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Abstract. Predicting the future contributions of the ice sheets
to sea-level rise remains a significant challenge due to our
limited understanding of key physical processes (e.g., basal
friction, ice rheology) and the lack of observations of crit-
ical model inputs (e.g., bed topography). Traditional nu-
merical models typically rely on data assimilation meth-
ods to estimate these variables by solving inverse problems
based on conservation laws of mass, momentum, and energy.
However, these methods are not versatile and require exten-
sive code development to incorporate new physics. More-
over, their dependence on data alignment within computa-
tional grids hampers their adaptability, especially in the con-
text of sparse data availability in space and time. To ad-
dress these limitations, we developed PINNICLE (Physics-
Informed Neural Networks for Ice and CLimatE), an open-
source Python library dedicated to ice sheet modeling. PIN-
NICLE seamlessly integrates observational data and phys-
ical laws, facilitating the solution of both forward and in-
verse problems within a single framework. PINNICLE cur-
rently supports a variety of conservation laws, including the
Shelfy-Stream Approximation (SSA), MOno-Layer Higher-
Order (MOLHO) models, and mass conservation equations,
for both time-independent and time-dependent simulations.
The library is user-friendly, requiring only the setting of a
few hyperparameters for standard modeling tasks, while ad-
vanced users can define custom models within the frame-
work. Additionally, PINNICLE is based on the DeepXDE
library, which supports widely used machine learning pack-
ages such as TensorFlow, PyTorch, and JAX, enabling users
to select the backend that best fits their hardware. We de-
scribe here the implementation of PINNICLE and showcase
this library with examples across the Greenland and Antarc-
tic ice sheets for a range of forward and inverse problems.

1 Introduction

Ice sheet modeling is essential for projecting future sea-
level rise and understanding the complex dynamics that drive
ice sheet behavior under changing climate conditions (e.g.,
Larour et al., 2012; Aschwanden et al., 2019; Goelzer et al.,
2020; Seroussi et al., 2020). These numerical models provide
insights into fundamental glaciological processes, advancing
our understanding of ice flow and its response to and inter-
actions with the climate system (e.g., Schoof, 2007; Joughin
et al., 2021; Morlighem et al., 2024). However, developing
models that accurately capture current ice sheet behavior
and mass change remains challenging, further complicated
by limited observational data and an incomplete understand-
ing of critical physical processes. Despite decades of devel-
opment, significant uncertainties persist in ice sheet models,
impacting the accuracy of sea-level projections (Robel et al.,
2019; Edwards et al., 2019; Aschwanden et al., 2021). A ma-
jor source of uncertainty in models comes from parameters
that are challenging to measure directly in the field, such as
the bed topography (Morlighem et al., 2017, 2020); basal
conditions (Gagliardini et al., 2007; Morlighem et al., 2013;
Wernecke et al., 2023); and material properties of ice, includ-
ing its theology and thermal structure (e.g., Furst et al., 2015;
Colgan et al., 2021).

Traditionally, these parameters are estimated by solving
inverse problems, often framed as partial differential equa-
tion (PDE)-constrained optimization problems (MacAyeal,
1993; Morlighem et al., 2010; Goldberg and Sergienko,
2011). These inverse problems are difficult to solve because
they require customized numerical algorithms that depend on
the specific PDEs governing the system (Goldberg and He-
imbach, 2013; Cheng and Lotstedt, 2020) and often demand
regularization to avoid overfitting and facilitate convergence
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due to their inherent ill-posedness (Tikhonov, 1943). As data
availability and quality continue to improve, integrating these
data into traditional inverse frameworks presents new chal-
lenges, both in terms of computational demands and the com-
plexity of the required numerical methods. This increase in
data complexity calls for new approaches that can flexibly in-
tegrate observational data while remaining computationally
efficient.

Recent advances in machine learning offer promising al-
ternatives for handling the shortcomings of traditional ice
sheet models, particularly when dealing with sparse or
noisy data (Karniadakis et al., 2021). In particular, Physics-
Informed Neural Networks (PINNs) have gained attention as
a powerful tool for combining physical laws with observa-
tional data (Raissi et al., 2019; Karniadakis et al., 2021; Lu
et al., 2021). Unlike conventional approaches that require
extensive customization for each specific problem, PINNs
allow for the flexible integration of various physical con-
straints, making them highly adaptable to different model-
ing scenarios. In glaciology, PINNs have been applied to a
range of challenging modeling tasks recently, including in-
ferring basal conditions, simulating complex ice flow dynam-
ics, and testing novel hypotheses about physical processes
in ice shelves (Riel et al., 2021; Wang et al., 2025; Jouvet
and Cordonnier, 2023; Iwasaki and Lai, 2023; Cheng et al.,
2024). The incorporation of physical knowledge within the
neural network structure has the potential to introduce a reg-
ularizing effect, which is particularly beneficial for handling
sparse and noisy observational data, supporting mesh-free
modeling, and enabling flexible constraints beyond standard
boundary conditions (Seo, 2024). This framework provides a
balance between model complexity and accuracy, making it
a robust tool for advancing ice sheet modeling (Raissi et al.,
2020; Cheng et al., 2024).

In this context, we describe here PINNICLE (Physics-
Informed Neural Networks for Ice and CLimatE), an open-
source Python library for ice sheet modeling designed to fa-
cilitate the solution of both forward and inverse problems us-
ing PINNs. PINNICLE provides a unified framework to in-
tegrate observational data directly with the governing physi-
cal laws. Leveraging the DeepXDE library (Lu et al., 2021),
PINNICLE supports machine learning platforms like Ten-
sorFlow, PyTorch, and JAX, giving users the flexibility to
choose the backend that best suits their hardware and com-
putational resources. This paper outlines the methodolog-
ical framework of PINNICLE and illustrates its capabili-
ties through applications on glaciers in the Greenland and
Antarctic ice sheets.

2 Physics-informed neural networks
In recent years, physics-informed machine learning tech-

niques have become increasingly popular in the field of ice
sheet modeling (e.g., Riel et al., 2021; Brinkerhoff, 2022;
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Jouvet and Cordonnier, 2023; Bolibar et al., 2023; He et al.,
2023). Ice flow is governed by a set of PDEs derived from
fundamental conservation laws. The extent to which these
governing equations are satisfied in different machine learn-
ing frameworks varies across studies. For example, the ap-
proaches described in He et al. (2023), Bolibar et al. (2023),
and Koo et al. (2024) employ neural networks as emulators
or surrogate models, learning internal relationships derived
from numerical solutions of the governing PDEs, with mini-
mal enforcement of physical constraints. In Jouvet and Cor-
donnier (2023), the neural network also acts as an emula-
tor but incorporates the PDE residual directly into the train-
ing loss function, embedding physical principles into the op-
timization process for a more physically consistent model.
Similarly, Riel et al. (2021) combines observational data with
physics-inspired constraints, such as smoothness and sign of
the basal drag, though without explicitly enforcing physical
laws on the model’s outputs.

This study takes an alternative approach by leveraging
neural networks to directly learn the physical constraints
and relationships governing ice dynamics, aiming for a more
comprehensive integration of data and physics. The architec-
ture of PINNICLE follows the same framework as in Raissi
etal. (2019), Wang et al. (2025), Iwasaki and Lai (2023), and
Cheng et al. (2024), where a neural network is trained under
the constraints of data misfit and PDE loss. The inputs of the
neural network are the independent variables of the PDEs,
which can be the spatial coordinates (x, y, z) and/or the time
variable (¢), depending on the governing equations. The out-
puts of the neural network are all the dependent variables
of the PDEs. This architecture enables the neural network,
through backpropagation, to compute the required spatial and
temporal derivatives of these dependent variables for evalu-
ating the PDEs. The loss function of the PINN consists of
two parts, data and physical loss, which are both constructed
using these output variables. The data loss measures the mis-
fit between the data and the corresponding output variable at
the location and time of the data acquired. The physical loss
is computed by evaluating the residual of the PDEs on a set
of randomly generated collocation points. Then, the training
procedure is to minimize the loss function, such that the out-
put of the neural network satisfies the governing PDEs and
also matches the data provided. However, it is important to
note that this formulation represents an idealized scenario. In
practice, the residuals typically do not reach zero, nor does
the data misfit, as discussed in Cheng et al. (2024).

3 Physics

PINNICLE is designed to be flexible so that diverse physi-
cal laws along with relevant observational data can be easily
integrated. In ice sheet modeling, conservation of mass and
momentum form the governing equation of ice dynamics.
PINNICLE currently supports these laws by implementing
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widely used stress balance approximations. Users can readily
apply or extend the framework to include additional physical
constraints as required by specific modeling objectives.

3.1 Conservation of mass

In ice sheet modeling, the large aspect ratio of the horizon-
tal dimensions (x, y) to the vertical dimension (z) leads most
dynamics to occur in the x—y plane. Therefore, it is com-
mon practice to model the ice sheet using a depth-averaged
approach that effectively captures horizontal behavior, sim-
plifying the model by considering a two-dimensional do-
main (x, y) and focusing on the horizontal ice velocity com-
ponents, denoted by u = (u, v)7 .

Mass conservation is fundamental to simulating ice sheet
dynamics, as it controls the variations in ice thickness over
time. Since ice behaves as an incompressible fluid, the rate
of change in ice thickness, H, is equal to the sum of the flux
divergence in the horizontal direction and vertical mass ex-
change processes:

o0H 0J0uH) 0(vH)
at ax ay
where a represents the net mass balance field from sur-

face and basal processes, such as surface accumulation (e.g.,
snowfall) and losses like surface or basal melting.

=a, (1

3.2 Conservation of momentum

We describe here two approximations of the conservation
of momentum that are widely used in glaciology. First, the
Shelfy-Stream Approximation (SSA), provides a simplified
form of the full Stokes equations by neglecting vertical shear
stresses (MacAyeal, 1989). SSA is an excellent approxima-
tion of ice sheet flow in regions of fast sliding, such as ice
streams, and floating ice shelves. This reduction allows us
to describe the horizontal motion of ice through a system of
PDEs, which balances gravitational driving forces with inter-
nal stress gradients and basal drag as follows:

dx dx ay AY ay dx |l
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where s is the ice surface elevation, p; denotes ice density,
g is gravitational acceleration, 7, is the basal shear stress,
and p denotes the ice viscosity, which follows Glen’s flow
law (Glen, 1958), reflecting the nonlinear behavior of ice de-
formation:

s 2+ v 2+1 8u+8v2
F=72\6x ay) " a\Gy Tox
where n=3 is the flow-law exponent, and B is a

temperature-dependent pre-factor (Cuffey and Paterson,
2010).
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To characterize the relationship between basal shear stress
and sliding velocity, we use Weertman’s friction law (Weert-
man, 1957; Fowler, 1981; Cuffey and Paterson, 2010) as an
example:

= C*ul™, 4)

where C is a spatially varying friction coefficient, and m =
1/3.

In regions where vertical deformation significantly influ-
ences ice flow, such as in the ice sheet interior, we incorporate
a MOno-Layer Higher-Order (MOLHO) model into PINNI-
CLE, following the approach in dos Santos et al. (2022). This
formulation represents ice velocity u as the sum of a basal
component u® and a shear velocity u*", modulated by a nor-
malized depth factor ¢ as follows:

u:ub+u5h(1 —g"“), (5)

where ¢(z) = *5* scales with depth with z varying between
the ice base b and the ice surface s.

Both basal and shear velocities are defined on a 2D do-
main, with vertical variations accounted for by the polyno-
mial in {. The MOLHO model extends the SSA equations
by accounting for vertical deformation, expressed as

O (b L — D (b — posh ) ds

™ ([I.]HGH +u2Hesh11) + g (u,Helz +u2He]2) — rbm :pigHE’
=pigH gi )
(n+1) 4 as
(12 e Hax’
(n+1) ds
(n+2) ay

(6)

where 6 - and €;; h represent the strain rate components for
basal and shear Velocities, respectively. These components
are detailed by
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and the vertically integrated viscosities are calculated as fol-
lows:

s
1 1
—_ _ dz, —_ _ (1_ n+1)d,
1y Z/MZ 11 2/# ¢ z

b b
1 2 Ll (1)
- _ _ en+l - _ n n
M3—2/M(1 e )dZ,M4—2/H«<H§>dZ, 3
b b

where w is the effective viscosity defined as in Eq. (3).

The basal shear stress 1y, is defined using Weertman'’s fric-
tion law (Weertman, 1957), as in the SSA model. Alterna-
tive friction laws exist (Budd et al., 1979; Gagliardini et al.,
2007), and PINNICLE can be easily adjusted to support these
friction laws.
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4 Data

PINNICLE supports a variety of data formats, includ-
ing CSV,! NetCDE, and MATLAB data files. These files
can contain scattered data or structured data, such as the
model struct from the Ice-sheet and Sea-level System
Model (ISSM). The spatial and temporal coordinates of the
data can be different between different variables, offering
flexibility to accommodate any complex situations. Depend-
ing on the underlying problem to solve, users can specify the
amount of data needed for training. The selected data con-
tribute to the calculation of the data misfit component within
the loss function.

To evaluate the data misfit, PINNICLE provides multi-
ple metrics, integrating both the built-in data misfit functions
from the DeepXDE package (Lu et al., 2021) and commonly
employed functions from other machine learning libraries.
Table 1 summarizes the data misfit functions currently avail-
able in PINNICLE. In the table, d represents the predicted
solution from PINNICLE, d denotes the “reference solution”
from the data, and ¢ = 2.2204 x 10°16 corresponds to the
machine epsilon for double precisions. For advanced users,
PINNICLE also provides a flexible interface to define cus-
tom misfit functions to specific modeling needs.

5 Neural networks

The fundamental neural network architecture implemented
in PINNICLE is the fully connected neural network (FNN),
which takes spatial and temporal coordinates as input and the
dependent variables of the PDEs as output, through one sin-
gle neural network. This architecture allows the neural net-
work to implicitly capture the internal relationship among the
dependent variables, and it has been widely used in many ap-
plications (Raissi et al., 2019; Iwasaki and Lai, 2023; Wang
etal.,2025; Lu et al., 2021; Karniadakis et al., 2021; Teisberg
et al., 2021). However, in some cases, the training process
may not converge, as the relationship between some depen-
dent variables may be too complex for the neural network to
capture (Cheng et al., 2024). To address these problems when
they occur, we also provide a parallel fully connected neural
network (PFNN) (Lu et al., 2021). The PFNN uses multiple
FNNs for each dependent variable with the same indepen-
dent variables as input. In this case, each neural network only
needs to learn its corresponding dependent variable from the
data and the PDE constraints.

By default, we use the hyperbolic tangent function as the
activation function for the neural network. To accommodate
different physical problems, PINNICLE applies min—max
normalization before the input layer and a min—-max denor-
malization after the output layer. These normalization pro-
cesses are strictly limited to the inputs and outputs of the
neural network, while the governing PDE residuals and data

Lcomma separated value
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misfit terms are all defined and calculated in the International
System of Units (SI). Consequently, there is no need for the
user to scale the physical equations or data misfit functions
themselves.

While glacier ice typically exhibits low-pass filtering be-
havior, some variables, such as surface elevation, contain
high-frequency components. To capture these variations ac-
curately, we implemented Fourier feature transform (FFT)
(Tancik et al., 2020; Wang et al., 2021) in PINNICLE. As-
suming the dimension of the input variables x is d, the
FFT for m features is written as f(x) = [cos(Bx), sin(Bx)]”,
where B € R”*¢ is sampled from a Gaussian distribu-
tion A (0,0); the functions cos(-) and sin(-) are applied
coordinate-wise on the vector Bx. This transformation is ap-
plied between the min—-max normalization and the input layer
of the neural network.

6 Loss function

The loss function in PINNICLE integrates both data misfit
and physical constraints. The general form of the loss func-
tion is given by

L=Lg+ Ly, )

where L4 and L, represent the weighted sum of data misfit
and PDE residual, respectively. The specific formulation of
the loss function depends on the underlying physical prob-
lem, the data, and the misfit functions (Table 1) employed.
Examples of detailed loss function formulations are provided
in Sect. 8, specifically in Egs. (10), (11), and (12).

Physical variables in glaciological applications span multi-
ple orders of magnitude; for example, ice velocity is typically
around 1077 m s~ ice thickness is around 10° m, and driv-
ing stress of a glacier is approximately 10° Pa. These differ-
ences can lead to imbalanced contributions in the optimiza-
tion process, where certain variables dominate the loss func-
tion while others are underrepresented. To address this issue,
PINNICLE applies weights to each individual term in the
loss function, ensuring balanced contributions from different
data sources and governing equations. The impact of weight-
ing strategies on ice sheet modeling problems has been ex-
amined in previous studies (Iwasaki and Lai, 2023; Cheng
et al., 2024). While no theoretical guidelines exist for deter-
mining optimal weights, an extensive set of over 15000 nu-
merical experiments described in Cheng et al. (2024), includ-
ing an L-curve analysis, demonstrated that the best perfor-
mance is achieved when the contributions of all terms are
weighted to approximately the same order of magnitude (i.e.,
around order 1). Based on this empirical finding, PINNICLE
assigns default weights for each term in the loss function ac-
cordingly. The default weights and their corresponding typ-
ical values are provided in Table 2. For greater flexibility,
users can modify the weights to meet their specific model-
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Table 1. Data misfit functions implemented in PINNICLE.

5315

Key Formula Description
A l n A~

MAE EMagd.d) =5 Y |d; —d;] mean absolute error

=

R T

MSE Evse(d,d) = > (di — di) mean square error

]

5 1100 | di—d;
MAPE Evapr(d,d) = - ‘J L mean absolute percentage error
i=1 i

VEL_LOG

M=

MEAN_SQUARE_LOG  Eusrog(d.d) = +

i=1

in(di 1+ )
(m (|c2,~| + 1) In(ld;| + 1))2

mean relative logarithmic error

mean-squared logarithmic error

ing requirements. Examples of loss function construction and
weight selection strategies are provided in Sect. 8.

7 Structure of the package

PINNICLE is configured by the user based on a nested
dictionary to define the neural network architecture, gov-
erning equations, computational domains, data, and other
experiment-specific settings. This design ensures flexibility
for incorporating new functionalities, allowing the model to
evolve alongside future advances in physics-informed ma-
chine learning. To ensure reproducibility, all user-defined
configurations are saved in a JSON? file, which can be
reloaded to replicate simulations with the same parameters.

The core structure of PINNICLE is built upon five key
modules: Physics, Neural Network, Data, Domain, and
PINN. The interconnected structure of these modules is de-
picted in Fig. 1. The Physics module constructs the PDE con-
straints, gathering independent and dependent variables from
the governing equations. These variables are unified to estab-
lish a well-defined mapping between inputs and outputs for
the PINN framework. The module assigns these variables to
the Neural Network and Data modules, enabling integration
of physics-based constraints into the computational pipeline.

The Neural Network module constructs the architecture
for the neural network based on user configurations. It sup-
ports several popular machine learning libraries, including
TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019), and JAX (Bradbury et al., 2018). To enable seam-
less transitions between these libraries without altering the
codebase, the module employs the DeepXDE framework (Lu
et al., 2021) as its backend. PINNICLE supports Python 3.8
or higher and requires minimal library versions, including
TensorFlow 2.11.0, PyTorch 2.5, and JAX 0.4, ensuring com-
patibility with current machine learning standards.

The Data module manages data integration by loading
datasets and assigning them to the model with specific loss

2 avaScript Object Notation
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functions as described in Sect. 4. Users can control the vol-
ume of training data, enabling the PINNICLE to handle for-
ward or inverse problems based on the combination of data
and PDEs provided. To prevent overfitting and generaliza-
tion, PINNICLE employs a random sampling strategy to au-
tomatically load data from the data file depending on their
types, which also acts as a form of implicit regularization
in the optimization problem. For mesh data (e.g., ISSM or
NetCDF), it applies uniform random sampling, while scat-
tered data are downsampled using Cartesian grids to main-
tain spatial coverage and avoid over-clustering before ran-
dom sampling.

The Domain module defines the computational domain by
generating a polygon based on a list of user-defined vertices.
Using Hammersley sequence sampling (Wong et al., 1997),
it produces quasi-random collocation points within the do-
main. These points are then utilized during training to evalu-
ate residuals of the governing PDEs.

After configuring all four modules, the PINN module
integrates them using the DeepXDE package, which pro-
vides a comprehensive framework for compiling and train-
ing PINNs. By leveraging DeepXDE’s built-in capabilities,
PINNICLE streamlines the training process, allowing users
to focus on model setup and interpretation rather than low-
level implementation details.

8 Example of applications

8.1 Example 1: an SSA inverse problem on Helheim
Glacier

In this example, we use PINNICLE to reproduce results of
the inverse problem described in Cheng et al. (2024). The
problem involves solving the 2D SSA equation outlined in
Eq. (2) for the fast-flowing region of Helheim Glacier in
Southeast Greenland. We use a 6-layer fully connected neural
network, with 20 neurons per layer. A schematic representa-
tion of the problem, including the data used for training, is
shown in Fig. 2, and the corresponding Python implementa-

Geosci. Model Dev., 18, 5311-5327, 2025
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Table 2. Default weights and typical values of physical variables in PINNICLE.

Name Weight  Default value Variable Typical value of the
variable
Velocity Yu 1078 x (315360005) m2s2  u, v, |u 10*myr—!
Thickness YH 1079m=2 H 103m
Surface elevation Vs 100m—2 K 103 m
Mass balance Ya 315360002 m~2 s2 a 1 1nyr71
Friction coefficient YC 10-8pa—lml/3s-1/3 C 10% Pal/Z m~1/641/6
Rheology pre-factor  yp 10718 pa—25-2/3 B 109 Pas!/3
Driving stress Vr 10-10pa—2 pgH|Vs| 10° Pa
Dynamic thinning YH/t 1010 m—2¢2 % 103 m/31536000s
Configuration Setup
Domain

Neural Network

Figure 1. Flowchart illustrating the structure of PINNICLE, with arrows representing the flow of information between modules.

tion is provided in Listing 1. We configure PINNICLE to ran-
domly sample Ny = Ng = Ny =4000 data points for each
input variables (lines 19 to 22), including ice velocities, sur-
face elevation, and ice thickness, along with N, = 9000 col-
location points over the entire basin of Helheim Glacier for
evaluating the PDE residuals (lines 12 to 13). The unknown
friction coefficient is inferred by specifying "C" :None in
the data section (line 20), ensuring that only boundary data
are used to constrain the inversion. It is important to note
that the friction coefficient within the red box in Fig. 2 is
not included in the training processes but is retained as the
“reference solution” for validation purposes in Fig. 3b and f.
Once the setup is complete, PINNICLE assembles the loss
function based on these user-defined inputs. In this case, the
complete formulation of the loss function is written as

Geosci. Model Dev., 18, 5311-5327, 2025
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Figure 2. The PINNICLE framework for Example 1: inverse problem on Helheim Glacier. The training data include ice velocity, ice thick-
ness, and surface elevation. The friction coefficient C, highlighted in the red box, represents the numerical solution from ISSM and is used
only on the domain boundary as a boundary condition. It also serves as the “reference solution” for comparison. The governing equation in
the box labeled Physics is the vector form of the SSA in Eq. (2).
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Figure 3. The PINNICLE predictions and the misfit of Example 1. (a—d) The predictions of surface velocity, friction coefficient, ice thickness,
and surface elevation. (e~h) The misfit between the “reference solution” in Fig. 2 and the corresponding PINNICLE predictions in (a)—(d).

where the weights y(.y are the default weights in PINNICLE
as shown in Table 2, and N¢c = 541 is the number of bound-
ary points used for constraining friction coefficient C. The

terms Ly, Ly, and Ly are the weighted M
misfit for ice velocity |u|, ice thickness H,

SEs of the data
and surface el-

evation s, respectively. The term L¢ accounts for the MSE

of the boundary condition imposed on the

https://doi.org/10.5194/gmd-18-5311-2025

friction coeffi-

cient. However, it is possible to treat C as a free param-
eter in the inversion. In such cases, users can exclude C
from the dataset by removing the entry "C" : None from the
issm["data_size"] configuration (e.g., line 20 in List-
ing 1). PINNICLE will then automatically omit the L¢ term
from the loss function in Eq. (10). The PDE residual, denoted
as Ly, is expressed in the vector form of the SSA in Eq. (2)

Geosci. Model Dev., 18, 5311-5327, 2025
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t import pinnicle

+ hp = {}
5 hp["epochs"] = 100000

= hp

hp["num_lay

issm = {}

issm["data_size"] = {"u":4000
i issm["data _path"] = "Helhei

hp["data"] = {"ISSM":issm}

5 experiment

& experiment.compile

experiment.train()

Listing 1. Python code of Example 1: inverse problem on Helheim Glacier.

and is weighted according to the driving stress to ensure bal-
anced contributions in the loss function.

After training for 100000 epochs (line 5 in Listing 1),
the solution is presented in Fig. 3. The root-mean-square er-
ror (RMSE) for each variable comparing to the “reference
solution” is as follows: velocity at 273.86ma™"!, surface el-
evation at 22.21 m, ice thickness at 29.07 m, and friction co-
efficient at 1101.96Pa'/2m~1/651/6, These results closely
align with those reported in Cheng et al. (2024), with similar
spatial patterns of errors. However, our errors are approxi-
mately twice as large, due to training for only one-tenth of
the epochs compared to Cheng et al. (2024). Despite this, the
overall consistency demonstrates the capability of PINNI-
CLE to reproduce and approximate inverse problem results
effectively.

8.2 [Example 2: simultaneous inference of basal friction
and ice rheology for Pine Island Glacier

This second example demonstrates PINNICLE’s capability
to simultaneously infer two spatially varying parameters: the
basal friction coefficient beneath grounded ice and the ice

Geosci. Model Dev., 18, 5311-5327, 2025

rheology, described by the flow-law pre-factor, within the
floating ice shelf. We employ the SSA in Eq. (2) on Pine Is-
land Glacier, Antarctica. To capture ice rheology variations,
we incorporate a spatially varying pre-factor B in Eq. (3).
The Python implementation of this example is provided in
Listing 2. The neural network architecture consists of a 6-
layer fully connected network with 40 neurons per layer.
To effectively capture high-frequency variations, we apply
a Fourier feature transformation with o = 10 and m = 30, as
described in Sect. 5 (lines 10 to 12 in Listing 2). Given the
larger domain compared to Example 1 in Sect. 8.1, we utilize
Ny = Ny = Ns; = 8000 data points and N, = 18000 collo-
cation points to ensure comprehensive spatial coverage and
resolution. The training dataset comprises surface velocity,
surface elevation, and ice thickness data across the entire do-
main from PIG.mat. To constrain the model, we impose
Dirichlet boundary conditions: setting C =0 on the float-
ing ice shelf with Nc =4000 and prescribing B = 1.41 x
108 Pas!/3 for grounded ice with Nz = 4000, correspond-
ing to ice at —10 °C (Cuffey and Paterson, 2010). These two
boundary conditions are imposed using a separate data file

https://doi.org/10.5194/gmd-18-5311-2025
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18000
18000

» issm["data_si = {"u":8000, 8000, "s":8000,
i issm["data path"] = "PIG.mat"
5. BC
BC["¢ "B":4000}
BC["ds
= BC["source"
hp["data"] = {"ISSM":issm, "BC":BC}
experiment = pinnicle.PINN (hp)
» experiment.compile ()

experiment.train()

Listing 2. Python code of Example 2: inferring basal friction and ice rheology for Pine Island Glacier.

BC.mat, which contains scatter data points of C and B, as
well as their corresponding coordinates.
In this case, the loss function is formulated as

ve & (2 2
£=£u+£H+ES+N—CZ(Ci—Ci>

i=1

+N_BZ(§f‘Bi>2+L‘”’ (1)

Ly

where Ly, Ln, Ls, and L, have the same formulation as in
Eq. (10). The additional terms L¢ and Lp account for the

https://doi.org/10.5194/gmd-18-5311-2025

data misfit of the friction coefficient C on the floating ice
shelf and the ice rheology pre-factor B on the grounded ice,
respectively.

After 1000000 training epochs, the results are pre-
sented in Fig. 4. The RMSE for each variable, com-
pared to the “reference solution”, is as follows: surface
velocity at 173.13 ma~!, surface elevation at 18.28 m,
ice thickness at 24.38 m, basal friction coefficient at
1242.05Pa'/2m~1/651/6 and ice rheology pre-factor at
3.81 x 107 Pas'/3. The magnitudes of these errors are con-
sistent with those observed in Example 1. Larger misfits are
observed in two areas: the friction coefficient in slow-moving
regions and the rheology near the ice front. Despite these lo-
calized discrepancies, the overall performance demonstrates

Geosci. Model Dev., 18, 5311-5327, 2025
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Figure 4. The comparison of the “reference solution”, PINNICLE predictions, and misfit of Example 2 to infer the basal friction coeffi-
cient and ice rheology simultaneously for Pine Island Glacier. (a—e) The “reference solution” of surface velocity, friction coefficient, ice
thickness, surface elevation, and the temperature-dependent pre-factor. (f=j) The PINNICLE predictions of surface velocity, friction coeffi-
cient, ice thickness, surface elevation, and the temperature-dependent pre-factor. (k—0) The misfit between the “reference solution” and the

corresponding PINNICLE predictions.

PINNICLE’s capacity to simultaneously infer multiple vari-
ables.

8.3 [Example 3: time-dependent forward modeling of
Helheim Glacier

In this final example, we demonstrate PINNICLE'’s capabil-
ity to solve a transient problem by modeling the evolution
of ice thickness over time using the mass transport equation
in Eq. (1). Specifically, we simulate the dynamics of Hel-
heim Glacier from 2008 to 2009. The framework for this ex-
ample is illustrated in Fig. 5, and the corresponding Python
implementation is provided in Listing 3. Since the problem
is defined as time-dependent (lines 8 to 10), PINNICLE au-
tomatically constructs a spatiotemporal domain and sets the
input variables of the neural network to include spatial coor-
dinates x, y, and time ¢.

To drive the forward model, we provide a time series of ice
velocity and surface mass balance at 0.1-year intervals (N; =
11), with each time slice containing Ny, = N, = 3000 data
points for each variable. The initial condition of the ice thick-

Geosci. Model Dev., 18, 5311-5327, 2025

ness is specified at r = 2008, also using Ny = 3000 data
points. These data are extracted from the transient simula-
tion results of Cheng et al. (2022). Additionally, we randomly
select Ny, = 10000 collocation points distributed across the
spatiotemporal domain to enforce the governing equation.
The loss function is written as

N: Na

)4 ~ ~
L= WI;V; ZZ ((ui,j — ui,j)2 + (b7, — Ui,j)2)

j=li=1

Lu

. 12)

where L, and £, represent the weighted data misfit functions
of ice velocity and mass balance across the entire spatial and
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Figure 5. The PINNICLE framework for Example 3: the forward time-dependent problem. The training data consist of the initial ice
thickness, a time series of ice velocity, and apparent mass balance. Notably, the neural network inputs are automatically adapted to incorporate

both spatial and temporal variables.

temporal domain, Lg accounts for the misfit in the initial
ice thickness, and £, corresponds to the PDE residual of the
mass conservation in Eq. (1).

After training for 800 000 epochs using a fully connected
neural network with 6 layers and 32 neurons per layer, the
results at the initial time step (t = 2008) are shown in Fig. 6,
while those at the final time step (+ = 2009) are presented in
Fig. 7. The RMSE values for each variable over the entire
simulation period (2008-2009), compared to the “reference
solution”, are as follows: surface velocity at 186.18 ma™!,
surface mass balance at 0.03ma!, and ice thickness at
53.11 m. These errors remain within the same order of mag-
nitude as the other two examples, demonstrating PINNI-
CLE’s performance in solving transient problems.

9 Performance

We present the performance of the examples in Table 3. All
experiments were conducted on the Texas Advanced Com-
puting Center Lonestar6 system, using nodes equipped with
NVIDIA A100 GPUs with 40 GB of high-bandwidth mem-
ory each. The reported wall time (in hours) represents the
average of five identical runs for each numerical experi-
ment. The computational cost is influenced by the number
of epochs, neural network parameters, data points, and col-
location points, among other factors. It is essential to recog-
nize that problems similar to Examples 1 and 3 typically can
be resolved more quickly with traditional numerical models,
such as ISSM (Larour et al., 2012), often within just a few
minutes on multicore CPUs to achieve comparable accuracy

https://doi.org/10.5194/gmd-18-5311-2025

(Cheng et al., 2024, 2022). However, solving complex mixed
inverse problems, like the one presented in Example 2, us-
ing traditional adjoint methods is nontrivial, since it would
include the derivation of new adjoint equations with respect
to the two unknown variables, simultaneously. Furthermore,
we highlight that PINNICLE’s current computational per-
formance has not been fully optimized yet, and rapid ad-
vances in hardware technology will help further increase its
performance. For example, migrating our experiments from
NVIDIA V100 GPUs (Cheng et al., 2024) to NVIDIA A100
GPUs has led to at least a twofold reduction in computation
time.

Additionally, direct comparisons between machine learn-
ing frameworks (on GPU) and traditional data assimilation
methods (on CPU) remain limited even in the broader cli-
mate science community. Lai et al. (2024), for example,
points out critical differences between PINNs and conven-
tional ensemble-based data assimilation methods, such as en-
semble Kalman filters (Bauer et al., 2015). PINNSs offer the
distinct advantage of simultaneously addressing forward and
inverse problems, significantly reducing computational de-
mands compared to ensemble methods, which require multi-
ple simulation runs. Conversely, ensemble methods, despite
being computationally intensive, provide explicit uncertainty
quantification through ensemble spread. Relative to classi-
cal adjoint methods, PINNs demonstrate enhanced robust-
ness to noisy observational data, effectively resolving inver-
sion problems with smoother, physically consistent solutions
(Wang et al., 2025; Cheng et al., 2024).

Geosci. Model Dev., 18, 5311-5327, 2025
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t import pinnicle

@ import numpy as np

. # hyperparameters

- hp = {}

s hp["epochs"™] = 800000

7. # time dependent problem

z hp["time_dependent"] = True

» hp["start_time"] = 2008
o hp["end_time"] = 2009
1z # NN
1% hp["num_neurcons"] = 32
14 hp["num_layers"] = 6
1= # domain
7. hp["shapefile"] = "Helheim Basin.exp"

= hp["num_collocation_points™] = 10000

2 hp["equations"] = {"Mass transport":{}}
# data
u hp["data"] = {}
22 for t in np.linspace (2008, 2009,11):
issm = {}
if t == 2008:
issm["data_size"™] = {"u"
issm["data_size"™] = {"u"

issm["data_path"]
issm["default_time"] =t
issm["source"] = "ISSM"

hp["data"] ["ISSM"+"%g"%t] = issm

1. # create experiment
i experiment = pinnicle.PINN (hp)

» experiment.compile ()

 # Train

» experiment.train()

:3000, "wv":3000, "a":3000,

:3000, "wv":3000, "a":3000,

= "Helheim Transient "

"H":3000}

"H":None}

+ "%g"%t + ".mat"

Listing 3. Python code of Example 3: time-dependent problem of Helheim Glacier.

Table 3. Performance of the examples in PINNICLE.

Name Equations Neural Epochs  # of parameters # of data  # of collocation Average

network points  wall time
Example 1  SSA 6 x 20 100 2286 4000 9000 0.48h
Example2 SSA_VB 6 x40 100 10 886 8000 18 000 14.97h
Example 3  Mass transport 6 x32 8 x 10° 5540 33000 10000 4.22h

Geosci. Model Dev., 18, 5311-5327, 2025
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Figure 6. The comparison of the “reference solution”, PINNICLE predictions, and misfits of the transient simulation in Example 3 at
the initial time step t = 2008. (a—c) The “reference solution” of surface velocity, mass balance, and ice thickness. (d—f) The PINNICLE
predictions. (g—i) The misfit between the “reference solution” and the corresponding PINNICLE predictions.

For the current version of PINNICLE, all spatial, tempo-
ral, and parameter derivatives are computed using reverse-
mode automatic differentiation (AD) as implemented in the
DeepXDE backend. Although it has been shown that using
forward-mode AD for spatial derivatives (e.g., with respect
to ¢, x, and y) and reverse-mode AD for network parameters
can significantly improve memory and computational effi-
ciency (Cho et al., 2023), the current version of DeepXDE
does not yet support this separable AD approach. We are ac-
tively following the ongoing development of this feature and
plan to integrate it into PINNICLE as soon as it becomes
available. We anticipate that the incorporation of this strat-
egy in future versions of PINNICLE will further enhance the
scalability and efficiency, particularly for large-scale simula-
tions.

https://doi.org/10.5194/gmd-18-5311-2025

10 Conclusions

In this study, we introduced PINNICLE, a flexible and ro-
bust framework designed to solve a wide range of glacio-
logical problems using Physics-Informed Neural Networks.
PINNICLE integrates observational data with physical laws,
enabling both inverse and forward modeling across diverse
spatial and temporal scales. The framework demonstrates
consistent performance in inferring spatially and temporally
varying parameters. PINNICLE’s flexibility allows users to
customize neural network architectures, incorporate various
types of data, and apply different physical constraints, mak-
ing it suitable for complex modeling tasks in glaciology. Ad-
ditionally, we emphasize that the PINNICLE framework is
not intended to replace traditional numerical methods for
solving standard forward or inverse problems. Instead, it
is best viewed as a complementary tool, especially useful

Geosci. Model Dev., 18, 5311-5327, 2025
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Figure 7. The comparison of the “reference solution”, PINNICLE predictions, and misfits of the transient simulation in Example 3 at the final
time step ¢ = 2009. (a—c) The “reference solution” of surface velocity, mass balance, and ice thickness. Note that (c) is not exposed to the
training. (d—f) The PINNICLE predictions. (g—i) The misfit between the “reference solution” and the corresponding PINNICLE predictions.

in scenarios involving the integration of diverse physical
processes and the exploration of innovative scientific con-
cepts. PINNICLE’s ability to seamlessly integrate observa-
tional data with physical laws within a unified framework
enhances flexibility and can significantly simplify the imple-
mentation and evaluation of new physical models. Future de-
velopments will focus on incorporating more advanced neu-
ral network architectures, optimization techniques, and addi-
tional physical constraints to further enhance accuracy and
computational efficiency. PINNICLE’s modular design en-
sures adaptability to evolving machine learning methodolo-
gies and glaciological challenges, positioning it as a valuable
tool for the cryosphere community.

Code and data availability. The source code and development
history are hosted on GitHub at https://github.com/ISSMteam/

Geosci. Model Dev., 18, 5311-5327, 2025

PINNICLE (last access: 22 August 2025). The specific ver-
sion of PINNICLE used in this study, including all examples,
input data used for training, and neural network weights af-
ter training, has been archived on Zenodo and is available at
https://doi.org/10.5281/zenodo.15643042 (Cheng et al., 2025). All
examples mentioned in this study are organized in the folder:
PINNICLE/examples/. The code used in this work is avail-
able as a Python package on PyPl. It can be installed using pip
install pinnicle. This software is licensed under the GNU
Lesser General Public License v2 (LGPLV2).
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