanViewer/>).

Protein Film Voltammetry. Protein film voltammetry (PFV) measurements were made in an anaerobic chamber (Coy Laboratory Products, Inc.) with a WaveNow potentiostat (Pine Research), with a variable-speed rotator (Pine Research). Measurements were performed using a home-built

rotating disc electrode using a 5 mm OD edge-plane pyrolytic graphite PG-HT encased in a 12 mm OD PEEK cylinder. The surface of the electrode was first polished using 2000 grit sandpaper and then sonicated in 50% ethanol. The reference electrode used was a 3 M NaCl Ag/AgCl electrode (BASi MF-2052). The counter electrode was a Pt wire wound into a spiral (Sigma Aldrich, 0.25 mm OD). Calibration of the reference electrode was performed using a methyl viologen solution, $E_0(MV^{2+}/MV^{+}) = -445$ mV vs NHE.

Time-Resolved Optical Spectroscopy. A detailed description of the home-built set-up is provided elsewhere (52). An actinic laser flash at 532 nm with a pulse width of 7 ns (full-width half-maximum) generates a single turnover event in PS I. Changes in absorbance were monitored via an 830 nm laser diode (CrystaLaser, model number DL830-100-O) that is split into measuring and reference beams. The difference signal was amplified with a 200 MHz bandwidth differential amplifier (Thor Labs PDB460A), which was subsequently processed using a 1 GHz bandwidth, 8-bit, 2 GS/s, PCI card (National Instruments NI-5154) controlled by a home-built software. Data analysis was performed using home-built software in Python. Regularized inverse Laplace transformations of kinetic decay traces were performed using CONTIN software (54). Regularization order (mode) was set to NORDER=2, and the regularization parameter was set to ALPST=2E-5; the program was restricted to finding non-negative solutions (NONNEG=1) as no subsequent oxidation of P₇₀₀ is expected after the initial generation of the charge-separated state under conditions used. All samples contained a Chl concentration of 100 μ g/mL, corresponding to a concentration of 1.16 μ M PS I, Tris-HCl (pH 8.0), 500 μ M sodium ascorbate, and 0.05% (w/v) β -DDM. More details on sample preparation can be found in the supplemental information.

Light-Induced H₂ generation. CbHydA1-PsaE:PS I_{ΔPsaE} nanoconstructs were generated anaerobically through a 30-minute incubation of PS I_{ΔPsaE} with the CbHydA1-PsaE fusion protein in a ratio of 1 : 3, PS I : CbHydA1-PsaE. Following incubation, the solution was washed 5 times with 50 mM Tris pH 8.0, 50 mM NaCl, and 0.05% β -DDM through a 100 kDa Centricon centrifugal filter (Amicon Ultra, 0.5 mL). H₂ production rates were determined in accordance with previously published methods (23, 57, 58). 500 μ L of the assembled PS I-CbHydA1 nanoconstruct solution was placed into a 8 mL glass vial, capped with a gray-butyl septa, and kept in the dark. A sacrificial electron donor (100 mM ascorbate) and 20 μ M Cyt c₆ (Figure S11) were added for reduction of P₇₀₀⁺. For anaerobic experiments, the vial was purged with ultra-pure He for 20 minutes to remove residual anaerobic chamber dihydrogen. Samples were measured immediately before and periodically during illumination. For aerobic experiments, samples were equilibrated on air before capping for at least two hours and the headspace was not displaced. The headspace was analyzed with a Shimadzu GC-2010 Plus gas chromatograph equipped with a RT-Msieve 5A column (Restek) and a barrier ionization detector (BID 2010 Plus), using ultra-pure He as the carrier gas with a linear velocity of 42.5 cm/s. The injection temperature was 150°C, the column temperature was 35°C, and BID temperature was 280°C.

DATA, MATERIALS, AND SOFTWARE AVAILABILITY

All study data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS

We would like to acknowledge Dr. Patrick Corrigan for supplying the synthon used for *in vitro* protein maturation. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences program under Award Number DE-SC0018087 (to A.S., J.H.G., M.G.) and by the National Science Foundation under Grant No. CHE-1943748 (to A.S.).

REFERENCES

1. P. Jordan, *et al.*, Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. *Nature* **411**, 909–917 (2001).
2. P. Fromme, P. Jordan, N. Krauß, Structure of photosystem I. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1507**, 5–31 (2001).
3. M. Gorka, *et al.*, Shedding Light on Primary Donors in Photosynthetic Reaction Centers. *Front Microbiol* **12** (2021).
4. R. R. Sonani, *et al.*, Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. *Photosynth Res* **137**, 171–180 (2018).
5. R. Bassi, L. Dall’Osto, Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. *Annu Rev Plant Biol* **72**, 47–76 (2021).
6. J. F. Millsaps, B. D. Bruce, J. W. Lee, E. Greenbaum, Nanoscale Photosynthesis: Photocatalytic Production of Hydrogen by Platinized Photosystem I Reaction Centers. *Photochem Photobiol* **73**, 630 (2001).
7. J. W. Lee, I. Lee, E. Greenbaum, Imaging Nanometer Metalallocatalysts Formed by Photosynthetic Deposition of Water-Soluble Transition-Metal Compounds. *J Phys Chem B* **109**, 5409–5413 (2005).
8. J. W. Lee, C. V. Tevault, S. L. Blankinship, R. T. Collins, E. Greenbaum, Photosynthetic Water Splitting: *In situ* Photoprecipitation of Metalallocatalysts for Photoevolution of Hydrogen and Oxygen. *Energy & Fuels* **8**, 770–773 (1994).
9. E. Greenbaum, Interfacial photoreactions at the photosynthetic membrane interface: an upper limit for the number of platinum atoms required to form a hydrogen-evolving platinum metal catalyst. *J Phys Chem* **92**, 4571–4574 (1988).
10. E. Greenbaum, Platinized Chloroplasts: A Novel Photocatalytic Material. *Science* (1979) **230**, 1373–1375 (1985).
11. M. Gorka, J. Schartner, A. van der Est, M. Rögner, J. H. Golbeck, Light-Mediated Hydrogen Generation in Photosystem I: Attachment of a Naphthoquinone–Molecular Wire–Pt Nanoparticle to the A_{1A} and A_{1B} Sites. *Biochemistry* **53**, 2295–2306 (2014).
12. M. Gorka, *et al.*, Electron transfer from the A_{1A} and A_{1B} sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel. *J Photochem Photobiol B* **152**, 325–334 (2015).
13. C. E. Lubner, D. A. Bryant, J. H. Golbeck, “Wired Reaction Centers” in *Molecular Solar Fuels*, (The Royal Society of Chemistry, 2011), pp. 464–505.
14. R. A. Grimme, C. E. Lubner, J. H. Golbeck, Maximizing H₂ production in Photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. *Dalton Transactions* 10106 (2009).
15. K. A. Walters, J. H. Golbeck, Designing a modified clostridial 2[4Fe–4S] ferredoxin as a redox coupler to directly link photosystem I with a Pt nanoparticle. *Photosynth Res* **143**, 165–181 (2020).
16. S. C. Silver, *et al.*, Protein Delivery of a Ni Catalyst to Photosystem I for Light-Driven Hydrogen Production. *J Am Chem Soc* **135**, 13246–13249 (2013).

17. C. Greening, *et al.*, Genomic and metagenomic surveys of hydrogenase distribution indicate H₂ is a widely utilised energy source for microbial growth and survival. *ISME J* **10**, 761–777 (2016).
18. P. M. Vignais, B. Billoud, Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. *Chem Rev* **107**, 4206–4272 (2007).
19. M. J. Lacasse, D. B. Zamble, [NiFe]-Hydrogenase Maturation. *Biochemistry* **55**, 1689–1701 (2016).
20. M. Degli Esposti, *et al.*, Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes. *Biol Direct* **11**, 34 (2016).
21. B. Ghysels, D. Godaux, R. F. Matagne, P. Cardol, F. Franck, Function of the Chloroplast Hydrogenase in the Microalga *Chlamydomonas*: The Role of Hydrogenase and State Transitions during Photosynthetic Activation in Anaerobiosis. *PLoS One* **8**, e64161 (2013).
22. G. Torzillo, A. Scoma, C. Faraloni, L. Giannelli, Advances in the biotechnology of hydrogen production with the microalga *Chlamydomonas reinhardtii*. *Crit Rev Biotechnol* **35**, 485–496 (2015).
23. C. E. Lubner, *et al.*, Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. *Proceedings of the National Academy of Sciences* **108**, 20988–20991 (2011).
24. S. Morra, M. Arizzi, F. Valetti, G. Gilardi, Oxygen Stability in the New [FeFe]-Hydrogenase from *Clostridium beijerinckii* SM10 (CbA5H). *Biochemistry* **55**, 5897–5900 (2016).
25. M. Ihara, *et al.*, Light-driven Hydrogen Production by a Hybrid Complex of a [NiFe]-Hydrogenase and the Cyanobacterial Photosystem I. *Photochem Photobiol* **82**, 676–682 (2006).
26. J. Appel, V. Hueren, M. Boehm, K. Gutekunst, Cyanobacterial *in vivo* solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. *Nat Energy* **5**, 458–467 (2020).
27. K. A. Vincent, *et al.*, Electrochemical Definitions of O₂ Sensitivity and Oxidative Inactivation in Hydrogenases. *J Am Chem Soc* **127**, 18179–18189 (2005).
28. J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. *Chem Rev* **107**, 4273–4303 (2007).
29. J. W. Peters, *et al.*, [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research* **1853**, 1350–1369 (2015).
30. A. Kanygin, *et al.*, Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H₂ *in vivo*. *Energy Environ Sci* **13**, 2903–2914 (2020).
31. A. Kanygin, A. Smith, V. Nagy, S. Z. Tóth, K. E. Redding, Interplay between hydrogen production and photosynthesis in a green alga expressing an active photosystem I-hydrogenase chimera. *Int J Hydrogen Energy* **47**, 21969–21983 (2022).

32. S. Morra, Fantastic [FeFe]-Hydrogenases and Where to Find Them. *Front Microbiol* **13**, (2022).
33. K. D. Swanson, *et al.*, [FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster. *J Am Chem Soc* **137**, 1809–1816 (2015).
34. S. T. Stripp, *et al.*, How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. *Proceedings of the National Academy of Sciences* **106**, 17331–17336 (2009).
35. A. Kubas, *et al.*, Mechanism of O₂ diffusion and reduction in FeFe hydrogenases. *Nat Chem* **9**, 88–95 (2017).
36. N. Chongdar, *et al.*, Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory [FeFe] Hydrogenase. *J Am Chem Soc* **140**, 1057–1068 (2018).
37. J. Barber, Photosynthetic generation of oxygen. *Philosophical Transactions of the Royal Society B: Biological Sciences* **363**, 2665–2674 (2008).
38. P. S. Corrigan, J. L. Tirsch, A. Silakov, Investigation of the Unusual Ability of the [FeFe] Hydrogenase from *Clostridium beijerinckii* to Access an O₂-Protected State. *J Am Chem Soc* **142**, 12409–12419 (2020).
39. M. Winkler, *et al.*, A safety cap protects hydrogenase from oxygen attack. *Nat Commun* **12**, 756 (2021).
40. P. S. Corrigan, S. H. Majer, A. Silakov, Evidence of Atypical Structural Flexibility of the Active Site Surrounding of an [FeFe] Hydrogenase from *Clostridium beijerinckii*. *J Am Chem Soc* **145**, 11033–11044 (2023).
41. A. Rutz, *et al.*, Increasing the O₂ Resistance of the [FeFe]-Hydrogenase CbA5H through Enhanced Protein Flexibility. *ACS Catal* **13**, 856–865 (2023).
42. Q. Xu, *et al.*, Mutational analysis of photosystem I polypeptides in *Synechocystis* sp. PCC 6803. Subunit requirements for reduction of NADP⁺ mediated by ferredoxin and flavodoxin. *Journal of Biological Chemistry* **269**, 21512–21518 (1994).
43. G. Moal, B. Lagoutte, Photo-induced electron transfer from photosystem I to NADP⁺: Characterization and tentative simulation of the *in vivo* environment. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1817**, 1635–1645 (2012).
44. H. Medipally, M. Mann, C. Kötting, W. J. H. van Berkel, M. M. Nowaczyk, A Clickable Photosystem I, Ferredoxin, and Ferredoxin NADP⁺ Reductase Fusion System for Light-Driven NADPH Regeneration. *ChemBioChem* **24** (2023).
45. C. Léger, S. Dementin, P. Bertrand, M. Rousset, B. Guigliarelli, Inhibition and Aerobic Inactivation Kinetics of *Desulfovibrio fructosovorans* NiFe Hydrogenase Studied by Protein Film Voltammetry. *J Am Chem Soc* **126**, 12162–12172 (2004).
46. C. Léger, *et al.*, Enzyme Electrokinetics: Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms. *Biochemistry* **42**, 8653–8662 (2003).
47. M. del Barrio, *et al.*, Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels. *Acc Chem Res* **51**, 769–777 (2018).

48. Note that E_{switch} is a kinetic parameter, changing its value depending on the scan rate in CV. Thus, the comparison is only valid for data obtained at the same scan rates.

49. R. M. Evans, *et al.*, Principles of Sustained Enzymatic Hydrogen Oxidation in the Presence of Oxygen – The Crucial Influence of High Potential Fe–S Clusters in the Electron Relay of [NiFe]-Hydrogenases. *J Am Chem Soc* **135**, 2694–2707 (2013).

50. H. Makita, N. Zhao, G. Hastings, Time-resolved visible and infrared difference spectroscopy for the study of photosystem I with different quinones incorporated into the A₁ binding site. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1847**, 343–354 (2015).

51. J. Sun, *et al.*, Evidence that histidine forms a coordination bond to the A_{0A} and A_{0B} chlorophylls and a second H-bond to the A_{1A} and A_{1B} phylloquinones in M688H_{PsaA} and M668H_{PsaB} variants of *Synechocystis* sp. PCC 6803. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1837**, 1362–1375 (2014).

52. V. Kurashov, *et al.*, Critical evaluation of electron transfer kinetics in P₇₀₀–F_A/F_B, P₇₀₀–F_X, and P₇₀₀–A₁ Photosystem I core complexes in liquid and in trehalose glass. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1859**, 1288–1301 (2018).

53. I. R. Vassiliev, Y. S. Jung, M. D. Mamedov, Semenov AYu, J. H. Golbeck, Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. *Biophys J* **72**, 301–315 (1997).

54. S. W. Provencher, CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. *Comput Phys Commun* **27**, 229–242 (1982).

55. L. Yu, J. Zhao, U. Muhlenhoff, D. A. Bryant, J. H. Golbeck, PsaE Is Required for *in Vivo* Cyclic Electron Flow around Photosystem I in the Cyanobacterium *Synechococcus* sp. PCC 7002. *Plant Physiol* **103**, 171–180 (1993).

56. M. Ihara, H. Nakamoto, T. Kamachi, I. Okura, M. Maeda, Photoinduced Hydrogen Production by Direct Electron Transfer from Photosystem I Cross-Linked with Cytochrome c₃ to [NiFe]-Hydrogenase. *Photochem Photobiol* **82**, 1677–1685 (2006).

57. C. E. Lubner, *et al.*, Wiring an [FeFe]-Hydrogenase with Photosystem I for Light-Induced Hydrogen Production. *Biochemistry* **49**, 10264–10266 (2010).

58. M. Gorka, J. H. Golbeck, Generating dihydrogen by tethering an [FeFe]hydrogenase via a molecular wire to the A_{1A}/A_{1B} sites of photosystem I. *Photosynth Res* **143**, 155–163 (2020).

59. L. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede, Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I–Transition Metal Catalyst Hybrid. *J Am Chem Soc* **133**, 16334–16337 (2011).

60. L. M. Utschig, *et al.*, Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes. *J Phys Chem Lett* **2**, 236–241 (2011).

61. C. E. Lubner, R. Grimme, D. A. Bryant, J. H. Golbeck, Wiring Photosystem I for Direct Solar Hydrogen Production. *Biochemistry* **49**, 404–414 (2010).

62. R. A. Grimme, C. E. Lubner, D. A. Bryant, J. H. Golbeck, Photosystem I/Molecular Wire/Metal Nanoparticle Bioconjugates for the Photocatalytic Production of H₂. *J Am Chem Soc* **130**, 6308–6309 (2008).
63. A. M. Applegate, C. E. Lubner, P. Knörzer, T. Happe, J. H. Golbeck, Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct. *Photosynth Res* **127**, 5–11 (2016).
64. K. K. Niyogi, Photoprotection Revisited: *Genetic and Molecular Approaches*. *Annu Rev Plant Physiol Plant Mol Biol* **50**, 333–359 (1999).
65. M. A. Kozuleva, B. N. Ivanov, The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain. *Plant Cell Physiol* pcw035 (2016). <https://doi.org/10.1093/pcp/pcw035>.
66. M. A. Kozuleva, A. A. Petrova, M. D. Mamedov, A. Yu. Semenov, B. N. Ivanov, O₂ reduction by photosystem I involves phylloquinone under steady-state illumination. *FEBS Lett* **588**, 4364–4368 (2014).
67. I. R. Vassiliev, Y.-S. Jung, F. Yang, J. H. Golbeck, PsaC Subunit of Photosystem I Is Oriented with Iron-Sulfur Cluster F_B as the Immediate Electron Donor to Ferredoxin and Flavodoxin. *Biophys J* **74**, 2029–2035 (1998).
68. M. K. Akhtar, P. R. Jones, Deletion of iscR stimulates recombinant clostridial Fe–Fe hydrogenase activity and H₂-accumulation in *Escherichia coli* BL21(DE3). *Appl Microbiol Biotechnol* **78**, 853–862 (2008).
69. R. Jeanjean, A. Latifi, H. C. P. Matthijs, M. Havaux, The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium *Synechocystis* sp. PCC 6803. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1777**, 308–316 (2008).

FIGURES AND TABLES

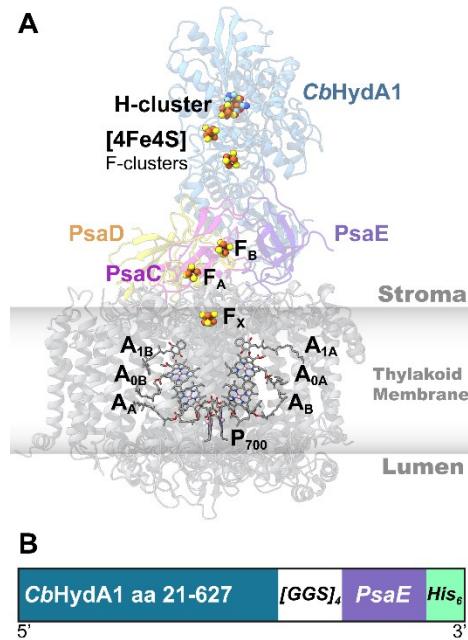


Figure 1. (A) electron-transfer cofactors of the $CbHydA1$ - $PsaE$:PS I $_{\Delta PsaE}$ nanoconstruct based on the structures of the PS I from *Synechococcus elongatus* (PDB: 1JB0) and [FeFe] hydrogenase from *Clostridium beijerinckii* (PDB: 6TTL). (B) Schematic representation of the protein fusion strategy employed.

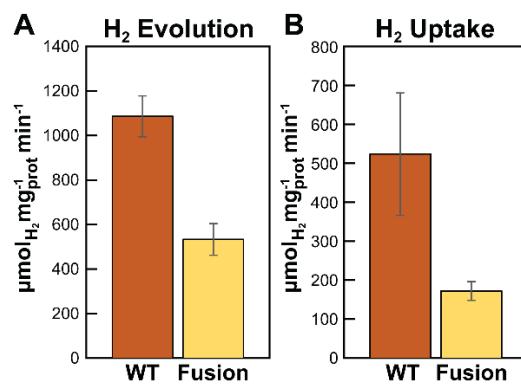


Figure 2. Specific activities for (A) H_2 evolution at pH 6.9, and (B) H_2 uptake at pH 8.0 for $CbHydA1_{WT}$ (orange) and $CbHydA1$ - $PsaE$ fusion (yellow)

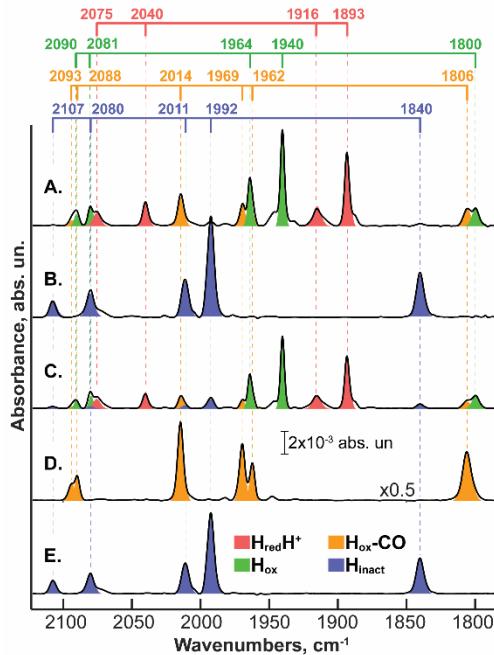


Figure 3. FTIR spectra of the CbHydA1-PsaE fusion protein under various conditions: (A) As prepared, (B) After exposure to air for 20 minutes, (C) After exposure to air for 20 minutes followed by anaerobic reactivation with H₂, (D) After incubation with CO gas for 15 minutes, and (E) After incubation with CO gas for 15 minutes followed by exposure to air for 20 minutes. The shaded areas designate specific states of the H-cluster with color-coding indicated above trace (E). The y-scale is shown as a bar below trace C. Trace D was scaled by 0.5.

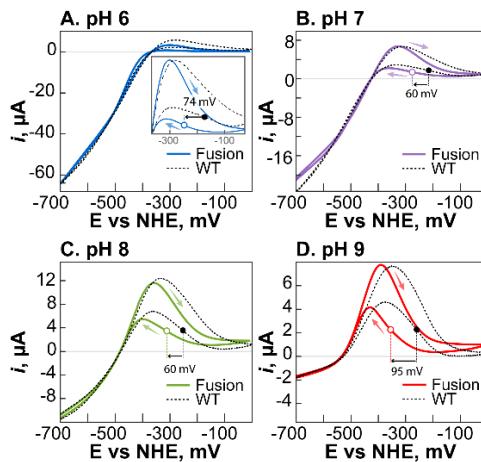


Figure 4. Room temperature cyclic voltammetry measurements of CbHydA1-PsaE fusion protein adsorbed on a rotating disc graphite electrode measured at pH 6.0 (A), pH 7.0 (B), pH 8.0 (C) and pH 9.0 (D). Black dashed lines represent data for CbHydA1_{WT} obtained under similar conditions. Experimental conditions: scan rate, 10 mV/s; working electrode rotated at 1000 rpm; atmosphere, 1 atm of H₂.

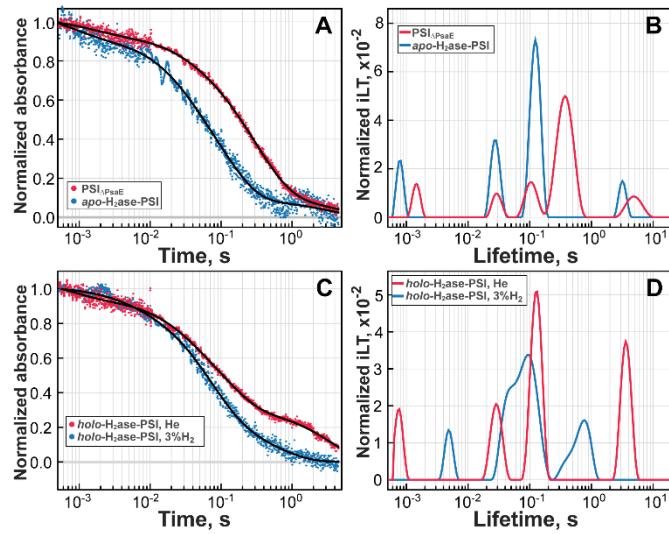


Figure 5. Anaerobic P_{700}^{+} reduction kinetics after a 532 nm actinic flash. (A) PS $I_{\Delta PsaE}$ (red) PS $I_{\Delta PsaE}$:apo- $CbHydA1$ -PsaE (blue); (B) CONTIN inverse Laplace transformation (iLT) of A. (C) PS $I_{\Delta PsaE}$:holo- $CbHydA1$ -PsaE under 3%H, 97% N₂ (blue) and under 100% He (red). (D) CONTIN iLT of C. P_{700}^{+} was monitored by absorbance at 830 nm. Traces in (B) and (D) are normalized to the sum of preexponential factors. Black traces in (A) and (C) are reconstructions of kinetics using (B) and (D) respectively.

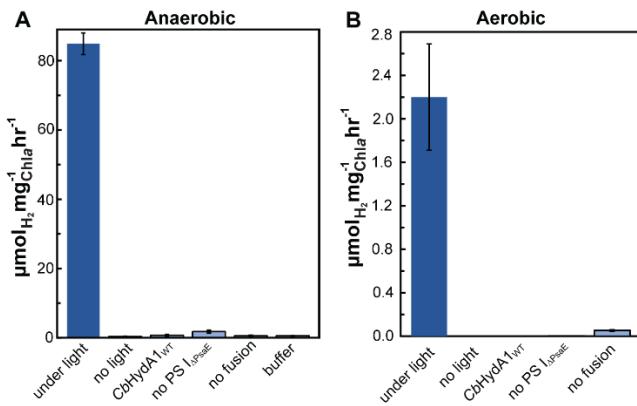


Figure 6. Light-induced H₂ generation rates for the $CbHydA1$ -PsaE:PS $I_{\Delta PsaE}$ nanoconstruct under (A) anaerobic and (B) aerobic conditions (dark blue), along with controls for each condition (light blue).