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Abstract. Solving point-wise feature correspondence in visual data is
a fundamental problem in computer vision. A powerful model that ad-
dresses this challenge is to formulate it as graph matching, which entails
solving a Quadratic Assignment Problem (QAP) with node-wise and
edge-wise constraints. However, solving such a QAP can be both expen-
sive and difficult due to numerous local extreme points. In this work,
we introduce a novel linear model and solver designed to accelerate the
computation of graph matching. Specifically, we employ a positive semi-
definite matrix approximation to establish the structural attribute con-
straint. We then transform the original QAP into a linear model that is
concave for maximization. This model can subsequently be solved using
the Sinkhorn optimal transport algorithm, known for its enhanced effi-
ciency and numerical stability compared to existing approaches. Experi-
mental results on the widely used benchmark PascalVOC showcase that
our algorithm achieves state-of-the-art performance with significantly im-
proved efficiency. We plan to release our code for public access.

Keywords: Image Feature Matching · Quadratic Assignment Problem
· Quadratic Graph Matching.

1 Introduction

Graph is a natural structure to encode real-world data. Graph matching is to
find node-to-node correspondences between two given graphs. Hence, as a gen-
eral and powerful tool to discover correlation or detect similar structural pattern
between graphs, graph matching has been widely used in many computer vision
tasks including keypoints matching [21], multi-object tracking [6], and scene
flow estimation [18]. A graph matching pipeline starts from extracting keypoints
and their descriptors. Then, each image/frame/object is modeled using a graph,
whose nodes correspond to keypoints or regions and are associated with their
descriptors (i.e., attributes) and edges encode relationship between these nodes.
And then, the matching is solved through certain optimization procedure that
finds a node-to-node map that minimizes content/structural matching cost. Re-
cent graph matching methods can be divided into two categories [27], Unary
Matching and Pairwise Matching.
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(a) Graph matchings of unary matching CIE-H [31].

(b) Graph matchings of our pairwise matching model.

Fig. 1. Graph matching results by unary matching and pairwise matching. The image
undergoes an affine transformation. Green/red lines indicate correct/wrong matchings.

Unary Matching methods [26,21,19] formulate graph matching as node match-
ing. Deep neural networks are often used to learn discriminating descriptors on
keypoints (nodes); and these descriptors can be designed to encode both local
context surrounding nodes and inter-node relationship. Then, subsequent match-
ing can be computed using similarity between these descriptors (namely, point-
wise affinity). Unary matching methods can run fast and achieve competitive
results on common benchmarks. However, as pointed out in recent studies [5],
when keypoints share similar descriptors but different structural contexts, unary
methods often fail to produce reliable matching. Fig. 1 (a) also illustrates such
an example: these two images undergo an affine transformation, a unary match-
ing method such as CIE-H [31] matches two graphs by node attributes that are
extracted from a deep neural network. Unary matching methods often fail to find
the correct correspondence when node attributes become indistinctive (because
(1) the point’s neighboring textures are not unique, and (2) transformations
involving significant rotations make deep features less reliable).

Pairwise Matching methods [33,24,34,5] construct the matching model using
not only pointwise affinity information but also pairwise structure constraints
and formulate graph matching as a Koopmans-Beckman Quadratic Assignment
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Problem (KB-QAP) [10]. People integrate local features from adjacent nodes to
compose edge attributes to encode the inter-node structure information. Then
these methods develop pairwise structure constraint to penalize edge attributes
discrepancy according to node correspondence.

Pairwise structure constraints make the matching more robust against global
(camera-wise) and local (object-related) geometric transformations [5,24]. As
shown in Fig. 1 (b), with the help of structure constraint, a pairwise matching
model (e.g ., our model) could find correct correspondence. However, The objec-
tive function of KB-QAP is nonconvex-nonconcave because the Hessian matrix
of its quadratic term is indefinite. The solution of the KB-QAP has many lo-
cal maximums or minimums. These local extremes make the solver sensitive to
initial poses; and the slow convergence makes the solver computationally expen-
sive. This remains as the bottleneck of pairwise matching models, and limit their
applications on real-time tasks such as multi-object tracking and others.

In this paper, we propose a linear model, named CLAP, to convert the pair-
wise graph matching to a concave maximization problem. We follow the objective
function of KB-QAP but formulate the pairwise structure constraint into a linear
model under L1 norm. To build such a linear model, we leverage the decomposi-
tion property of positive semi-definite matrix. We analyze the widely-used edge
attributes (e.g ., Euclidean distance [24] and inner-product distance [21,26]), and
convert them to be positive semi-definite and construct a linear structure con-
straint.

We showed that our new objective function is concave, whose maximization
is easy and results in a global maximum. Using the Sinkhorn algorithm [1],
our CLAP model can be efficiently solved by the Lagrangian multiplier method.
Experiments showed that our method achieves similar accuracy with other state-
of-the-art methods but runs significantly faster.

2 Related Work

2.1 Unary Matching

Unary matching based methods [31,26,27,2,19,21] formulates the graph match-
ing as node matching. They first extract local features for each node as node
attributes, then iteratively enhance the node attributes by various feature refine-
ment modules, such as GNN [19,26,31] and Transformer [21]. The assumption is
that graph structure can be sufficiently encoded into node attributes. Therefore
they can just use the node-to-node affinity matrix by inner-product or metric
learning [27,26,31] to solve graph matching. With the node-to-node affinity ma-
trix, the matching can be computed by using nearest neighbor search [30,20],
dual-softmax [21], or optimal transport [19,27,26].

Despite their simplicity, the unary matching models have two limitations:
(1) Feature embedding modules are often adopted to enhance the node at-
tributes/descriptors, but they also slow down the overall running time. (2) More
importantly, the assumption that node attributes are distinctive enough to en-
code graph structure sometimes doesn’t hold. For example, when the region of
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interest in the images do not contain rich texture information, their node at-
tributes can be indistinguishable and ambiguous. Without the effectively model-
ing structure information, unary matching models often fail to produce reliable
matching results.

2.2 Pairwise Matching

Pairwise matching methods [32,24,5] formulate the graph matching as quadratic
assignment problems (QAP) [15], such as Lawler QAP [12] and Koopmans-
Beckman QAP (KB-QAP) [10]. The objective function uses node and edge sim-
ilarity constraints to build affinity matrix. When the affinity matrix of Lawler’s
QAP can be decomposed by inverse Kronecker product, KB-QAP is a special
case of Lawler’s QAP with much lower space complexity [15,24]. Since this con-
dition is true in general cases, recent papers chose KB-QAP as their objective
functions. Because the discrete QAP is NP-complete [9], researchers relax the
feasible field into a continuous domain to find approximate solutions in polyno-
mial time.

The bottlenecks in developing effective QAP solvers are on the problem of
many local extreme points and slow convergence because the Hessian matrix of
the QAP objective function is often nonconvex-nonconcave. Various approximate
algorithms have been proposed to solve the QAP function. Umeyama [22] used
the absolute values of eigenvectors of the edge attributes to construct the struc-
ture constraint, but such approximation changes the physical meaning of the
edge attributes and leads to large matching errors [33]. Lu et al . [16] proposed
a fast projected fixed point scheme. FGM [36] factorized the affinity matrix of
Lawler’s QAP into small matrices. PATH [33], Gao et al . [5] and Wang et al . [24]
used Frank-Wolfe method [7] to obtain an approximate solution. AFAT [25] sug-
gested the slow convergence rate could be addressed by partial graph matching.
Thus AFAT ruled out the unpaired outliers within the detected keypoints us-
ing attention-fused prediction for the number of reliable inliers in a data-driven
manner. The noisy nature of data contaminates the robostness of deep neural
networks for graph matching. As a solution, momentum distillation is exploited
by COMMON [14] to emphasize the graph consistency by gradually lowering the
supervision from the ground truth correspondence.

Existing methods are generally time consuming to find the optimal corre-
spondences because they often require dozen iterations to convergence. The long
computation time limits the application of pairwise matching methods for real-
time tasks such as multi-object tracking. Our method belongs to pairwise match-
ing and is based on KB-QAP objective function.

3 Algorithm

3.1 Problem Definition

Graph matching solves node-to-node correspondence between two given graphs
GA = {VA, EA} and GB = {VB , EB}, where V and E denote the node and edge
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sets. The node sets VA and VB contain n and m feature keypoints extracted from
IA and IB respectively.

The similarity between two descriptors can be measured in the feature space
and represented as U ∈ Rn×m. Here Uij represents node similarity between
(vA)i ∈ VA and (vB)j ∈ VB .

The edge set E encodes spatial (either in the positional space or feature
space) correlation between two nodes in a graph. The definition of edge attributes
depends on the graph matching models, e.g ., Lawler QAP [12,29] and Koopmans-
Beckman QAP (KB-QAP) [10]. We adopt the widely used KB-QAP model. The
KB-QAP model uses adjacency weight matrices DA ∈ Rn×n (and DB ∈ Rm×m)
to store the structure information of graph GA (and GB).

The graph matching problem is to find an optimal node-to-node assignment
P ∈ {0, 1}n×m, where Pij = 1 indicates that nodes (vA)i ∈ VA and (vB)j ∈ VB
are matched and Pij = 0 otherwise. Following the graph matching setting, the
feasible field of P is

P ≜
{
P ∈ {0, 1}n×m; P1m = 1n, P

T1n ≤ 1m

}
, (1)

where 1m is a vector of m ones. The KB-QAP formulates graph matching as
maximizing the sum of the node and the edge similarities,

max
P∈P

∑
i,j

PijUij − λ||DA − PDBP
T ||2F

 , (2)

where λ > 0 is a balancing weight, and ||·||2F is the square of the Frobenius norm.
The columns of P ∈ P are orthogonal. Rewriting the second term of Eq. (2) with
the trace of that matrix, we have

− ||DA − PDBP
T ||2F = −tr((DA − PDBP

T )T (DA − PDBP
T ))

= 2tr(PTDT
APDB)− tr(DT

ADA)− tr(DT
BDB).

After removing the constant items, maximizing −||DA − PDBP
T ||2F is equiva-

lent to maximizing tr(PTDT
APDB). Thus, we can rewrite the objective function

Eq. (2) as

max
P∈P

∑
i,j

PijUij + λtr(PTDT
APDB)

 . (3)

The objective function Eq. (3) is defined on discrete space and is known as
an NP problem. Many recent methods [5,24,7] first relax the feasible field P to
a continuous field P ′,

P ′ ≜
{
P ∈ [0, 1]n×m; P1m = 1n, P

T1n ≤ 1m

}
, (4)

then adopt gradient descend based methods to solve it.
However, the second term in Eq. (3) is quadratic and its Hessian matrix

is indefinite. Hence, this objective function is nonconcave and has many local
maximums. Existing solvers often require long computing time to converge.
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3.2 Our Model

Symmetric Edge Matrices. We first analyze the properties of edge attribute ma-
trices DA and DB . Recent graph matching models construct them using pair-
wise structure information (e.g ., Euclidean distance [24], adjacency [5,26], Maha-
lanobis distance [5], and inner-product distance [19,21]) between feature points.
In most of these models, DA and DB are symmetric matrices. However, they are
usually not positive semi-definite.

If we can make the edge weight matrix D positive semi-definite (Sec. 3.3 will
discuss the conversion of given DA and DB into positive semi-definite matrices.),
then it can be decomposed as D = HHT . Based on this, we can design a fast
linear graph matching model.

Linear Matching Model. If DA and DB are positive semi-definite, then we can
decompose them as DA = HAH

T
A and DB = HBH

T
B . The quadratic term in

Eq. (3) can be written as

tr(PTDT
APDB)

=tr(PTDAPDB) = tr(PTHAH
T
APHBH

T
B)

=tr(HT
BP

THAH
T
APHB) = tr((HT

APHB)
T (HT

APHB))

=||HT
APHB ||2F =

∑
i,j

(|HT
APHB |ij)2.

(5)

This term Eq. (5) is quadratic and is in the form of the sum of squares (i.e., L2
norm). This converts the matching model Eq. (3) from a nonconvex-nonconcave
function to a convex function. Nevertheless, maximizing a convex function still
results in multiple local maximum and is difficult to solve. Our idea is to change
this sum-of-squares form into a sum of absolute values (i.e., L1 norm). This
modification has two main benefits: (1) Compared with L2 norm, optimizing L1
norm promotes sparsity and is more robust against outliers. L1 norm has been
used in PCA [11,3] and kernel discriminant analysis [35], and demonstrated
its better robustness when outliers exist. (2) Numerically, combining with the
Entropy regularization, the objective function can be made concave. Maximizing
a concave objective function is much easier and it quickly converges to a global
maximum.

Thus, we propose the linear objective function for graph matching,

max
P∈P′

∑
i,j

PijUij + λ
∑
i,j

|HT
APHB |ij

 . (6)

Inspired by the recent successful usage of Sinkhorn algorithm [1] in Opti-
mal Transport problem, in Eq. (6), we add an Entropy Regularization h(P ) =
−
∑

i,j Pij logPij . Hence, finally, we have

max
P∈P′

∑
i,j

PijUij + λ
∑
i,j

|HT
APHB |ij + ϵh(P )

 , (7)
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where ϵ > 0 balances the weight of h(P ).
This objective function Eq. (7) has negative semi-definite Hessian matrix H,

whose diagonal elements Hij,ij = −ϵ/Pij and non-diagonal elements are all zeros.
Because Pij ≥ 0, the H is negative semi-definite. Thus, this objective function
Eq. (7) is concave and has a global maximum. And it can be solved efficiently
using Lagrange multipliers (optimization details elaborated in Sec. 3.4).

3.3 Graph Attribute Construction

When formulating the feature matching problem on a graph, both node similarity
(that aligns keypoints with similar descriptors) and structure similarity (that
matches relative positional or contextual correlation between keypoints) should
be considered. These similarities are encoded in the matching of nodes and edges
of the graph using the node similarity term and edge similarity term, respectively.

Node Similarity. Recent matching models first use neural networks to extract
keypoints and their local feature descriptors, then compute the node similarity
by a direct inner-product or a learnable metric [19,26,5,21]. We chose Gao et
al . [5]’s model as our baseline as it has the state-of-the-art accuracy. Our main
design is to speedup the more expensive edge similarity term. Hence, for a fair
comparison, on the node similarity term, we followed the same setting of [5] and
used VGG16 to extract descriptors and get the same node similarity matrix.

Let ψ(VA) ∈ Rn×d and ψ(VB) ∈ Rm×d represent the feature maps of node
VA and VB . The ith row of the feature map is the descriptor of the ith node.
The node similarity matrix Uij is computed like the Mahalanobis distance,

Uij = ψ(VA)ΣUψ(VB)
T , (8)

where ΣU ∈ Rn×m is a learnable matrix. After the training stage, ΣU is fixed
during the inference stage.

Edge Similarity. Edge attribute matrices DA and DB are designed to charac-
terize the structure of the matching model. As we discussed in Sec. 3.2, we want
to develop a scheme to convert any given symmetric edge attribute matrix D to
a positive semi-definite matrix D̂.

In graph matching models, because edges are usually undirected and un-
ordered, most edge attributes that represent the inter-node relationship in graphs,
such as Euclidean distance [24], adjacency [5,26], Mahalanobis distance [5], and
inner-product distance [19,21], inherently form symmetric attribute matrices.
Let D be an edge attribute matrix, where Dij represents the edge attribute be-
tween node vi and vj . D usually has the following form: (1) When i ̸= j, we have
Dij = Dji. (2) When i = j, a diagonal entry Dii is undefined and is set to 0 in
most existing models.

Given the two edge attributes DA and DB , we can convert them to positive
semi-definite matrices D̂A and D̂B by just modifying the diagonal entries,

dx = max
{
Ri =

∑
k ̸=i

|(Dx)ik|, i ∈ {1, · · · , n}
}
, dmax = max{dA, dB}, (9)
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where x = {A,B}, dA and dB are the maximums of the sum of the absolute
entries in each rows, and dmax is the maximum of dA and dB . We use dmax to
modify both edge attributes to make sure they have the same diagonal entries,

(D̂x)ij =

{
dmax i = j

(Dx)ij i ̸= j
, x = {A,B}. (10)

We use D̂A and D̂B as the new edge attribute matrices to replace the original
DA and DB in graph matching computation.

D̂A and D̂B have two important properties: (1) Similar structural constraint.
The non-diagonal entries of D̂x and the original one Dx are the same, which char-
acterize the structure and the edge attributes of the graph. Recall the structure
constraints in the objective function Eq. (2), ||D̂A−PD̂BP

T ||2F . By definition, P
and PT can be treated as permutation matrices that switch the rows and columns
of D̂B . Hence, PD̂BP

T has the same diagonal entries as DB . Then, since D̂A

and D̂B have the same diagonal entries dmax, optimizing ||DA−PDBP
T ||2F and

||D̂A − PD̂BP
T ||2F is equivalent. Modifying D to D̂ does not affect the optimal

P . (2) Positive Semi-definiteness. They are both positive semi-definite and can
be decomposed to construct the linear matching model. We prove the positive
semi-definiteness property by Gershgorin circle theorem [23], every eigenvalue of
a matrix M lies within at least one of the Gershgorin discs r(D̂ii, Ri).

3.4 CLAP Solver

With positive semi-definite edge attribute matrices and their decomposition, our
matching model Eq. (7) is concave and has a global maximum. This model can
be solved efficiently using a Lagrangian multiplier method.

Let L(P, µ1, µ2) be the Lagrangian of Eq. (7) with dual variables µ1 ∈
Rn, µ2 ∈ Rm,

L(P, µ1, µ2) =
∑
i,j

PijUij + λ
∑
i,j

|HT
APHB |ij − ϵ

∑
i,j

Pij logPij

+µT
1 (P1m − 1n) + µT

2 (P
T1n − 1m).

(11)

For any couple (i, j), let the first derivative of Eq. (11) be zero, we have

0 = Uij − ϵ− ϵlogPij + (µ1)i + (µ2)j + λ

k1∑
k=1

k2∑
l=1

δ
(
(HT

APHB)kl
)
(HA)ik(HB)jl,

(12)

where HA ∈ Rn×k1 , HB ∈ Rm×k2 , and δ(·) = {−1, 1} is the sign function.
The solution for Eq. (12) is,

Pij = exp

(
(µ1)i
ϵ

− 1

2

)
exp

(mij

ϵ

)
exp

(
(µ2)j
ϵ

− 1

2

)
, P1m = 1n, P

T1n = 1m,

(13)
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Table 1. Comparing the baseline and the revised CLIP model on synthetic image
pairs. Three types of edge attributes (i.e ., learning-based, adjacency matrix, and edge
length distance) are tested. The baseline model is qc-DGM [5].

Method Acc. (%) Time (ms) FPS
Learning : qc-DGM 42.6 228.4 4.4
Learning : Ours 44.3 159.8 6.3
Adjacency : qc-DGM 32.8 21.6 46.3
Adjacency : Ours 79.2 9.0 111.1
Length : qc-DGM 63.8 22.8 43.9
Length : Ours 98.1 8.7 114.9

Table 2. Comparisons on synthetic image pairs.

Method Acc. (%) Time (ms) FPS

Unary
IPCA [26] 23.7 207.1 4.83
PCA [27] 30.4 204.2 4.90
CIE-H [31] 37.3 202.5 4.93

Pairwise qc-DGM [5] 42.6 228.4 4.4
Ours 44.3 159.8 6.3

where mij = Uij + λ
∑

k,l δ((H
T
APHB)kl)(HA)ik(HB)jl. Note that since δ is a

sign function,mij is a scalar that does not contain the variable Pij . We substitute
the Pij in Eq. (13) back to the constraints of feasible field P ′. By Cuturi’s algo-
rithm [1], L(P, µ1, µ2) has maximum point and can be computed with Sinkhorn’s
fixed point iteration. For numerical stability, we follow Cuturi and Peyre [17] to
solve the Eq. (13) in log-domain. Finally, we follow [5,31] to use the Hungarian
algorithm for a discrete solution.

4 Experiments

We conducted experiments to evaluate the proposed CLAP model. We evalu-
ated our matching model’s performance under various edge attributes on image
pairs that differ by randomly synthesized geometric transformations. We also
compared our model with the SOTA graph matching algorithms.

Evaluation Metrics. We compared matching accuracy and matching efficiency.
A widely adopted matching accuracy metric is the accuracy score Acc. Given
an assignment matrix P of n nodes, Acc is defined as Acc = 1

n

∑
ij(P

∗ ◦ P )ij ,
where P ∗ ∈ {0, 1}n×n is the groundtruth correspondence, and operator ◦ is
the element-wise production. To evaluate matching efficiency, we measured the
average per graph matching time: Time and FPS (frame-per-second).

We compared our model with state-of-the-art matching methods, including
unary matching models: PCA [27], IPCA [26], and CIE-H [31], and pair-
wise matching models: GMN [32], NGM [28], HNN-HM [13], and qc-DGM [5].
Among these methods, since no codes nor pretrained models of HNN-HM [13],
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qc-DGM (Learning) Acc. 60% qc-DGM (Adj) Acc. 40% qc-DGM (Len) Acc. 40%

Ours (Learning) Acc. 70% Ours (Adj) Acc. 100% Ours (Len) Acc. 100%

Fig. 2. Qualitative comparisons on synthetic transformed images, where green/red lines
indicate correct/wrong matchings, respectively. ‘Adj’, ‘Len’, and ‘Learning’ represent
the three types of edge attributes adopted in qc-DGM and our models, respectively.

LCSGM [29], and GLMNet [8] is available, we use the evaluation scores from
their papers directly. For other methods, we ran their pretrained models. We
set λ = 0.1 and ϵ = 1. All the experiments were done on an Intel Xeon(R)
CPU E5-2630 with one NVIDIA GeForce 1080Ti graphic card. Source code:
https://github.com/xmlyqing00/clap.

4.1 Results on Synthetic Transformations

Dataset Construction. We synthesized 1, 000 pairs of images to evaluate the
robustness of graph matching models under random affine transformations. The
backgrounds are randomly selected from Pascal VOC dataset [4]. For each pair
of images (IA, IB), image IA contains 10 nodes with random 2D-coordinates.
Then we synthesized an affine transformation with randomly generated scaling
(range: [0.5, 1)), rotation (range: [−π, π)), and translation (range: [−w/4, w/4)
on x-axis and [−h/4, h/4) on y-axis). This affine transformation was applied on
IA (and its node positions) to get IB (and the new node positions).

Different Edge Attribute Constructions. Our proposed CLAP model is compat-
ible with various edge attributes that are used in existing pairwise matching
methods. We tested on three types of commonly used edge attributes: (1) learn-
ing based edge descriptors [5], (2) 0/1 adjacency matrix [36,5], and (3) edge
length structure [24]. We denote them as “Learning”, “Adjacency”, and “Length”
attributes in the following.

As shown in Tab. 1, our linear model not only preserves but actually surpasses
the quadratic baseline model qc-DGM [5] in matching accuracy, on all the three
edge attribute settings. And our model is also significantly faster.

One main reason that our linear model often leads to more accurate results in
this experiment is that the quadratic baseline model is nonconcave and has mul-
tiple local maximums, especially when the image transformation is significant.

https://github.com/xmlyqing00/clap
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Table 3. Quantitative comparisons on Pascal VOC benchmark. We used the pretrained
models that were trained on the same benchmark. Our baseline is qc-DGM [5]. +

indicates an additional post-processing. The accuracy scores are in percentage. Red
numbers indicate the best performance, and Blue numbers indicate the second best.

Method GMN PCA NGM IPCA GLM HNN-HM LCSGM CIE-H qc-DGM qc-DGM+ Ours
areo 40.8 49.0 52.5 54.0 52.0 39.6 46.9 51.7 49.3 49.8 49.2
bike 58.0 60.8 62.0 64.9 67.3 55.7 58.0 67.6 65.6 66.9 65.7
bird 59.8 65.1 62.5 64.8 63.2 60.7 63.6 70.0 60.8 62.0 61.1
boat 50.5 58.2 59.2 61.5 57.4 76.4 69.9 61.1 56.4 56.9 56.2
bottle 78.5 77.3 78.4 78.9 80.3 87.3 87.8 82.4 82.5 82.6 81.9
bus 69.5 73.9 77.1 73.8 74.6 86.2 79.8 76.0 78.9 78.9 78.8
car 65.9 65.7 73.8 71.7 70.0 77.6 71.8 70.6 71.9 72.3 72.1
cat 64.7 68.4 68.1 70.9 72.6 54.2 60.3 71.7 71.3 71.6 71.5
chair 40.3 42.9 43.8 46.6 38.9 50.0 44.8 43.5 41.7 42.8 42.1
cow 61.8 63.9 66.6 66.2 66.3 60.7 64.3 70.5 67.7 67.9 67.3
table 66.8 45.2 48.5 40.3 77.3 78.8 79.4 63.5 73.4 77.5 77.5
dog 62.3 68.2 63.5 68.3 65.7 51.2 57.5 71.3 64.4 65.3 64.0
horse 62.4 66.6 65.3 67.1 67.9 55.8 64.4 70.9 70.7 71.5 69.7
mbike 58.9 61.5 63.0 65.1 64.2 60.2 57.6 66.8 65.8 66.3 65.9
person 37.2 44.2 47.6 49.3 44.8 52.5 52.4 47.3 48.2 48.8 47.4
plant 79.1 83.0 83.0 85.7 86.3 96.5 96.1 85.7 91.5 93.0 92.5
sheep 66.8 66.7 67.3 68.9 69.0 58.7 62.9 69.0 68.4 69.5 69.0
sofa 49.9 57.4 62.3 60.0 61.9 68.4 65.8 61.3 66.1 65.7 63.8
train 85.5 78.3 80.3 82.4 79.3 96.2 94.4 83.5 88.1 88.1 88.0
tv 91.0 89.1 90.0 88.6 91.3 92.8 92.0 89.7 92.0 92.1 91.8
Mean (%) 62.5 64.3 65.8 66.5 67.5 68.0 68.5 68.7 68.7 69.5 68.8
Time (ms) 89.4 89.2 105.2 94.9 - - - 83.3 116.4 145.5 73.7
FPS 11.19 11.21 9.51 10.54 - - - 12.00 8.59 6.87 13.57

In contrast, our linear model has a global maximum and is easy to be solved.
This experiment demonstrates that our model (using L1 norm) is better than the
baseline (using L2 norm). Note that here the learning-based edge attributes were
constructed using the pre-trained descriptors learned from the large benchmark
dataset Pascal VOC. Their matching accuracy is low, showing that such learned
descriptors don’t generalize well for these synthesized transformations (probably
much more significant than those in the benchmark). Qualitative comparisons
are shown in Fig. 2.

Structure Info Encoding: Unary vs Pairwise Matching. We also compared the
matching computed by unary models and pairwise models in Tab. 2. Three rep-
resentative unary models, IPCA [26], PCA [27] and CIE-H [31], and two pairwise
models, qc-DGM [5] and our CLAP, are compared. Unary matching models learn
to encode structure information by aggregating node descriptors. For all these
five methods, we used node and edge attributes from the models pretrained on
the Pascal VOC benchmark [4]. Tab. 2 shows the matching results on synthesized
data. In this synthetic experiment, due to the significant rotation components
involved, these learned/aggregated descriptors tend to be not discriminating
enough to support reliable unary matching. Pairwise matching, in contrast, uses
the explicit structure constraint, and turns out to be more reliable. In terms of
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efficiency, although unary matching methods have simpler matching model to
solve, they need to conduct (expensive) aggregation to encode structure infor-
mation from node descriptors. This makes their overlap matching speed slower
than our CLAP model.

4.2 Results of Pascal VOC Keypoints

Pascal VOC dataset [4] with Berkeley annotations of keypoints has 20 classes
of instance images with keypoints. The training set includes 7,020 annotated
images and the testing set includes 1,682 images. Our baseline qc-DGM model [5]
has two settings: with and without a post-processing refinement, respectively
denoted as qc-DGM and qc-DGM+. Our baseline is based on qc-DGM without
post-processing. For fair comparisons, we kept all the feature extraction and
aggregation unchanged with the pretrained weights, and just replaced the KB-
QAP objective function and its solver with our proposed algorithm.

We report the average runtime and accuracies in Tab. 3. Unary matching
methods, such as LCSGM [29] and CIE-H [31], are highly reliant on the node
attribute learning. They have to use extra embedding network to enhance the
local features. Therefore, although without pairwise constraints, their matching
is faster. Their feature learning component is slower. Lawler’s QAP methods
GMN [32] and NGM [28] have lower accuracy scores. Our CLAP model formulate
the graph matching by L1 norm that is linear to solve. Therefore, it is both
accurate and efficient.

Compared with the baseline qc-DGM, the proposed model achieves match-
ing accuracy of 68.8% (baseline 68.7%) and 73.7ms computation time (baseline
116.4ms). Our model achieves similar accuracy but significantly improves the
runtime efficiency. Note that here our model does not include a post-processing.
Although qc-DGM+, with post-processing refinement added to the baseline,
achieves slightly better matching score, its computation speed is much slower.
The results show that: (1) our positive semi-definite edge attribute matrices
can successfully model structure information; (2) our CLAP model can greatly
improve matching efficiency without losing accuracy.

5 Conclusion

This paper presents a new linear model for fast graph matching. We reformu-
lated the pairwise graph matching as a concave maximization problem, which
has a global maximum and can be solved efficiently. Specifically, we converted
the pairwise structure constraint of KB-QAP into an L1 norm linear model. We
showed that a common symmetric edge attribute matrix can be refined to be-
come positive semi-definite to construct a linear structure constraint. Then, the
problem can be solved using the Sinkhorn algorithm. Experiments showed that
our method can achieve state-of-the-art performance and can greatly improve
the computation speed of pairwise graph matching.
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Limitations. Pointwise affinity depends on descriptor learning. When images un-
dergo big global transformations or local deformation/transformation, descrip-
tors can become unreliable and this could negatively impact matching accuracy.
In the future, we will explore learning mechanisms to estimate confidence of local
feature descriptors (i.e., pointwise affinity), and increase structure constraints
when necessary. Such a refined adaptive matching model could potentially im-
prove the matching robustness in these challenging scenarios.
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