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Abstract. Many reaction networks arising in applications are multistationary, that is, they have

the capacity for more than one steady state; while some networks exhibit absolute concentration

robustness (ACR), which means that some species concentration is the same at all steady states.

Both multistationarity and ACR are significant in biological settings, but only recently has atten-

tion focused on the possibility for these properties to coexist. Our main result states that such

coexistence in at-most-bimolecular networks (which encompass most networks arising in biology)

requires at least 3 species, 5 complexes, and 3 reactions. We prove additional bounds on the number

of reactions for general networks based on the number of linear conservation laws. Finally, we prove

that, outside of a few exceptional cases, ACR is equivalent to non-multistationarity for bimolecular

networks that are small (more precisely, one-dimensional or up to two species). Our proofs involve

analyses of systems of sparse polynomials, and we also use classical results from chemical reaction

network theory.
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1. Introduction

A mass-action kinetics system exhibits absolute concentration robustness (ACR) if the steady-
state value of at least one species is robust to fluctuations in initial concentrations of all species [27].
Another biologically significant property is the existence of multiple steady states, that is, multi-
stationarity. Significantly, this property has been linked to cellular decision-making and switch-like
responses [21, 33].

As both ACR and multistationarity are important properties, it is perhaps surprising that their
relationship was explored only recently, when the present authors with Joshi showed that ACR
and multistationarity together – or even ACR by itself – is highly atypical in randomly generated
reaction networks [18]. This result dovetails with the fact that the two properties are somewhat in
opposition, as multiple steady states are not in general position in the presence of ACR.

The results of Joshi et al. are asymptotic in nature (as the number of species goes to infinity),
and they pertain to networks that are at-most-bimolecular (which is typical of networks arising in
biology) and reversible (which is not) [18]. This naturally leads to the following question:

Question 1.1. For multistationarity and ACR to coexist, how many species, reactions, and com-
plexes are needed? Which networks (without the requirement of being reversible) of small to
medium size allow such coexistence?

Another motivation for Question 1.1 comes from synthetic biology. In order to design reaction
networks with certain dynamical properties, we need to better understand the design principles
that allow for such behaviors, as well as the constraints on the size (such as the minimum numbers
of species, reaction, and complexes) of such networks. Another possible measure of size is the
dimension of a network, which is the difference between the number of species and the number of
linearly independent linear conservation laws.

Our work focuses on answering Question 1.1. Broadly speaking, our results fall into two cate-
gories: (i) results that give lower bounds on the dimension of a network or its number of species,
reactions, or complexes; and (ii) results for certain classes of networks (one-dimensional, up to 2
species, and so on). Our primary focus is on at-most-bimolecular networks, but we also present
results on general networks.

In the first category, our results are summarized in the following theorem, which gives some
minimum requirements for ACR and nondegenerate multistationarity to coexist. This coexistence
is typically on a nonzero-measure subset of the parameter space of reaction rate constants.

Theorem 1.2 (Main result). Let G be an at-most-bimolecular reaction network with n species such
that there exists a vector of positive rate constants κ∗ such that the mass-action system (G, κ∗) has
ACR and is nondegenerately multistationary. Then G has:

(1) at least 3 species (that is, n ≥ 3),
(2) at least 3 reactant complexes (and hence, at least 3 reactions) and at least 5 complexes

(reactant and product complexes), and
(3) dimension at least 2.

If, additionally, G is full-dimensional (that is, G has no linear conservation laws), then G has:

(4) at least n+ 2 reactant complexes (and hence, at least n+ 2 reactions), and
(5) dimension at least 3.

For the proof of Theorem 1.2, we refer the reader to Section 3 for part (3) (Lemma 3.20); Section 4
for parts (1), (2), and (5) (Theorem 4.1); and Section 5 for part (4) (Theorem 5.1). Additionally,
many of the lower bounds in Theorem 1.2 are tight. Indeed, this is shown for parts (1)–(3) through
the following mass-conserving network: {A + B → 2C → 2B, C → A} (Example 4.10). As for
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part (4), this bound is proven for networks that need not be at-most-bimolecular, and its tightness
is shown in that context (Proposition 5.3).

While Theorem 1.2 concerns nondegenerate multistationarity, we also investigate the capacity for
ACR together with degenerate multistationarity, specifically, in networks with 4 reactant complexes
(Proposition 4.15). Finally, we prove two additional results in the spirit of Theorem 1.2. The first
states that 3 is the minimum number of pairs of reversible reactions needed (in reversible networks)
for multistationarity, even without ACR (Theorem 3.21). The second concerns networks that
are not full-dimensional, and states the minimum number of reactant complexes needed for the
coexistence of ACR and nondegenerate multistationarity is n − k + 1, where 1 ≤ k ≤ n − 2 is the
number of linearly independent conservation laws (Theorem 5.5).

As for our second category of results, we start with one-dimensional networks, a class of networks
for which ACR [23, 24], multistationarity [20, 28], and even multistability [31] is well studied. Such
networks do not allow for the coexistence of ACR and nondegenerate multistationarity (Proposi-
tion 3.10). Moreover, one-dimensional bimolecular networks can only be multistationary if they are
degenerately so (Lemma 3.20). Moreover, we explicitly characterize all such degenerate networks
(Lemma 3.19). Here our proofs make use of recent results of Lin, Tang, and Zhang [22, 31].

Another class of at-most-bimolecular networks we analyze are those with exactly 2 species (Sec-
tion 4.1). For such networks that are reversible, we characterize the property of unconditional
ACR, which means that ACR occurs for all possible values of rate constants (Theorem 4.4). As
for networks that need not be reversible, we show that ACR and multistationarity can coexist, but
only in a degenerate way. Moreover, up to relabelling species, only two such networks allow such
coexistence for a nonzero-measure subset of the space of reaction rate constants (Theorem 4.8).

Our works fits into a growing body of literature that explores the minimal conditions needed for
various dynamical behaviors, including the two properties that are the focus of the current work:
multistationarity [20, 22, 28] and ACR [23, 24]. There are additional such studies on multistabil-
ity [29] and Hopf bifurcations [5, 6, 30, 31, 34] (which generate periodic orbits). For instance, in
analogy to Theorem 1.2 above, the presence of Hopf bifurcations requires an at-most-bimolecular
network to have at least 3 species, 4 reactions, and dimension 3 [5, 34].

This article is organized as follows: Section 2 introduces reaction networks, multistationarity,
and ACR. Section 3 contains several results on steady states and their nondegeneracy. We use these
results in Sections 4 and 5 to prove our main results. We conclude with a discussion in Section 6.

2. Background

This section recalls the basic setup and definitions involving reaction networks (Section 2.1), the
dynamical systems they generate (Section 2.2), absolute concentration robustness (Section 2.3),
and a concept pertaining to networks with only 1 species: “arrow diagrams” (Section 2.4).

2.1. Reaction networks. A reaction network G is a (loopless) directed graph in which the ver-
tices are non-negative-integer linear combinations of species X1, X2, . . . , Xn. Each vertex is a
complex, and we denote the complex at vertex i by yi =

∑n
j=1 yijXj (where yij ∈ Z≥0) or

yi = (yi1, yi2, . . . , yin). Throughout, we assume that each species Xi, where i = 1, 2, . . . , n, ap-
pears in at least one complex.

Edges of a network G are reactions (in chemistry, these are ‘reaction steps’), and it is standard
to represent a reaction (yi, yj) by yi → yj . In such a reaction, yi is the reactant complex, and yj
is the product complex ; and yi 6= yj , as G is loopless. A species Xk is a catalyst-only species in
reaction yi → yj if yik = yjk. In examples, it is often convenient to write species as A,B,C, . . .
(rather than X1, X2, X3, . . . ) and also to view a network as a set of reactions, where the sets of
species and complexes are implied.
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Example 2.1. The reaction network {0← A→ 2A, B ← A+B} has 2 species, 5 complexes, and
3 reactions. The species B is a catalyst-only species in the reaction B ← A+B.

A reaction network is reversible if every edge of the graph is bidirected. A reaction network is
weakly reversible if every connected component of the graph is strongly connected. Every reversible
network is weakly reversible.

Example 2.2. The following network is reversible: {A + B�2A, 2B�A, 0 � B}. The network
{A+B → 2A→ 2B → A+B} is weakly reversible, but not reversible.

One focus of our work is on at-most-bimolecular reaction networks (or, for short, bimolecular),
which means that every complex yi satisfies yi1 +yi2 + · · ·+yin ≤ 2. Equivalently, each complex has
the form 0, Xi, Xi +Xj , or 2Xi (where Xi and Xj are species). The networks in Examples 2.1–2.2
are bimolecular.

2.2. Mass-action systems. Let r denote the number of reactions of G. We write the i-th reaction
as yi → y′i and assign to it a positive rate constant κi ∈ R>0. We use x = (x1, x2, . . . , xn) to denote
the vector of species concentrations. The mass-action system arising from a network G and a
vector of positive rate constants κ = (κ1, κ2, . . . , κr), which we denote by (G, κ), is the following
dynamical system arising from mass-action kinetics:

(1)
dx

dt
=

r∑
i=1

κix
yi(y′i − yi) =: fκ(x) ,

where xyi :=
∏n
j=1 x

yij
j . Observe that the right-hand side of the ODEs (1) consists of polyno-

mials fκ,i(x), for i = 1, . . . , n. For simplicity, we often write fi instead of fκ,i. Hence, fκ(x) :=
(f1(x), f2(x), . . . , fn(x)) is a vector-valued polynomial function.

The question of which polynomials fi can appear as right-hand side of mass-action ODEs is
answered in the following result [15, Theorem 3.2].

Lemma 2.3. Let f : Rn → Rn be a polynomial function, that is, assume that fi ∈ R[x1, x2 . . . , xn]
for i = 1, 2, . . . , n. Then f arises as the right-hand side of the differential equations (1) (for some
choice of network G and vector of positive rate constants κ) if and only if, for all i = 1, 2, . . . , n,
every monomial in fi with negative coefficient is divisible by xi.

Next, observe that the mass-action ODEs (1) are in the linear subspace of Rn spanned by all
reaction vectors y′i − yi (for i = 1, 2, . . . , r). We call this the stoichiometric subspace and denote it
by S. The dimension of a network is the dimension of its stoichiometric subspace. (This dimension
is sometimes called the “rank” [4, 29].) In particular, if dim(S) = n (that is, S = Rn), we say that
G is full-dimensional.

A trajectory x(t) of (1) with initial condition x(0) = x0 ∈ Rn>0 remains, for all positive time, in
the following stoichiometric compatibility class of G [11]:

Px(0) := (x(0) + S) ∩ Rn≥0 .(2)

For full-dimensional networks, there is a unique stoichiometric compatibility class: P = Rn≥0. For

networks that are not full-dimensional, every nonzero vector w in S⊥ yields a (linear) conservation
law 〈w, x〉 = 〈w, x(0)〉 that is satisfied by every x ∈ Px(0), where 〈−,−〉 denotes the usual inner
product on Rn.

Remark 2.4. A common linear conservation law is mass conservation, where w = (1, 1, . . . , 1).
In fact, several examples in our paper include mass-conserving networks (i.e. networks with mass
conservation). However, in general it is not required that the components of w are non-negative.
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Example 2.1 (continued). The network {0 κ1← A
κ2→ 2A, B

κ3← A + B} has a one-dimensional
stoichiometric subspace (spanned by (1, 0)) and generates the following mass-action ODEs (1):

dx1

dt
= −κ1x1 + κ2x1 − κ3x1x2 = x1(−κ1 + κ2 − κ3x2)(3)

dx2

dt
= 0.

Observe that the negative monomials in the first ODE are −κ1x1 and −κ3x1x2, and each of these
is divisible by x1, which is consistent with Lemma 2.3. Next, the stoichiometric compatibility
classes (2) are rays of the following form (where T > 0):

{(x1, x2) ∈ R2
≥0 | x2 = T} .(4)

The equation x2 = T is the unique (up to scaling) conservation law.

A steady state of a mass-action system is a non-negative vector x∗ ∈ Rn≥0 at which the right-hand

side of the ODEs (1) vanishes: fκ(x∗) = 0. Our main interest in this work is in positive steady
states x∗ ∈ Rn>0. The set of all positive steady states of a mass-action system can have positive
dimension in Rn, but this set typically intersects each stoichiometric compatibility class in finitely
many points [14]. Finally, a steady state x∗ is nondegenerate if Im(dfκ(x∗)|S) = S, where dfκ(x∗)
is the Jacobian matrix of fκ evaluated at x∗.

We consider multiple steady states at two levels: systems and networks. A mass-action system
(G, κ) is multistationary (respectively, nondegenerately multistationary) if there exists a stoichio-
metric compatibility class having more than one positive steady state (respectively, nondegenerate
positive steady state). A reaction network G is multistationary if there exists a vector of positive
rate constants κ such that (G, κ) is multistationary. For a reaction network G, we let cappos(G)
(respectively, capnondeg(G)) denote the maximum possible number of positive steady states (respec-
tively, nondegenerate positive steady states) in a stoichiometric compatibility class.

Example 2.1 (continued). We return to the network G = {0 κ1← A
κ2→ 2A, B

κ3← A + B} and
its ODEs (3). A direct computation reveals that when κ1 ≥ κ2, there is no positive steady state.
On the other hand, when κ2 > κ1, the steady states form exactly one stoichiometric compatibility
class (4) – namely, the one given by T = (κ2 − κ1)/κ3 – and all such steady states are degenerate.
Hence, G is multistationary but not nondegenerately multistationary.

Example 2.2 (continued). The following (full-dimensional) reaction network and indicated rate
constants yield a mass-action system with 3 nondegenerate positive steady states [18, Remark 3.6]:{

A+B
1/32

�
1/4

2A, 2B
1
�
1/4

A, 0
1
�
1
B

}
.(5)

Therefore, this network is nondegenerately multistationary.

2.3. Deficiency and absolute concentration robustness. The deficiency of a reaction net-
work G is δ = m− `− dim(S), where m is the number of vertices (or complexes), ` is the number
of connected components of G (also called linkage classes), and S is the stoichiometric subspace.
The deficiency is always non-negative [11], and it plays a central role in many classical results on
the dynamical properties of mass-action systems [1, 2, 3, 10, 16, 17].

Two such results are stated below. These results, which are due to Feinberg and Horn [12, 13, 16],
are stated for weakly reversible networks (the setting in which we use these results later).
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Lemma 2.5 (Deficiency-zero theorem). Deficiency-zero networks are not multistationary. More-
over, if G is a weakly reversible network with deficiency zero, then for every vector of positive rate
constants κ, the mass-action system (G, κ) admits a unique positive steady state in every stoichio-
metric compatibility class.

Lemma 2.6 (Deficiency-one theorem). Consider a weakly reversible network G with connected
components (linkage classes) G1, G2, . . . , G`. Let δ denote the deficiency of G, and (for all
i = 1, 2, . . . , `) let δi denote the deficiency of Gi. Assume the following:

(1) δi ≤ 1 for all i = 1, 2, . . . , `, and
(2) δ1 + δ2 + · · ·+ δ` = δ.

Then G is not multistationary: for every vector of positive rate constants κ, the mass-action system
(G, κ) admits a unique positive steady state in every stoichiometric compatibility class.

Our next topic, ACR, like multistationarity, is analyzed at the level of systems and also networks.

Definition 2.7 (ACR). Let Xi be a species of a reaction network G with r reactions.

(1) For a fixed vector of positive rate constants κ ∈ Rr>0, the mass-action system (G, κ) has
absolute concentration robustness (ACR) in Xi if (G, κ) has a positive steady state and in
every positive steady state x ∈ Rn>0 of the system, the value of xi is the same. This value
of xi is the ACR-value of Xi.

(2) The reaction network G has unconditional ACR in species Xi if, for every vector of positive
rate constants κ ∈ Rr>0, the mass-action system (G, κ) has ACR in Xi.

Remark 2.8 (Existence of positive steady states). ACR requires the existence of a positive steady
state (Definition 2.7(1)). This requirement is sometimes not included in definitions of ACR in the
literature. However, this is not an extra requirement for some of the networks we consider, namely,
weakly reversible networks, for which positive steady states are guaranteed to exist (Boros [7]).

Remark 2.9. The property of unconditional ACR is often too restrictive. Thus, many of our results
focus on ACR (or other properties) that hold for some full-dimensional subset of the parameter
space of rate constants Rr>0 (where r is the number of reactions of a given network). The Lesbesgue
measure of such a subset is nonzero. For simplicity, we use “measure” to mean Lebesgue measure.

Example 2.1 (continued). We revisit the network {0 κ1← A
κ2→ 2A, B

κ3← A+B}. From our earlier
analysis, the mass-action system has ACR in B when κ2 > κ1 (which defines a nonzero-measure
subset of the rate-constants space R3

>0), but lacks ACR when κ2 ≤ κ1 (as there are no positive
steady states).

Example 2.10. Consider the following network G, which is bimolecular and full-dimensional:

{2B κ3←− B
κ1
�
κ2
A+B

κ4−→ A}.

The mass-action ODEs are as follows:

ẋ1 = κ1x2 − κ2x1x2 = (κ1 − κ2x1)x2

ẋ2 = κ3x2 − κ4x1x2 = (κ3 − κ4x1)x2 .(6)

When κ1
κ2
6= κ3

κ4
, there are no positive steady states and hence no ACR. Now assume κ1

κ2
= κ3

κ4
. In this

case, the positive steady states are defined by the line x1 = κ1
κ2

, and so the system is multistationary
and has ACR in species A. However, all the steady states of this system are degenerate.

In the next example, the steady states are nondegenerate.



ABSOLUTE CONCENTRATION ROBUSTNESS AND MULTISTATIONARITY 7

Example 2.11. Consider the following full-dimensional network [18, Example 2.6], which we call
G: {

2B
κ4
�
κ3
B

κ1
�
κ2
A+B, 2A

κ5
�
κ6

3A

}
.

The mass-action ODEs (1) are as follows:

dx1

dt
= κ1x2 − κ2x1x2 + κ5x

2
1 − κ6x

3
1

dx2

dt
= κ3x2 − κ4x

2
2.

The existence of positive steady states comes from the fact that G is reversible (recall Remark 2.8).
Indeed, it is straightforward to see from the ODEs that G admits up to 3 positive steady states,
and that the steady-state value of x2 is κ3/κ4. It follows that G has unconditional ACR in species
B with ACR-value κ3/κ4.

The following result, which is [24, Lemma 5.1], concerns ACR in one-dimensional networks.

Lemma 2.12. Let G be a one-dimensional network with species X1, X2, . . . , Xn. If G has uncondi-
tional ACR in some species Xi∗ , then the reactant complexes of G differ only in species Xi∗ (more
precisely, if y and ỹ are both reactant complexes of G, then yi = ỹi for all i ∈ {1, 2, . . . , n}r {i∗}).

2.4. Arrow diagrams. In this subsection, we recall the arrow diagrams associated to one-species
networks. These diagrams are useful for stating results about such networks [20, 24, 25].

Definition 2.13 (Arrow diagram). Let G be a reaction network with only one species Z. Let
m denote the number of (distinct) reactant complexes of G, which we list in increasing order of
molecularity: a1Z, a2Z, . . . , amZ (so, a1 < a2 < · · · < am). For each index i (corresponding to the
reactant complex aiZ), we define ρi as follows:

ρi :=


→ if for every reaction aiZ → bZ in G, the inequality b > ai holds
← if for every reaction aiZ → bZ in G, the inequality b < ai holds
•←→ otherwise.

The vector ρ = (ρ1, ρ2, . . . , ρm) ∈ {→,←, •←→}m is called the arrow diagram of G.
Example 2.14.

(1) The network {0← A, 2A→ 3A} has 2 reactant complexes {A, 2A}. The arrow corresponding
to the reactant complex A is← and the arrow corresponding to the reactant complex 2A is→.
Thus the arrow diagram of the network is (←,→).

(2) The network {0← A, A→ 2A, 2A→ 3A, 2A→ 4A} has 2 reactant complexes {A, 2A}. The
arrow corresponding to the reactant complex A is •←→ and the arrow corresponding to the
reactant complex 2A is →. Thus the arrow diagram of the network is ( •←→,→).

It is often useful to consider the arrow diagrams of “embedded” one-species networks, as follows.

Definition 2.15. Let G be a reaction network with species X1, X2, . . . , Xn. Given a species Xi,
the embedded one-species network of G (with respect to Xi) is obtained by deleting some (possibly
empty) subset of the reactions, replacing each remaining reaction a1X1 + a2X2 + · · · + asXs →
b1X1 + b2X2 + · · ·+ bsXs by the reaction aiXi → biXi, and then deleting any trivial reactions (i.e,
reactions of the form aiXi → aiXi, in which the reactant and product complexes are equal) and
keeping only one copy of duplicate reactions.
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Example 2.16. Consider the network G = {0 � B → A}. The following networks are embedded
one-species networks of G: {0 � B}, {0→ B}, {0← B}, and {0→ A}.

3. Results on steady states and nondegeneracy

This section contains results on the steady states of mass-action systems. We use these results in
later sections to prove our main results. Section 3.1 analyzes the steady states of full-dimensional
networks (i.e., those without conservation laws), while Section 3.2 pertains to non-full-dimensional
networks. Next, Section 3.3 focuses on bimolecular networks and investigates scenarios in which the
right-hand side of a mass-action ODE vanishes. Finally, Section 3.4 concerns bimolecular networks
that are reversible.

3.1. Full-dimensional networks. Consider a reaction network G with n species, r reactions, and
exactly j reactant complexes1; and let κ∗ ∈ Rr>0 be a vector of positive rate constants. We often
rewrite the mass-action ODE system (1) for (G, κ∗) as follows:

dx1/dt
dx2/dt

...
dxn/dt

 = N


m1

m2
...
mj

 ,(7)

whereN is an (n×j)-matrix (with real entries) and m1,m2, . . . ,mj are the distinct monic monomials
in x1, x2, . . . , xn given by the reactant complexes. A monomial is monic if its coefficient is 1.

Example 2.10 (continued). The full-dimensional network {2B κ3←− B
κ1
�
κ2
A+B

κ4−→ A} has two re-

actant complexes, which yield the monomials m1 := x2 and m2 := x1x2. Consider (κ∗1, κ
∗
2, κ
∗
3, κ
∗
4) =

(1, 2, 3, 6) (so,
κ∗1
κ∗2

=
κ∗3
κ∗4

holds). Now the matrix N , as in (7), is as follows:

N :=

[
1 −2
3 −6

]
.

This matrix N does not have full rank, and we saw earlier that all steady states of this mass-action
system are degenerate. In the next result, part (1) asserts that this phenomenon holds in general.

Proposition 3.1 (Nondegenerate steady states and the matrix N). Let G be a full-dimensional
reaction network with n species, and κ∗ be a vector of positive rate constants. Let N be a matrix
defined, as in (7), by the mass-action ODE system of (G, κ∗).

(1) If rank(N) ≤ n− 1, then every positive steady state of (G, κ∗) is degenerate.
(2) If rank(N) = n and G has exactly n+ 1 reactant complexes, then the positive steady states

of (G, κ∗) are the positive roots of a system of binomial equations (sharing some common
monomial m0) of the following form:

mi − βimn+1 = 0 for i = 1, 2, . . . , n ,

where β1, β2, . . . , βn ∈ R and m1, . . . ,mn+1 are distinct monic monomials in x1, x2, . . . , xn.
(3) If G has exactly n+ 1 reactant complexes and (G, κ∗) has a nondegenerate, positive steady

state, then (G, κ∗) is not multistationary.

Proof. Assume (G, κ∗) is a full-dimensional mass-action system in n species, and let N be as in (7).
First, we prove (1). Assume rank(N) ≤ n − 1, and let x∗ be a positive steady state. It follows

that the polynomials fi, as in (1), are linearly dependent (over R). Hence, the Jacobian matrix –

1 A network has exactly j reactant complexes if the set of distinct reactant complexes has size j.
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even before evaluating at x∗ – has rank less than n. Thus, the image of the Jacobian matrix, after
evaluating at x∗, has dimension less than n, i.e, Im(df(x∗)|S) 6= Rn = S. Hence, x∗ is degenerate.

Next, we prove (2). As in equation (7), we write the mass-action ODEs for (G, κ∗) as
dx1/dt
dx2/dt

...
dxn/dt

 = N


m1
...
mn

mn+1

 ,

where N is n× (n+ 1) and the mi’s are distinct monic monomials in x1, x2, . . . , xn.
As G is full-dimensional and rank(N) = n, we can relabel the mi’s, if needed, so that the square

sub-matrix of N formed by the first n columns has rank n. Thus, by row-reducing N , we obtain a
matrix of the following form (where β1, β2, . . . , βn ∈ R):

N ′ :=


−β1

In −β2
...
−βn

 .

We conclude from the above discussion that the positive steady states of (G, κ∗) are the positive
roots of the following n binomial equations (which are in the desired form):

mi − βimn+1 = 0 for i = 1, 2, . . . , n .(8)

Before moving on to part (3), we summarize what we know (so we can use it later). The positive
steady states are the roots of the binomials (8), which we rewrite using Laurent monomials (our
interest is in positive roots, so there is no issue of dividing by zero):

xai11 xai22 . . . xainn :=
mi

mn+1
= βi for i = 1, 2, . . . , n .(9)

We apply the natural log to (9) and obtain the following, which involves the n×n matrix A := (aij):

A


ln(x1)
ln(x2)

...
ln(xn)

 =


ln(β1)
ln(β2)

...
ln(βn)

 =: ln(β) .(10)

Now we prove (3). Assume x∗ is a nondegenerate, positive steady state. (We must show that no
other positive steady states exist.) By part (1), the n× (n+1) matrix N has rank n, so the proof of
part (2) above applies. Assume for contradiction that x∗∗ is a positive steady state, with x∗∗ 6= x∗.
Then, by (10), the linear system Ay = ln(β) has more than one solution, and so rank(A) ≤ n− 1.
It follows that the set of positive steady states, {(ey1 , ey2 , . . . , eyn) | Ay = ln(β)}, is positive-
dimensional and so (by the Inverse Function Theorem and the fact that G is full-dimensional) all
positive steady states of (G, κ∗) are degenerate. This is a contradiction, as x∗ is nondegenerate. �

Remark 3.2. For algebraically inclined readers, observe that the equations in Proposition 3.1(2)
define a toric variety. Additionally, every such variety has at most one irreducible component that
intersects the positive orthant [8, Proposition 5.2]. This fact can be used to give a more direct
proof of Proposition 3.1(3).

Remark 3.3. The end of the proof of Proposition 3.1 concerns nondegenerate positive steady
states and their relation to the dimension of the set of positive steady states. More ideas in this
direction are explored in the recent work of Feliu, Henriksson, and Pascual-Escudero [14].
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Corollary 3.4 (When fi is zero). Let G be a full-dimensional reaction network with n species, let
κ∗ be a vector of positive rate constants, and let f1, f2, . . . , fn denote the right-hand sides of the
mass-action ODEs of (G, κ∗). If fi is the zero polynomial, for some i ∈ {1, . . . , n}, then every
positive steady state of (G, κ∗) is degenerate.

Proof. This result follows directly from Proposition 3.1(1) and the fact that, in this case, the rank
of N , as in (7), is strictly less than n. �

The next two results pertain to networks with few reactant complexes (at most n, where n is
the number of species) and many reactant complexes (at least n), respectively.

Proposition 3.5 (Networks with few reactants). Let G be a reaction network with n species.

(1) If G has exactly 1 reactant complex, then, for every vector of positive rate constants κ∗, the
mass-action system (G, κ∗) has no positive steady states.

(2) If G has exactly j reactant complexes, where 2 ≤ j ≤ n (in particular, n ≥ 2), and G is
full-dimensional, then every positive steady state (of every mass-action system defined by
G) is degenerate.

Proof. Assume G has n species, which we denote by X1, X2, . . . , Xn, with exactly j reactant com-
plexes, for some 1 ≤ j ≤ n. Let κ∗ be a vector of positive rate constants. As in (7), we write the
mass-action ODE system arising from (G, κ∗) as follows:dx1/dt

...
dxn/dt

 = N

m1
...
mj

 =:

f1
...
fn

 ,(11)

where N := (Nij) is an (n × j)-matrix (with entries in R) and m1, . . . ,mj are distinct monic
monomials in x1, . . . , xn (as G has n species and j reactant complexes).

We first prove part (1). In this case, the right-hand sides of the ODEs have the form fi =
ci
∏n
k=1 x

ak
k , with at least one ci 6= 0. It follows that there are no positive steady states.

We prove part (2). Assume that G is full-dimensional (the stoichiometric subspace is Rn) and
that 2 ≤ j ≤ n. Let x∗ = (x∗1, x

∗
2, . . . , x

∗
n) be a positive steady state. We must show x∗ is degenerate.

We first consider the subcase when the rank of the matrix N is at most (n − 1). By Proposi-
tion 3.1(1), every positive steady state is degenerate.

Now we handle the remaining subcase, when N has rank n (and hence, N is n×n). Now, solving
the steady-state equations f1 = · · · = fn = 0 can be accomplished by multiplying the expression
in (11) by N−1, which implies that every monomial m1, . . . ,mn evaluates to zero at steady state.
Hence, no positive steady states exist. �

Proposition 3.6 (Networks with many reactants). If G is a full-dimensional network with n species
and exactly j reactant complexes, where j ≥ n, then:

(1) There exists a vector of positive rate constants κ∗, such that the corresponding matrix N ,
as in (7), has rank n.

(2) If there exists a vector of positive rate constants κ∗ such that the matrix N does not have
rank n, then there exists a vector of positive rate constants κ∗∗ such that (G, κ∗∗) has no
positive steady states.

Proof. Assume G is full-dimensional, with n species, r reactions (denoted by y1 → y′1, . . . yr → y′r),
and exactly j reactant complexes, where j ≥ n.

We begin with part (1). Let κ = (κ1, . . . , κr) denote the vector of unknown rate constants (each

κi is a variable). Let Ñ be the (n × j) matrix for (G, κ) in the sense of N in (7). More precisely,
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the entries of Ñ are Z-linear combinations of the κi’s, such that, for every vector of positive rate

constants κ∗ ∈ Rr>0, the evaluation Ñ |κ=κ∗ is the matrix N as in (7) for (G, κ∗).

As G is full-dimensional, there are no R-linear relations among the n rows of Ñ . Hence, the

size-n minors of Ñ define a (possibly empty) measure-zero subset V ⊆ Rr>0. Thus, Rr>0 r V is

nonempty, and every κ∗ ∈ Rr>0 rV yields a matrix N = Ñ |κ=κ∗ with rank n. This proves part (1).
For part (2), suppose that there exists κ∗ ∈ Rr>0 such that the resulting matrix N has rank

strictly less than n. It follows that there is a linear relation:

c1fκ∗,1 + · · ·+ cnfκ∗,n = 0 ,(12)

where c1, . . . , cn are real numbers – not all 0 – and the fκ∗,i denote the right-hand sides of the
mass-action ODEs for (G, κ∗).

On the other hand, for unknown rate constants κ, as in the proof above for part (1), c1fκ,1 +
· · · + cnfκ,n is not the zero polynomial. Thus, when we rewrite this expression as a sum over r
reactions yi → y′i as follows: c1fκ,1 + · · ·+ cnfκ,n = d1κ1x

y1 + · · ·+ drκrx
yr , where di ∈ Z for all i,

we conclude that di 6= 0 for some i. By relabeling reactions, if needed, we may assume that i = 1.
Now consider the following vector of positive rate constants κ∗ε := (κ∗1 + ε, κ∗2, . . . , κ

∗
r), for some

ε > 0. Assume for contradiction that (G, κ∗ε ) has a positive steady state x∗. At steady state, fκ∗ε ,i
evaluates to 0, for all i, and this yields the first equality here:

0 =
(
c1fκ∗ε ,1 + · · ·+ cnfκ∗ε ,n

)
|x=x∗ = c1fκ∗,1|x=x∗+· · ·+cnfκ∗,n|x=x∗+εd1x

y1 |x=x∗ = εd1x
y1 |x=x∗ ,

and the second and third equalities come from the fact that the mass-action ODEs are linear in
the rate constants and from equation (12), respectively. We obtain xy1 |x=x∗ = 0, which contradicts
the fact that x∗ is a positive steady state. This concludes the proof. �

The next proposition returns to a topic from Proposition 3.1, namely, networks with n species
and n+ 1 reactant complexes.

Proposition 3.7 (Networks with n+ 1 reactants). Assume G is a full-dimensional network, with
n species and exactly n+ 1 reactant complexes, which we denote as follows:

yi1X1 + yi2X2 + . . . yinXn for i = 1, 2, . . . , n+ 1 .

Let A denote the n × n matrix obtained from the (n + 1) × n matrix Y := (yij) by subtracting the
last row from every row and then deleting the last row.

(1) If rank(A) = n, then G is not nondegenerately multistationary.
(2) If rank(A) ≤ n− 1, then there exists a vector of positive rate constants κ∗ such that (G, κ∗)

has no positive steady states.

Proof. Case 1: rank(A) = n. Fix an arbitrary vector of positive rate constants κ∗. We must show
that (G, κ∗) is not nondegenerately multistationary. Let N denote the n× (n+ 1) matrix defined
by (G, κ∗), as in (7). We consider two subcases.

Subcase: rank(N) ≤ n − 1. In this subcase, Proposition 3.1(1) implies that every positive
steady state of (G, κ∗) is degenerate, and so (G, κ∗) is not nondegenerately multistationary.

Subcase: rank(N) = n. Part (2) of Proposition 3.1 pertains to this setting, so we can follow
that proof. In particular, equation (9) – the (n× n) matrix A there exactly matches the matrix A
here – implies that the positive steady states are defined by a linear system of the form Ay = ln(β),
where y = (ln(x1), . . . , ln(xn))>. Hence, as rank(A) = n, we have at most one positive steady state
and so (G, κ∗) is not multistationary.

Case 2: rank(A) ≤ n− 1. We must show that there exists a choice of rate constants so that the
resulting system has no positive steady states.
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Proposition 3.6(1) implies that there exists κ∗ such that the following holds:

the matrix N defined by (G, κ∗) has (full) rank n.(13)

Fix such a choice of κ∗. If (G, κ∗) has no positive steady states, then we are done. Therefore, for
the rest of the proof, we assume that (G, κ∗) admits a positive steady state.

In what follows, we need to consider additional vectors of positive rate constants (besides κ∗)
and their corresponding matrices N , as in (7). Therefore, as in the proof of Proposition 3.6(1), let
κ = (κ1, . . . , κr) (where r is the number of reactions) denote the vector of unknown rate constants,

and let Ñ be the n× (n+ 1) matrix for (G, κ) in the sense of N in (7), so that for every vector of

positive rate constants κ∗ ∈ Rr>0, the evaluation Ñ |κ=κ∗ is the matrix N as in (7).
We now follow the ideas in the proof of Proposition 3.1, part (2), with the difference being that

we now consider unknown rate constants κ. The mass-action ODEs for (G, κ) are given by:dx1/dt
...

dxn/dt

 = Ñ

 m1
...

mn+1

 ,

where m1, . . . ,mn+1 are distinct monic monomials in x1, x2, . . . , xn.

Our next aim is to row-reduce Ñ (over the field Q(κ1, . . . , κr)). Accordingly, for 1 ≤ k ≤ n+ 1,

let [Bk] denote the determinant of the matrix obtained from Ñ by removing the k-th column. By
construction, each [Bk] is in Z[κ1, . . . , κr].

We claim that, for all 1 ≤ k ≤ n + 1, the polynomial [Bk] is nonzero. By symmetry among the
monomials mi, it suffices to show that [Bn+1] is nonzero. To show this, assume for contradiction

that [Bn+1] = 0. Then, Ñ can be row-reduced to a matrix in which the last row has the form
(0, 0, . . . , 0, ω), where 0 6= ω ∈ Q(κ1, . . . , κr). Now consider the evaluation at κ = κ∗. By (13), the

matrix N = Ñ |κ=κ∗ has (full) rank n, so ω|κ=κ∗ is nonzero. However, this implies that positive
steady states of (G, κ∗) satisfy ω|κ=κ∗mn+1 = 0, much like in (8). Thus, (G, κ∗) has no positive
steady states, which is a contradiction, and hence our claim holds.

Next, as [Bn+1] is nonzero, we can apply a version of Cramer’s rule to row-reduce Ñ to the
following matrix (where In denotes the size-n identity matrix):

Ñ ′ =


(−1)n−1 [B1]

[Bn+1]

In (−1)n−2 [B2]
[Bn+1]

...

(−1)0 [Bn]
[Bn+1]

 .

Thus, as in (8), the positive steady states are the positive roots of the equations mi − βimn+1 = 0
(for i = 1, 2, . . . , n), where:

βi := (−1)n−i+1 [Bi]

[Bn+1]
for i = 1, 2, . . . , n .

Thus, βi|κ=κ∗ > 0 (for all i = 1, 2, . . . , n), since (G, κ∗) admits a positive steady state. We conclude
from this fact, plus the claim proven earlier (namely, that [B`] 6= 0 for all `), that the following is
an open subset of Rr>0 that contains κ∗:

Σ := {κ̄ ∈ Rr>0 : β1|κ=κ̄ > 0, . . . , βn|κ=κ̄ > 0, [B1]|κ=κ̄ 6= 0, . . . , [Bn+1]|κ=κ̄ 6= 0} .
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For the rest of the proof, we restrict our attention to rate constants, like κ∗, that are in Σ. For
such rate constants, like in (8–10), the positive steady states are the roots of the following equation

A


ln(x1)
ln(x2)

...
ln(xn)

 =


ln(β1)
ln(β2)

...
ln(βn)

 =: ln(β) .(14)

Next, as rank(A) ≤ n− 1, there exists a nonzero vector γ ∈ Rn in the orthogonal complement of

the column space of A. By relabeling the mi’s (which permutes the columns of Ñ), if needed, we
may assume that γ1 6= 0. By construction of γ and equation (14), we have 〈γ, ln(β)〉 = 0, which is
readily rewritten as follows:(

[B1]

[Bn+1]

)γ1
. . .

(
(−1)k+1 [Bk]

[Bn+1]

)γk
. . .

(
(−1)n+1 [Bn]

[Bn+1]

)γn
= 1 .(15)

For ε > 0, let κ∗ε denote the vector of rate constants obtained from κ∗ by scaling by (1 + ε) all
rate constants of reactions in which the reactant generates the monomial m1. As Σ is an open set,

κ∗ε ∈ Σ for ε sufficiently small. Also, by construction, the matrix Ñ |κ=κ∗ε is obtained from Ñ |κ=κ∗

by scaling the first column by (1 + ε). So, for 2 ≤ i ≤ n+ 1, we have [Bi]|κ=κ∗ε = (1 + ε)[Bi]|κ=κ∗ .
Thus, by replacing κ∗ by κ∗ε, the left-hand side of equation (15) is scaled by (1 + ε)−γ1 , and so

there exists ε > 0 for which equation (15) does not hold (when evaluated at κ = κ∗ε). Hence, this
vector κ∗ε yields a mass-action system (G, κ∗ε) with no positive steady states, as desired. �

Proposition 3.6 implies that for networks with at least n reactant complexes (where n is the
number of species), some choice of rate constants yields a matrix N with (full) rank n. Our next
result shows that when this condition holds (even for networks with fewer reactants), every species
appears in at least one reactant complex.

We introduce the following shorthand (which we use in several of the next results): a complex
y`1X1 + y`2X2 + · · ·+ y`nXn involves species Xi if y`i 6= 0. For instance, X1 +X2 involves X2, but
X1 +X3 does not.

Lemma 3.8 (Reactants involve all species). Let G be a full-dimensional reaction network with n
species, let κ∗ be a vector of positive rate constants, and let N be the matrix for (G, κ∗), as in (7).
If rank(N) = n and (G, κ∗) has a positive steady state, then for every species Xi, at least one
reactant complex of G involves Xi.

Proof. We prove the contrapositive. Assume that there is a species Xi such that for every reactant
complex a1X1 +a2X2 + · · ·+anXn we have ai = 0. Then, by Lemma 2.3, the right-hand side of the
mass-action ODE for Xi, which we denote by fi, is a sum of monomials, all of which have positive
coefficients. But (G, κ∗) has a positive steady state, so fi must be 0. We conclude that the i-th
row (of the n rows) of N is the zero row and so rank(N) ≤ n− 1. �

3.2. Networks with conservation laws. The following result is similar to several results in the
prior subsection, but pertains to networks that are not full-dimensional (including, but not limited
to, networks with mass conservation).

Proposition 3.9 (Networks with conservation laws and few reactants). Let G be a reaction network
with n ≥ 3 species. Assume that G is (n− k)-dimensional, where k ≥ 1 (so, G has k conservation
laws). If G has exactly j reactant complexes, for some j ∈ {2, 3, . . . , n − k}, then every positive
steady state (of every mass-action system defined by G) is degenerate.
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Proof. We mimic the proofs of Propositions 3.1(1) and 3.5. Let κ∗ be a vector of positive rate
constants. Let N be an (n× j) matrix defined, as in (7), by (G, κ∗):dx1/dt

...
dxn/dt

 = N

m1
...
mj

 =:

f1
...
fn

 ,(16)

where m1, . . . ,mj are distinct monic monomials in x1, . . . , xn.
We consider two cases. First assume that rank(N) ≤ n − k − 1. Then the polynomials fi span

a subspace of dimension ≤ n− k − 1 and hence the Jacobian matrix – even before evaluating at a
positive steady state – has rank ≤ n− k − 1. Every positive steady state is therefore degenerate.

Consider the remaining case: rank(N) = n− k (so, j = n− k). In this case, multiplication by N
defines an injective map Rn−k → Rn. Hence, by (16), the steady-state equations f1 = · · · = fn = 0
imply the monomial equations m1 = · · · = mj = 0. Thus, there are no positive steady states. �

The next result concerns networks with n−1 conservation laws, that is, one-dimensional networks.

Proposition 3.10 (One-dimensional networks). Let G be a one-dimensional reaction network, and
let κ∗ be a vector of positive rate constants. If (G, κ∗) has ACR, then (G, κ∗) is not nondegenerately
multistationary.

Proof. Assume that G is one-dimensional, with n species. Thus, G has n− 1 linearly independent
conservation laws. Let κ∗ be a vector of positive rate constants for which there is ACR. We may
assume that the ACR species is X1 (by relabeling species, if needed). Let f1, . . . , fn denote the
right-hand sides of the mass-action ODEs arising from (G, κ∗).

Let x∗ = (x∗1, . . . , x
∗
n) denote an arbitrary positive steady state of (G, κ∗). (The ACR-value is

x∗1.) Let Px∗ denote the (one-dimensional) stoichiometric compatibility class that contains x∗. It
suffices to show that (1) x∗ is the unique positive steady state in Px∗ or (2) x∗ is degenerate.

We consider two cases.
Case (a): X1 is not a catalyst-only species (in some reaction of G). This implies that f2, . . . , fn

are all scalar multiples of f1, and that the compatibility class Px∗ is defined by n− 1 conservation
laws of the form xj = ajx1 + bj , where aj , bj ∈ R, for j ∈ {2, 3, . . . , n}. By substituting these n− 1
relations into f1, we obtain a univariate polynomial in x1, which we denote by h. If h has multiple
positive roots, then there is no ACR, which is a contradiction. If, on the other hand, h does not
have multiple positive roots, then Px∗ does not contain multiple positive steady states (that is, x∗

is the unique positive steady state in Px∗).
Case (b): X1 is a catalyst-only species in all reactions of G. In this case, f1 = 0, and x1 = x∗1 is

a conservation law of G, and it is one of the defining equations of the compatibility class Px∗ . By
relabeling species X2, . . . , Xn, if needed, we may assume that X2 is not a catalyst-only species (as
G is one-dimensional). Thus, we can “extend” the conservation law x1 = T to a “basis” of n − 1
conservation laws that define the compatibility class Px∗ , by appending n− 2 conservation laws of
the form xj = ajx2 + bj , where aj , bj ∈ R, for j ∈ {3, 4, . . . , n}.

Next, we substitute these n − 2 conservation relations into f2, which yields a polynomial in x1

and x2, which we denote by g. Consider the following set, which is the positive variety of g in R2
>0

(the values of x3, . . . , xn are free, so we ignore them):

Σ := {x ∈ R2
>0 | g(x1, x2) = 0}.(17)

By construction and the fact that there is ACR in X1, the set Σ is contained in the hyperplane
(line) x1 = x∗1, and so is either one-dimensional or zero-dimensional. We consider these two subcases
separately. First, assume that Σ is one-dimensional. In this subcase, Σ equals the subset of the
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hyperplane x1 = x∗1 in the positive quadrant R2
>0, and so the compatibility class Px∗ consists

entirely of positive steady states. The Inverse Function Theorem now implies that every positive
steady state of Px∗ (in particular, x∗) is degenerate.

Consider the remaining subcase, in which Σ is zero-dimensional (that is, Σ consists of finitely
many points). It follows that g is either non-negative on R2

>0 or non-positive on R2
>0, and so f2 is

either non-negative on Px∗ or non-positive on Px∗ . Consequently, as every fi is a scalar multiple of
f2, the steady state x∗ is degenerate. �

3.3. Bimolecular networks. We begin this subsection with a result that clarifies how the poly-
nomials arising in mass-action ODEs are constrained when the network is bimolecular.

Lemma 3.11 (Bimolecular networks). Consider a bimolecular mass-action system (G, κ∗) with n
species. Let fi be the right-hand side of the mass-action ODE for species Xi (for some 1 ≤ i ≤ n).
Fix positive values aj > 0 for all j ∈ {1, 2, . . . , n} r {i}. Let gi denote the univariate polynomial
obtained by evaluating fi at xj = aj for all j ∈ {1, 2, . . . , n}r {i}. If the polynomial gi is nonzero,
then gi has at most one sign change and hence has at most one positive root.

Proof. Let gi denote the nonzero polynomial obtained by evaluating fi at xj = aj for all j 6= i.
Several properties of gi arise from the fact that G is bimolecular: (1) deg(gi) ≤ 2, (2) the coefficient
of x2

i is non-positive, and (3) the constant coefficient is non-negative. Thus, gi has at most one sign
change, and so Descartes’ rule of signs implies that gi has at most one positive root. �

The next two results pertain to bimolecular mass-action systems in which the right-hand side
of some ODE vanishes (Propositions 3.14) or vanishes when evaluated at an ACR-value (Proposi-
tion 3.15). We motivate these results through the following example.

Example 3.12 (Enlarged Shinar-Feinberg network). A common way to construct a network with
an ACR species (e.g., A) is through the existence of an fi that becomes zero when we substitute
the ACR-value in place of the species. We illustrate this idea through the following network:

G = {A+B
κ1−→ 2B, B

κ2−→ A, 0
κ3←− B + C

κ4−→ 2B, 0
κ5−→ C} .

This network is constructed from a well-studied network first introduced by Shinar and Feinberg [27]
by adding three reactions involving a new species (C). We examine the mass-action ODE for B:

dx2

dt
= κ1x1x2 − κ2x2 − κ3x2x3 + κ4x2x3 = x2(κ1x1 − κ2) + x2x3(−κ3 + κ4) = g + h =: f2 ,

where g := x2(κ1x1 − κ2) (which is the right-hand side of the ODE for X2 in the original Shinar-
Feinberg network) and h := x2x3(−κ3 + κ4) (arising from the additional reactions, involving X3).

Assume κ3 = κ4. It is easy to check that (G, κ) has a positive steady state and also has ACR in
species X1 with ACR-value α = κ2/κ1. Also, observe that f2|x1=α = 0, as a result of the equalities
g|x1=α = 0 and h = 0 (which is due to the equality κ3 = κ4).

The next two results characterize which reactions can exist in such a situation. More precisely:

• Proposition 3.14 gives conditions that hold when a mass-action ODE is zero (effectively
characterizing what reactions can yield h = 0 in this case).
• Proposition 3.15 gives conditions that hold when a mass-action ODE is zero when evaluated

at the ACR-value (effectively characterizing what reactions can yield f2|x1=α = 0 in this
case, involving a decomposition like the one we observed above: f2|x1=α = g|x1=α + h).

The next result uses the following notation:

Notation 3.13 (Empty complex). We introduce the dummy variable X0 := 0, so that (for instance)
X0 is the empty complex and Xi +X0 := Xi for any species Xi.
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The following result clarifies which reactions can exist if some mass-action ODE is zero.

Proposition 3.14 (When fi is zero). Let G be a bimolecular reaction network with n species
X1, X2, . . . , Xn. Fix 1 ≤ i ≤ n. Let κ∗ denote a vector of positive rate constants for G, and let fi
denote the right-hand side of the mass-action ODE for species Xi in the system (G, κ∗). If fi is
the zero polynomial, then the set of reactions of G in which Xi is a non-catalyst-only species is a
(possibly empty) subset of the reactions listed here (where our use of X0 follows Notation 3.13):

(1) the reactions of the form Xi +Xj → 2Xi (and we denote the rate constant by κ∗1,j), where

j ∈ {0, 1, . . . n}r {i},
(2) the reactions of the form Xi + Xj → ? (with rate constant κ∗2,j,`, where ` is an index for

such reactions), where j ∈ {0, 1, . . . n}r {i} and ? is any complex that does not involve Xi,

and, additionally, the following relationships among the rate constants hold:

κ∗1,j =
∑
`

κ∗2,j,` for all j ∈ {0, 1, . . . n}r {i} ,(18)

where a rate constant is set to 0 if the corresponding reaction is not in G.

Proof. Let κ∗ be a vector of positive rate constants for a bimolecular network G with n species,
and let fi be the right-hand side of (G, κ∗) for the species Xi. Let Σ denote the set of reactions
of G in which Xi is a non-catalyst-only species. Reactions not in Σ do not contribute to fi, so we
ignore them for the rest of the proof.

We claim that for all reactions in Σ, the reactant complex is not one of the following 5 types:
0, Xj , Xj + Xj′ , 2Xj , 2Xi for any j, j′ ∈ {1, 2, . . . , n} r {i}. Indeed, any of the first 4 types of
complexes would yield a constant term in fi (when viewed as a polynomial in xi) consisting of a
sum of monomials with positive coefficients; similarly, the last type (2Xi) would yield a negative
x2
i term (the fact that G is bimolecular is used here). However, fi is zero, so the claim holds.
It follows that, for every reaction in Σ, the reactant complex either is Xi or has the form Xi+Xj

for some j ∈ {1, 2, . . . , n} r {i}. It is straightforward to check that all possible such reactions (in
which Xi is a non-catalyst-only species) are listed in the proposition. Next, reactions of type (1) in
the proposition contribute positively to fi, while those of type (2) contribute negatively, as follows:

fi =

(
κ∗1,0 −

∑
`

κ∗2,0,`

)
xi +

∑
j∈{1,2,...,n}r{i}

(
κ∗1,j −

∑
`

κ∗2,j,`

)
xixj .(19)

As fi = 0, the coefficient of xi and the coefficient of each xij in (19) must be 0, which yields the
desired equalities (18). �

Proposition 3.14 concerns general (bimolecular) mass-action systems, and now we consider those
with ACR. The next result characterizes which reactions can exist if some mass-action ODE be-
comes zero when evaluated at the ACR-value.

Proposition 3.15 (When fi is zero at the ACR-value). Let G be a bimolecular reaction network
with species X1, X2, . . . , Xn, where n ≥ 2. Let κ∗ denote a vector of positive rate constants. Assume
that the mass-action system (G, κ∗) has ACR in species X1 with ACR-value α > 0. Fix 2 ≤ i ≤ n.
Let fi denote the right-hand side of the mass-action ODE for species Xi in the system (G, κ∗).
If fi 6= 0 and fi|x1=α is the zero polynomial, then the set of reactions of G in which Xi is a
non-catalyst-only species is a nonempty subset of the following reactions (the same as the ones in
Proposition 3.14):

(1) the reactions of the form Xi +Xj → 2Xi (and we denote the rate constant by κ∗1,j), where

j ∈ {0, 1, . . . n}r {i},



ABSOLUTE CONCENTRATION ROBUSTNESS AND MULTISTATIONARITY 17

(2) the reactions of the form Xi + Xj → ? (with rate constant κ∗2,j,`, where ` is an index for

such reactions), where j ∈ {0, 1, . . . n}r {i} and ? is any complex that does not involve Xi.

Additionally, the following relationship between the ACR-value α and the rate constants holds:

α =

(∑
` κ
∗
2,0,`

)
− κ∗1,0

κ∗1,1 −
(∑

` κ
∗
2,1,`

) .(20)

In particular, the numerator and denominator of (20) are nonzero. Finally, if n ≥ 3, then the
following relationships among the rate constants hold:

κ∗1,j =
∑
`

κ∗2,j,` for all j ∈ {2, 3, . . . n}r {i} .(21)

(In equations (20)–(21), a rate constant is set to 0 if the corresponding reaction is not in G.)

Proof. Assume that fi is nonzero, but fi|x1=α is zero. Using properties of polynomial rings over a
field, it follows that (x1 − α) divides fi. From the fact that G is bimolecular, we conclude that:

fi = (x1 − α)

βxi + γ +
∑

j∈[n]r{i}

δjxj


= βx1xi + γx1 +

 ∑
j∈[n]r{i}

δjx1xj

− αβxi − αγ −
 ∑
j∈[n]r{i}

αδjxj

 ,(22)

for some real numbers β, γ, δj , at least one of which is nonzero.
In the right-hand side of (22), the variable xi does not appear in any of the following monomials

(here the hypothesis i 6= 1 is used):

γx1, −αγ, δjx1xj , −αδjxj ,

for j ∈ {1, 2, . . . , n}r {i}, so Lemma 2.3 implies that the coefficients of these monomials must be
non-negative. Since α > 0, we conclude that γ = 0 and δj = 0 (for all j ∈ {1, 2, . . . , n}r {i}).

Thus, using (22), we have fi = βx1xi − αβxi, for some β ∈ Rr {0}. Next, we investigate which
reactions contribute to the two monomials in fi. For βx1xi, the contributing reactions have the
form X1 +Xi → 2Xi and X1 +Xi → ?, where ? does not involve Xi. The first reaction contributes
positively, while the second type contributes negatively. Let κ∗1,1 be the reaction rate constant for

X1 +Xi → 2Xi (as in the statement of the lemma) and κ∗2,1,` be the rate constant for reactions of
type X1 +Xi → ?, where ` is an index for all the reactions of this type. We conclude that

κ∗1,1 −
∑
`

κ∗2,1,` = β .(23)

Similarly, the monomial −αβxi in fi comes from reactions of the form Xi → 2Xi, which con-
tributes positively, and Xi → ?, which contributes negatively, where ? is a complex that does not
involve Xi. Hence,

κ∗1,0 −
∑
`

κ∗2,0,` = −αβ .(24)

Now the equations (23) and (24) together imply the desired equality (20).
Next, let Σ denote the set of reactions of G in which Xi is a non-catalyst-only species. We showed

above that Σ contains a (nonempty) subset of reactions with rate constants labeled by κ∗1,0, κ∗1,1,

κ∗2,0,`, κ
∗
2,1,`. Let Σ′ ⊆ Σ denote the remaining reactions, and let G′ denote the subnetwork defined

by the reactions in Σ′. Let κ′ be obtained from κ∗ by restricting to coordinates corresponding to
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reactions in Σ′. By construction, the mass-action ODE of (G′, κ′) for species Xi has right-hand side
equal to 0. So, Proposition 3.14 applies (where reactions arising from j = 0, 1 in that proposition
are absent from G′ by construction), and yields two conclusions. First, Σ′ is a subset of the reactions
listed in Proposition 3.15 (specifically, with j 6= 0, 1), and so Σ is a subset of the full list (including
j = 0, 1). Second, the equations (18) hold (for j 6= 0, 1), which are the desired equalities (21). �

Remark 3.16. The reactions listed in Propositions 3.14 and 3.15 (the lists are the same) are not
reversible. Hence, if G is a reversible network satisfying the hypotheses of either proposition, then
Xi is a catalyst-only species in every reaction of G.

Example 3.12 (continued). We revisit the enlarged Shinar-Feinberg network, G = {A + B
κ1−→

2B, B
κ2−→ A, 0

κ3←− B + C
κ4−→ 2B, 0

κ5−→ C}. Recall that, when κ3 = κ4, the mass-action system
(G, κ) has ACR in X1 with ACR-value α = κ2/κ1, and that f2|x1=α = 0. In the notation of
Proposition 3.15, the rate constants of reactions in which X2 is non-catalyst-only are:

κ∗1,1 = κ1, κ∗1,0 = κ2, κ∗2,3,1 = κ3, κ∗1,3 = κ4 .

Now the formula in Proposition 3.15 for the ACR-value (20) exactly yields the ACR-value computed
earlier: α = κ2/κ1, and the relationship among rate constants (21) recapitulates κ3 = κ4.

Remark 3.17. The formula for the ACR-value, in (20), is related to the concept of “robust ratio”
introduced by Johnston and Tonello [32].

3.4. Three reversible reactions are necessary for multistationarity. Recall that, in (5), we
saw an instance of a (nondegenerately) multistationary, bimolecular network that consists of 3 pairs
of reversible reactions. In this subsection, we prove that bimolecular networks with fewer pairs of
reversible reactions are non-multistationary (Theorem 3.21). Our proof of Theorem 3.21 requires
several supporting lemmas on one-dimensional networks.

For the next lemma, recall from Section 2.2 that cappos(G) (respectively, capnondeg(G)) denotes
the maximum possible number of positive (respectively, nondegenerate and positive) steady states
of a network G. In Lemma 3.18 below, part (1) was conjectured by Joshi and Shiu [20] and then
proved by Lin, Tang, and Zhang [22, Theorem 4.3] (see also [26]). Part (2) is due to Tang and
Zhang [31, Theorem 6.1].

Lemma 3.18. Let G be a one-dimensional reaction network.

(1) If G is multistationary and cappos(G) < ∞, then G has an embedded one-species network
with arrow diagram (←,→) and another with arrow diagram (→,←).

(2) If cappos(G) <∞, then capnondeg(G) = cappos(G).

Joshi and Shiu showed that the network G = {0← A→ 2A} is the only one-species, bimolecular
network for which cappos(G) =∞ [19]. The following lemma generalizes this result from one-species
networks to one-dimensional networks.

Lemma 3.19 (One-dimensional bimolecular networks with infinitely many steady states). Let G
be a one-dimensional and bimolecular reaction network with n species. The following are equivalent:

(1) cappos(G) =∞.
(2) Up to relabeling species, G is one of the following networks:

(a) {2X1 ← X1 +X2 → 2X2},
(b) {X1 → 2X1} ∪ Σ, where Σ consists of at least one reaction from the following set:

{0← X1} ∪ {Xi ← X1 +Xi | i = 2, 3, . . . , n} .
Additionally, for the networks listed above in 2(a) and 2(b), every positive steady state (of every
mass-action system arising from the network G) is degenerate.
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Proof. Let G be a one-dimensional, bimolecular reaction network. Up to relabeling species, the
one-dimensional stoichiometric subspace is spanned by one of the following seven vectors:

(1, 0, 0, . . . , 0) , (1,−1, 0, 0, . . . , 0) ,(25)

(1, 1, 0, 0, . . . , 0) , (1,−2, 0, 0, . . . , 0) , (1, 1,−1, 0, 0, . . . , 0) , (1, 1,−2, 0, 0, . . . , 0) , (1, 1,−1,−1, 0, 0, . . . , 0) .(26)

We first consider the case when the stoichiometric subspace is spanned by one of the five vectors
listed in (26). The network G is then a subnetwork of one of the following networks (where we use
A,B,C,D in place of X1, X2, X3, X4 for ease of notation);

{0 � A+B} , {A� 2B} , {A+B � C} , {A+B � 2C} , {A+B � C +D} .

A direct calculation shows that the deficiency of G is 0, so the deficiency-zero theorem (Lemma 2.5)
implies that G is not multistationary. In particular, cappos(G) <∞.

Having shown that the case of (26) is consistent with Lemma 3.19, we now consider the remaining
two cases, from (25), separately. First, assume the stoichiometric subspace of G is spanned by
(1, 0, 0, . . . , 0). It follows that the reactions of G form a subset of the following 2n+ 4 reactions:

0
m0

�
k0

X1

`0
�
m1

2X1 0
`1
�
k1

2X1

Xi

mi
�
ki

X1 +Xi for i = 2, 3, . . . , n .

The ODEs for species X2, X3, . . . , Xn are dxi
dt = 0 so, xi = Ti (with Ti > 0) for i = 2, 3, . . . , n are

the corresponding conservation laws. We substitute these conservation laws into the ODE for X1:

dx1

dt
|x2=T2,...,xn=Tn = (k0 + 2k1) + (k2T2 + · · ·+ knTn) +m1x1(27)

− (m0 +m2T2 + · · ·+mnTn)x1 − (`0 + 2`1)x2
1 .

When at least one ki is positive and all other kj ’s are non-negative, the right-hand side of (27),
viewed as a polynomial in x1, has a nonzero constant term and, hence, is not the zero polynomial.
Similarly, if `0 or `1 is positive and `0, `1 ≥ 0, then the right-hand side of (27) has a nonzero
coefficient of x2

1 and is again a nonzero polynomial. We conclude that if G contains at least one of
the reactions labeled by ki or `i, then cappos(G) <∞, which is consistent with Lemma 3.19.

We now consider the case when G contains no reactions labeled by ki or `i, that is, every reaction
of G is one of the following n+ 1 reactions:

0
m0← X1

m1→ 2X1

Xi
mi← X1 +Xi for i = 2, 3, . . . , n .

The right-hand side of the ODE for X1, as in (27), becomes x1(m1 −m0 −m2T2 − · · · −mnTn).
In order for this polynomial in x1 to become the zero polynomial for some choice of positive rate
constants of G (equivalently, cappos(G) =∞), we must have m1 > 0 and mj > 0 for at least one of
j = 0, 2, 3, . . . , n. This gives exactly the reactions listed in Lemma 3.19(2)(b). In this case, given
mj > 0 for the reactions appearing in the network, we can always choose Tj > 0, such that the
right-hand side of the ODE for X1 vanishes (i.e., cappos(G) =∞). Moreover, when this right-hand
side vanishes is the only situation in which there are positive steady states, and an easy calculation
shows that all such positive steady states are degenerate. This concludes our analysis of networks
with stoichiometric subspace spanned by the vector (1, 0, 0, . . . , 0).
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Our final case is when the stoichiometric subspace is spanned by the vector (1,−1, 0, . . . , 0). In
this case, the reactions of G form a subset of the following 2n+ 4 reactions:

X1

`1
�
k1

X2 2X1

`2
�
k2

2X2 2X1

m1

�
k3

X1 +X2

`3
�
m2

2X2

X1 +Xi

`i+1

�
ki+1

X2 +Xi for i = 3, 4, . . . , n .

The conservation laws are x1 + x2 = T2 and xi = Ti for i = 3, 4, . . . , n. The ODE for species X1 is:

dx1

dt
= − (2k2 + k3)x2

1 − k1x1 − (k4x3 + · · ·+ kn+1xn)x1 + (m1 −m2)x1x2(28)

+ (`1x2 + 2`2x
2
2 + `3x

2
2) + (`4x3 + · · ·+ `n+1xn)x2 .

Consider the subcase when at least one of the `i is positive and all other `j ’s are non-negative.
After substituting the expressions arising from the conservation laws (namely, x2 = T2 − x1 and
xi = Ti for i = 3, 4, . . . , n) into the right-hand side of the ODE (28), we obtain a polynomial in x1

that has a positive constant term (see the second line of the right-hand side of (28)). Hence, if G
contains at least one of the reactions labeled by `i, then cappos(G) <∞.

By symmetry, if G has at least one of the reactions labeled by ki, then again cappos(G) < ∞.
Hence, if G contains a reaction labeled by `i or ki, then this subcase is consistent with the lemma.

Consider the remaining subcase, when G is a subnetwork of {2X1
m1← X1 + X2

m2→ 2X2}, and so
consists of only one or two reactions. If G has only one reaction, then Proposition 3.5 implies that
cappos(G) = 0 <∞ (which is consistent with the lemma).

Now assume that G has two reactions, that is, G = {2X1
m1← X1 + X2

m2→ 2X2}. If m1 6= m2,

then the ODE for X1 is dx1
dt = (m1 −m2)x1x2 and so there are no positive steady states. When

m1 = m2, the ODE for X1 becomes dx1
dt = 0 and it follows that cappos(G) =∞. Moreover, a simple

computation shows that all the positive steady states are degenerate. This concludes the proof. �

Example 2.1 (continued). The network {0 ← A → 2A, B ← A + B} is one of the networks
listed in Lemma 3.19.2(b), where n = 2.

Lemma 3.20 (One-dimensional bimolecular networks). If G is a one-dimensional, bimolecular
network, then G is not nondegenerately multistationary.

Proof. Assume that G is a one-dimensional network that is nondegenerately multistationary. We
must show that G is not bimolecular. We claim that cappos(G) is finite. Indeed, if cappos(G) =∞,
then Lemma 3.19 implies that all positive steady states are degenerate and so G is not nondegen-
erately multistationary, which is a contradiction. Hence, cappos(G) <∞.

The hypotheses of part (1) of Lemma 3.18 are satisfied, that is, cappos(G) < ∞, and G is one-
dimensional and multistationary. Therefore, G has an embedded one-species network with arrow
diagram (←,→). Such an embedded network (e.g., {0 ← A, 2A → 3A}) involves at least one
complex that is not bimolecular, and so G is also not bimolecular. �

Theorem 3.21 (Networks with up to two reversible reactions). If G is a bimolecular reaction
network that consists of one or two pairs of reversible reactions, then G is not multistationary.

Proof. Assume that G is bimolecular and consists of one or two pairs of reversible reactions. Let p
denote the number of pairs of reversible reactions (so, p = 1 or p = 2), and ` the number of linkage
classes. Let s be the dimension of the stoichiometric subspace (so, s = 1 or s = 2).

Case 1: p = 1. The deficiency of G is δ = 2− 1− 1 = 0 and G is weakly reversible. Hence, by
the deficiency-zero theorem (Lemma 2.5) the network is not multistationary.



ABSOLUTE CONCENTRATION ROBUSTNESS AND MULTISTATIONARITY 21

Case 2: p = s = 2. If ` = 1, then the deficiency is δ = 3−1−2 = 0. If ` = 2, then the deficiency
is δ = 4 − 2 − 2 = 0. Therefore, for either value of `, the deficiency-zero theorem (Lemma 2.5)
implies that the network is not multistationary.

Case 3: p = 2 and s = 1. G is one-dimensional, bimolecular, and reversible. So, Lemma 3.19 im-
plies that cappos(G) <∞. Now Lemma 3.18(2) yields cappos(G) = capnondeg(G), and Lemma 3.20
implies that capnondeg(G) ≤ 1. Thus, cappos(G) ≤ 1, or, equivalently, G is non-multistationary. �

4. Main results on bimolecular networks

In this section, we establish minimal conditions for a bimolecular network to admit ACR and
nondegenerate multistationarity simultaneously. These minimal conditions are in terms of the
numbers of species, reactions, and reactant complexes. The main result is as follows.

Theorem 4.1 (Conditions for coexistence of ACR and nondegenerate multistationarity). Let G be
a bimolecular reaction network. If there exists a vector of positive rate constants κ∗ such that the
mass-action system (G, κ∗) has ACR and also is nondegenerately multistationary, then:

(1) G has at least 3 species.
(2) G has at least 3 reactant complexes (and hence at least 3 reactions) and at least 5 complexes

(reactant and product complexes).
(3) If G is full-dimensional, then G has at least 5 reactant complexes (and hence at least 5

reactions).

This section is structured as follows. In Subsection 4.1, we prove part (1) of Theorem 4.1 (specifi-
cally, part (1) follows from Proposition 4.3 and Theorem 4.8). Theorem 4.8 also analyzes two-species
bimolecular networks with ACR and degenerate multistationarity. Additionally, we characterize un-
conditional ACR in two-species bimolecular networks that are reversible (Theorem 4.4).

Subsequently, in Subsection 4.2, we prove parts (2) and (3) of Theorem 4.1 (Theorem 4.9 and
Proposition 4.12). We also consider full-dimensional, 3-species, bimolecular networks with only 4
reactant complexes. By Theorem 4.1, such networks do not allow for the coexistence of ACR and
nondegenerate multistationary. Nevertheless, ACR and degenerate multistationarity is possible,
and we characterize the possible sets of reactant complexes of such networks (Proposition 4.15).

4.1. Bimolecular networks with one or two species. This subsection characterizes uncondi-
tional ACR in reversible networks with only one or two species (Proposition 4.3 and Theorem 4.4).
Notably, our results show that such networks with unconditional ACR are not multistationary.

Remark 4.2 (Reversible networks). Our interest in reversible networks comes from our prior work
with Joshi [18]. In that article, our results on multistationarity in randomly generated reaction
networks arise from “lifting” this property from the following (multistationary) motif:

{B � 0 � A� B + C , C�2C} .(29)

The question arises, Are there multistationary motifs with fewer species, reactions, or complexes
than the one in (29)? Discovering more motifs might aid in analyzing the prevalence of multista-
tionarity in random reaction networks generated by stochastic models besides the one in [18].

4.1.1. Networks with one species. When there is only one species, say X1, and the network is
bimolecular, there are only 3 possible complexes: 0, X1, 2X1. Hence, every such network is a
subnetwork of the following network:

GX1 = {0 � X1 � 2X1 � 0}.(30)

Therefore, the possible reversible networks, besides GX1 itself, are listed here:

{0 � X1}, {X1 � 2X1}, {0 � 2X1}, {0 � X1 � 2X1}, {X1 � 0 � 2X1}, {0 � 2X1 � X1} .(31)
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Proposition 4.3. Every bimolecular network in only one species is not nondegenerately multista-
tionary. Every reversible, bimolecular network in only one species has unconditional ACR.

Proof. Let G be a bimolecular network with only one species. Then G is a subnetwork of GX1 ,
in (30), and the first part of the proposition now follows readily from Lemmas 3.18–3.19.

Next, assume G is a reversible, bimolecular network with only one species. Then G is either the
network GX1 or one of the networks listed in (31). Each of these networks is weakly reversible and
satisfies the conditions of either the deficiency-zero or deficiency-one theorem (Lemmas 2.5–2.6).
Thus, for every choice of positive rate constants κ, the mass-action system (G, κ) has a unique
positive steady state. Hence, G has unconditional ACR. �

4.1.2. Reversible networks with two species. We now consider reversible, bimolecular networks with
two species. Among such networks, the ones with unconditional ACR are characterized in the
following result, which is the main result of this subsection.

Theorem 4.4 (Unconditional ACR in reversible, 2-species networks). Let G be a reversible, bi-
molecular reaction network with exactly two species (and at least one reaction).

(1) If G is full-dimensional, then the following are equivalent:
(a) G has unconditional ACR;
(b) G is not multistationary.

(2) If G is one-dimensional, then the following are equivalent:
(a) G has unconditional ACR;
(b) Up to relabeling species, G is the (non-multistationary) network {X2 � X1 +X2}.

Theorem 4.4 encompasses Propositions 4.5 and 4.6 below.

Proposition 4.5. Let G be a full-dimensional, reversible, bimolecular reaction network with exactly
two species. Then the following are equivalent:

(a) G has unconditional ACR;
(b) G is not multistationary.

Proof. Let G be a full-dimensional, reversible, bimolecular network with exactly 2 species.
We first prove (b) ⇒ (a). Assume that G is non-multistationary, and let κ∗ be a choice of

positive rate constants. Then, the mass-action system (G, κ∗) admits at most one positive steady
state (x∗1, x

∗
2) (here the assumption that G is full-dimensional is used). However, the fact that G is

reversible guarantees at least one positive steady state (Remark 2.8). Hence, (G, κ∗) has a unique
positive steady state (x∗1, x

∗
2) and therefore has ACR in both species with ACR-values x∗1 and x∗2,

respectively. So, G has unconditional ACR.
Next, we prove (a)⇒ (b). Assume that G has unconditional ACR. Let κ∗ be a choice of positive

rate constants. By relabeling species, if necessary, we may assume that the system (G, κ∗) has ACR
in species X1 with some ACR-value α > 0. Every positive steady state of (G, κ∗), therefore, has
the form (α, x∗2), where x∗2 ∈ R>0. We must show that there is at most one such steady state.

Write the mass-action ODEs of (G, κ∗) as dx1
dt = f1 and dx2

dt = f2. Consider the univariate
polynomial f2|x1=α ∈ R[x2]. We claim that this polynomial is not the zero polynomial. To check
this claim, assume for contradiction that f2|x1=α is zero. As G is reversible, Remark 3.16 (which
relies on Propositions 3.14–3.15) implies that X2 is a catalyst-only species of every reaction of
G. We conclude that G is not full-dimensional, which is a contradiction. Having shown that the
univariate polynomial f2|x1=α is nonzero, we now use Lemma 3.11 to conclude that (G, κ∗) has at
most one positive steady state of the form (α, x∗2). �
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Proposition 4.5 fails for networks that are not reversible. Indeed, a network without positive
steady states (such as {0→ A, 0→ B}) is not multistationary and also lacks unconditional ACR.

We end this subsection by considering two-species networks that are one-dimensional. Up to
relabeling species, each such network is a subnetwork of exactly one of the following networks Gi:

G1 := {0 � X1 +X2}
G2 := {X1 � 2X2}(32)

G3 := {0 � X1 � 2X1 � 0 , X2 � X1 +X2}
G4 := {2X1 � X1 +X2 � 2X2 � 2X1 , X1 � X2}

The next result, which is part (2) of Theorem 4.4, states that among the reversible subnetworks
of the networks Gi listed in (32), only one has unconditional ACR (namely, {X2 � X1 +X2}).

Proposition 4.6. Let G be a one-dimensional, reversible, bimolecular reaction network with exactly
two species. Then the following are equivalent:

(a) G has unconditional ACR;
(b) Up to relabeling species, G is the (non-multistationary) network {X2 � X1 +X2}.

Proof. Let G be a two-species, one-dimensional, reversible, bimolecular reaction network. From the
list (32), we know that G is a subnetwork of one of G1, G2, G3, and G4.

Assume G is a subnetwork of G1, G2, or G4. Then, G 6= {X2 � X1 + X2} and G is not a
subnetwork of {0 � X1 � 2X1 � 0}. So, it suffices to show G does not have unconditional ACR.

In networks G1, G2, and G4, the reactant and product complexes of every reaction differ in both
species X1 and X2. Also, all reactions in G are reversible, so every complex of G is a reactant
complex. We conclude that G has two reactant complexes that differ in both species, and hence,
Lemma 2.12 implies that G does not have unconditional ACR.

We now consider the remaining case, when G is a subnetwork of G3. We write G3 = N1 ∪ N2,
where N1 := {0 � X1 � 2X1 � 0} and N2 := {X2 � X1 + X2}. If G = N2, the mass-action
ODEs are dx1/dt = κ1x2 − κ2x1x2 and dx2/dt = 0, and so G has unconditional ACR in species
X1 with ACR-value κ1

κ2
. If G is a subnetwork of N1, then G has only one species (recall that every

species of a network must take part in at least one reaction), which is a contradiction.
Our final subcase is when G contains reactions from both N1 and N2. Then, from N2, the

complex X2 is a reactant complex of G. Similarly, from N1, at least one of X1 and 2X1 is a
reactant complex of G. Hence, G contains two reactant complexes that differ in both species, X1

and X2. Therefore, Lemma 2.12 implies that G does not have unconditional ACR.
Finally, the fact that the network {X2 � X1 + X2} is non-multistationary follows easily from

the deficiency-zero theorem (Lemma 2.5). �

4.1.3. Irreversible networks with two species. In [24], the following network was called a “degenerate-
ACR network,” because it has unconditional ACR and yet every positive steady state is degenerate:

{A+B → B, A→ 2A} .(33)

This degeneracy arises from the fact that a single (one-dimensional) stoichiometric compatibility
class consists entirely of steady states [24, Example 2.12]. The main result of this subsection,
Theorem 4.8 below, shows that only one additional two-species network exhibits both ACR and
multistationarity for a nonzero-measure set of rate constants; this network is obtained by adding
to (33) the reaction A→ 0. Both networks, therefore, are one-dimensional, two-species networks.

To prove Theorem 4.8, we need the following lemma, which concerns the network in (33) (and
others as well).
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Lemma 4.7. Let G be a subnetwork of the network {X1 +X2 → X2, 0← X1 → 2X1}. Then:

(1) Every positive steady state (of every mass-action system defined by G) is degenerate.
(2) Let Σ denote the set of vectors of positive rate constants κ for which the mass-action system

(G, κ) both has ACR and is multistationary. If Σ has nonzero measure, then G is one of the
following networks: {X1 +X2 → X2, X1 → 2X1} and {X1 +X2 → X2, 0← X1 → 2X1}.

Proof. This result is straightforward to check by hand, so we only outline the steps, as follows.

Assume G is a subnetwork of {X1 + X2
k→ X2, 0

`← X1
m→ 2X1}. If G admits a positive steady

state, G must contain the reaction X1
m→ 2X1. Hence, there are three subnetworks to consider:

(1) If G = {0 `← X1
m→ 2X1}, then Σ is empty.

(2) If G = {X1 +X2
k→ X2, X1

m→ 2X1}, then Σ = {(k,m) ∈ R2
>0}.

(3) If G = {X1 +X2
k→ X2, 0

`← X1
m→ 2X1}, then Σ = {(k, `,m) ∈ R3

>0 | m > `}.
In cases (2) and (3), the set Σ has nonzero measure. Finally, for all three of these networks, every
positive steady state is degenerate (some of these networks are also covered by Lemma 3.19). �

Theorem 4.8. Let G be a bimolecular reaction network with exactly two species, X1 and X2. Let
Σ denote the set of vectors of positive rate constants κ for which the mass-action system (G, κ) both
has ACR in species X2 and is multistationary. Then:

(1) For every κ∗ ∈ Σ, every positive steady state of (G, κ∗) is degenerate.
(2) If Σ has nonzero measure, then G is one of the following networks: {X1 +X2 → X2, X1 →

2X1} and {X1 +X2 → X2, 0← X1 → 2X1}.

Proof. Assume that G is bimolecular and has exactly two species. If Σ is empty (for instance, if G
has no reactions), then there is nothing to prove. Accordingly, assume that Σ is nonempty (and in
particular G has at least one reaction).

We first claim that G has a reaction in which X1 is a non-catalyst-only species. To prove
this claim, assume for contradiction that X1 is a catalyst-only species. Then the stoichiometric
compatibility classes are defined by the equations x1 = T , for T > 0 (we are also using the fact
that G has at least one reaction). But this does not allow for multistationarity and ACR in X2

to coexist, because two positive steady states in the same compatibility class would have the form
(T, y) and (T, z), with y 6= z, which contradicts the assumption of ACR in X2. So, the claim holds.

For an arbitrary vector κ of positive rate constants, let fκ,1 and fκ,2 denote the right-hand sides
(for species X1 and X2, respectively) of the mass-action ODE system of (G, κ). Consider the
following partition of Σ:

Σ = (Σ ∩ {κ | fκ,1 = 0}) ∪ (Σ ∩ {κ | fκ,1 6= 0}) =: Σ0 ∪ Σ1 .

By construction, Σ0 ∩ Σ1 = ∅. We first analyze Σ0. If Σ0 is empty, then skip ahead to our
analysis of Σ1. Accordingly, assume Σ0 is nonempty, and let κ∗ ∈ Σ0. We must show that every
positive steady state of (G, κ∗) is degenerate.

We claim that G is two-dimensional (assuming that Σ0 is nonempty). We prove this claim
as follows. We saw that G contains a reaction in which X1 is a non-catalyst-only species, so
Proposition 3.14 implies that for j = 0 or j = 2 (or both, where we are using Notation 3.13) our
network G contains the reaction X1 +Xj → 2X1 and at least one reaction of the form X1 +Xj → ?,
where ? is a complex not involving X1. Consider the subcase j = 0. If some ? involves X2, then
G contains X1 → 2X1 and X1 → ?, which yield linearly independent reaction vectors and so G is
two-dimensional. If none of the complexes ? involve X2, then G must contain additional reactions
in which X2 is not a catalyst-only species (to avoid f2 = 0), and so again G is two-dimensional.
The subcase j = 2 is similar.
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Next, as G is two-dimensional and fκ∗,1 = 0, Corollary 3.4 implies that every positive steady
state of (G, κ∗) is degenerate, as desired. Additionally, as X1 is a non-catalyst-only species and (for
all κ ∈ Σ0) fκ,1 = 0, Proposition 3.14 implies that there is a nontrivial linear relation that every
κ ∈ Σ0 satisfies. Hence, Σ0 has zero measure.

To complete the proof, it suffices to show the following about the set Σ1: (1) For every κ∗ ∈ Σ1,
every positive steady state of (G, κ∗) is degenerate; and (2) If Σ1 has nonzero measure, then
G = {X1 +X2 → X2, X1 → 2X1} or G = {X1 +X2 → X2, 0← X1 → 2X1}.

Assume Σ1 is nonempty (otherwise, there is nothing to prove). We introduce the following
notation: for κ̃ ∈ Σ1, let β(κ̃) denote the ACR-value for X2.

We now claim the following: For every κ̃ ∈ Σ1, the univariate polynomial fκ̃,1 |x2=β(κ̃) is the zero
polynomial. To verify this claim, we first note that fκ̃,1 |x2=β(κ̃) has at least two positive roots (as
(G, κ̃) is multistationarity), so the polynomial fκ̃,1 |x2=β(κ̃), if nonzero, must have at least two sign
changes (by Descartes’ rule of signs). However, by Lemma 3.11, the polynomial fκ̃,1 |x2=β(κ̃) has at
most one sign change, and so the claim holds.

We now know that for every κ∗ ∈ Σ1, we have fκ∗,1 6= 0, but fκ∗,1 |x2=β(κ̃∗) = 0. Hence, G has
at least one reaction in which X1 is a non-catalyst-only reaction and (by Proposition 3.15) every
such reaction must be one of the 8 reactions displayed here:

0
κ4,1←− X1

κ1−→ 2X1
κ2←− X1 +X2

κ3,1−→ 0 , X2
κ4,2←− X1

κ4,3−→ 2X2 , X2
κ3,2←− X1 +X2

κ3,3−→ 2X2(34)

For every κ∗ ∈ Σ1, Proposition 3.15 yields the following ACR-value formula:

β(κ∗) =
κ∗4• − κ∗1
κ∗2 − κ∗3•

,(35)

where κ∗3• := κ∗3,1 +κ∗3,2 +κ∗3,3 and κ∗4• := κ∗4,1 +κ∗4,2 +κ∗4,3. For reactions in (34) that are not in G,
the corresponding rate constants, κ∗i or κ∗ij , are set to 0.

Next, the possible reactions in which X1 is a catalyst-only species are as follows:

0
κ5
�
κ6
X2

κ7
�
κ8

2X2

κ9
�
κ10

0 , X1

κ11
�
κ12

X1 +X2(36)

We proceed by considering three subcases, based in part on whether fκ,2 (which is a polynomial
in the unknowns x1, x2, and κ) is zero:

(a) fκ,2 = 0, and X2 is a catalyst-only species in every reaction of G,
(b) fκ,2 = 0, and X2 is a non-catalyst-only species in some reaction of G, or
(c) fκ,2 6= 0.

We first consider subcase (a). By inspecting reactions in (34) and (36), we conclude that G must
be a subnetwork of {X1 +X2 → X2, 0← X1 → 2X1}. This subcase is done by Lemma 4.7.

Next, we examine subcase (b). Let G1 := {X1 +X2 → X2, 0← X1 → 2X1}, G2 := {0← X2 →
2X2}, and G3 := {0 ← X1 + X2 → 2X2, X1 ← X1 + X2 → 2X1}. By Proposition 3.14 (and by
inspecting reactions in (34) and (36)), G must be a subnetwork of G1 ∪G2 ∪G3 with at least one
reaction in G2 ∪G3. Moreover, there is a nontrivial linear relation in the rate constants that holds
for all κ ∈ Σ1. It follows that Σ1 is contained in the hyperplane defined by this linear relation and
hence has zero measure.

Let κ∗ ∈ Σ1. By examining G1∪G2∪G3, we see that the possible reactants of G are X1, X2, X1+
X2. Next, G has at least 2 reactants (as otherwise, Proposition 3.5 would imply that G admits
no positive steady states). Hence, by inspection, G either is full-dimensional or is a subnetwork
of {0 ← X2 → 2X2, X1 + X2 → X1}, which we already saw in Example 2.1 (where A = X2 and
B = X1) has ACR in X1 but not in X2 (and the analysis of its subnetworks is similar). Hence, G
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is full-dimensional, and so Corollary 3.4 (and the fact that fκ∗,2 = 0) implies that every positive
steady state of (G, κ∗) is degenerate.

Consider subcase (c). Let κ∗ ∈ Σ1 (so, in particular, fκ∗,2 6= 0). We claim that fκ∗,2|x2=β(κ∗) = 0.
To see this, observe that, in the reactions (34) and (36), the complex 2X1 appears only as a product,
never as a reactant. Hence, fκ∗,2|x2=β(κ∗) (which is a univariate polynomial in x1) has degree at
most 1. However, the fact that (G, κ∗) is multistationary implies that fκ∗,2|x2=β(κ∗) has two or
more positive roots. Hence, fκ∗,2|x2=β(κ∗) is the zero polynomial.

Now we show that every positive steady state of (G, κ∗) is degenerate. Such a steady state has
the form (p, β), and we also know that fκ∗,1|x2=β(κ∗) = fκ∗,2|x2=β(κ∗) = 0. Hence, (x2 − β(κ∗))
divides both fκ∗,1 and fκ∗,2. Consequently, the derivatives of fκ∗,1 and fκ∗,2 with respect to x1 at
(p, β) are both zero. It follows that the first column of the 2 × 2 Jacobian matrix, when evaluated
at (p, β), is the zero column. Hence, if the stoichiometric subspace of G, which we denote by S, is
two-dimensional, then (p, β) is degenerate.

We now assume dim(S) = 1 (and aim to reach a contradiction). Recall that G contains at least
one reaction from those in (34), so in order for dim(S) = 1 it must be that G contains no reaction
from (36). Hence, from the expression for f2 (which we know is not zero), in (37), the only possible
reactions in G are the ones labeled by κ2, κ3,3, κ4,2, κ4,3. Hence, the one-dimensional network G is

either the network {X1
κ4,3−→ 2X2} or a subnetwork of {2X1

κ2←− X1 + X2
κ3,3−→ 2X2, X1

κ4,2−→ X2}.
Now it is straightforward to check that G is not multistationary, which is a contradiction.

To complete the proof, it suffices to show that, in subcase (c), the set Σ1 has measure zero.
Accordingly, let κ ∈ Σ1. As noted earlier, the ACR-value of X2 in (G, κ) is β(κ) = κ4•−κ1

κ2−κ3• .

From (34) and (36), the right-hand side of the mass-action ODE for (G, κ) has the following form
(with rate constants set to 0 for reactions not in G):

fκ,2 = (κ3,3 − κ2 − κ12)x1x2 + (κ11 + κ4,2 + 2κ4,3)x1 − (κ8 + 2κ9)x22 + (κ7 − κ6)x2 + (κ5 + 2κ10) .(37)

By assumption, at least one of the rate constants (the κi and κi,j) in (37) is nonzero. By our
earlier arguments, at the beginning of subcase (c), we conclude that fκ,2|x2=β(κ) = 0. Hence, the
linear and constant terms of fκ,2|x2=β(κ) are both 0, which, using (37), translates as follows:

(κ3,3 − κ2 − κ12)
κ4• − κ1

κ2 − κ3•
+ (κ11 + κ4,2 + 2κ4,3) = 0 and(38)

−(κ8 + 2κ9)

(
κ4• − κ1

κ2 − κ3•

)2

+ (κ7 − κ6)
κ4• − κ1

κ2 − κ3•
+ (κ5 + 2κ10) = 0 .

It follows that Σ1 is constrained by the equations (38), at least one of which is nontrivial. Hence,
Σ1 is contained in a hypersurface and so has measure zero. �

4.2. Bimolecular networks with at least three species. In the previous subsection, we showed
that a bimolecular network must have at least 3 species in order for ACR and nondegenerate
multistationarity to coexist. Consequently, this subsection focuses on bimolecular networks with at
least 3 species. We prove that the coexistence of ACR and nondegenerate multistationarity requires
a minimum of 3 reactant complexes and a minimum of 5 complexes (Theorem 4.9). The remainder
of this subsection focuses on a family of networks with n species and n reactants, for which ACR
and nondegenerate multistationarity coexist (Section 4.2.1), and then analyzes full-dimensional
networks with 3 species (Section 4.2.2).

Theorem 4.9 (Minimum number of complexes). Let G be a bimolecular reaction network with at
least 3 species. If there exists a vector of positive rate constants κ∗ such that (G, κ∗) has ACR and
is nondegenerately multistationary, then:

(1) G has at least 3 reactant complexes (and hence, at least 3 reactions), and
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(2) G has at least 5 complexes (reactant and product complexes).

Proof. We first prove part (1). Let (G, κ∗) be as in the statement of the theorem and let n denote
the number of species, where n ≥ 3. By relabeling species, if needed, we may assume that (G, κ∗)
has ACR in species X1. Let f1, f2, . . . , fn denote the right-hand sides of the mass-action ODEs of
(G, κ∗). As (G, κ∗) has ACR, we know that at least one of the right-hand sides is nonzero. Let fi
denote one of these nonzero polynomials.

Assume for contradiction that G has only 1 or 2 reactant complexes. Since G admits a nonde-
generate positive steady state, Proposition 3.5 implies that G is not full-dimensional and G has
exactly 2 reactant complexes.

We claim that all the right-hand sides f` are scalar multiples of each other. More precisely, we
claim that for all j ∈ {1, 2, . . . , n}r{i}, there exists cj ∈ R such that fj = cjfi. Indeed, each fj has
at most two monomials (because G has exactly two reactant complexes), so if fj is not a constant
multiple of fi, then some R-linear combination of fi and fj is a monomial and hence (G, κ∗) has
no positive steady state (which is a contradiction).

Thus the positive steady states of (G, κ∗) are precisely the positive roots of fi = 0 and the linear
equations given by the conservation laws. Since X1 is the ACR species and G is bimolecular, we
must have fi = (α− x1)(β0 + β1x1 + · · ·+ βnxn), where α is the (positive) ACR-value and βj ∈ R
for all j = 0, 1, . . . , n.

We consider several cases, based on how many of the coefficients β2, β3, . . . , βn are nonzero. We
begin by considering the case when β2 = β3 = · · · = βn = 0. In this case, fi is a (nonzero)
polynomial in x1 only, and so has the form fi = γ1x

m1
1 + γ2x

m2
1 , where γ1, γ2 ∈ R and 0 ≤ m1 <

m2 ≤ 2. As (G, κ∗) has a positive steady state, we conclude that γ1 and γ2 are nonzero and have
opposite signs. Now Lemma 2.3 implies that i = 1 (so, f1 = fi 6= 0) and f2 = f3 = · · · = fn = 0.
In fact, Lemma 2.3 implies that X2, . . . , Xn are catalyst-only species of G (equivalently, the mass-
action ODE right-hand sides for X2, . . . , Xn are zero for all choices of positive rate constants). Such
a system is not multistatationary, which is a contradiction.

Now consider the case when two or more of the β2, β3, . . . , βn are nonzero. In this case, there
exist distinct j1, j2 (where 2 ≤ j1, j2 ≤ n) with βj1 , βj2 6= 0. Then fi contains the monomials
xj1 , xj2 , x1xj1 , x1xj2 which contradicts the fact that G has exactly two reactant complexes.

The final case is when exactly one of the β2, β3, . . . , βn is nonzero. Relabel the species, if needed,
so that β2 6= 0. In this case, the two reactant complexes of G involve only species X1 and X2.
By using Lemma 2.3 again, much like we did for the prior case, we conclude that X3, . . . , Xn are
catalyst-only species of G and so (G, κ∗) is effectively the mass-action system of a (bimolecular)
network with only two species, X1 and X2. Now it follows from Theorem 4.8 that (G, κ∗) is not
nondegenerately multistationarity, which contradicts our assumption. This completes part (1).

We prove part (2). Assume for contradiction that G has at most 4 complexes. By Proposi-
tion 3.10, the dimension of the stoichiometric subspace of G must be at least 2. So, the deficiency
of G satisfies

δ = m− `− dim(S) ≤ 4− 1− 2 = 1 .

Hence, the deficiency of G is 0 or 1, and the latter requires G to have exactly one linkage class.
Now Lemmas 2.5–2.6 imply that G is not multistationary, which is a contradiction. �

Theorem 4.9 gives a lower bound on the number of reactant complexes and the number of all
complexes (reactants and products), and the next example shows that these bounds are tight. The
example also shows the tightness of the lower bounds on the number of species and the dimension
of the network (from Theorem 1.2).
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Example 4.10. Consider the following bimolecular network with 3 species and 3 reactant com-
plexes and 5 complexes:

G = {X1 +X2
κ1−→ 2X3, X3

κ2−→ X1, 2X3
κ3−→ 2X2} .

This network is two-dimensional, as the total amount of X1, X2, X3 is conserved. For every vector
of positive rate constants κ, the system (G, κ) is nondegenerately multistationary and also has ACR
in X3 with ACR-value κ2/(2κ3). Details are given in the proof of Proposition 4.11, below, which
pertains to a family of networks that includes the network G.

4.2.1. Non-full-dimensional networks. The bimolecular network in Example 4.10 is the n = 3 case
of the networks Gn that we introduce in the next result. These networks have the property that
every reactant complex is bimolecular, but (when n ≥ 4) one of product complexes is not.

Proposition 4.11 (ACR and multistationarity for all rate constants). For all n ≥ 3, consider the
following network with n species, n reactant complexes, and n reactions:

Gn =

X1 +X2
κ1−→ 2X3 +

n∑
j=4

Xj , X3
κ2−→ X1, 2X3

κ3−→ 2X2

⋃{
X4

κ4→ 0, . . . , Xn
κn→ 0

}
.

Each such network Gn satisfies the following:

(1) there is a unique (up to scaling) conservation law, which is given by x1 +x2 +x3 = T , where
T represents the total concentration of species X1, X2, X3; and

(2) for every vector of positive rate constants κ ∈ Rn>0, the system (Gn, κ) is nondegenerately
multistationary and also has ACR in species X3, X4, . . . , Xn.

Proof. Fix n ≥ 3. The mass-action ODEs for Gn are as follows:

dx1

dt
= −κ1x1x2 + κ2x3

dx2

dt
= −κ1x1x2 + 2κ3x

2
3

dx3

dt
= 2κ1x1x2 − κ2x3 − 2κ3x

2
3

dxj
dt

= κ1x1x2 − κjxj for j ∈ {4, . . . , n} .

The network Gn has exactly one conservation law (up to scaling), and it is given by x1+x2+x3 =
T . Additionally, using the first two ODEs, we compute that the value of species X3 at all positive
steady states is κ2

2κ3
. Next, we use this steady-state value for X3, together with the first and fourth

ODEs, to obtain the expression
κ22

2κ3κn
for the steady-state value for Xj , for j ≥ 4. Thus, ACR in

X3, X4, . . . , Xn will follow once we confirm the existence of positive steady states.
Next, we investigate the steady-state values of X1 and X2. Using the steady-state value of

X3, the conservation law, and the first ODE, we see that the steady-state values of X1 and X2

correspond to the intersection points of the line x1 + x2 + κ2
2κ3

= T and the curve x1x2 =
κ22

2κ1κ3
.

This is depicted qualitatively below (by [green] dashed lines and a [red] solid curve, respectively).
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X1

X
2

It follows that, given any vector of positive rate constants κ ∈ Rn>0, when T is sufficiently large,
there are two pairs of (nondegenerate) positive steady-state values for X1 and X2, and so (Gn, κ)
is nondegenerately multistationary (and thus admits a positive steady state, and so has ACR). �

4.2.2. Full-dimensional networks with 3 species. Consider a bimolecular network G that has 3
species. We saw that if G admits ACR and nondegenerate multistationarity simultaneously, then
G has at least 3 reactant complexes (Theorem 4.9). If, however, G is full-dimensional, then more
reactants are required, as stated in the following result.

Proposition 4.12 (Minimum number of reactants for full-dimensional 3-species networks). Let G
be a full-dimensional bimolecular reaction network with exactly 3 species. If there exists a vector of
positive rate constants κ∗ such that (G, κ∗) has ACR and is nondegenerately multistationary, then
G has at least 5 reactant complexes (and hence at least 5 reactions)

Proposition 4.12 is a direct consequence of Propositions 3.1(3) and 3.5, and a stronger version of this
result appears in the next section (Theorem 5.1). Proposition 4.12 implies that if a full-dimensional
bimolecular network with 3 species and fewer than 5 reactions has both ACR and multistationarity,
then this coexistence happens in a degenerate way. We illustrate this situation with two examples,
and then characterize all such networks with exactly 4 reactant complexes (Proposition 4.15).

Example 4.13. Consider the following full-dimensional network with 3 species, 4 reactions, and
4 reactant complexes: {2Z → Z, X + Y → Z → Y + Z, 0 → X}. When all rate constants are 1,
the mass-action ODEs are as follows:

dx

dt
= 1− xy

dy

dt
= z − xy

dz

dt
= −z2 + xy .

For this system, the set of positive steady states is {(x, y, z) ∈ R3
>0 | xy = z = 1}, and every positive

steady state is degenerate. We conclude that this system is multistationary (but degenerately so)
and has ACR in species Z (with ACR-value 1).

Example 4.14. Consider the following network: {X + Z → Z, Y + Z � Y → 0, 2X ← X →
X + Y }. Like the network in Example 4.13, this network is full-dimensional and has 3 species, 4
reactions, and 4 reactant complexes; however, the set of reactant complexes differs. When all rate
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constants are 1, the mass-action ODEs are as follows:

dx

dt
= x− xz

dy

dt
= x− y

dz

dt
= y − yz .

For this system, the set of positive steady states is {(x, y, z) ∈ R3
>0 | x = y, z = 1}, and every

positive steady state is degenerate. Thus, this system is (degenerately) multistationary and has
ACR in species Z (with ACR-value 1).

The next result shows that Examples 4.13 and 4.14 cover all cases of three-species, four-reactant
networks with ACR and (degenerate) ACR occurring together, in the sense that these two networks
represent the only two possibilities for the set of reactant complexes (when a certain full-rank
condition is met, which we discuss below in Remark 4.16).

Proposition 4.15 (Networks with 3 species and 4 reactants). Let G be a full-dimensional bi-
molecular reaction network with exactly 3 species – which we call X,Y, Z – and exactly 4 reactant
complexes. If κ∗ is a vector of positive rate constants such that:

(a) rank(N) = 3, where N is the matrix for (G, κ∗) as in (7),
(b) (G, κ∗) has ACR in species Z, and
(c) (G, κ∗) is multistationary (which is degenerately so, by Proposition 4.12),

then the set of reactant complexes of G is either {X, X + Z, Y, Y + Z} or {0, X + Y, Z, 2Z}.

Proof. Let G, κ∗, and N be as in the statement of the proposition. In particular, G has 3 species
and 4 reactants, and (G, κ∗) admits a positive steady state, which we denote by (x∗, y∗, α) (so α
is the ACR-value of Z). Also, N has rank 3 and so Proposition 3.1(2) and its proof imply that
steady-state equations can be “row-reduced” so that the positive steady states of (G, κ∗) are the
roots of 3 binomial equations of the following form:

h1 := m1 − β1m4 = 0

h2 := m2 − β2m4 = 0

h3 := m3 − β3m4 = 0 ,

where βj ∈ R (for j = 1, 2, 3) and mi = xaiybizci (for i = 1, 2, 3, 4) are 4 distinct monic monomials
given by the reactant complexes. Also, each mi (for i = 1, 2, 3, 4) has degree at most 2 in x, y, z (as
G is bimolecular). In other words, ai, bi, ci are non-negative integers that satisfy the following:

ai + bi + ci ≤ 2 .(39)

We infer that β1, β2, β3 > 0, because otherwise h1 = h2 = h3 = 0 would have no positive roots.
For i ∈ {1, 2, 3}, consider the following, where we recall that α is the ACR-value of Z:

gi := hi|z=α = dix
aiybi − d′ixa4yb4 ,

where di := αci > 0 and d′i := βiα
c4 > 0. For i ∈ {1, 2, 3}, by construction, gi(x

∗, y∗) = 0 and so
the subset of the positive quadrant R2

>0 defined by gi = 0, which we denote by Si, is nonempty.
There are four possible “shapes” for each set Si:

(1) Si = R2
>0, when (ai, bi) = (a4, b4) (and necessarily, di = d′i, to avoid Si = ∅).

(2) Si is the horizontal line y = y∗, when ai = a4 and bi 6= b4.
(3) Si is the vertical line x = x∗, when ai 6= a4 and bi = b4.
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(4) Si is a strictly increasing curve (passing through (x∗, y∗)) defined by the following equation,
when ai 6= a4 and bi 6= b4:

y =

(
di
d′i

) 1
b4−bi

x
ai−a4
b4−bi .

Any two lines/curves of the form (2)–(4) either coincide or intersect only at (x∗, y∗). Hence, the
intersection S1 ∩ S2 ∩ S3 is either

(a) the single point (x∗, y∗),
(b) a single line or curve of the form (2) − (4), or
(c) the positive quadrant R2

>0.

By construction and the fact that α is the ACR-value, the set of all positive steady states of (G, κ∗)
is the set {(x, y, α) | (x, y) ∈ S1 ∩S2 ∩S3}. Hence, in the case of (a), (G, κ∗) is not multistationary,
which is a contradiction.

Next, we show that case (c) does not occur. On the contrary, assume that it does. Then S1 =
S2 = S3 = R2

>0, which implies that (a1, b1) = (a2, b2) = (a3, b3) = (a4, b4). Since m1,m2,m3,m4

are 4 distinct monomials, it must be that c1, c2, c3, c4 are 4 distinct non-negative integers. However,
as noted earlier, ci ∈ {0, 1, 2} for each i, which yields a contradiction.

Finally, we consider case (b). This case happens only when one of the following subcases occur:
Subcase 1: Exactly 1 of the 3 subsets Si is the positive quadrant, and the other two coincide.

Without loss of generality, assume S1 = R2
>0 and so S2 = S3 6= R2

>0. Hence, (a1, b1) = (a4, b4) 6=
(a2, b2) = (a3, b3). However, m1 6= m4 and m2 6= m3, and so:

c1 6= c4 and c2 6= c3 .(40)

We rewrite the inequalities (39), using the equalities (a1, b1) = (a4, b4) and (a2, b2) = (a3, b3):

a1 + b1 + c1 ≤ 2 , a1 + b1 + c4 ≤ 2 , a2 + b2 + c2 ≤ 2 , a2 + b2 + c3 ≤ 2 .(41)

Finally, Lemma 3.8 implies that each of species X and Y takes part in some reactant complex, so
we obtain the following (again using (a1, b1) = (a4, b4) and (a2, b2) = (a3, b3)):

a1 + a2 ≥ 1 and b1 + b2 ≥ 1 .(42)

The only non-negative solutions to the conditions in (40), (41), and (42) are as follows:

• a1 = a3 = 1, a2 = a3 = 0, b1 = b4 = 0, b2 = b3 = 1, {c1, c4} = {c2, c3} = {0, 1};
• a1 = a3 = 0, a2 = a3 = 1, b1 = b4 = 1, b2 = b3 = 0, {c1, c4} = {c2, c3} = {0, 1}.

In all of these solutions, the set of reactant complexes is {X, X + Z, Y, Y + Z}.
Subcase 2: Exactly 2 of the 3 subsets Si are the positive quadrant. Without loss of generality,

assume that S1 = S2 = R2
>0 6= S3. This implies the following:

(a1, b1) = (a2, b2) = (a4, b4) 6= (a3, b3) .(43)

However, m1,m2,m4 are 3 distinct monomials, so c1, c2, c4 are 3 distinct non-negative integers.
Now inequality (39) implies that {c1, c2, c4} = {0, 1, 2}. Let i∗ ∈ {1, 2, 4} be such that ci∗ = 2.
Next, the equalities in (43) and the inequality (39) for i = i∗ together imply that (a1, b1) =
(a2, b2) = (a4, b4) = (0, 0). Therefore, the set of reactant complexes corresponding to m1,m2,m4 is
{0, Z, 2Z}. Finally, Lemma 3.8 implies that the fourth reactant complex must involve both X and
Y and so (by bimolecularity) is X+Y . Therefore, the set of reactant complexes is {0, X+Y, Z, 2Z}.

Subcase 3: None of the subsets Si are positive quadrants, and the 3 sets coincide. This implies
that (a1, b1) = (a2, b2) = (a3, b3) 6= (a4, b4). These conditions are symmetric to those in subcase 2,
and so the reactant complexes are {0, Z, 2Z, X+Y }. This completes subcase 3 (and case (b)). �
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Remark 4.16 (Rank condition). Proposition 4.15 includes the hypothesis that the matrix N for the
system (G, κ∗) has (full) rank 3. If we remove this hypothesis, we can obtain more full-dimensional
networks with 3 species and 4 reactants that allow ACR and (degenerate) multistationarity to occur
together. We present one such network in Example 4.17.

Example 4.17. Consider the following full-dimensional network with 3 species and 4 reactants:

G := {0→ X → Y → 2Y, Y ← Y + Z → 2Z} .

The system (G, κ∗) obtained by setting all the reaction rates to 1 has the following ODEs:dx/dtdy/dt
dz/dt

 =

−1 0 0 1
1 1 −1 0
0 0 0 0



x
y
yz
1

 = N


x
y
yz
1

 .

The matrix N (defined above) has rank 2, the set of positive steady states is {(x, y, z) ∈ R3
>0 | x =

1, y(z− 1) = 1}, and every positive steady state is degenerate. Thus, this system is (degenerately)
multistationary and has ACR in species X (with ACR-value 1).

In the next section, we see that the exceptional networks in Proposition 4.15 – namely, full-
dimensional, three-species networks with reactant-complex set {0, Z, 2Z,X + Y } or {X,Y,X +
Z, Y + Z} – do not have unconditional ACR. Indeed, this fact is a direct consequence of a more
general result concerning networks with n species and n+ 1 reactants (Theorem 5.4).

5. Main results on general networks

The results in the prior section pertain to networks that are bimolecular, while here we analyze
networks that need not be bimolecular. We consider full-dimensional networks (Section 5.1) and
non-full-dimensional networks (Section 5.2) separately.

5.1. Full-dimensional networks. In Proposition 4.11, we saw a family of networks that admit
ACR and nondegenerate multistationarity together. These networks have n reactants (where n
is the number of species), but are not full-dimensional. In this subsection, we show that for full-
dimensional networks, the coexistence of ACR and nondegenerate multistationarity requires at
least n+ 2 reactants (Theorem 5.1). We also show that this lower bound is tight (Proposition 5.3).
Additionally, we consider full-dimensional networks with only n + 1 reactants and show that if
such a network is multistationary (even if only degenerately so), then the network can not have
unconditional ACR (Theorem 5.4).

Theorem 5.1 (Minimum number of reactants for full-dimensional networks). Let G be a full-
dimensional reaction network with n species. If there exists a vector of positive rate constants κ∗

such that the mass-action system (G, κ∗) has ACR and also is nondegenerately multistationary,
then n ≥ 2 and G has at least n+ 2 reactant complexes and hence, at least n+ 2 reactions.

Proof. It follows readily from definitions that ACR and multistationarity do not coexist in networks
with only one species, so n ≥ 2. We proceed by contrapositive. We consider two cases. If G has at
most n reactant complexes, then Proposition 3.5 (which requires n ≥ 2) implies that every positive
steady state of (G, κ∗) is degenerate and so (G, κ∗) is not nondegenerately multistationary. In the
remaining case, when G has n + 1 reactant complexes, Proposition 3.1(3) implies that (G, κ∗) is
not nondegenerately multistationary. �

The next example shows that the bound in Theorem 5.1 is tight for n = 2.
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Example 5.2. The following network is full-dimensional and has 2 species, 4 reactant complexes,
and 4 reactions (the out-of-order labeling of the rate constants is to be consistent with Proposi-
tion 5.3, which appears later):

{A+B
κ1→ 2B

κ3→ 2B +A , B
κ2→ 0

κ4→ A} .

Observe that all reactant complexes are bimolecular, but one of the product complexes is not. In
the next result, we show that this network exhibits ACR (in species A with ACR-value κ2/κ1)
and nondegenerate multistationarity when κ2

2 > 4κ3κ4. (Proposition 5.3). Among full-dimensional
networks for which ACR and nondegenerate multistationarity coexist, this network is optimal in the
sense that it has the fewest possible species, reactant complexes, and reactions (by Theorem 5.1).

In the next result, we generalize the network in Example 5.2 to a family of networks that show
that the lower bound on the number of reactions in Theorem 5.1 is tight for all n. The networks in
the following result are also optimal in terms of the molecularity of the reactant complexes (they
are bimolecular), although two of the product complexes have high molecularity.

Proposition 5.3. For all n ≥ 2, consider the following full-dimensional network with n species,
n+ 2 reactions, and n+ 2 reactant complexes:

Gn =
{
X1 +X2

κ1→ 2X2 +X3 + · · ·+Xn, X2
κ2→ 0, 2X2

κ3→ 2X2 +X1, 0
κ4→ X1

}
⋃
{Xj

κj+2→ 0 | 3 ≤ j ≤ n}.

For every vector of positive rate constants κ∗ for which (κ∗2)2 > 4κ∗3κ
∗
4, the system (Gn, κ

∗) has
nondegenerate multistationarity and has ACR in species X1.

Proof. The mass-action ODEs are given by:

dx1

dt
= κ3x

2
2 − κ1x1x2 + κ4

dx2

dt
= κ1x1x2 − κ2x2

dxj
dt

= κ1x1x2 − κj+2xj for j ∈ 3, . . . , n.

The steady-state equation for X2 implies that x1 = κ2/κ1 at all positive steady states, so there is
ACR in X1 (whenever positive steady states exist). Next, the steady-state equations for X1 and

X2 imply that the steady state values of X2 are x±2 :=
k2±
√
k22−4k3k4
2k3

. Both of these steady state

values are positive precisely when the discriminant k2
2 − 4k3k4 is positive (this is a straightforward

computation; alternatively, see [9, Proposition 2.3]). Now we use the steady-state equation for Xj ,
where j ≥ 3, to compute the two positive steady states that exist whenever (κ∗2)2 > 4κ∗3κ

∗
4:(

x∗1, x
+
2 ,

κ1

κ3
x∗1x

+
2 , . . . ,

κ1

κn
x∗1x

+
2

)
and

(
x∗1, x

−
2 ,

κ1

κ3
x∗1x

−
2 , . . . ,

κ1

κn
x∗1x

−
2

)
,

where x∗1 := κ2/κ1. Finally, nondegeneracy can be checked by a computing the Jacobian matrix. �

Our next result concerns full-dimensional networks with one more reactant than the number of
species, as follows.

Theorem 5.4 (Networks with n + 1 reactants). Let G be a full-dimensional network, with n
species and exactly n+ 1 reactant complexes. If G is multistationary, then there exists a vector of
positive rate constants κ such that (G, κ) has no positive steady states, and hence G does not have
unconditional ACR.
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Proof. Assume that G is full-dimensional, has exactly n + 1 reactant complexes (where n is the
number of species), and is multistationarity. By definition, there exists κ∗ ∈ Rr>0, where r is the
number of reactions, such that (G, κ∗) is multistationary. Let N be the n× (n+ 1) matrix arising
from (G, κ∗), as in (7); and let A be the n× n matrix defined by G, as in Proposition 3.7.

We claim that rank(N) ≤ n − 1 or rank(A) ≤ n − 1. Indeed, if rank(N) = n and rank(A) = n,
then the proof of Proposition 3.7 shows that (G, κ∗) is not multistationary, which is a contradiction.

If rank(N) ≤ n − 1, then Proposition 3.6(2) implies that there exists κ∗∗ ∈ Rr>0 such that
(G, κ∗∗) has no positive steady states. Similarly, in the remaining case, when rank(N) = n and
rank(A) ≤ n− 1, the desired result follows directly from Proposition 3.7(2). �

5.2. Non-full-dimensional networks. In an earlier section, we saw a family of networks with n
species, n reactant complexes, and exactly one conservation law, for which ACR and nondegenerate
multistationarity coexist (Proposition 4.11). Our next result shows that this n is the minimum
number of reactant complexes (when there is one conservation law), and, furthermore, as the number
of conservation laws increases, the minimum number of reactant complexes required decreases.

Theorem 5.5 (Minimum number of reactants). Let G be a reaction network with n ≥ 3 species
and k ≥ 1 conservation laws (more precisely, G has dimension n − k). If there exists a vector of
positive rate constants κ∗ such that the system (G, κ∗) is nondegenerately multistationary and has
ACR in some species, then G has at least n− k + 1 reactant complexes.

Proof. If G has k ≥ 1 conservation laws and at most n − k reactant complexes, then Proposi-
tions 3.5(1) and 3.9 together imply that G is not nondegenerate multistationarity. �

As noted earlier, the bound in Theorem 5.5 is tight for k = 1, due to Proposition 4.11. We also
know that, for k = n − 1, the bound holds vacuously (Proposition 3.10). Our next result shows
that the bound is also tight for all remaining values of k (namely, 2 ≤ k ≤ n− 2).

Proposition 5.6. Let n ≥ 3, and let k ∈ {2, 3, . . . , n − 2}. If k 6= n − 2, consider the following
network:

Gn,k =

X1 +X2 +
n∑

j=n+2−k
Xj

κ1−→ 2X3 +
n∑
j=4

Xj , X3
κ2−→ X1, 2X3

κ3−→ 2X2

⋃{
X4

κ4→ 0, . . . , Xn+1−k
κn−k+1→ 0

}
.

On the other hand, if k = n− 2, consider the following network:

Gn,k =

X1 +X2 +

n∑
j=4

Xj
κ1−→ 2X3 +

n∑
j=4

Xj , X3
κ2−→ X1, 2X3

κ3−→ 2X2


Each such network Gn,k satisfies the following:

(1) Gn,k has n species, n− k + 1 reactants, and n− k + 1 reactions;
(2) Gn,k has dimension n− k, and the following are k linearly independent conservation laws:

x1 + x2 + x3 = T and xj = Tj for j ∈ {n− k + 2, . . . , n}.
(3) for every vector of positive rate constants κ, the system (Gn, κ) is nondegenerately multi-

stationary and also has ACR in species X3, X4, . . . , Xn−k+1.

Proof. This result can be checked directly, in a manner similar to the proof of Proposition 4.11.
Indeed, for every vector of positive rate constants, there is ACR in species X3, X4, . . . , Xn−k+1 and
exactly two nondegenerate positive steady states when T is large enough. �
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The reaction networks in Proposition 5.6 are not bimolecular, and they contain reactions with
many catalyst-only species (namely Xn−k+2, . . . , Xn). We do not know whether there exist reaction
networks that are bimolecular and do not contain reactions with catalyst-only species, and yet (like
the networks in Proposition 5.6) show that the lower bound in Theorem 5.5 is tight.

6. Discussion

In this article, we proved lower bounds in terms of the dimension and the numbers of species,
reactant complexes (and thus reactions), and all complexes (both reactant and product complexes)
needed for the coexistence of ACR and nondegenerate multistationarity. Additionally, we showed
that these bounds are tight, via the network {A+B → 2C → 2B, C → A} (Example 4.10).

Networks like the one in Example 4.10 contain special structures that may be biologically sig-
nificant. Exploring such structures will aid in establishing design principles for creating networks
with ACR and multistationarity. We plan to explore such networks and their architecture in the
future.

In the present work, our interest in multistationarity comes from the fact that it is a necessary
condition for multistability. Another interesting direction, therefore, is to investigate conditions
for coexistence of ACR and multistability, rather than multistationarity. The “minimal” networks
in the current work admit only two positive steady states and are not multistable. Hence, we
conjecture that the lower bounds (on dimension and the numbers of species, reactant complexes,
and all complexes) for the coexistence of ACR and multistability are strictly larger than the bounds
proven here for ACR and multistationarity.

Finally, we are interested in the conditions for the coexistence of other combinations of biologi-
cally significant dynamical properties, such as ACR and oscillations. In addition to the minimum
requirements for their coexistence, we also hope to discover new network architectures or motifs
that can be used to design synthetic networks possessing these dynamical properties.
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