1 IR Spectroelectrochemical Methods for Studying [FeFe] Hydrogenases.

2 Patrick Corrigan and Alexey Silakov*

Abstract

3

6

7

9

10

11

12

13

16

18

19

20

21

4 [FeFe] hydrogenases comprise an important class of H₂ evolving enzymes.

5 Understanding the electrochemical relationships between various active and

inactive states of these enzymes is instrumental in uncovering the reaction

mechanisms of the complex six-iron active center of [FeFe] hydrogenases called

8 H-cluster. Since states of the H-cluster exhibits distinct fingerprint-like spectra in

the mid-IR range, IR spectroelectrochemical experiments provide a powerful

methodological framework for this goal. This chapter describes protocols for

performing Fourier-transform infrared (FTIR) spectroelectrochemical experiments

on [FeFe] hydrogenases. Topics included experimental design, data acquisition,

and data analysis.

14 **Keywords.** Fourier-Transform Infrared Spectroscopy, [FeFe] hydrogenase, Data

15 analysis, Spectroelectrochemistry.

1. INTRODUCTION

17 [FeFe] hydrogenases are an important class of enzymes that catalyze the

reversible reduction of protons into H₂.[1] The organo-metallic active site of [FeFe]

hydrogenases is called the H-cluster. It consists of a di-iron subcluster ([2Fe]H) and

a [4Fe-4S]_H subcluster connected via a cysteine thiol.[2, 3] A carbon monoxide and

a cyanide coordinate each iron in the [2Fe]_H subcluster. The two irons are bridged

by an azadithiolate and, in most states, by a μ-CO.[4–6] The [4Fe4S]_H subcluster

resembles a typical four-iron ferredoxin cluster coordinated by four Cys ligands. The catalytic mechanism of the H-cluster is under debate; however, the states commonly trapped in steady-state and in potential-jump experiments, Hox, Hred, H_{red}H⁺, H_{sred}, and H_{hyd}H⁺, are believed to be a part of the catalytic cycle.[7–12] The H-cluster can also be reversibly inhibited by carbon monoxide or sulfide, resulting in two distinct states called Hox-CO and Hinact (or Hoxair), respectively.[3, 8, 11, 13] Furthermore, in the case of the [FeFe] hydrogenase from Clostridium beijerinckii (CbHydA1), a different H_{inact} state can be obtained that does not contain a sulfide.[11] The chemical and catalytic competence of any of the postulated active states has not been conclusively proven due to the ultra-fast nature of the catalytic processes. However, uninhibited [FeFe] hydrogenases are always under turnover conditions in aqueous solutions. Therefore, it is highly likely that the steady states observed in in vitro experiments are a part of the catalytic cycle and represent states preceding kinetic bottlenecks of the reaction (e.g., H⁺ transfer to or from the active site, H₂ binding or leaving, etc.). [9, 12] In the case of [FeFe] hydrogenases, Fourier-Transform IR spectroscopy is one of the most widely used spectroscopic methods. The carbon monoxide and cyanide ligands of the [2Fe]H subcluster exhibit well-defined C-O/C-N stretch vibrations between 1750 cm⁻¹ and 2120 cm⁻¹. Notably, this range is free of interfering signals such as protein amide bands and water absorption.[7, 8] CN-stretching vibrations typically occupy the high-wavenumber range above 2030 cm⁻¹; terminal CO ligands exhibit C-O stretching vibrations between 1880 cm⁻¹ and 2020 cm⁻¹, and μ-CO exhibit IR signals in the low-wavenumber range below 1850 cm⁻¹.

23

24

25

26

27

28

29

30

31

32

33

34

35

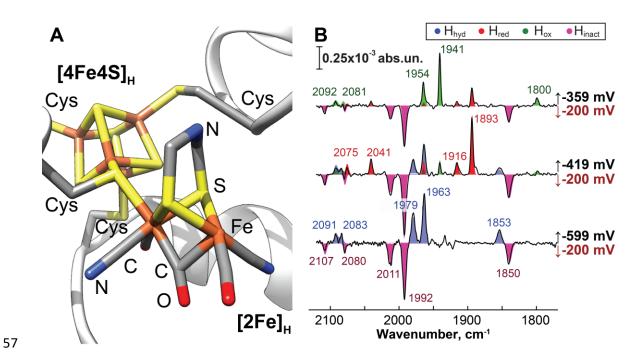
36

37

38

39

40


41

42

43

44

Furthermore, the frequencies of such vibrations are susceptible to the electronic environment of the corresponding ligands. In general, states of the H-cluster with a higher oxidation state of the iron ions of the [2Fe]_H subcluster exhibit a higher average frequency of the terminal CO and CN bands. It is also worth noting that the CO/CN stretch-vibration frequencies depend on the electronic environment of the [4Fe4S]_H cluster. In the recent publications by Senger et al., it was shown that protonation of the [4Fe4S]_H cluster led to a shift of the CO/CN IR bands by about 5-7 cm⁻¹.[14] Also, in a separate publication by Rodriguez-Macia et al., redox transitions of the accessory clusters ≤10 Å away cause a small (~1 cm⁻¹) shift in the terminal CO bands, which can definitively be detected in FTIR spectra due to the narrowness of the IR bands.[15]

Figure 1. (A) Structure of the H-cluster in the H_{ox} state (based on crystallographic data PDB ID: 6TTL) (B) Representative difference spectra obtained during IR spectroelectrochemical experiments on *Cb*HydA1 at pH 7.4 at 10°C.

As the estimated turnover time of the [FeFe] hydrogenases is on the order of 10-100 µs,[12] trapping and investigating intermediates of the reaction is challenging. Trapping states of the H-cluster precluding rate-limiting steps is an alternative way of probing the catalytic properties of these enzymes. The application of an electrochemical bias is a convenient way to affect the catalysis and the oxidation state of the enzyme as a whole. In conjunction with pH titrations, spectroelectrochemical experiments are thus instrumental in understanding [FeFe] hydrogenases. In our recent study of CbHydA1, we followed three sequential reduction/oxidation processes that were completely reversible using FTIR spectroelectrochemical experiments.[11] These experiments highlighted the staggering efficiency of reversible oxidative inactivation processes involved in the mechanisms associated with an unprecedented O2-tolerance of CbHydA1. Furthermore, in our IR spectroelectrocehmical experiments, we observed the H_{hyd} state, which is typically only accessible under low pH and high H₂ pressures or via genetic modification of the protein. Our observation in wild-type enzyme at neutral pH indicated structural divergence of the protein environment of the H-cluster of CbHydA1 from other known species. This conclusion was later confirmed by a crystallographic investigation by Winkler et al.[2] Depending on the spectroscopic method of detection, spectroelectrochemical cell designs vary dramatically. In case of FTIR spectroelectrochemical experiments, two primary experimental methodologies exist: a protein solution transmission cell or a surface absorbed protein IR cell. The latter takes advantage of the IR surface enhancement effect in thin gold films (e.g. surface enhanced IR absorption,

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

SEIRA).[16] SEIRA-based experiments are advantageous due to the ability to exchange solutions above the surface-absorbed protein. Unfortunately, however, such a methodology is challenging to execute as one needs to create a thin gold film of well-defined thickness and covalently link protein to it. In this work, we focus on the transmission-cell electrochemical methodology. It is relatively simple to set up, requires minimal instrumentation investment, and can be done without significant modifications to a typical FTIR spectrometer. Our cell design is inspired by the work of Moss *et al*[17], which shows the possibility of using a semitransparent gold mesh as a working electrode to allow for IR transmission. We take advantage of the resin 3D printing technology to simplify the design and eliminate potential failure points, such as the possibility of breaking the connection to the working electrode during the experiment, breaking CaF₂ windows during the assembly, disconnecting the reference electrode from the cell due to bubble formation, etc. The cell is also made to maintain an anaerobic environment and can be attached to a cold plate to control the temperature. Our construction allows us to achieve relatively fast cell-equilibration times and affords reproducible results while maintaining an anaerobic environment outside anaerobic chambers. While the protocol presented below is intended for [FeFe] hydrogenases, it can be adapted to other enzymatic systems with minimal modifications.

2. MATERIALS

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

104 Fabrication of the spectroelectrochemical cell.

The cell was designed in Autodesk Fusion 360[®]. The body of the spectroelectrochemical cell[18] is 3D printed using an SLA (stereolithography

apparatus) UV-curable resin printer. For this purpose, the designed cell was exported into an STL format. Using the STL file as input, we prepare the print file in ChituBox slicing software. After the print, the cell is cleaned in an isopropyl alcohol bath and cured under ultraviolet light at 395 nm. Then platinum foil with an attached copper wire lead is permanently incased into the designated niche on the sidewall of the cell using a two-part epoxy and left to cure overnight. Similarly, a gold pad that connects the gold mesh working electrode to the potentiostat lead is attached to the cell. We use a conductive temperature-harden epoxy to connect the copper leads to platinum and gold foil before the installation into the cell. To the other end of the copper leads, we solder brass pins and glued them to the cell's body with two-part epoxy (see figure 2B). The rest of the electrochemical cell is assembled at the time of sample preparation according to the schematic shown in figure 2. The cell is designed to fill the voids around the working electrode with an blank electrolyte after the cell assembly using designated ports at the top and the bottom of the cell. In our experience, the protein solution in contact with the gold mesh is not diluted by the electrolyte. We recommend printing the cell in a semitransparent resin to see any trapped bubbles while filling the cell voids with electrolyte. The aluminum plates (see figure 2C) that clamp the cell together are machined to have internal waterways for cooling and have an attachment for mounting the cell to the spectrometer's standard cell stand.

- 1. UV-curable resin, e.g. Siraya Tech Blu.
- 2. SLA 3D printer, e.g. Elegoo Mars.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

3. Gold foil, 0.127mm thickness, Sigma-Aldrich.

- 4. Gold mesh, 0.008 mm thickness, 88.6% transparency, Precision Eforming.
- 5. Platinum foil, 0.25 mm thickness, Sigma-Aldrich.
- 6. Conductive heat-cured 1-part epoxy, e.g., Silver-bond 4 from Epoxy
 International.
- 7. Silicone sheets of 1 mm thickness to make rings and gaskets.
- 8. Copper wire, e.g. insulated AWG28
- 9. CaF₂ windows, 20 mm x 2 mm and 32 mm x 3 mm (Crystran)
- 137 10. Silicone O-rings 1/4" ID and 1/2" ID (Parker S1138 series 2-010 and 2-112, respectively).
- 11. BASI Ag/AgCl 3M NaCl reference electrode (MF-2052) in a 7.5 cm long, 6
 mm OD glass body. Note that the cell is designed for the dimensions of this
 particular electrode. The use of a different electrode may require
 adjustments to the cell design.
 - 12. Miscellaneous aluminum and brass stock to machine brass pins and aluminum plates.

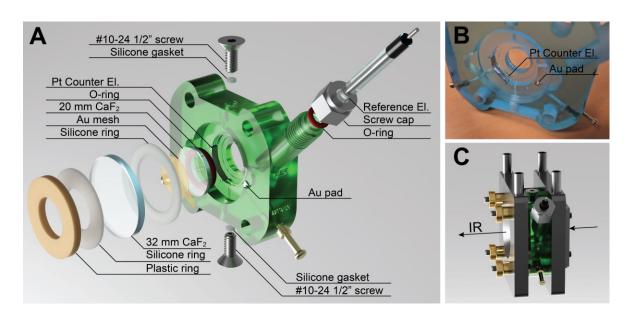


Figure 2. (A) 3D rendering of the IR spectroelectrochemical cell. (B) A photograph of the SLA-printed cell's body with the installed platinum counter electrode and the gold connecting pad. (C) 3D rendering of a fully assembled cell.

149

150

Protein expression and isolation

- We use T7 expression strain of *E.coli* such as BL21(DE3) or a derivative thereof
- (e.g. BL21(DE3) $\triangle iscR$). In our experience, the best results are obtained if the gene
- is fused with a cleavable N-terminus SUMO and a His6-tag in a pET-based vector.
- We further fuse the gene with a C-terminus strep-Tag that aids final purification
- after cleaving the SUMO-His₆ tag. The cells are first grown aerobically in conical
- 156 flasks and then induced anaerobically.
- 157 1. Appropriate antibiotics for selective growth media (typically kanamycin).
- 158 2. Appropriate inducer (typically IPTG).
- 159 3. LB broth supplemented with 0.1M MOPS pH 7.4.
- 4. Temperature controlled shaker for 2000 mL bottles and 6L conical (e.g. New
- 161 Brunswick Excella E25).
- 5. 6L Elmermyer flasks (VWR).
- 6. Refrigerated centrifuge for cell pelleting and protein concentration with
- appropriate rotors, e.g Thermo Fischer Scientific Sorvall LYNX 4000.
- 7. Sonicator as a cell lysis system, e.g. Cole-Parmer® 750-Watt Ultrasonic
- Homogenizer.
- 8. Lysis buffer (50mM HEPES pH 7.5, 300 mM KCl, 5 mM imidazole, 10 mM
- 168 ß-mercaptoethanol).
- 9. Gravity-flow affinity chromatography columns.

- 170 10. Immobilized metal affinity chromatography (IMAC) nickel resin.
- 171 11. ULP1 protease. e.g. Invitrogen™ SUMO Protease.
- 12. Digestion buffer (50mM HEPES pH 7.5, 300 mM KCl, 10% (v/v) glycerol, 5
- mM DTT)
- 13. Step-Tactin® Superflow high capacity resin (IBA GmbH)
- 14. Appropriate wash and elution buffers for affinity chromatography prepared
- per resin manufacturer specifications.
- 15. PD-10 Desalting Columns.
- 16. SDS-PAGE system and appropriate reagents.
- 179 17. Bradford assay system.

Protein activation

180

181

182

183

184

185

186

187

188

189

190

191

192

Even though [4Fe4S] clusters of isolated *Cb*HydA1 appear to be mostly intact after purification, we reconstitute the FeS clusters by a standard Fe and S reconstitution protocol to maximize the yield of fully active protein.[11, 19] Furthermore, in our protocols, the [FeFe] hydrogenase is expressed in an inactive form as we omit coexpression of maturation factors responsible for the biosynthesis of the active site. Therefore, the enzyme's active metallocofactor must be reconstituted as well. After removing excess Fe and S with a PD10 desalting column, we add a synthesized Fe₂S₂CN₂CO₄(CH₃)NH cluster (synthon) to the protein solution and incubate it on ice overnight under reducing conditions. Afterward, we remove the excess synthon and reductant by two iterations of a PD-10 desalting column. The resulting protein is mostly in the oxidized CO-inhibited state and thus must be further activated by incubating under 1 atm H₂ gas for about two hours at 4°C. Note that the H₂

- incubation time may vary from one species of [FeFe] hydrogenase to another. The
 resulting protein typically exhibits a mixture of the H_{ox} and the H_{red}H⁺ states, as can
 be verified by a transmission FTIR measurement. If the protein sample is planned
 to be stored in cryogenic storage, we add 5-10% glycerol (or sucrose) by volume
 to the protein solution before freezing. All above manipulations are performed
 under strict anaerobic conditions in an anaerobic chamber.
- 1. Anaerobic chamber, e.g., a Coy Glove Box.
- 2. Fe/S reconstitution buffer, 100 mM HEPES, pH 7.5, 5 mM DTT, 500 mM KCl.
- 3. FeCl3•6H2O (Sigma Aldrich).
- 4. Na2S•9H2O (Sigma Aldrich).
- 5. Synthesized Fe₂S₂CN₂CO₄(CH₃)NH, synthesis protocols can be found elsewhere.[20–22]
- 6. H-cluster reconstitution buffer, 25 mM TAPS pH 8.0, 100mM KCl , 5mM NaDT.
- 7. Appropriate electrochemical buffers.

8. Store small aliquots of proteins in cryovials at -20° C.

Infrared spectrometry and electrochemistry

- FTIR spectrometer, e.g. Thermo Scientific Nicolet is50 FTIR equipped with
 an MCT-A LN₂-cooled detector.
- 2. A 3.6 µm long-pass visible light filter, e.g. Edmund Optics, to block 214 irradiation from the internal aligning red laser that may cause photo-induced 215 reactions in [FeFe] hydrogeanses.

- 3. Recirculating chiller (VWR) for temperature control.
- 4. Liquid nitrogen for cooling the MCT-A detector.
- 5. Supply of dry nitrogen gas for removing water vapors from the IR spectrometer and the sample chamber.
- 220 6. Potentiostat, e.g. Pine research WaveNow.

3. METHODS

221

222 IR cell assembly

- 1. A 20 mm OD CaF₂ window is placed on top of an appropriate O-ring at the bottom of the cell.
- 225 2. Gold mesh is carefully placed and aligned so that one of the corners is on top of the gold pad. We achieve the best results if the gold mesh is cut into a teardrop shape.
- 3. A 1 mm silicone spacer ring is placed by pressing down the gold mesh to
 the gold pad. Depending on the roughness of the 3D printed cell surface, a
 small amount of silicone vacuum grease may be added to the ring on both
 sides to ensure an air-tight seal of the cell. However, we recommend
 polishing the mating cell surface instead and not using any grease.
- 4. Any liquid from the storage solution of the gold mesh is removed by gently pressing a kim-wipe to the surface.
- 5. About 15 μL of the sample solution is placed in the middle of the mesh, preferably in one drop, to avoid bubbles.

- 6. A 32 mm CaF₂ window is gently placed on top. It is important to place this window as straight as possible to avoid pushing protein liquid to one side of the cell.
- 7. Another 1 mm silicon spacer is placed onto the upper CaF₂ window and followed by a plastic ring.
- 8. The whole assembly is then placed on a custom-made aluminum plate and capped by another.

245

246

247

248

249

250

251

252

253

254

255

- 9. Four thumb nuts are screwed in place to clamp the assembly together. Nuts have to be tightened gently in a crisscross pattern until the gold mesh noticeably flattens and the protein liquid is evenly distributed over the visible space of the cell.
- 10. Inject electrolyte prepared anaerobically through the lower port using a gastight syringe, penetrating the silicone gasket until all voids in the cell between all three electrodes are filled, and the liquid starts filling the port of the reference electrode. Keep the upper filling port open to avoid trapping bubbles that would electrically disconnect the reference electrode from the rest of the cell.
- 11. Once the electrolyte fills up the port of the reference electrode, the reference electrode is secured in place by an o-ring and a stainless steel yor-loc nut for 1/4"-OD tube.
- 12. At this time, upper and lower filling ports are sealed by tightening the corresponding #10-24 stainless-steel screws.

13. It is also important to check the resistance between the counter electrode and the reference electrode. In our experience, the resistance is typically 100-200 kOhm. We advise against measuring the resistance between the working electrode and other electrodes as the potential applied by a multimeter while taking a resistance measurement may irreversibly damage protein.

IR Spectroelectrochemical measurements

- We typically perform experiments on [FeFe] hydrogenase at 10° C using 0.25-1.0 mM protein solution. FTIR spectra are recorded at 2 cm⁻¹ resolution with 500 scans per spectrum using Thermo Scientific™ OMNIC™ Series Software. For the flexibility of post-processing, data is recorded in the "Single Beam" mode, which is then converted to the absorbance spectrum during data processing (see below).
 - 1. Prior measurements, calibrate the reference Ag/AgCl electrode by measuring cyclic voltammetry of a methyl viologen solution using a standard electrochemical cell. Typically, methyl viologen mid-point potential reads about -640 mV -650 mV vs Ag/AgCl. The actual Ag/AgCl electrode potential can be then calculated using the known value of E₀(MV²⁺/MV⁻⁺) = -446 mV vs NHE.[23]
 - 2. Assemble the cell with a buffer identical to that of the protein sample.

 Measure a background IR spectrum using the same settings as those to be used for spectroelectrochemical measurement. Since the cell's path length is dependent on the pressure imposed by the thumbscrews, the cell assembly must be done with the same care as that for the actual

- experiment. For the best result, accumulate the background with at least double the number of scans used in the actual experiment to avoid a reduction in the signal-to-noise ratio during data processing.
 - If needed, thaw protein, adjust the buffer to the appropriate pH and ensure that the protein solution contains at least 100 mM of KCl (or NaCl).

- 4. Assemble the cell with the protein solution, place it in the spectrometer and connect the potentiostat's leads to the cell.
 - 5. Connect the water cooling tubes to the IR cell, turn on the chiller at the desired temperature, and after ~15 minutes, verify the actual temperature of the cell by a thermocouple or an IR thermometer. Adjust set temperature at the chiller if needed.
 - 6. Once the cell's temperature is equilibrated, record a control IR spectrum to verify the quality of the sample. At this point, the composition of states in the [FeFe] hydrogenase should be similar to that of the as-activated sample in a regular transmission IR cell. This spectrum can also be used as a background spectrum during data processing for generating differential IR spectra. If so desired, this spectrum must be accumulated to a higher quality than the actual spectroelectrochemical data to avoid degradation of the signal-to-noise ratio upon data processing.
 - 7. Create a macro that allows repeated accumulation of the IR spectra. The delay before each measurement should allow for a sufficient cell/protein equilibration upon a potential step (5-10 min).

- 8. Setup sequential potential-step chronoamperometry (CA) measurements in the potentiostat's software. The total duration of each CA experiment must match the repetition time of the IR measurements exactly.
 - 9. In our experience, the initial step from an "open-cell" to the most negative potential requires about 15 min of equilibration. Therefore, we recommend that the initial potential setting be done manually before initiating the spectroelectrochemical experiment.
 - 10. Execute both the IR macro and CA experiments as synchronously as possible.
 - 11. Make sure that the cell's current does indeed stabilize within the designated equilibration time. Every sequential step of ±15-25 mV results in an almost instantaneous current equilibration. However, we recommend including a 5 min equilibration time for each potential step to ensure protein is in equilibrium with the working electrode.
 - 12. After completing the experiment, perform another calibration of the Ag/AgCl reference electrode using the same methodology as in step 1 to ensure that the reference electrode potential was stable during the experiments. If a significant deviation is observed, use time stamps for each IR measurement to interpolate the reference potential drift based on the "before" and "after" values.

Data processing.

The data processing methodology presented here is based on using Kazan Viewer, a toolbox for MATLAB.[24] However, similar procedures can be performed

using other scientific software and, in some cases, by the software that controls the spectrometer (e.g. Omnic). Here we give an example of the workflow.

1. Load the software.

- Open MATLAB. If Kazan viewer is properly installed, execute "kazan" command to load the software. If it is not yet installed, download the software,[24] unpack the zip file and then add the path to the "viewer" folder in the MATLAB environment.
- 2. Load the background and the absorption spectra into the software to generate an absorbance spectrum.
 - Open the "ftirbox" plugin in Kazan Viewer. Load the background spectrum to Kazan viewer (for Omnic-generated data, choose "*.spa" then "NicoletSPA" and at the bottom "Absorbation/Transmission") and use "Set baseline" in the FTIR box (also mark "use BL"). Load an experimental spectrum to Kazan viewer and click "Set Data" in the FTIR box.
- 3. Model the baseline of the experimental spectrum and subtract it.
 - In the FTIR plugin, change the setting from "Polynomial" to "Cubic spline" under the baseline portion of the plugin window. Unmark "Point Based" to set baseline points to be based on the experimental data points. Add baseline points by clicking the "Add" button under "baseline" to add baseline points. Every mouse click will add a baseline point to memory (nothing will be displayed). Press Enter on the keyboard to exit adding mode and display added points. Adjust

positions of the baseline points until the baseline reproduces well the experimental background. FTIR box automatically generates a difference which can be used to verify the baseline correction process if Kazan viewer is set for the two-axis visualization mode ("Re/Im" button).

4. Save the obtained absorbance spectrum.

350

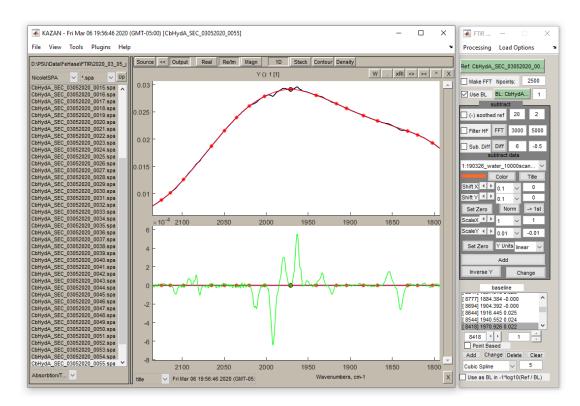
351

352

353

354

355


356

357

358

359

- In Kazan viewer, transfer the result of the baseline fit from the plugin buffer (Output) to that of Kazan viewer (Source) by clicking the "«" button and selecting "FittDiff" in the appeared window. Then click
 "Save Source" in the "File" menu to save the file.
- 5. Write down the intensity of the bands most representative of specific states.
- 6. Repeat steps 2-5 for each IR data set obtained.
- 7. Plot the intensity of the relevant IR bands as a function of applied potential.

Figure 3. Example of data processing using Kazan Viewer and the FTIR Box plugin. Black trace - absorbance data obtained by calculating $A = \log_{10}\left(\frac{Ref}{BL}\right)$, where Ref is the spectrum of CbHydA1 obtained at -609 mV and BL is the "baseline" spectrum of CbHydA1 obtained at -200 mV, Red trace - simulated baseline generated as a Cubic spine of preselected data points (shown as red asterisks), Green traces – baseline subtracted spectrum, Orange trace - additional data to be subtracted (e.g., water vapor spectrum), in the case shown the scale factor is set to zero.

Data analysis

- Midpoints potentials for the redox transitions between various states can be extracted by fitting the potential dependence of the absorbances to the Nernstian
- are equation: $\frac{C_{red}}{C_{ox}} = \exp\left(-\frac{nF}{RT}(E E_0)\right)$ (1)
 - where C_{red} , C_{ox} are potential (E) dependent concentrations of reduced and oxidized species, respectively; E_0 is the redox mid-point potential; $F = 96485.33 \ C \ mol^{-1}$ is the Faraday constant; $R = 8.314462 \ J \ K^{-1} mol^{-1}$ is the

universal gas constant; T is temperature, and n is the number of electrons 380 transferred. At 10°C (283.15K) $\frac{F}{RT} = 0.041 \, mV^{-1}$. In the case of *Cb*HydA1, it is 381 possible to access four states through three one-electron transitions.[11] To 382 generalize, we will call these states A, B, C and D, where A is the most reduced 383 and D is the most oxidized. In the case of CbHydA1, A=H_{hyd}, B=H_{red}, C=H_{ox.} and 384 385 D=H_{inact} and each redox transition require one electron. Consequently, to interpret the IR spectroelectrochemical data, a system of four equations must be 386 considered: 387

388
$$\begin{cases} C_{A}(E) = C_{B}(E)S_{AB}(E) \\ C_{B}(E) = C_{C}(E)S_{BC}(E) \\ C_{C}(E) = C_{D}(E)S_{CD}(E) \\ C_{A}(E) + C_{B}(E) + C_{C}(E) + C_{D}(E) = 1 \end{cases}$$
 (2)

389 where
$$S_{AB}(E) = \exp\left(-\frac{F}{RT}(E - E_0^{AB})\right)$$
, $S_{BC}(E) = \exp\left(-\frac{F}{RT}(E - E_0^{BC})\right)$, $S_{CD}(E) =$

$$\exp\left(-\frac{F}{RT}(E-E_0^{CD})\right)$$
, and E_0^{AB} , E_0^{BC} and E_0^{CD} are midpoint potentials for A \rightleftharpoons B+e $^-$,

- B⇒C+e and C⇒D+e transitions, respectively. By applying the Beer-Lambert law,
- it is trivial to derive the final set of equations for the potential dependence of the
- absorbances (Abs_i , $i \in \{A, B, C, D\}$):

394
$$Abs_A(E) = \ell \varepsilon_A K(E) S_{ab}(E) S_{bc}(E) S_{cd}(E)$$
 (3)

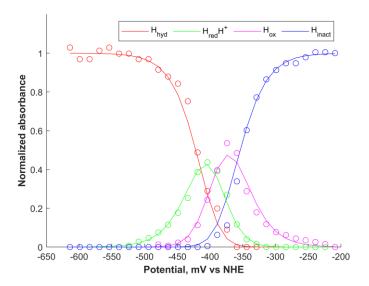
395
$$Abs_B(E) = \ell \varepsilon_B K(E) S_{bc}(E) S_{cd}(E)$$
 (4)

396
$$Abs_{C}(E) = \ell \varepsilon_{C} K(E) S_{cd}(E)$$
 (5)

$$Abs_D(E) = \ell \varepsilon_D K(E) \tag{6}$$

398
$$K(E) = [S_{ab}(E)S_{bc}(E)S_{cd}(E) + S_{bc}(E)S_{cd}(E) + S_{cd}(E) + 1]^{-1}$$
 (7)

Where ε_A , ε_B , ε_C , ε_D are extinction coefficients of the characteristic CO bands of states A, B, C, and D, respectively, and ℓ is the pathlength. Typically, ℓ , ε_A , ε_B , ε_C ,


 ε_D are not well defined and therefore are fitting parameters (ℓ can be implicitly 401 included into $\varepsilon_i^* = \ell \varepsilon_i$). 402 Using the equations above, it is possible to construct a simple fitting routine. 403 However, even for the more complex case of three one-electron transitions, a 404 simulation by manual variation of the seven parameters $(E_0^{AB}, E_0^{BC}, E_0^{CD}, \varepsilon_A^*, \varepsilon_B^*, \varepsilon_C^*)$ 405 ε_{D}^{*}) typically provide a sufficiently accurate result. For illustration purpose, below, 406 we provide a script for MATLAB that simulates the spectroelectrochemical traces 407 of CbHydA1 measured at pH 7.4[11] (note that this script also runs in the freely 408 available MATLAB-like environment, Octave): 409

410

clear all; % ensures clean start of the script % Experimental concentration profiles normalized to total sum: Hhyd=[1.029,0.969,0.969,1.013,1.029,0.998,0.998,0.969,0.969,0.915,... 0.879, 0.843, 0.752, 0.488, 0.289, 0.199, 0.090, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0];Hred=[0,0,0,0,0,0,0.007,0.028,0.047,0.075,0.115,0.177,0.253,0.386,... 0.437, 0.391, 0.270, 0.117, 0.040, 0.015, 0, 0, 0, 0, 0, 0, 0, 0;Hox = [0,0,0,0,0,0,0,0,0,0.013,0.007,0.023,0.040,0.113,0.244,0.397,...]0.536, 0.485, 0.288, 0.179, 0.118, 0.077, 0.062, 0.044, 0.035, 0.026, 0.015, 0];Hinact = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.005,0.063,0.112,0.339,0.603,...]0.772,0.865,0.913,0.948,0.948,0.979,1.005,1.005,1.]; % Applied potential mV vs NHE: E = -614:15:-209;% Midpoint potentials: Eab = -415; % Hhyd<=>Hred Ebc = -392; % Hred<=>Hox Ecd = -359; % Hox<=>Hinact % Constants T = 283.15; % K = 10 deg C $FnRT = 1*96485.33/8.314462/T*1e-3; % mV^-1$ % Calculating exponential primitives: Sab = $\exp(-FnRT*(E-Eab));$ Sbc = exp(-FnRT*(E-Ebc));Scd = exp(-FnRT*(E-Ecd));K = 1./(Sab.*Sbc.*Scd+Sbc.*Scd+Scd+1);% Calculating concentration profiles: D = K;C = K.*Scd;B = K.*Sbc.*Scd;

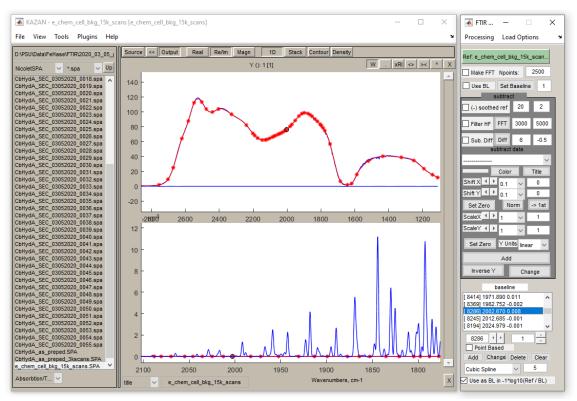
```
A = K.*Sab.*Sbc.*Scd;
% Plotting results into a plot window with ID "777":
figure(777); clf; hold on;
plot(E, A, '-r', E, B, '-g',E, C, '-m', E, D, '-b');
plot(E, Hhyd, 'or', E, Hred, 'og',E, Hox, 'om', E, Hinact, 'ob');

xlabel('Potential, mV vs NHE'); ylabel('Normalized absorbance')
legend('H_{hyd}', 'H_{red}H^++', 'H_{ox}', 'H_{inact}', ...
'Orientation', 'horizontal');
```


Figure 4. Example potential dependence of concentration profiles of four states observed in the spectroelectrochemical experiments on *Cb*HydA1 at pH 7.4 (circles) and the fit to the equations 3-7 accounting for 1e⁻-transitions. The figure is generated by the script above.

4. NOTES

1. We find that [FeFe] hydrogenases interact well with the working gold electrode directly; thus, the addition of mediators does not significantly improve the cell's equilibration time, nor does it affect the experimental results. Therefore, in all our experiments, we omit using mediators altogether.[10, 11] However, we would like to note that experiments on other metalloproteins may benefit from the use of mediators. A need for mediators may be evident from a hysteretic and a non-Nernstian behavior of


concentration profiles with applied potentials. If that is the case, generally, it is advised to choose a set of mediators so that their midpoint potentials cover the whole desired range of potentials with a roughly 50-100 mV spacing between closest values. Also, note that the redox potentials of some mediators may have strong pH dependence, and thus an adjustment to the mediator mix may be needed for different pH values. Furthermore, note that some mediators' low solubility in aqueous solutions (e.g., quinones) may present an additional obstacle. A comprehensive list of mediators can be found elsewhere.[25]

- 2. Since the spectroelectrochemical experiments are commonly performed at lower temperatures (e.g., 10°C), it is important to note that buffers have temperature-dependent drifts of the pH values. Such effects must be accounted for by either making buffers at the same temperature as the spectroelectrochemical experiments or adjusting the reported pH values according to the known temperature dependence.
- 3. We synchronize the execution of the macro for potential step chronoamperometry and the macro for the accumulation of FTIR spectra by hand. However, some instruments allow setting up an electrical triggering that would let the user synchronize the two devices for every potential step automatically. If such an option is available, we recommend utilizing it as this saves time in timing experiments and ensures no accumulated "frameshift" over the 10-20-hour long experiment.

4. For data processing, we find it sometimes helpful to calculate the sum of concentrations of each state involved to find pathlength-dependent extinction coefficients. We vary the scaling factor for each concentration profile until the sum of all concentrations appears as linear as possible. Furthermore, the gradual decay of the concentration sum through the progression of the experiment is a good indication of protein degradation during the experiments. Also, one can use the total sum to verify the correctness of the electrochemical reaction model since an omission of a state from the sum would result in an irregularity in the total sum at certain potentials.

- 5. Baseline modeling of the IR spectra must be done with utmost care. Since the cubic spline function is a gradient-based interpolation method, it is possible to accidentally create artificial peaks or eliminate real signals if the two selected baseline points are too close to each other on a spectrum and have a significant difference in the y-value. As a rule of thumb, we place the two nearest baseline points at least 10 cm⁻¹ apart.
- 6. Over the course of an experiment, the water vapor spectrum may change due to the changes in the atmospheric pressure or the pressure of the drying N₂ gas. As a result, data traces may contain various amounts of water vapor signals. This variation has to be accounted for during data processing. To appropriately subtract a water vapor spectrum, the water vapor signals need to be extracted from the background spectrum either by acquiring and subtracting background spectra before and after the

spectroelectrochemical experiment or by baseline-modeling the transmission (Single Beam) data of the background spectrum and calculating water-vapor absorbance spectrum using this baseline model as a background (option "Use as BL in -1*log10(Ref/BL)" in the FTIR plugin of Kazan viewer, see figure 5). Some spectrometer software has an option of atmospheric suppression; however, in our experience, this function does not provide a satisfactory result.

Figure 5. Example of extracting water vapor spectrum using Kazan viewer and FTIR plugin to aid data processing.

7. Manual processing of IR spectra is very time-consuming and leaves room for an implicit bias via manual background modeling (e.g., see note 5 above). An alternative possibility is to employ an automatic processing routine that minimizes the "human factor." Unfortunately, making robust

code requires considerable programming skills. Therefore, we only recommend this route if a large set of experiments need to be analyzed in a short period of time. We recommend employing the singular value decomposition framework (SVD) that can significantly simplify programming. For this method, each observed state of the H-cluster must be accurately modeled by a set of Gaussian (or Voigt) functions. The correctness of the model spectra can be verified by target testing.[26] The baseline can be represented by a set of polynomial primitives. Then the model spectra, together with the baseline polynomial primitives, can be used in a global analysis to extract potential-dependent concentration profiles. The following set of equations outlines the concept:

$$D(E,\nu) = U(E)\Sigma V(\nu)^*$$
 (8)

486

487

488

489

490

491

492

493

494

495

496

501

502

503

504

505

506

498
$$V_{test}(v) = \underbrace{\left(S_1(v), \left(S_2(v), \dots, \left(S_n(v)\right)\right)}_{\substack{Model \\ spectra}} \underbrace{\left(v, \left(v^2\right), \dots \left(v^k\right)\right)}_{\substack{polynomial \\ primitives}}, S_{water}(v)\right]}(9)$$

$$R = \frac{\Sigma V^*}{V_{test}^*} \tag{10}$$

$$U_{test}(E) = UR (11)$$

where n - number of observable states (including instrumental artefacts and inhibited states), $S_i(v)$ - columns of modeled spectra of each observable state $(i \in \{1,2,3...n\}), (v^j)$ - columns of power functions of wavenumber $(j \in \{1,2,3...k\}), k$ - the highest order of the polynomial, $V_{test}(v)$ - 2D matrix, where each column represents a spectrum or a polynomial primitive, $U_{test}(E)$ - resulting concentration profiles with each column representing the

507	potential dependence of each component of $V_{test}.$ Following is a rough
508	workflow that needs to be programmed.
509	• The 2D dataset $D(E, v)$ is truncated to the desired wavelength range
510	(e.g., 1800 cm ⁻¹ - 2120 cm ⁻¹).
511	A singular value decomposition is performed on the truncated
512	dataset (eq. 8).
513	• Each state is modeled and assembled into a 2D matrix $V_{test}(v)$ (eq
514	9).
515	• $V_{test}(u)$ is augmented with polynomial primitives and, if necessary
516	by a water vapor spectrum. Note that the total number of columns
517	N=n+k must be less than or equal to the total number of
518	experimental spectra accumulated in the 2D data set.
519	• The transformation matrix R is calculated according to equation 10
520	Note that matrixes Σ and V must be truncated to the rank of N .
521	$ullet$ Potential dependence of all spectral components of V_{test} are
522	calculated according to equation 11.
523	
524	
525	Acknowledgment
526	This material is based upon work supported by the National Science Foundation
527	under Grant No. (CHE-1943748) and by the US Department of Energy
528	(DESC0018087).

5. REFERENCES

- Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev
 114:4081–4148. https://doi.org/10.1021/cr4005814
- Winkler M, Duan J, Rutz A, et al (2021) A safety cap protects hydrogenase from oxygen attack. Nat Commun 12:756. https://doi.org/10.1038/s41467-020-20861-2
- Esselborn J, Muraki N, Klein K, et al (2016) A structural view of synthetic cofactor
 integration into [FeFe]-hydrogenases. Chem Sci 7:959–968.
 https://doi.org/10.1039/c5sc03397g
- Silakov A, Wenk B, Reijerse E, Lubitz W (2009) (14)N HYSCORE investigation of the
 H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys
 Chem Chem Phys 11:6592–6599. https://doi.org/10.1039/b905841a
- 540 5. Adamska-Venkatesh A, Roy S, Siebel JF, et al (2015) Spectroscopic Characterization 541 of the Bridging Amine in the Active Site of [FeFe] Hydrogenase Using Isotopologues 542 of the H-Cluster. J Am Chem Soc 137:12744–12747. 543 https://doi.org/10.1021/jacs.5b06240
- Birrell JA, Pelmenschikov V, Mishra N, et al (2020) Spectroscopic and
 Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO Bridged Intermediates. J Am Chem Soc 142:222–232.
 https://doi.org/10.1021/jacs.9b09745
- 7. Albracht SPJ, Roseboom W, Hatchikian EC (2006) The active site of the [FeFe]hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 11:88–101. https://doi.org/10.1007/s00775-005-0039-8
- 8. Roseboom W, De Lacey AL, Fernandez VM, et al (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11:102–118. https://doi.org/10.1007/s00775-005-0040-2
- 9. Birrell JA, Rodríguez-Maciá P, Reijerse EJ, et al (2021) The catalytic cycle of [FeFe]
 hydrogenase: A tale of two sites. Coordination Chemistry Reviews 449:214191.
 https://doi.org/10.1016/j.ccr.2021.214191
- 559 10. Silakov A, Kamp C, Reijerse E, et al (2009) Spectroelectrochemical Characterization
 560 of the Active Site of the [FeFe] Hydrogenase HydA1 from Chlamydomonas
 561 reinhardtii. Biochemistry 48:7780–7786. https://doi.org/10.1021/bi9009105
- 11. Corrigan PS, Tirsch JL, Silakov A (2020) Investigation of the Unusual Ability of the
 [FeFe] Hydrogenase from Clostridium beijerinckii to Access an O2-Protected State.
 J Am Chem Soc 142:12409–12419. https://doi.org/10.1021/jacs.0c04964

566 567 568		Competency of CrHydA1 [FeFe] Hydrogenase Intermediate States via Time-Resolved Infrared Spectroscopy. J Am Chem Soc 141:16064–16070. https://doi.org/10.1021/jacs.9b08348
569 570 571 572	13.	Rodríguez-Maciá P, Galle LM, Bjornsson R, et al (2020) Caught in the Hinact: Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O2-stable State of [FeFe] Hydrogenase. Angewandte Chemie International Edition 59:16786–16794. https://doi.org/10.1002/anie.202005208
573 : 574 575	14.	Senger M, Laun K, Wittkamp F, et al (2017) Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Angewandte Chemie International Edition 56:16503–16506. https://doi.org/10.1002/anie.201709910
576 : 577 578	15.	Rodríguez-Maciá P, Pawlak K, Rüdiger O, et al (2017) Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases. J Am Chem Soc 139:15122–15134. https://doi.org/10.1021/jacs.7b08193
579 580 581 582	16.	Millo D, Hildebrandt P, Pandelia M-E, et al (2011) SEIRA Spectroscopy of the Electrochemical Activation of an Immobilized [NiFe] Hydrogenase under Turnover and Non-Turnover Conditions. Angewandte Chemie International Edition 50:2632–2634. https://doi.org/10.1002/anie.201006646
583 584 585 586	17.	Moss D, Nabedryk E, Breton J, Mäntel W (1990) Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. European Journal of Biochemistry 187:565–572. https://doi.org/10.1111/j.1432-1033.1990.tb15338.x
587 : 588	18.	Silakov A (2022) 3D Models page of the Silakov Lab website. https://sites.psu.edu/silakovlab/3d-models/. Accessed 31 Mar 2022
589 : 590 591	19.	Lanz ND, Grove TL, Gogonea CB, et al (2012) Chapter Seven - RlmN and AtsB as Models for the Overproduction and Characterization of Radical SAM Proteins. In: Hopwood DA (ed) Methods in Enzymology. Academic Press, pp 125–152
592 <i>- 1</i> 593 594	20.	Li H, Rauchfuss TB (2002) Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J Am Chem Soc 124:726–727. https://doi.org/10.1021/ja016964n
595 7 596 597	21.	Schmidt M, Contakes SM, Rauchfuss TB (1999) First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ -SR)2(CO)4(CN)22 J Am Chem Soc 121:9736–9737. https://doi.org/10.1021/ja9924187
598 : 599	22.	Seyferth D, Henderson RS, Song LC (1982) Chemistry of .mudithiobis(tricarbonyliron), a mimic of organic disulfides. 1. Formation of dimuthiolate-

12. Sanchez MLK, Sommer C, Reijerse E, et al (2019) Investigating the Kinetic

600 601		bis(tricarbonyliron) dianion. Organometallics 1:125–133. https://doi.org/10.1021/om00061a022
602 603	23.	Bird CL, Kuhn AT (1981) Electrochemistry of the viologens. Chem Soc Rev 10:49–82. https://doi.org/10.1039/CS9811000049
604 605	24.	Silakov A (2022) Software page of the Silakov Lab website. https://sites.psu.edu/silakovlab/software/. Accessed 24 Mar 2022
606 607 608	25.	Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 116:13234–13278. https://doi.org/10.1021/acs.chemrev.6b00067
609 610	26.	Rittle J, Younker JM, Green MT (2010) Cytochrome P450: The Active Oxidant and Its Spectrum. Inorg Chem 49:3610–3617. https://doi.org/10.1021/ic902062d
611		