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Fig. 1: Our method generates high-quality separated human body and clothes
meshes from text prompts. Kinematics or simulation motions can drive the
disentangled avatar representations to achieve photorealistic animations.

Abstract. In this paper, we introduce a novel text-to-avatar genera-
tion method that separately generates the human body and the clothes
and allows high-quality animation on the generated avatar. While re-
cent advancements in text-to-avatar generation have yielded diverse hu-
man avatars from text prompts, these methods typically combine all el-
ements—clothes, hair, and body—into a single 3D representation. Such
an entangled approach poses challenges for downstream tasks like edit-
ing or animation. To overcome these limitations, we propose a novel
disentangled 3D avatar representation named Sequentially Offset-SMPL
(SO-SMPL), building upon the SMPL model. SO-SMPL represents the
human body and clothes with two separate meshes but associates them
with offsets to ensure the physical alignment between the body and the
clothes. Then, we design a Score Distillation Sampling (SDS)-based dis-
tillation framework to generate the proposed SO-SMPL representation
from text prompts. Our approach not only achieves higher texture and
geometry quality and better semantic alignment with text prompts, but
also significantly improves the visual quality of character animation, vir-
tual try-on, and avatar editing. Project page: this link.
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1 Introduction

Human avatars play a significant role in visual storytelling, conveying narra-
tives through actions, expressions, and interactions with other elements in the
animated world, thereby creating a dynamic and engaging experience for the
audience. Avatars can be designed to represent diverse characters, including dif-
ferent genders, races, ethnicities, and abilities, promoting inclusivity and chal-
lenging stereotypes in the media. However, creating high-quality avatars is costly
and labor-intensive, requiring skilled 3D modelers. To achieve photorealistic, an-
imatable, and customizable avatars, it is imperative to employ a disentangled
representation consisting of distinct components, such as body and clothing ele-
ments. This approach enhances customization and reusability, allowing seamless
alterations to clothing while maintaining the same underlying body structure.
Additionally, separate components contribute to heightened realism in anima-
tion, as different parts exhibit distinct motion characteristics. For example, hu-
man body movements can be animated using forward kinematics, while cloth
motion can be generated through physical simulation.

Despite evident benefits, most existing research [39, 97] focuses on recon-
structing a singular avatar mesh from videos or images [71, 105], neglecting the
potential for disentangled representations. Only a few studies, like DELTA [26]
and SCARF [27], explore disentangled avatar reconstruction from videos but
do not facilitate the arbitrary creation of such representations. Thus, a com-
prehensive method for creating disentangled human avatars remains an unre-
solved challenge. Extending text-to-avatar pipelines to generate disentangled
avatars involves not only independently generating body and clothing compo-
nents but also ensuring their precise alignment for visually appealing results.
To address this, we introduce Sequentially-Offset-SMPL (SO-SMPL), based on
SMPL-X [58] for characterizing coarse human shapes. SO-SMPL adds trainable
offsets and appearance features to represent the unclothed human body, inspired
by TADA [51], and further refines these to learn clothing specifics. This sequen-
tial approach ensures perfect alignment and separation of body and clothing
meshes.

Leveraging the power of stable diffusion with SDS losses [69], we introduce
a novel approach to generate our SO-SMPL representation from text prompts.
Our method achieves disentangled avatar generation by first creating the un-
clothed human body and subsequently distilling the clothing components based
on the underlying body structure. Experiments show that our method produces
high-quality human avatars with better geometry details and appearances than
baseline methods [35, 51]. The disentangled nature of our SO-SMPL represen-
tation unlocks strong customization capabilities, allowing for the seamless inte-
gration of various clothing options on the same human body. Furthermore, the
avatars generated by our state-of-the-art method exhibit exceptionally realis-
tic animation results, achieved by simulating distinct motion characteristics for
both clothing and human body components. Moreover, by generating another
layer of offsets, we can generate multiple-layered clothes, like a suit on a T-shirt,
and each layer has a separate mesh.
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2 Related work

Distilling diffusion for 3D tasks. Many recent works have utilized diffusion
models to generate 3D objects or scenes. Some works [6, 43, 45, 56, 62, 70, 89]
trained 3D diffusion models to directly generate 3D representations such as point
clouds, meshes, radiance fields [61], SDFs [88], UDFs [106], DMTets [78] or tri-
planes [11]. Others designed diffusion models to generate 3D-aware 2D images
or textures [8, 12, 29, 53, 55, 57, 60, 74, 80, 87]. Both lines of works rely on 3D
data [20,21,25] or multi-view images [73,100,104] to train.

With the success of 2D text-to-image diffusion models [22, 32, 75], recent
works [5, 13, 16, 40, 52, 69, 76, 77, 84, 86, 92, 93, 95, 102, 116] propose to distill 3D
representations from 2D diffusion models to circumvent the lack of 3D data.
Some of them designed different 3D representations [13, 52, 84] for generation,
while others explored the guidance schemes of diffusion models [69, 86,92].
3D Human Avatar generation. Previous works on 3D avatar generation [7,
15, 28, 34, 64, 65, 110, 111] could generate diverse human geometries or textured
avatars, but the generation process could not be controlled by text descriptions.
With the help of large language models like CLIP [72] and text-to-image diffusion
models [32,75], recent works [9,38,46,101,114] were able to generate high-fidelity
avatars with prompts or with both image and prompt [39, 68, 94]. Other works
have attempted to generate human avatars by painting the given human meshes
with generated textures [82, 103]. However, the generated avatars could not be
animated and utilized in CG software. [4,35,41,47,51,54,99,109] could produce
animatable avatars, but they ignored garment-human interactions, leading to
unsatisfactory animation quality.
Disentangled representations. Reconstructing the human body and clothes
as separate geometries has long been studied in the field of computer vision [19,
26, 27, 42], but generating distinct body and clothes representations has barely
been explored. Previous works have made attempts to generate 3D avatars as a
combination of separate components [34] or layers [98], but they did not explic-
itly disentangle human body and accessories, making an individual component
or layer not physically meaningful. A more recent work [36] trained a diffusion-
based human generation model and distinctly represented the human body and
different types of clothes as separate layers, but it did not have semantic control-
lability and suffers from over-smoothing textures. Another effort [91] proposed
to use an SDS-based pipeline to generate a NeRF-based clothing layer separated
from the human body, but could not be utilized in physical simulations due to
its implicit representation. A concurrent work TECA [107] explored disentan-
gling hair and head ornament from text and images while our work focuses on
decomposing the avatar into a human body and clothes. Another recent work
AvatarFusion [37] also separates clothes from human bodies. However, AvatarFu-
sion adopts a post-processing strategy based on the outputs of AvatarClip [35],
leading to low-quality results. Our method is natively designed for disentangled
generation, which produces much better quality.
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3 Preliminaries

Score distillation sampling [69] is proposed to optimize a 3D representation
through a frozen pre-trained large 2D diffusion model. Specifically, to optimize
a given 3D representation with parameters θ using a diffusion model with pa-
rameters ϕ, SDS loss is computed as:

∇θLSDS = Et,ϵ

[
(ϵ̂ϕ(xt;y, t)− ϵ)

∂x

∂θ

]
(1)

where t is the time step in diffusion model, x = g(θ) is the rendered image using
a differentiable renderer g, xt = x + ϵ is the noise version of x, ϵ is a sampled
gaussian noise, ϵ̂ϕ(xt;y, t) is the predicted noise of the diffusion model, and y is
the input text prompt.
SMPL-X [67] is an expressive parametric human model that could produce a
human mesh with a fixed topology. SMPL-X is conditioned by a given input
shape parameter β, pose parameter θ, and expression parameters ψ, and follows
a vertex-based linear blend skinning(LBS) based on skeleton J(β) and skinning
weights W for pose transforming and animation. Specifically, SMPL-X computes
a posed human mesh K(β, θ, ψ) as:

K(β, θ, ψ) = W(T(β, θ, ψ), J(β), θ,W )

T(β, θ, ψ) = T +Bs(β) +Be(ψ) +Bp(θ)
(2)

where an T-pose body mesh T(β, θ, ψ) is first calculated as the combination of
a mean template T , shape, expression and pose blend shapes {Bs, Be, Bp} then
warped to target pose θ with LBS operation W.

4 Methodology

Fig. 2 is an overview of our disentangled avatar generation pipeline. Given text
descriptions of the human avatar, our pipeline produces an animatable and high-
quality unclothed avatar in the first stage. In the second stage, we create clothes
on the target avatar. In the following, we introduce our disentangled represen-
tation, called SO-SMPL, of the human body and the clothes.

4.1 SO-SMPL Representation

Human body geometry. As shown in Fig. 3, we represent the human body
mesh with a densified SMPL-X parametric model introduced in Eq. 2 and we
add learnable vertex-wise offsets Oh to represent details on the body, similar to
recent works [51]. We fix the pose of the human body mesh to an “A” pose θ
and use a default expression parameter ψ during the text-to-avatar generation
process so that θ and ψ are omitted for simplicity. Specifically, the human body
geometry Th is

Th(β,Oh) = T(β) +Oh, (3)
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Fig. 2: An overview of our generation pipeline. Our pipeline has two stages. In
Stage I, we generate a base human body model by optimizing its shape parameter β,
vertex offset Oh and albedo texture Γh. A ControlNet is utilized to compute a Score
Distillation Sampling(SDS) Loss conditioned on an “A”-pose map P for the rendered
RGB image Ih and normal map Nh. In Stage II, we freeze the human body model
and optimize the clothes parameters Oc along with the albedo texture MLP Γc. The
rendered RGB images and normal maps of both the clothed human and the clothes are
used in computing the SDS losses. In both stages, we utilized a simple Phong shading
model to render images from our SO-SMPL representations.

where Oh is trainable vertex-wise offset and β is trainable shape parameter.
Clothes geometry. Clothes are represented by additional vertex-wise masks
Mc and offsets Oc on Th. The clothed human mesh Tc+h are

Tc+h(β,Oh,Oc,Mc) = Th(β,Oh) +Oc ⊙Mc, (4)

where ⊙ denotes the Hadamard product between the vertex-wise offsets and
masks. We can also get the clothes geometry Tc only by masking on the clothed
human mesh

Tc(β,Oh,Oc,Mc) = Tc+h(β,Oh,Oc,Mc)⊙Mc. (5)

To enable the generation of diverse clothes types, we use the body-part segments
of SMPL-X and pre-define vertex-level mask templates of 6 different garment
types, namely long shirts, short shirts, long pants, short pants, vests, and overalls.
These templates are used to initialize clothes mask Mc. We can also support
skirts generation using the skirts template from BCNet [42].
Discussion. Previous works [37, 107] tried to represent clothes as a volume-
based representation, e.g. NeRF [61], which is hard to be converted to a mesh.
Our clothes representation is naturally a thin mesh representation, which is
preferable for most graphics software and physical simulators [1, 2]. Meanwhile,
by representing the clothes as a displacement surface that “grows” upon the base
human, we ensure the alignment between the human body and clothes.

4.2 SO-SMPL Rendering

On both the human body mesh and the clothes mesh, we model appearances
with a Phong shading model where the meshes are characterized by their albedo
and the lighting is simply a combination of a point light and an ambient light.
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Human Offsets Clothes Offsets

SO-SMPL

Fig. 3: Illustration of our SO-SMPL representation. Two vertex-wise offsets,
namely the human offset Oh and the clothes offset Oc are sequentially added in order
to the SMPL-X body mesh T(β) to obtain the human body mesh Th(β,Oh) and
clothed human mesh Tc+h(β,Oh,Oc,Mc), where a vertex mask Mc is calculated to
determine the clothing region. Finally, we mask the clothed human mesh with Mc and
obtain the separated clothes mesh Tc(β,Oh,Oc,Mc).

Albedo. We use an MLP Γi to represent the albedo of the mesh. The albedo ρ
of a 3D point x on the target mesh is computed by

ρ = Γi(γ(x); ξi), (6)

where i ∈ {h, c} means clothes or human body, γ is positional encoding of the
3D position x, and ξi is the parameter of the MLP.
Shading model. Given a randomly-sampled point light with a position of v
and an intensity of ld, along with the ambient light intensity la, the shading
color c of a surface point p is computed by

c = ρp(la +max(0,nl · np)ld) (7)

where np is the normal direction of the point p, nl = (v − p)/∥v − p∥2 is the
light direction towards the surface vertice, and ρp is the albeodo on this point.

Fig. 4: An intuitive illustration of the impact of the baked-in artifacts in
learned albedo. On the left, the generated pant suffers from severe baked-in wrinkles
in its texture, resulting in non-photorealistic wrinkles and shadows in animation. On
the right side, our shader prevents the shadows from baking into the albedo, hence
significantly improving the visual quality of animations.

Discussion. Incorporating this shading model greatly reduces the chance that
the shadows are baked into the albedo of the generated clothes, which improves
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the consistency between geometry and textures, as shown in Fig. 4. This shading
model associates the rendering colors with the generated normals so optimizing
rendering colors also changes the normal directions, which reduces the chances
of getting baked-in shadows or wrinkles.
Rendering clothes & human body. From any given camera viewpoint, we
can render the images from our SO-SMPL representation using rasterization.
We first determine the corresponding 3D point and its normal from Th+c on
every pixel. Then, the shading colors are computed using Eq. 7, resulting in the
rendered image Ih+c. In a similar fashion, we render separate images for the
body (Ih) and the clothes (Ic), respectively. Concurrently, we also obtain the
corresponding normal maps Nh+c, Nh, and Nc. More details are included in the
supplementary material.

4.3 SO-SMPL Generation

To learn the geometry and texture representations of the SO-SMPL model, we
utilize SDS losses on both the rendered RGB images and the normal maps.
Our approach involves a two-stage optimization process: In Stage I, we focus
on generating an unclothed human body model. Following this, in Stage II, we
proceed to generate the clothing, which is attached to the human body model
established in Stage I.
Stage I: Human body generation. For the human body generation, we adopt
an OpenPose [10]-based ControlNet [112] with SDS [69] losses to optimize a SO-
SMPL representation. An “A”-pose joint map P rendered from 3D skeleton joints
is utilized as the condition for ControlNet to compute SDS losses. Given an input
rendered image I ∈ {Ih,Nh}, the gradient is computed by

∇ΘhL = Et,ϵ

[
(ϵ̂ϕ(It;yh,P, t)− ϵ)

∂I

∂Θh

]
, (8)

where It = I + ϵ is a noisy version of the input image, Θh = {β,Oh, ξh} is
the trainable parameters during human body generation, {β,Oh} are geometry
parameters, ξh is the texture parameters, ϵ̂ϕ(It;yh,P, t) is the predicted noise
given text embedding yh, noise step t and the pose map P. To ensure our gener-
ated human body mesh is unclothed, we add specific descriptions to the human
prompt such as “wearing tight shorts”. Additionally, to further guide the body
mesh and texture away from depicting clothing, we employ negative prompts
like “loose clothes, accessories”.
Stage II: Clothes generation. Similar to human body generation, we also
utilize SDS losses to update clothing parameters Θc = {Oc, ξc}. We calculate
SDS gradients through RGB and normal images of both the clothed human and
the separated clothes. Given a rendered image I ∈ {Ic,Nc, Ic+h,Nc+h}, and its
corresponding text prompt embedding yc, the SDS loss is termed as:

∇ΘcL = Et,ϵ

[
(ϵ̂ϕ(It;yc, t)− ϵ)

∂I

∂Θc

]
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Fig. 5: A gallery of our generated clothed avatars. Our method can generate
avatars with varied ethnicities, genders, and clothes.

Albedo smoothness constraint. To avoid geometries (e.g. wrinkles and bumps)
and lighting (shadows and highlights) being baked into the albedo of the model,
we employ an albedo smoothness loss following [17, 113] to reduce these effects.
With a small perturbation δ of the input position x, we encourage the estimated
albedo from texture MLP Γi ∈ {Γh, Γc} to be consistent, i.e.

La = ∥Γi(x)− Γi(x+ δ)∥2 (9)

Geometry constraints. In both the human body and clothing generation, we
utilize geometry constraints to ensure that the mesh is smooth and does not devi-
ate too far from the original SMPL-X mesh. We employ a Laplacian smoothness
term [44] Ls to minimize the norm of graph Laplacian. We also add an offset
regularizing term Lo = ∥Oi∥2 for the body/clothes offset Oi ∈ {Oh,Oc}. Thus,
the geometry regularization loss is Lgeo = Ls+Lo. More implementation details
such as camera configurations are included in the supplementary material.

5 Experiments

5.1 Generated Avatars & Clothes

As demonstrated in Fig. 5, our method generates diverse avatars and various
types of clothes with detailed textures. Besides, since the clothes are generated
on a base human body, they fit with the intended human naturally.

5.2 Quality Comparisons

We conduct comparisons on three aspects, static clothed-avatar quality, clothes
quality, and animation quality. For the generation quality of clothed avatars,
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Fig. 6: Quality comparison of the generated clothed avatars. We compare re-
sults from TEXture [74], AvatarCLIP [35], TADA! [51] and our method with the same
prompts.

we compare with state-of-the-art text-to-3D avatar generation methods TEX-
ture [74], AvatarCLIP [35] and TADA! [51]. As for clothes generation, we con-
duct comparisons with two of the best existing text-to-3D methods Prolific-
Dreamer [92] and TextMesh [84]. We then compare animation results in the
physical simulation environment [2] with the animatable meshes generated by
TEXture [74] and TADA! [51].
Clothed avatar quality. A visual comparison of the generated avatars is pre-
sented in Fig. 6. TEXTure [74] takes a fixed SMPL-X mesh as input and suffers
from texture inconsistency under different views. AvatarCLIP [35] often produces
geometry artifacts and poor facial details. TADA! [51] tends to generate unnatu-
ral geometric artifacts and unaligned outfits, e.g. a hull on the African-American
woman’s belly and the white teenage girl’s yellow pants that contradicts the
“beige legging” described by the prompt. This is because they use a simple text-
to-image diffusion model and lack sufficient regularization on geometry. In com-
parison, using a pose-controlled diffusion model and proper regularization, our
method can produce not only the most realistic human with detailed textures
but also high-quality clothes that are semantically aligned with texts.
Clothes quality. We also evaluate the quality of the separated clothes. As
demonstrated in Fig. 7, neither TextMesh [84] or ProlificDreamer [92] can gen-
erate meaningful clothes shapes or textures. Besides, they cannot control the
position and the size of the generated clothes, and thus cannot be fitted to an
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avatar. In comparison, our method can produce clothes fitting to a specific avatar
and also with high-quality textures and shapes.

Fig. 7: Comparisons of clothes generation quality. Garments in each row are
generated using the same prompts.

Animation quality. Our generated human body mesh is built upon the SMPL-
X model and thus allows us to use SMPL-X parameters to animate the body.
On the other hand, the separately generated clothes can be used in a simula-
tion environment [1, 2] to simulate their motions. We used motion sequences
from AMASS [59] and AIST++ [50] to animate the generated avatars and sim-
ulate the clothes animations in the MarvelousDesigner [2]. Note that the recent
progress in human motion synthesis [3, 18, 23, 83, 85, 115] or human motion cap-
ture from visual signals [14, 24, 49, 79, 90, 108] can also be employed to drive
the generated character. The animation results of TADA!, TEXTure, and our
method are shown in Fig. 8. For TADA! and TEXTure, the clothes are entangled
on the generated avatar, which leads to inconsistent wrinkles and shadows in an-
imation. Our method disentangles clothes and human bodies, enabling realistic
clothes-body interactions and visual effects.

Methods AvatarCLIP [35] TEXture [74] TADA [51] Ours

FID ↓ 166.0 132.8 90.2 84.9
CLIP-FID ↓ 34.9 42.8 27.4 26.2
CLIP Score ↑ 19.2 23.6 24.9 28.4

Table 1: Quantitative comparisons of generated “A”-pose avatar quality in FID, CLIP-
FID, and CLIP score.
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Fig. 8: Qualitative comparisons of animation results. Our model enables the
generation of disentangled human body and clothes meshes, which thus enables more
photorealistic animations.

Favourite (%, ↑) TEXture [74] TADA [51] Ours

Texture & Geometry Quality 8.1 8.4 83.4
Animation Realism 3.4 7.0 89.7
Prompt Alignment 5.5 7.7 86.8

Table 2: User study from 26 users in terms of visual quality, animation quality, and
prompt alignment preference. The number means the percentage of users favoring a
specific method.

5.3 Quantitative Comparisons

Accurate evaluation of text-to-3D generation is a challenging task, which is rarely
discussed in existing works [96]. Here, we use 3 metrics to evaluate generation
fidelity: FID [31, 66], CLIP-FID [48] and CLIP Score [30]. CLIP Score is the
CLIP feature distance between the input prompts and the rendered images of
the generated avatars. For FID and CLIP-FID, we measure the distance between
the rendered images from our generated 3D avatars, and images generated from
Stable Diffusion [75] using the same prompts. We evaluate all methods using
30 prompts and render 300 views for each prompt, resulting in 9000 images.
As shown in Table 1, our method achieves the best results in all 3 metrics
compared with previous methods, demonstrating the high visual quality and
textual alignment of our pipeline.
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5.4 User Study

We also conduct a comprehensive user study to evaluate both the generation
quality and the animation capability of our pipeline. We design a questionnaire
and present 16 full-body animations made by TEXture [74], TADA! [51], and our
method. The survey is conducted among 26 researchers and artists from either
academia or industry. The participants are asked to pick the one with the best
semantic consistency, visual quality, and animation quality. Note that we ask
participants to exclude animation quality when evaluating texture& geometry
quality. As shown in Table 2, our model is the most preferred one in all aspects
of generation quality.

5.5 Ablation Study

We first evaluate the effects of our albedo smoothness constraints and 2D-pose
ControlNet guidance. In Fig. 9, we compare the rendered albedo and RGB images
w/ or w/o our albedo smoothness constraint La. As can be seen from the visual
results, the albedo generated without La shows baked-in shadows and wrinkles,
which leads to unsatisfactory visual artifacts in animations. In comparison, using
La largely alleviates the problem in the albedo while still enabling the correct
rendering of the shadows and wrinkles on RGB images.

In Fig. 9, we validate the effectiveness of OpenPose-based ControlNet as
guidance during our human body generation. As can be observed from the re-
sults, generated avatars without ControlNet have over-smoothed textures and
geometry. In contrast, our utilization of ControlNet produces significantly finer
details in both geometry and texture.

Fig. 9: Ablation study on our shading model (left) and ControlNet as guidance (right).

In Fig. 10 we demonstrate the necessity of using both guidances from clothes
renders, {Ic,Nc}, and clothed human renders, {Ic+h,Nc+h}. Applying {Ic+h,Nc+h}
without clothes leads to the incorrect generation of skin colors on the clothes
meshes, as seen on the left of Fig. 10. On the other hand, with only clothes guid-
ance, the garments are prone to learn texture and semantics incoherent with the
human body, such as the back collar on the right of Fig. 10.

5.6 Applications

Complex garments generation. Our SO-SMPL design can also be generalized
to more complex garment types. For instance, by adding additional layers of
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Fig. 10: Ablation study on guidance from clothes renders{Ic,Nc} and clothed human
renders {Ic+h,Nc+h}.

offsets on top of the first clothing layer, we can generate more complex multi-
layer garments, as shown in Fig. 11. Besides, leveraging BCNet [42], a parametric
skirts model conditioned on SMPL parameters, our pipeline can be extended to
generating clothes that do not follow SMPL-X’s topological structure such as
skirts and dresses, as depicted in Fig. 11. More details can be found in the
supplementary material.

Fig. 11: Complex garments generation. Our pipeline could be generalized to gen-
erate more complex garments like skirts and multi-layered garments.

Virtual try-on. Our disentangled human-clothes representation inherently al-
lows us to change the outfit of a certain avatar, or put the same clothes on dif-
ferent avatars. As depicted in Fig. 12, while previous methods like TADA! [51]
also enable virtual try-on, they struggle to maintain consistency in clothing and
human identity during the try-on process. As can be seen from the left half of
Fig. 12, when changing clothes for the white teenage boy with TADA!, the facial
details and body shape are changed; on the other hand, the colors and patterns
of the clothes also changed when putting the same clothes on different avatars
with TADA!. On the contrary, our disentangled representation supports fixing
the human identity and clothes details when switching outfits.
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Fig. 12: Comparisons in virtual try-on applications. The orange and purple ar-
rows represent compositions of the human body and the clothes, respectively. Changing
clothes in TADA! [51] often leads to undesirable changes in human identity or clothes
while changing clothes in our method is more photorealistic and keeps the same human
identity and clothes.

6 Limitations&Conlusion

Limitations. Despite promising results, our pipeline still has limitations. Since
images generated by diffusion models are of final shadings, it is difficult to
get fully shadow-free material decomposition even with our shading model and
albedo smoothness constraint. Besides, our results still suffer from cartoonish
colors and over-smoothing textures, which is a common problem for distillation-
based frameworks. Another limitation is the over-saturation of colors in our
distillation-based framework. Although distillation techniques [92] have aimed
to address this issue, it remains a challenge. Our offset-based representation also
can not handle avatars with long hair, which requires advanced 3D representa-
tions [81]. What’s more, our generated clothes do not follow any sewing patterns
and are without any physical attributes such as stretch, bending, and friction.
Therefore, generating garments with sewing patterns is a promising direction for
exploration. We leave these potential tasks to future works.
Conclusion. In this paper, we have presented an innovative approach for gen-
erating human avatars through our Sequentially Offset-SMPL (SO-SMPL) rep-
resentation from textual descriptions. To the best of our knowledge, our pipeline
is the first to produce avatars in a disentangled manner: first generate a hu-
man body mesh then a clothes mesh on top of it. The 3D avatars and clothes
generated by our pipeline exhibit remarkable diversity and high fidelity in both
texture and geometric detailing. They could also be easily utilized in CG soft-
ware for animation and simulation, thereby opening up exciting possibilities in
fields such as virtual reality, gaming, and digital fashion. Experiments demon-
strate that our pipeline outperforms existing text-to-3D generation methods in
texture&geometry quality, alignment with text descriptions, and animation qual-
ity.
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