

1 **Title**

2 Seasonal slow slip in landslides as a window into the frictional rheology of creeping shear
3 zones

4

5 **Authors**

6 Noah J. Finnegan^{1*}, Demian M. Saffer^{2,3}

7 **Affiliations**

8 ¹Department of Earth and Planetary Sciences, University of California, Santa Cruz; Santa
9 Cruz, CA, USA.

10 ²Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin,
11 Austin, TX, USA.

12 ³Department of Earth and Planetary Sciences, Jackson School of Geosciences, University
13 of Texas at Austin, Austin, TX, USA.

14
15 *Corresponding author. Email: nfinnega@ucsc.edu

16
17 **Abstract**

18 Whether Earth materials exhibit frictional creep or catastrophic failure is a crucial but
19 unresolved problem in predicting landslide and earthquake hazards. Here we show that
20 field-scale observations of sliding velocity and pore water pressure at two creeping
21 landslides are explained by velocity-strengthening friction, in close agreement with
22 laboratory measurements on similar materials. This suggests that the rate-strengthening
23 friction commonly measured in clay-rich materials may govern episodic slow slip in
24 landslides, in addition to tectonic faults. Further, our results show more generally that
25 transient slow slip can arise in velocity-strengthening materials from modulation of
26 effective normal stress through pore pressure fluctuations. This challenges the idea that
27 apparently velocity-strengthening materials fail only by steady creep, and that transient
28 slow slip phenomena require a specific and narrow range of extremely low stress and/or
29 transitional frictional properties near the stability threshold.

30

31 **Teaser**

32 Measurements of velocity and water pressure in two slow landslides illuminate the
33 mechanics of episodic slow frictional slip.

34

35 **MAIN TEXT**

36

37 **Introduction**

38 Landslides are triggered when shear stresses acting in the downhill direction are greater
39 than or equal to the shear strength resisting sliding within a hillslope. Assuming Coulomb
40 friction, this condition occurs when

41

$$\frac{\tau}{(\sigma+P)\mu+c'} \geq 1 \quad (1)$$

where τ is shear stress, σ is normal stress, P is pore fluid pressure (and $\sigma-P$ is effective normal stress), μ is the static coefficient of friction (equivalent to $\tan\phi$ in soil mechanics, where ϕ is the friction angle), and c' is effective cohesion. For rainfall triggered landslides, as well as many coseismic landslides, failure is primarily controlled by the evolution of pore water pressure in both space (1, 2) and time (3, 4). In addition, coseismic landslides can occur due to transient increases in τ relative to $(\sigma-P)$ resulting from the passage of seismic waves a (5).

As is the case for tectonic faulting and earthquakes, when the conditions in equation 1 are met, predicting whether landslide failure will occur catastrophically or by slow transient creep remains a basic, yet unresolved question in geomorphology and natural hazards research (6–8). At a fundamental level, this behavior is governed by the rheology of the slide material and failure plane; observations of landslide motion thus encode key information about the governing rheology. Mechanisms proposed to stabilize frictional sliding include clay swelling that increases lateral boundary friction during periods of high pore pressure (9); basal pore water pressure redistribution due to roughness (10); and perhaps most commonly the conceptual framework based on critical state soil mechanics that links stable (slow and quasi-continuous) landslide motion to shear-induced dilation of pore spaces. In this model, dilation reduces pore fluid pressure as sliding initiates, and hence increases effective normal stress and basal friction, serving to limit the slide's velocity by suppressing rapid runaway slip (6, 7, 11–13). Notably, dilatant strengthening has also been invoked to explain episodic slow slip events ("slow earthquakes") on tectonic faults (14) and along the beds of ice streams (13); however, in ice streams this process is arguably rare (15).

Rate-and-state friction is an empirically developed friction model that describes sliding friction in rock as well as a range of other materials, including some plastics, some metals, wood, and paper (16). The model, which is commonly applied to tectonic faults (16–18), provides a potentially powerful alternative approach to explain the rheology and predict the dynamics of landslides, including under what conditions rapid and catastrophic failure will occur (8, 19–21). For example, a challenge with dilatant strengthening is that for the mm- to cm- wide localized shear zones typical of slow landslides (22–24), dilation can only operate over a slip length scale that is comparable to the shear zone thickness itself before a critical state porosity is reached and catastrophic failure occurs (7). Yet this length scale is often orders of magnitude smaller than the decimeter to meter-scale annual displacements that are typical of many slow landslides (8), which suggests that dilatant strengthening might not provide a universal explanation for stable frictional creep in these systems. Indeed, widely observed frictional creep in experiments on clay-rich sediments and fault gouges (25–30) and on the shallow reaches of tectonic faults at temperatures and effective stresses similar to landslides (31–33) demonstrates that stable frictional sliding is possible without necessarily appealing to a dilatancy-pore fluid pressure feedback.

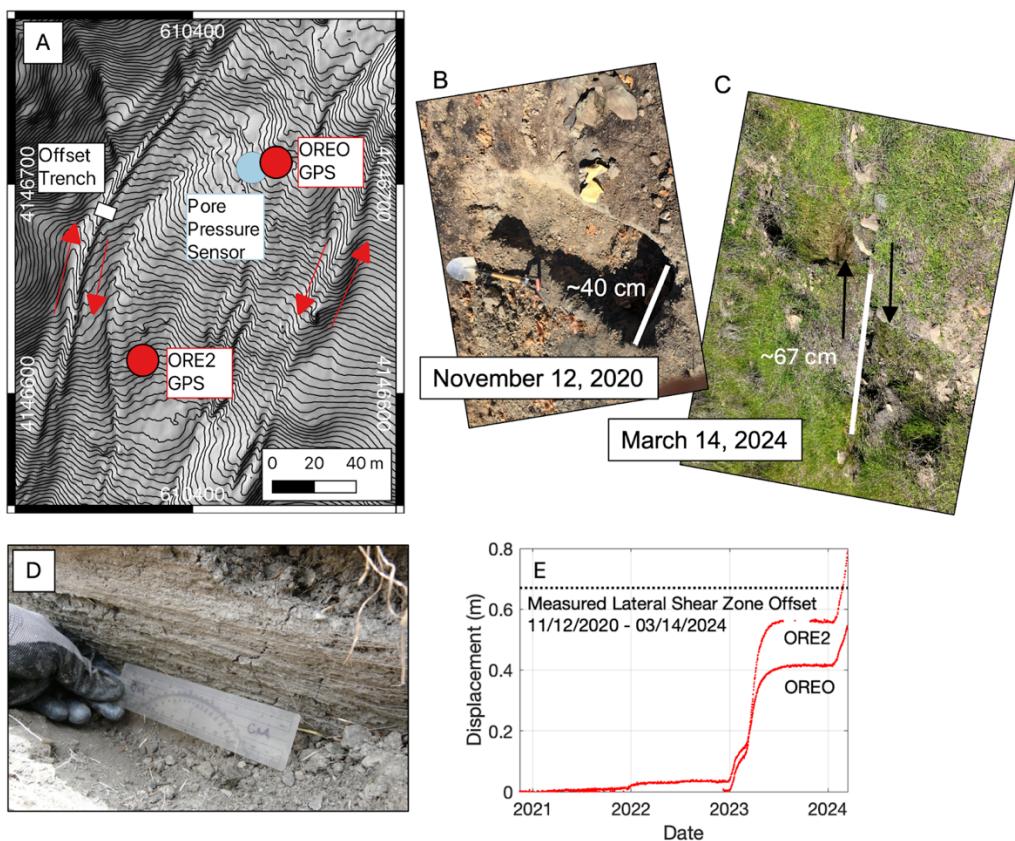
Below we show that field-scale observations of sliding velocity and pore water pressure at two creeping landslides are explained by velocity-strengthening friction, in close agreement with laboratory measurements on similar materials. In the rate-and-state friction framework, the steady state coefficient of sliding friction, μ_{ss} , varies logarithmically with the sliding velocity, V :

90
$$\mu_{ss} = \frac{\tau}{(\sigma - P)} = \mu_0 + (a - b) \ln \left(\frac{V}{V_0} \right) \quad (2)$$

91
 92 where τ is shear stress, σ is normal stress, and P is pore fluid pressure (and $\sigma - P$ is effective
 93 normal stress) (16–18). In equation 2, (a-b) defines the rate-dependence of friction, and
 94 governs the sensitivity of the coefficient of sliding friction to the sliding velocity, V
 95 (normalized to a reference velocity, V_0). Individually, the parameter (a) governs the
 96 magnitude of a transient so-called “direct effect,” in which the coefficient of sliding
 97 friction opposes acceleration due to dilation and a positive rate dependence of contact
 98 strength. The parameter (b), in turn, describes the so-called “evolution effect,” which is
 99 interpreted to reflect the evolution of the real area of frictional contact (i.e. at grain
 100 boundaries or asperities) following a perturbation in velocity. Extensive experimental
 101 evidence shows that (a-b), which mathematically expresses the competition between the
 102 processes described above, can be either positive or negative, depending on rock type,
 103 accumulated shear strain, and temperature, among other factors (16, 18, 25–30). In this
 104 framework, velocity-weakening, in which frictional resistance decreases with increasing
 105 sliding velocity and defined by negative values of ($a - b$), is a prerequisite for the
 106 nucleation of unstable slip (16). In contrast, in materials characterized by velocity
 107 strengthening behavior, defined by positive values of ($a - b$), failure is thought to arise
 108 only by stable sliding or slow creep. From the perspective of landslide failure, the fact that
 109 rocks can exhibit either velocity-weakening or velocity-strengthening behavior provides a
 110 possible mechanism to differentiate bedrock landslides that accelerate catastrophically
 111 from those that exhibit apparently stable frictional sliding (19). To the extent that this
 112 difference in behavior is governed by rock type (25–29), it also suggests that it may be
 113 possible to predict which landslides are prone to catastrophic acceleration on the basis of
 114 geologic mapping and measurable material properties.

115 Few detailed observations exist to test whether models developed for fault friction can
 116 also be applied to landslides, or even to more generally define the rheology of landslide
 117 failure planes over relevant spatial and temporal scales. To date, a few studies have used a
 118 rate-and-state framework to explain observations of transient landslide motion (19–21,
 119 34). Ref (8) argued that the small size of landslides relative to the critical nucleation
 120 length for dynamic elastic rupture means that many landslides may slide stably despite
 121 velocity weakening friction, essentially representing the initiation of unstable failure, but
 122 which is unable to grow beyond a slow nucleation phase (20). In support of this view,
 123 seismic tremor emanating from two patches on the base of the 2014 Askja caldera
 124 landslide prior to its catastrophic failure was interpreted to reflect velocity weakening
 125 patches on the bed of the landslide that were below the critical nucleation length for
 126 dynamic elastic rupture (21). Alternatively, landslide deceleration in other settings
 127 following stress perturbations has been interpreted as evidence that ($a - b$) must be
 128 positive (19, 34). Because all of these studies consider transient landslide dynamics in one
 129 way or another, they require independent fitting of at least three parameters: a , b , and D_c ,
 130 the critical length-scale associated with refreshing frictional asperities, as well as in one
 131 case assumptions about the elastic properties of landslide materials (20). Additionally, in
 132 two of the studies (19, 34) no information was available to constrain pore fluid pressures,
 133 requiring the further assumption of constant effective normal stress.

134
 135 **Slow Landslides as Field-Scale Rock Friction Experiments**


136 Because many slow landslides undergo seasonal cycles of acceleration and deceleration
137 that reveal tight coupling between pore pressure (and thus effective stress) and slide
138 velocity - at low enough sliding velocities that inertial effects are negligible - treatment of
139 these systems as steady-state failure is appropriate (31–34). At the same time, the large
140 saturated hydraulic diffusivity ($\sim 10^{-4} \text{ m}^2/\text{s}$) (39–41) of many slow landslides, including
141 Oak Ridge earthflow which we use in our analysis below, results in rapid (< 1 day)
142 response times of landslide velocity (and hence basal effective stress) to rainfall induced
143 pore fluid pressure pulses (39), suggesting that an assumption of hydrologic steady-state is
144 also appropriate for the timescales considered here. For these reasons, here we adopt a
145 steady-state perspective on landslide friction to investigate the role of rate-and-state
146 frictional rheology in explaining their observed motion.

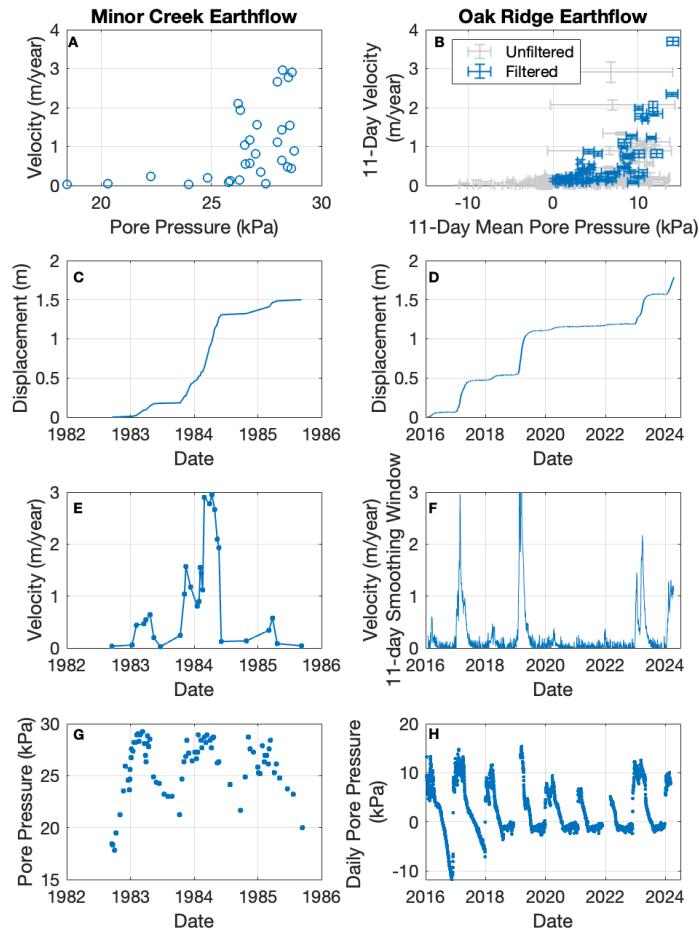
147
148 We solve for ($a - b$) in equation 2 directly, using displacement and pore fluid pressure
149 measurements from two slow-moving landslides, Oak Ridge earthflow (39) and Minor
150 Creek earthflow (42), in California's coast ranges. Constraints on both the shear and
151 normal stress from field measurements (Materials and Methods) represent a novel
152 opportunity to probe landslide frictional rheology, because they allow consideration of
153 velocity as a function of the coefficient of sliding friction (or vice-versa; c.f. equation 2).
154 Implicit in this treatment of the data is the fact that when in motion, the ratio $\tau/(\sigma\cdot P)$ at the
155 slip surface represents the coefficient of sliding friction because the slip surface is at a
156 state of failure and sliding. In comparison, in laboratory experiments designed to probe the
157 frictional rheology of Earth materials, the dependence of shear strength on sliding velocity
158 is typically investigated via a controlled velocity boundary condition and measurement of
159 the resulting friction coefficient (18). Here, we treat the two landslides as field-scale
160 experiments to obtain constraints on frictional behavior by approaching the problem in
161 reverse - with variations in velocity driven by changes in $\tau/(\sigma\cdot P)$, and by measuring the
162 corresponding sliding velocity.

163 164 Geologic and Geomorphic Setting

165 California's Franciscan mélange is an assemblage of variably deformed and
166 metamorphosed rock units formed as part of the accretionary wedge in a subduction zone
167 during the Mesozoic and early Cenozoic eras (43). Franciscan mélange is a block-in-
168 matrix lithology, with a matrix of clay- and silt-stones containing blocks of more
169 competent lithologies, including sandstone, chert, greenstone, and blueschist that range
170 widely in size. The formation has been exhumed and uplifted in the California coast
171 ranges, where it is well known for hosting slow landslides (23, 44). Soil cover is usually
172 very thin ($\sim 10 \text{ cm}$) above the Franciscan mélange and its vadose zone structure is
173 characterized by a thin ($< 3 \text{ m}$) seasonally unsaturated zone of weathered mudstone
174 mélange overlying perennially saturated, unweathered mudstone mélange (39, 45). The
175 matrix of the unweathered Franciscan mélange exhibits a combination of low shear
176 strength, as constrained from laboratory determinations of drained shear strength from
177 Oak Ridge earthflow's lateral shear margin (friction angle, $\Phi = 12^\circ\text{--}14^\circ$) (46) and low
178 hydraulic conductivity, $10^{-6}\text{--}10^{-10} \text{ m/s}$, as constrained by slug tests at Minor Creek (42)
179 and permeameter measurements at Oak Ridge (38). Details about the pore pressure and
180 deformation monitoring for Minor Creek Earthflow are reported in (42) and outlined in the
181 Materials and Methods. We use the basal pore pressure and deformation data from Minor
182 Creek that are distilled in (7). Details about the pore pressure and deformation monitoring
183 at Oak Ridge earthflow are reported in (39) and in the Materials and Methods. We use

184
185
186
187
188 pore pressure data from a 2.5 m deep piezometer at Oak Ridge, and landslide
displacement is quantified via extensometers and GPS. Figure 1A shows the network of
GPS stations, extensometers, and the pore fluid pressure sensor used below, which is also
described in more detail in the Materials and Methods.

189
190 **Fig. 1. Landslide Shear Zones and Localized Slip** (A) 1-m LiDAR-derived contour map of the
191 “transport zone” of Oak Ridge earthflow showing the placement of instrumentation used here. The
192 white rectangle indicates the location of the photos in (B) and (C). Coordinates are in UTM Zone
193 10N. (B-C) Offset of a trench excavated across the lateral shear margin at the location of the white
194 rectangle between November 2020 and March 2024. (D) Offset measured in the hole (C)
195 compared to measured GPS displacement upslope and downslope over the same time interval that
196 is spanned by the photos in (B) and (C). (E) Slickenlines observed along the western shear zone in
197 spring, 2017.


198

199 Results

200 Slip Localization in Earthflow Shear Zones

201 Despite their name and appearance, earthflows like Oak Ridge and Minor Creek translate
202 primarily via sliding along discrete failure surfaces rather than through internal
203 deformation ([9, 22, 23](#)). We provide specific evidence of this localization from Oak Ridge
204 earthflow, as a well-studied example. Figures 1B-C show a ~ 0.4 m wide trench excavated
205 across the western lateral shear margin of Oak Ridge in November, 2020 that recorded ~
206 0.67 m of offset as of April, 2024 along a narrow band that is typical of observations of
207 earthflow sliding at other locations ([22, 23](#)). The trench is located downslope of the
208 OREO GPS antenna and upslope of the ORE2 GPS antenna, respectively (Figure
209 1A). The magnitude of recorded offset in the trench is bracketed by the displacement
210 measured at the two GPS stations over the time interval spanned by the photos in B and C,
211 ~ 0.54 m at OREO and 0.79 m at ORE2 (Figure 1D), illustrating that all of the

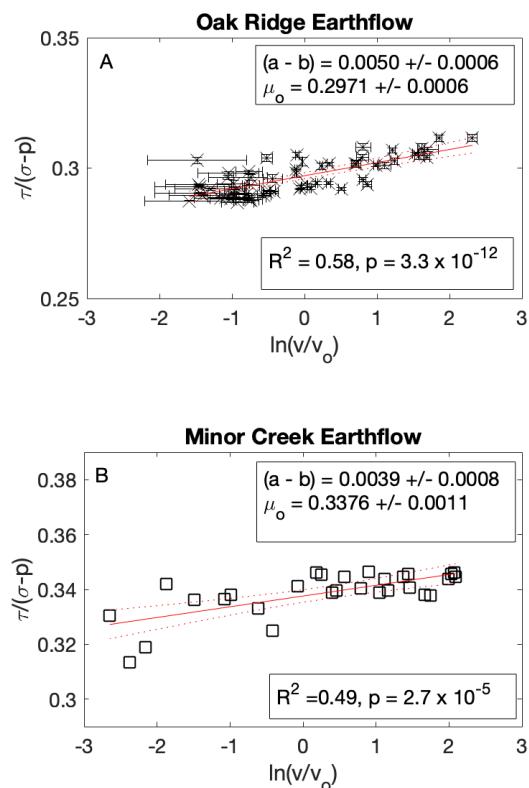

displacement measured in the landslide center can be accounted for within the offset observed along the narrow lateral shear margin. Finally, evidence for localization is also apparent from slickenlines observed along the same shear zone (Figure 1E) shown in Figure 1C. In further support of shear localization at Oak Ridge, comparison of extensometers that span the western shear margin to the internal GPS antennas in parallel positions (OREO and ORE2) show similar magnitude and timing of displacement (47). In summary, field observations and geodetic measurements show that there is little internal deformation currently observed within Oak Ridge earthflow. Rather, deformation is localized along a thin shear zone. While our observations do not directly constrain basal landslide deformation, the close agreement of lateral and internal displacement (Figure 1B-E) suggests that the lateral shear margin is continuous with the basal shear zone, which is only 8-10 m below the surface (38). This interpretation is also supported by electrical resistivity tomography at Oak Ridge (38).

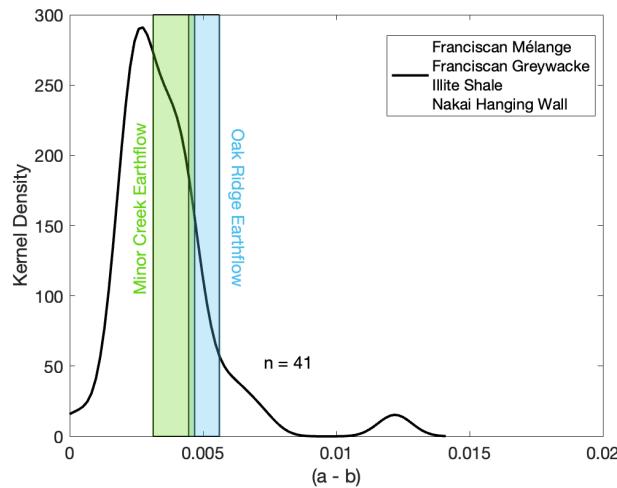
Fig. 2. Seasonal landslide slow slip events driven by pore fluid pressure (A) Estimated shear zone pore pressure, (C) Extensometer displacement, (E) Velocity, and (G) velocity as a function of pore fluid pressure for Minor Creek earthflow from 1982-1986. (B) Velocity averaged over a 10-day window versus 10-day mean pore pressure at 2.5 m depth for Oak Ridge earthflow. The error bars represent the standard error for the calculated velocity and the standard deviation of the 10-day mean pore pressure, respectively. The gray points represent those data points that were discarded in our analysis because either the estimated velocity was less than twice the standard error on the velocity or the pressure recorded was negative, as described in detail in Methods and Materials. (D) GPS-derived horizontal displacement, (F) Horizontal velocity calculated over a 10 day window, and (H) daily pore pressure at 2.5 m depth for Oak Ridge earthflow from 2016-2023.

Seasonal Slow Landslide Slip Events

239 Fig. 2 shows temporal patterns of pore pressure (C, D), displacement (D, E), and velocity
 240 (F, G) for the Minor Creek and Oak Ridge earthflows. Landslide displacement episodes
 241 are highly seasonal at each location (Fig. 2, B to E), and are driven by winter increases in
 242 pore fluid pressure (Fig. 2, A and B) in California's Mediterranean climate where rainfall
 243 is concentrated from November to April. The velocity of both slides varies systematically
 244 and non-linearly with pore pressure (Fig. 1, A and B), as has been observed at Oak Ridge
 245 earthflow (38), as well as at other slow moving landslides (35–37). This observation
 246 embeds information about the rheology that controls slide motion - and particularly its
 247 dependence on effective stress as modulated by pore pressure.

250 **Fig. 3. Sensitivity of landslide friction to velocity.** Ratio of shear stress to effective normal stress
 251 (σ_{ss}) plotted as a function of the natural log of landslide velocity normalized by a reference
 252 velocity, $\ln(V/V_o)$, for (A) Oak Ridge earthflow and (B) Minor Creek earthflow. The error bars
 253 for the effective stress reflect ± 1 standard deviation of the daily pore pressure measured during
 254 the 10-day window over which velocity was measured. Similarly, the uncertainty in velocity
 255 reflects the standard error on the slope of the linear regression to the GPS-derived horizontal
 256 displacement over the 10-day averaging window. For Minor Creek, velocities are computed for
 257 every measurement of displacement. Regression lines (solid red) and 95% confidence intervals
 258 (dotted red) are shown in both (A) and (B). V_o in both A and B is 1 m/yr.

Velocity Dependence of Landslide Friction

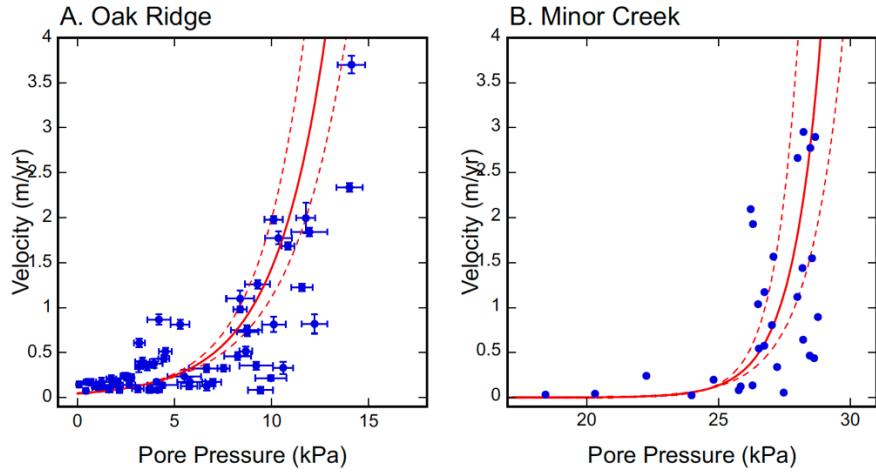

260 In Fig. 3 we provide an assessment of the suitability of the rate-and-state formulation in
 261 describing the field observations, and define the velocity dependence via solution of
 262 equation 1 through linear regression of steady-state landslide friction at the two locations.
 263 Fig 3. shows that the data are well-fit with equation 1 (Minor Creek: $R^2 = 0.49$, $p = 2.8 \times$

265 10^{-5} ; Oak Ridge: $R^2 = 0.58$, $p = 3.3 \times 10^{-12}$) and exhibit (within uncertainty) nearly
266 identical velocity-strengthening behavior. $(a - b) = 0.0050 \pm 0.0006$ at Oak Ridge and
267 0.0039 ± 0.0008 at Minor Creek.

269 Discussion

270 Rate-and-State Friction as a Prospective Mechanism to Explain Frictional Creep in 271 Slow Landslides

272 In the Coast Ranges of California, the seasonal dynamics of slow landslides are strongly
273 correlated (48, 49). Because the apparent velocity sensitivity of friction at Oak Ridge
274 earthflow and Minor Creek earthflow is also nearly identical, it is natural to ask if
275 velocity-strengthening rate-and-state friction provides a mechanism to explain the
276 widespread, correlated landslide creep observed within the clay-rich exhumed subduction
277 mélange in California. The observation that the data in Fig. 3 (A and B) are well fit with a
278 linear relationship, by itself, suggests that the answer to this question is yes. In contrast,
279 the steady-state dilatant strengthening model (7) predicts a linear relationship between
280 shear zone pore fluid pressure and sliding velocity, a relationship that is not supported by
281 the data (Fig. 1 G and H Fig. 2 A and B).



283
284
285 **Fig. 4. Comparison of field-derived and experimentally derived friction.** $(a - b)$ calculated for
286 Oak Ridge and Minor Creek earthflows in Figure 3 compared to 17 laboratory determinations of
287 $(a - b)$ for Franciscan mélange (50, 51), Franciscan Graywacke (50), Illite Shale (25), and hanging
288 wall mudstones from the Nankai subduction zone (52).

290 Comparing Landslide Friction to Laboratory Measurements of Fault Friction in 291 Similar Rock Types

292 A further and arguably more compelling test of whether rate-and-state friction governs the
293 velocity strengthening behavior of Oak Ridge earthflow and Minor Creek earthflow is to
294 compare the fits of $(a - b)$ in Fig. 3 (A and B) to experimental rock friction data for the
295 same and similar lithologies. We focus our comparisons on low-temperature friction
296 experiments performed on Franciscan mélange and on rocks and marine sediments that are
297 compositionally similar to the clay-rich mélange matrix. Because slow landslide motion
298 more generally is associated with clay rich rocks (8), experimental friction data from

relevant, and similar, clay-rich lithologies may also provide insight into the rheology of slow landslides elsewhere. Figure 4 shows that the values of $(a - b)$ that we fit in Fig. 3 are statistically indistinguishable from values of $(a - b)$ from room-temperature rock friction experiments on Franciscan mélange (50, 51), Franciscan graywacke (50), illitic shale (25), and hanging wall mudstones from the Nankai subduction zone that represent a modern environment analogous to the Franciscan matrix of the Coast Ranges (52).

Figure 5. Modulation of velocity by pore fluid pressure. Velocity versus pore fluid pressure at (A) Oak Ridge and (B) Minor Creek earthflows along with the relationship between those variables obtained from solving the fit to equation 1 for velocity and then plotting as a function of pore fluid pressure. Uncertainty envelopes reflect propagation of the uncertainties in $(a - b)$ and μ_0 from the fits shown in Fig. 3.

Slow Landslides as Episodic Slow Slip Events in which Velocity is Modulated by Pore Fluid Pressure

Significantly, our results show that transient - but slow - slip may arise in velocity strengthening materials simply due to modulation of the effective normal stress via pore pressure fluctuations. This fact is clearly demonstrated by solving equation 2 for velocity and then plotting predicted and observed velocity for Oak Ridge and Minor Creek earthflows as a function of pore fluid pressure (Fig. 5, A and B). The strong coupling between velocity and pore pressure observed and predicted by velocity-strengthening friction at both Minor Creek and Oak Ridge earthflows contrasts with the widely held idea that apparently velocity-strengthening materials can only fail by steady creep - and therefore that emergent slow creep transients, including slow slip events and associated slow earthquake phenomena observed in a wide range of settings globally fundamentally require a specific and narrow range of extremely low stress and/or transitional frictional properties near the stability threshold, and/or pore fluid pressure feedbacks that suppress acceleration to rapid slip (e.g., 14, 53, 54).

In previous work, asynchronous stick-slip events recently observed at small scales within Oak Ridge earthflow were interpreted as arising from failure of small velocity-weakening patches that are loaded elastically by motion of a surrounding velocity strengthening shear zone (47), a mechanism similar to that proposed for tremor that accompanies slow slip events on tectonic faults (55). Our results support this interpretation of slip plane processes by demonstrating that the bulk (effective) frictional behavior of Franciscan

334 mélange at the field scale is well-explained with rate-strengthening friction, as also
335 documented in laboratory friction measurements of both the mélange matrix and clay-rich
336 lithologies more generally. This is strikingly similar to the paired observations of
337 emergent shallow slow slip events associated with tremor in modern subduction zones (33,
338 55), and laboratory frictional properties indicating velocity strengthening behavior of
339 relevant fault rocks and protolith sediments in these environments (52, 55).

340 Finally, we acknowledge that while the simple rate-state formulation provides a good fit to
341 the data from Oak Ridge and Minor Creek and thus provides a viable mechanism to
342 explain the observed creeping behavior and dependence on pore fluid pressure, the fit is
343 not perfect. An obvious limitation of our data, and one that could easily explain the
344 observed scatter, is the fact that our measurements of pore fluid pressure reflect point
345 measurements that may not perfectly capture the average pore pressure conditions at the
346 scale of the entire landslide mass. While investigating this and other potential sources of
347 the scatter in the relationship between velocity and pore fluid pressure observed at Oak
348 Ridge and Minor Creek is a worthy goal, it remains beyond the scope of the current work,
349 which aims to investigate the first-order patterns in the relationship between pore fluid
350 pressure and velocity that is apparent in Figure 5 and Figure 2.

352 Implications for Predicting Landslide Hazard

353 Our results also provide a physically-based and experimentally verifiable explanation for
354 landslide creep. In short, the inherently rate strengthening behavior of clay-rich shear
355 zones (e.g., 25) can explain the behavior of slow landslides developed in Franciscan
356 mélange. This suggests that it may be possible to predict which landslides are prone to
357 catastrophic acceleration on the basis of paired geologic mapping and laboratory
358 measurements of material properties. For example, creeping landslides revealed by
359 synthetic aperture radar interferometry (InSAR) in the western U.S. are commonly
360 associated with surface exposures of clay-rich subduction mélange (48, 49). Where these
361 rocks transition to quartz-rich turbiditic sandstones to the north, evidence for creeping
362 landslides largely disappears, although evidence for landsliding is still ubiquitous in the
363 topography (50). This potential lithologic control on the style of landslide failure is
364 striking and raises the possibility that fundamental differences in landslide behavior - and
365 hazard - in these two settings could be controlled by the frictional properties of the
366 contrasting lithologies in the two settings, a hypothesis which is eminently testable
367 through targeted experiments.

368 Materials and Methods

369 Deformation Monitoring

370 Deformation monitoring at Oak Ridge for this study consists of two Trimble NetR9 GPS
371 receivers with Zephyr antennas bolted to large boulders spaced ~100 m apart along the
372 axis of the most active part of the slide (Figure 1A). GPS data are telemetered to and first
373 processed by Earthscope Consortium and then subsequently post-processed at the Nevada
374 Geodetic Laboratory (57). We use locations in the IGS14 reference frame, which we
375 convert to daily landslide displacement by removing horizontal plate tectonic motion in
376 the IGS14 reference frame by using data from a nearby permanent GPS station (P227)
377 installed on a stable slope on the same side of the actively creeping Calaveras fault as Oak
378 Ridge earthflow.

381 **Pore Pressure Monitoring**

382 Our pore pressure measurements come from a grouted vibrating-wire piezometers (RST
383 Instruments, model VW2100-0.07) colocated with the OREO GPS antenna, at a depth of
384 2.5 m (Figure 1A). Piezometer accuracy is 0.07 kPa with a precision of 0.0175 kPa.
385 Piezometer readings, collected every 10 min, were corrected for changes in ground
386 temperature via a calibration from the manufacturer. The landslide failure planes at Oak
387 Ridge and Minor Creek are perennially saturated, however landslide motion at both
388 locations occurs only when the water table rises close to the ground surface and the entire
389 landslide body above the failure plane is also near saturation (39, 42). At Oak Ridge
390 earthflow, high temporal resolution monitoring of pore pressure and landslide motion
391 reveals that when the landslide body is near saturation, pore fluid pressure pulses travel to
392 the base of the ~ 8 m landslide nearly instantaneously, with no observable lag or
393 attenuation, and cause landslide acceleration within ~ 1 day of rainfall events (39). This
394 implies a relatively large hydraulic diffusivity of the slide mass and shear zone together (~
395 $10^4 \text{ m}^2/\text{s}$) and a well-connected hydrogeologic system, and indicates that piezometers at
396 intermediate depths in the landslide constrain the amplitude of pressure pulses that reach
397 the landslide shear zone. For this reason, we use pore pressure data for Oak Ridge
398 earthflow from a 2.5 m depth vibrating wire piezometer that correlates strongly with the
399 GPS-derived velocity (39). For Minor Creek we use the basal pore pressure record
400 inferred in (7) directly, which also comes from an intermediate depth piezometer.

401

402 **Calculating the Ratio of Shear Stress to Effective Normal Stress, $\frac{\tau}{(\sigma-P)}$**

403 Because motion of the landslide occurs close to saturated conditions, we follow (7) and do
404 not attempt to model the accretion of a water table, but instead assume all changes in pore
405 fluid pressure at the landslide shear zone base are related to pulses of pore fluid pressure
406 that are generated at the landslide surface and propagate vertically (39). Accordingly, the
407 ratio of shear stress, τ , to effective normal stress, $(\sigma - P)$, at the base of Oak Ridge
408 earthflow (the left hand side of equation 2), is given by:

409

$$410 \frac{\tau}{(\sigma-P)} = \frac{\rho_{sat}gh \sin \theta}{(\rho_{sat}gh \cos \theta - P)} \quad (3)$$

411

412 where ρ_{sat} is the saturated density of the landslide, θ is the slope of the landslide failure
413 surface, h is the depth of the landslide, and P is pore fluid pressure in the landslide shear
414 zone.

415 We use the OREO GPS antenna (39) to calculate the 3D displacement and velocity for
416 Oak Ridge earthflow between 2016 and 2024. We experimented with different time
417 windows for calculating velocity from daily displacement, and ultimately settled on a
418 window of 11 days, which provides a compromise between the noise inherent in GPS
419 velocity obtained over shorter time intervals, and smoothing of the real temporal
420 variability of interest to this study over longer time intervals. Additionally, we discarded
421 velocity estimates where the estimated velocity was less than twice the standard error on
422 the velocity calculated over 11-days. We also discarded data points with either negative
423 velocities or negative pore pressures that reflect matric suction under conditions of low
424 moisture content when the piezometer is above the water table and the pore fluid pressure
425 is therefore poorly constrained (39). This condition only occurs during the summer when

426 the landslide is not active (Fig. 2B,D,F,G). Finally, we discarded points where the pore
427 pressure changed substantially during the 11-day window over which velocity was
428 calculated, as a large change in pore pressure is not consistent with the steady-state
429 assumption in equation 2. We selected a cutoff of 1 kPa for an acceptable standard
430 deviation of pore pressure within the 11-day window. Figure 2B shows the relationship
431 between pore fluid pressure and velocity for the windowed data before and after the above
432 filtering exercise.

433 For each filtered velocity measurement, we then calculated the standard deviation of the
434 measured pore pressure within the 11-day window, which we propagated through the
435 calculation of equation 3 in order to place uncertainty bounds on reported values of $(-P)$.
436 For Minor Creek we use measurements of displacement that were made 21 times over 3
437 years between 1982 and 1985 using wire line extensometers (42). Table S1 provides the
438 data required to calculate equation 3, along with pore pressure (Table S2, S3), for both
439 Minor Creek earthflow and Oak Ridge earthflow.

441 References

1. J. P. Perkins, M. E. Reid, K. M. Schmidt, Control of landslide volume and hazard by glacial stratigraphic architecture, northwest Washington State, USA. *Geology* **45**, 1139–1142 (2017).
2. M. E. Reid, R. M. Iverson, Gravity-driven groundwater flow and slope failure potential: Effects of slope morphology, material properties, and hydraulic heterogeneity. *Water Resour. Res.* **28**, 939–950 (1992).
3. R. M. Iverson, Landslide triggering by rain infiltration. *Water Resour. Res.* **36**, 1897–1910 (2000).
4. M. E. Reid, A Pore-Pressure Diffusion Model for Estimating Landslide-Inducing Rainfall. *J. Geol.* **102**, 709–717 (1994).
5. N. M. Newmark, Effects of Earthquakes on Dams and Embankments. *Géotechnique* **15**, 139–160 (1965).
6. R. M. Iverson, M. E. Reid, N. R. Iverson, R. G. LaHusen, M. Logan, J. E. Mann, D. L. Brien, Acute sensitivity of landslide rates to initial soil porosity. *Science* **290**, 513–516 (2000).
7. R. M. Iverson, Regulation of landslide motion by dilatancy and pore pressure feedback. *J. Geophys. Res.* **110**, F02015 (2005).
8. P. Lacroix, A. L. Handwerger, G. Bièvre, Life and death of slow-moving landslides. *Nat. Rev. Earth Environ.* **1**, 404–419 (2020).
9. W. H. Schulz, J. B. Smith, G. Wang, Y. Jiang, J. J. Roering, Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling. *Geophys. Res. Lett.* **45**, 1888–1896 (2018).
10. R. L. Baum, A. M. Johnson, Steady movement of landslides in fine-grained soils: a model for sliding over an irregular slip surface. *Landslide Process. Utah Obs. Theory* (1993).
11. F. Agliardi, M. M. Scuderi, N. Fusi, C. Collettini, Slow-to-fast transition of giant creeping rockslides modulated by undrained loading in basal shear zones. *Nat. Commun.* **11**, 1–11 (2020).

471 12. J. M. Carey, C. I. Massey, B. Lyndsell, D. N. Petley, Displacement mechanisms of
472 slow-moving landslides in response to changes in porewater pressure and dynamic stress.
473 *Earth Surf. Dyn.* **7**, 707–722 (2019).

474 13. P. L. Moore, N. R. Iverson, Slow episodic shear of granular materials regulated by
475 dilatant strengthening. *Geology* **30**, 843–846 (2002).

476 14. P. Segall, A. M. Rubin, A. M. Bradley, J. R. Rice, Dilatant strengthening as a
477 mechanism for slow slip events. *J. Geophys. Res. Solid Earth* **115** (2010).

478 15. N. R. Iverson, Shear resistance and continuity of subglacial till: hydrology rules. *J.*
479 *Glaciol.* **56**, 1104–1114 (2010).

480 16. C. H. Scholz, Earthquakes and friction laws. *Nature* **391**, 37–42 (1998).

481 17. J. H. Dieterich, “A Model for the Nucleation of Earthquake Slip” in *Earthquake*
482 *Source Mechanics* (American Geophysical Union (AGU), 1986;
483 <https://onlinelibrary.wiley.com/doi/abs/10.1029/GM037p0037>), pp. 37–47.

484 18. C. Marone, Laboratory-Derived Friction Laws and Their Application to Seismic
485 Faulting. *Annu. Rev. Earth Planet. Sci.* **26**, 643–696 (1998).

486 19. A. Helmstetter, D. Sornette, J.-R. Grasso, J. V. Andersen, S. Gluzman, V. Pisarenko,
487 Slider block friction model for landslides: Application to Vajont and La Clapière
488 landslides. *J. Geophys. Res. Solid Earth* **109** (2004).

489 20. A. L. Handwerger, A. W. Rempel, R. M. Skarbek, J. J. Roering, G. E. Hilley, Rate-
490 weakening friction characterizes both slow sliding and catastrophic failure of landslides.
491 *Proc. Natl. Acad. Sci.* **113**, 10281–10286 (2016).

492 21. A. Schöpa, W.-A. Chao, B. P. Lipovsky, N. Hovius, R. S. White, R. G. Green, J. M.
493 Turowski, Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic
494 signal analysis: precursor, motion and aftermath. *Earth Surf. Dyn.* **6**, 467–485 (2018).

495 22. D. K. Keefer, A. M. Johnson, “Earth flows; morphology, mobilization, and
496 movement” (USGS Numbered Series 1264, U.S. G.P.O., 1983);
497 <http://pubs.er.usgs.gov/publication/pp1264>.

498 23. B. H. Mackey, J. J. Roering, Sediment yield, spatial characteristics, and the long-term
499 evolution of active earthflows determined from airborne LiDAR and historical aerial
500 photographs, Eel River, California. *GSA Bull.* **123**, 1560–1576 (2011).

501 24. A. L. Nerson, N. J. Finnegan, Drivers of earthflow motion revealed by an 80 yr
502 record of displacement from Oak Ridge earthflow, Diablo Range, California, USA. *GSA*
503 *Bull.* **131**, 389–402 (2019).

504 25. M. J. Ikari, D. M. Saffer, C. Marone, Frictional and hydrologic properties of clay-rich
505 fault gouge. *J. Geophys. Res. Solid Earth* **114**, B05409 (2009).

506 26. M. J. Ikari, C. Marone, D. M. Saffer, On the relation between fault strength and
507 frictional stability. *Geology* **39**, 83–86 (2011).

508 27. M. J. Ikari, D. M. Saffer, C. Marone, Effect of hydration state on the frictional
509 properties of montmorillonite-based fault gouge. *J. Geophys. Res. Solid Earth* **112** (2007).

510 28. B. M. Carpenter, C. Marone, D. M. Saffer, Weakness of the San Andreas Fault
511 revealed by samples from the active fault zone. *Nat. Geosci.* **4**, 251–254 (2011).

512 29. B. M. Carpenter, D. M. Saffer, C. Marone, Frictional properties and sliding stability of
513 the San Andreas fault from deep drill core. *Geology* **40**, 759–762 (2012).

514 30. D. R. Faulkner, T. M. Mitchell, J. Behnsen, T. Hirose, T. Shimamoto, Stuck in the
515 mud? Earthquake nucleation and propagation through accretionary forearcs. *Geophys.*
516 *Res. Lett.* **38** (2011).

517 31. A. T. Linde, M. T. Gladwin, M. J. S. Johnston, R. L. Gwyther, R. G. Bilham, A slow
518 earthquake sequence on the San Andreas fault. *Nature* **383**, 65–68 (1996).

519 32. L. M. Wallace, S. C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S. Y. Schwartz,
520 A. F. Sheehan, Slow slip near the trench at the Hikurangi subduction zone, New Zealand.
521 *Science* **352**, 701–704 (2016).

522 33. E. Araki, D. M. Saffer, A. J. Kopf, L. M. Wallace, T. Kimura, Y. Machida, S. Ide, E.
523 Davis, IODP EXPEDITION 365 SHIPBOARD SCIENTISTS, Recurring and triggered
524 slow-slip events near the trench at the Nankai Trough subduction megathrust. *Science* **356**,
525 1157–1160 (2017).

526 34. P. Lacroix, H. Perfettini, E. Taipe, B. Guillier, Coseismic and postseismic motion of a
527 landslide: Observations, modeling, and analogy with tectonic faults. *Geophys. Res. Lett.*
528 **41**, 6676–6680 (2014).

529 35. J.-P. Malet, O. Maquaire, E. Calais, The use of Global Positioning System techniques
530 for the continuous monitoring of landslides: application to the Super-Sauze earthflow
531 (Alpes-de-Haute-Provence, France). *Geomorphology* **43**, 33–54 (2002).

532 36. J. A. Coe, W. L. Ellis, J. W. Godt, W. Z. Savage, J. E. Savage, J. A. Michael, J. D.
533 Kibler, P. S. Powers, D. J. Lidke, S. Debray, Seasonal movement of the Slumgullion
534 landslide determined from Global Positioning System surveys and field instrumentation,
535 July 1998–March 2002. *Eng. Geol.* **68**, 67–101 (2003).

536 37. J. Corominas, J. Moya, A. Ledesma, A. Lloret, J. A. Gili, Prediction of ground
537 displacements and velocities from groundwater level changes at the Vallcebre landslide
538 (Eastern Pyrenees, Spain). *Landslides* **2**, 83–96 (2005).

539 38. C. R. Murphy, N. J. Finnegan, F. K. J. Oberle, Vadose Zone Thickness Limits Pore-
540 Fluid Pressure Rise in a Large, Slow-Moving Earthflow. *J. Geophys. Res. Earth Surf.* **127**,
541 e2021JF006415 (2022).

542 39. N. J. Finnegan, J. P. Perkins, A. L. Nereson, A. L. Handwerger, Unsaturated Flow
543 Processes and the Onset of Seasonal Deformation in Slow-Moving Landslides. *J.*
544 *Geophys. Res. Earth Surf.* **126**, e2020JF005758 (2021).

545 40. M. Berti, A. Simoni, Field evidence of pore pressure diffusion in clayey soils prone to
546 landsliding. *J. Geophys. Res. Earth Surf.* **115** (2010).

547 41. R. L. Baum, M. E. Reid, “Geology, hydrology and mechanics of the Alani-Paty
548 Landslide, Manoa Valley, Oahu, Hawaii” (92–501, U.S. Geological Survey, 1992);
549 <https://doi.org/10.3133/ofr92501>.

550 42. R. M. Iverson, J. J. Major, Rainfall, ground-water flow, and seasonal movement at
551 Minor Creek landslide, northwestern California: Physical interpretation of empirical
552 relations. *GSA Bull.* **99**, 579–594 (1987).

553 43. J. Wakabayashi, Anatomy of a subduction complex: architecture of the Franciscan
554 Complex, California, at multiple length and time scales. *Int. Geol. Rev.* **57**, 669–746
555 (2015).

556 44. H. M. Kelsey, Earthflows in Franciscan melange, Van Duzen River basin, California.
557 *Geology* **6**, 361–364 (1978).

558 45. W. J. Hahm, D. M. Rempe, D. N. Dralle, T. E. Dawson, S. M. Lovill, A. B. Bryk, D.
559 L. Bish, J. Schieber, W. E. Dietrich, Lithologically Controlled Subsurface Critical Zone
560 Thickness and Water Storage Capacity Determine Regional Plant Community
561 Composition. *Water Resour. Res.* **55**, 3028–3055 (2019).

562 46. A. L. Nereson, S. D. Olivera, N. J. Finnegan, Field and Remote-Sensing Evidence for
563 Hydro-mechanical Isolation of a Long-Lived Earthflow in Central California. *Geophys.*
564 *Res. Lett.* **45**, 9672–9680 (2018).

565 47. N. J. Finnegan, E. E. Brodsky, H. M. Savage, A. L. Nereson, C. R. Murphy, Seasonal
566 Slow Landslide Displacement Is Accommodated by mm-Scale Stick-Slip Events.
567 *Geophys. Res. Lett.* **49**, e2022GL099548 (2022).

568 48. A. L. Handwerger, E. J. Fielding, S. S. Sangha, D. P. S. Bekaert, Landslide Sensitivity
569 and Response to Precipitation Changes in Wet and Dry Climates. *Geophys. Res. Lett.* **49**,
570 e2022GL099499 (2022).

571 49. Y. Xu, W. H. Schulz, Z. Lu, J. Kim, K. Baxstrom, Geologic controls of slow-moving
572 landslides near the US West Coast. *Landslides* **18**, 3353–3365 (2021).

573 50. C. A. Morrow, D. E. Moore, D. A. Lockner, “Dependence of frictional strength on
574 compositional variations of Hayward fault rock gouges” (2010–1184, U.S. Geological
575 Survey, 2010); <https://doi.org/10.3133/ofr20101184>.

576 51. D. E. Moore, D. A. Lockner, S. Hickman, Hydrothermal frictional strengths of rock
577 and mineral samples relevant to the creeping section of the San Andreas Fault. *J. Struct.*
578 *Geol.* **89**, 153–167 (2016).

579 52. M. J. Ikari, D. M. Saffer, Comparison of frictional strength and velocity dependence
580 between fault zones in the Nankai accretionary complex. *Geochem. Geophys. Geosystems*
581 **12** (2011).

582 53. R. M. Skarbek, A. W. Rempel, D. A. Schmidt, Geologic heterogeneity can produce
583 aseismic slip transients. *Geophys. Res. Lett.* **39**, L21306 (2012).

584 54. A. M. Rubin, Episodic slow slip events and rate-and-state friction. *J. Geophys. Res.*
585 *Solid Earth* **113** (2008).

586 55. R. Bürgmann, The geophysics, geology and mechanics of slow fault slip. *Earth*
587 *Planet. Sci. Lett.* **495**, 112–134 (2018).

588 56. J. J. Roering, J. W. Kirchner, W. E. Dietrich, Characterizing structural and lithologic
589 controls on deep-seated landsliding: Implications for topographic relief and landscape
590 evolution in the Oregon Coast Range, USA. *GSA Bull.* **117**, 654–668 (2005).

591 57. G. Blewitt, W. C. Hammond, C. Kreemer, Harnessing the GPS Data Explosion for
592 Interdisciplinary Science. doi: 10.1029/2018eo104623 (2018).

593 **Acknowledgments**

594 **Funding:**

595 National Science Foundation grant EAR-1658800 (NJF)
596 National Science Foundation grant EAR-2222149 (NJF)

597 **Author contributions:**

598 Conceptualization: NJF,DMA

603 Methodology: NJF,DMA
604 Investigation: NJF,DMA
605 Visualization: NJF,DMA
606 Writing – original draft: NJF,DMA
607 Writing – review & editing: NJF,DMA
608

609 **Competing interests:** Authors declare that they have no competing interests.
610

611 **Data and materials availability:** All data are available in the main text, the supplementary
612 materials, or at <https://doi.org/10.5281/zenodo.11511667>

613 **Supplementary Materials**

	<i>Minor Creek Earthflow (42)</i>	<i>Oak Ridge Earthflow (38, 39, 46)</i>
Slope Angle (θ)	15°	16°
Depth (h)	6 m	8 m
Length	~ 800 m	~ 1400 m
Saturated Density (ρ_s)	2234 kg/m ³	2344 kg/m ³

616
617 **Table S1. Representative landslide data required to calculate equation 3.**
618

Time (Yr)	Pore Pressure (Pa)	Standard Deviation of Pressure in 11-day window (Pa)	11-Day Velocity (m/yr)	Velocity Standard Error (m/yr) from 11-day velocity regression	τ (Pa)	σ (Pa)	V_o (m/yr)
2016.293	5506.1681	850.95265	0.24	0.07	50654	176650	0.365
2016.3231	4074.8454	140.70372	0.17	0.03	50654	176650	
2017.1362	11763.439	493.74124	1.99	0.17	50654	176650	
2017.1663	10344.624	686.35347	1.77	0.07	50654	176650	
2017.1964	11563.612	539.80861	1.23	0.04	50654	176650	
2017.2567	12210.198	657.07856	0.82	0.11	50654	176650	
2017.3169	5288.3887	479.08435	0.81	0.05	50654	176650	
2017.347	4532.8557	330.44291	0.51	0.05	50654	176650	
2017.3771	3598.1666	390.63147	0.35	0.04	50654	176650	
2017.4073	2782.3341	137.07018	0.22	0.04	50654	176650	
2017.4374	2166.8649	136.79925	0.09	0.04	50654	176650	
2017.4675	2094.6913	110.46031	0.16	0.05	50654	176650	
2017.4976	1641.2532	167.09028	0.09	0.03	50654	176650	

2017.5277	1246.7787	170.13634	0.12	0.03	50654	176650	
2017.5578	903.89059	162.50742	0.13	0.04	50654	176650	
2017.588	439.23392	134.17581	0.07	0.03	50654	176650	
2018.1903	9955.2118	809.87089	0.22	0.03	50654	176650	
2018.2505	9428.3844	646.19212	0.08	0.04	50654	176650	
2018.2806	6653.611	917.77125	0.33	0.04	50654	176650	
2018.3107	4385.4653	793.36786	0.14	0.03	50654	176650	
2018.3409	3112.7008	301.60347	0.1	0.04	50654	176650	
2018.371	2675.7159	310.89662	0.14	0.02	50654	176650	
2018.4011	1793.9303	425.44448	0.14	0.03	50654	176650	
2019.1841	14114.085	708.4386	3.7	0.1	50654	176650	
2019.2142	14013.232	665.49006	2.34	0.05	50654	176650	
2019.2444	11950.3	936.71929	1.84	0.05	50654	176650	
2019.3046	4200.5036	602.70801	0.87	0.06	50654	176650	
2019.3347	3185.1506	284.45284	0.61	0.05	50654	176650	
2019.3648	3955.962	425.85893	0.38	0.05	50654	176650	
2019.3949	4458.327	276.85629	0.43	0.04	50654	176650	
2019.4251	3171.1955	205.89278	0.34	0.06	50654	176650	
2019.4552	2539.4832	309.75788	0.22	0.02	50654	176650	
2019.4853	1240.1119	480.11571	0.17	0.05	50654	176650	
2020.0575	6984.7482	408.15175	0.17	0.04	50654	176650	
2020.0876	5759.8627	418.91593	0.13	0.03	50654	176650	
2020.2081	6664.8487	357.24831	0.13	0.05	50654	176650	
2020.2683	7527.3116	310.30553	0.33	0.04	50654	176650	
2020.2984	5789.9162	649.28281	0.17	0.05	50654	176650	
2020.3285	4129.9124	222.92302	0.08	0.03	50654	176650	
2020.3587	3731.5104	193.23522	0.09	0.04	50654	176650	
2020.5092	695.0626	266.51976	0.17	0.04	50654	176650	
2023.0609	10116.18	616.17547	0.81	0.09	50654	176650	
2023.091	8672.0601	334.06437	0.51	0.05	50654	176650	
2023.1211	9207.034	875.5668	0.35	0.04	50654	176650	
2023.1513	10591.415	519.35012	0.33	0.07	50654	176650	
2023.2115	10842.411	333.2371	1.69	0.04	50654	176650	
2023.2416	10102.199	462.95184	1.98	0.04	50654	176650	

2023.2717	9276.8537	648.85229	1.26	0.05	50654	176650	
2023.3018	8759.8326	547.15927	0.73	0.05	50654	176650	
2023.3621	3349.72	370.99109	0.4	0.05	50654	176650	
2023.3922	2463.141	238.08177	0.24	0.03	50654	176650	
2023.4223	1755.1309	242.67502	0.21	0.04	50654	176650	
2023.4524	1080.1784	284.48491	0.12	0.04	50654	176650	
2023.4853	464.10383	113.61663	0.17	0.03	50654	176650	
2023.5154	87.357556	116.19436	0.15	0.04	50654	176650	
2024.0684	8253.8141	696.05004	0.46	0.04	50654	176650	
2024.0986	8387.0751	712.1681	1.1	0.09	50654	176650	
2024.1287	8715.2651	806.32901	0.75	0.06	50654	176650	
2024.1588	8385.133	340.92015	0.98	0.04	50654	176650	

619
620
621

Table S2. Pore pressure and displacement data for Oak Ridge earthflow

Time (Yr)	Pressure Perturbation (Pa)	τ (Pa)	σ (Pa)	Velocity (m/yr)	V_o (m/yr)
1982.7105	18439.6	33998	126880	0.033841939	0.365
1983.0271	27477.1	33998	126880	0.055933208	
1983.0937	28631	33998	126880	0.43773846	
1983.2108	28467.6	33998	126880	0.46744216	
1983.2427	26538.1	33998	126880	0.54421538	
1983.3092	28214.1	33998	126880	0.64263732	
1983.3678	24817.1	33998	126880	0.19805871	
1983.4716	23982.6	33998	126880	0.02581534	
1983.7829	22268.2	33998	126880	0.24106442	
1983.8494	26504.4	33998	126880	1.0373075	
1983.8707	27090.8	33998	126880	1.5661309	
1983.9452	26749.3	33998	126880	1.1720937	
1984.049	27026.6	33998	126880	0.80543877	
1984.0783	28776.7	33998	126880	0.89493192	
1984.0969	28552.6	33998	126880	1.5489207	
1984.1129	28189.1	33998	126880	1.4382835	
1984.1342	27996.1	33998	126880	1.118665	

1984.1608	28676.3	33998	126880	2.8976151	
1984.2433	28491.8	33998	126880	2.7742891	
1984.2805	28231.1	33998	126880	2.9532755	
1984.3231	28002.1	33998	126880	2.6631443	
1984.363	26226.4	33998	126880	2.0941408	
1984.3897	26313.1	33998	126880	1.929697	
1984.4269	25849.3	33998	126880	0.12429611	
1984.8208	26292	33998	126880	0.13615068	
1985.1747	27229.5	33998	126880	0.33995791	
1985.2306	26741.6	33998	126880	0.57531338	
1985.3051	25772.4	33998	126880	0.082427951	
1985.6856	20322	33998	126880	0.042243297	

622
623
624

Table S3. Pore pressure and displacement data for Minor Creek earthflow

625
626
627