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Abstract

We investigate six operations on chemical reaction networks, all of which have been proven to
preserve important dynamical properties, namely, the capacity for nondegenerate multistationarity
(multiple steady states) and periodic orbits. Both multistationarity and periodic orbits are
properties that are known to be precluded when the deficiency (a nonnegative integer associated
to a network) is zero. It is therefore natural to conjecture that the deficiency never decreases
when any of the six aforementioned network operations are performed. We prove that this
is indeed the case, and moreover, we characterize the numerical difference in deficiency after
performing each network operation.

Keywords: deficiency, reaction network, cyclomatic number
MSC Codes: 37N25, 05C90, 05C76, 15A03

1 Introduction

The aim of this work is to make a connection between two important research streams pertaining
to dynamical systems arising from chemical reaction networks: (1) deficiency theory, which dates
back to the work of Feinberg, Horn, and Jackson in the 1970s [10, 13, 14]; and (2) a collection of
results that “lift” dynamical properties from smaller networks to larger ones [1, 2, 3, 5, 7, 8, 16].
This second stream is more recent than the first, having begun only in the mid-2000s.

To give more details, deficiency theory uses the “deficiency” of a network – a nonnegative
integer associated to a network which is computed by graph-theoretic and linear-algebraic means
– to serve as a link between the network structure and the dynamics arising from a network (via
mass-action kinetics). Roughly speaking, networks with low deficiency have simple dynamics. The
Deficiency Zero Theorem, for instance, rules out multistationarity (multiple positive steady states)
and periodic orbits in networks with zero deficiency. Consequently, many recent results have focused
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on recognizing general mass-action ODE systems as being “dynamically equivalent” to those arising
from low-deficiency networks [9, 11, 12, 15].

In contrast, the second research stream is interested in behavior that we noted above never
occurs for deficiency-zero networks – namely, nondegenerate multistationarity and periodic orbits
(which are significant for networks arising in systems biology). Indeed, so-called “lifting” (or
“inheritance”) results assert that such behaviors are preserved when chemical reaction networks
are enlarged in certain ways.

Such network operations include adding new reactions and/or new chemical species (under
certain hypotheses). Six of these operations, which we label E1–E6 (following Banaji), are described
in Table 1 below, and (as summarized by Banaji) they represent essentially the best known “lifting”
results [2, 4] (see Remark 3.3 later in our work for a discussion of an additional operation).

To summarize, operations like E1–E6 allow nondegenerate multistationarity and periodic orbits
(and, in fact, bifurcations [4]) to be “lifted”, while deficiency-zero networks never exhibit such
behaviors. It is thus natural to conjecture that network operations that preserve nondegenerate
behaviors never result in decreased deficiency. Our main result, as follows, asserts that this
conjecture holds for the operations E1–E6, and moreover establishes the first link (to our knowledge)
between the research streams of deficiency theory and “lifting” results:

Theorem 1.1 (Main result). If N ′ is a chemical reaction network obtained from a network N by
one of the operations E1–E6, then

δ(N ′) ≥ δ(N ) ,

where δ(N ) denotes the deficiency of N , and the difference δ(N ′)− δ(N ) is given in Table 1.

Operation Description δ(N ′)− δ(N )

E1 Add a new linearly dependent reaction 0 or 1

E2 Add reactions 0 ⇆ Xi for all species Xi rk(N ) +mN + ℓ̃N − sN − 1

E3 Add a new linearly dependent species cyc(N )− cyc(N ′)

E4
Add a new species Y and the pair of

reversible reactions 0 ⇆ Y
cyc(N )− cyc(N ′) + 1

E5
Add reversible reactions with new species
such that rank condition holds

0

E6
Split reactions and add complexes involving
new species with rank condition

0

Table 1: Summary of results. Here, δ(N ), rk(N ), and sN denote, respectively, the deficiency,
rank, and number of species of a network N . Also, ℓ̃N is the number of linkage classes in N
that contain an at-most-unimolecular complex (namely, 0 or some Xi), while mN is the number of
at-most-unimolecular complexes that are missing from N (see Notation 3.11). Finally, cyc(N ) is
the cyclomatic number of N (see Definition 2.7), and the rank condition is given in Definition 2.11.
For details, see Theorems 3.8, 3.13, 3.15, 3.18, 3.20, and 3.21.

The outline of our work is as follows. In Section 2, we define chemical reaction networks,
deficiency, and the network operations E1–E6. Our results are proven in Section 3, and we end
with a discussion in Section 4.
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2 Background

This section introduces chemical reaction networks and the concepts of deficiency and cyclomatic
number (Section 2.1) and recalls Banaji’s network operations E1–E6 (Section 2.2).

Notation 2.1. We let N denote the set of positive integers, and N0 the set of nonnegative integers.
For n ∈ N, we define the set [n] := {1, 2, . . . , n}.

2.1 Chemical reaction networks

Definition 2.2. A chemical reaction network (or network, for short) N is a triple (XN , CN ,RN )
consisting of three finite, nonempty sets:

• a set of species XN = {X1, X2, ..., XsN }, where sN ∈ N,

• a set of complexes CN = {C1, C2, ..., CcN }, where cN ∈ N and each Ci is an N0-linear
combination of species in XN , and

• a set of reactions RN ⊆ {Ci → Cj | i, j ∈ [cN ] with i ̸= j}, such that each complex Ck ∈ CN
takes part in at least one reaction in RN .

Let rN := |RN | denote the number of reactions of N .

If Ci → Cj and Cj → Ci are both in RN , then these reactions are reversible and the pair is
denoted by Ci ⇆ Cj . Reversible reactions of the form 0 ⇆ Xi are called inflow-outflow reactions.

It is convenient to represent a network N by a directed graph, where the vertices are complexes
and the edges correspond to reactions. A connected component of this directed graph is a linkage
class, and we let ℓN ∈ N denote the number of linkage classes.

For convenience, we list some basic parameters of a network in Table 2.

sN cN rN ℓN rk(N )

# species # complexes # reactions # linkage classes rank

Table 2: Parameters associated to a network N .

For ease of notation, our examples use A,B,C, . . . for species, rather than X1, X2, X3, . . . .

Example 2.3 (Running example). The following directed graph represents the network N =
(XN , CN ,RN ), where XN = {A,B}, CN = {2A,A+2B, 2A+2B}, and RN = {2A→ A+2B, A+
2B → 2A+ 2B}:

2A −→ A+ 2B −→ 2A+ 2B .

This network N has ℓN = 1 linkage classes. This network is our running example for this section.

Definition 2.4. Consider a network N = (XN , CN ,RN ).

1. For a complex Ci = α1X1 +α2X2 + · · ·+αsNXsN , where αi ∈ N0 for all i ∈ [sN ], its complex
vector is (α1, α2, . . . , αsN )⊺ ∈ NsN

0 . In a slight abuse of notation, we sometimes let Ci denote
its complex vector.
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2. The reaction vector of a reaction Ci → Cj ∈ RN is Cj − Ci ∈ ZsN .

3. Given an ordering of the reactions RN = {R1, R2, . . . , RrN }, the stoichiometric matrix of N ,
denoted by ΓN , is the (sN × rN )-matrix in which the i-th column is the reaction vector of Ri.

4. The stoichiometric subspace of N is the column space of ΓN (or, equivalently, the span of the
reaction vectors arising from all reactions of N ), and the dimension of this subspace is the
rank of N , which we denote by rk(N ).

Example 2.5 (Example 2.3, continued). For our running example, N = {A→ A+2B → 2A+2B},
the complex vectors and the stoichiometric matrix are, respectively:1

0

 ,

1
2

 ,

2
2

 , and ΓN =

0 1

2 0

 .

The two columns of ΓN are linearly independent, so rk(N ) = 2.

The following result is well known, and we include a proof for completeness.

Lemma 2.6. If complexes C and D are in the same linkage class of a network N , then D − C is
in the stoichiometric subspace of N .

Proof. Assume that C and D are in the same linkage class of N . Then there exists a path of
complexes C1 = C, C2, C3, . . . , Cq = D, such that, for all j ∈ [q − 1], at least one of the reactions
Cj → Cj+1 and Cj ← Cj+1 is a reaction of N . Hence, for all j ∈ [q− 1], the vector Cj+1−Cj or its
negative is a reaction vector of N , and so Cj+1−Cj is in the stoichiometric subspace of N . Hence,

the sum
∑q−1

j=1 (Cj+1 − Cj) = D − C is in the stoichiometric subspace of N .

Definition 2.7. The cyclomatic number and deficiency of a network N are, respectively,

cyc(N ) := rN − cN + ℓN and δ(N ) := cN − ℓN − rk(N ),

where rN , cN , ℓN , and rk(N ) are as in Table 2.

Remark 2.8 (Cyclomatic numbers). The cyclomatic number of a network N comes from graph
theory: it is the so-called cyclomatic number of the directed graph associated to N . This cyclomatic
number of a graph G = (V,E), also called the circuit rank, represents the number of independent
cycles in G or (equivalently) the minimum number of edges that must be removed to break all
cycles [6, Chapter 4]. The cyclomatic number also captures the dimension of the first homology
group: H1 (G) ∼= Z|E|−|V |+|C|, where C is the set of connected components of G. In our setting, G
is the graph associated to N , so we identify |E|, |V |, and |C|, with rN , cN , and ℓN , respectively.

Example 2.9 (Example 2.5, continued). For our running example, N = {A→ A+2B → 2A+2B},
the cyclomatic number is cyc(N ) = 2− 3 + 1 = 0, which is consistent with Remark 2.8, as N has
no cycles. The deficiency of N is δ(N ) = 3− 1− 2 = 0.

2.2 Network operations

In this subsection, we recall the network operations1 investigated by Banaji [2] (Definition 2.12).

1Banaji calls these operations “enlargements”, which is why they are labeled E1–E6.
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Definition 2.10 (Adding a new species, splitting reactions). Let N be a network.

1. Consider a reaction of N :

a1X1 + a2X2 + · · ·+ asNXsN −→ b1X1 + b2X2 + · · ·+ bsNXsN . (1)

By replacing the reaction (1) by one of the following form:

a1X1 + a2X2 + · · ·+ asNXsN + c1Y −→ b1X1 + b2X2 + · · ·+ bsNXsN + c2Y ,

for some c1, c2 ∈ N0 – where at least one of c1, c2 is nonzero – we obtain the network N ′ from
N by adding a new species Y to reaction (1).

2. Let Ci → Cj be a reaction of N . The network N ′ obtained from N by splitting the reaction
Ci → Cj arises from replacing Ci → Cj with the reactions Ci → D and D → Cj , where D is
a new complex (that is, with D /∈ CN ).

Definition 2.11 (Rank condition). Let m ∈ N. Consider a network N ′ that is obtained in some
way from a network N and involves at least m new species (here, new species are species that are
not in XN ). Let Γ̃N ′ denote the submatrix of ΓN ′ formed by the row(s) corresponding to the new
species. The rank-m condition is satisfied if Γ̃N ′ has rank m.

Definition 2.12 (Operations). Denote by N ′ the network obtained from a network N after one
of the following operations.

E1. Add to RN a new reaction involving only species in XN such that rk(N ) = rk(N ′).

E2. Add to RN the inflow-outflow reactions for all species in XN .

E3. Add a new species Y into some or all of the existing reactions of N such that rk(N ) = rk(N ′).

E4. Add a new species Y into some or all of the existing reactions of N , and add the inflow-outflow
reactions 0 ⇆ Y .

E5. Add m new pairs of reversible reactions to N and m+i new species only in the new reactions,
for some m ∈ N, i ∈ N0, such that the rank-m condition holds (as in Definition 2.11).

E6. Split m existing reactions of N , such that the new complexes added involve m+i new species,
for some m ∈ N, i ∈ N0, such that the rank-m condition holds (as in Definition 2.11).

Remark 2.13 (E5). The network operation E5 consists of adding m pairs of reversible reactions.
In this case, the stoichiometric matrix of N ′ has the following block upper-triangular form:

ΓN ′ =



∗ . . . ∗

ΓN ∗ ∗
...

...

0 . . . 0
...

...
...

. . .
... ∗ ∗

0 . . . 0 ∗ . . . ∗


, (2)

where the last rows correspond to the new species and the last 2m columns, indicated by ∗’s,
correspond to the 2m new reactions (which come in m pairs). For each pair, the corresponding
two reaction vectors are negatives of each other, so it suffices (for the rank condition) to consider a
version of the stoichiometric matrix ΓN ′ in which only one reaction vector is added for each pair.
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Remark 2.14. As mentioned in the Introduction, all six operations E1–E6 have been proven to
preserve nondegenerate multistationarity and periodic orbits [2], as well as bifurcations [4].

Example 2.15 (E1; Example 2.9, continued). Recall that the network {2A→ A+2B → 2A+2B}
has rank 2. Adding any reaction in the species A and B preserves the rank and so is an E1 operation.
For instance, adding the reaction 2A+ 2B → 3A+ 3B yields:

N ′ = {2A→ A+ 2B → 2A+ 2B → 3A+ 3B} .

Then δ(N ′) = 4− 1− 2 = 1.

Example 2.16 (E2). Consider the network N = {A → 2C, 2D ← C → B}. The operation E2
adds inflow-outflow reactions, which results in the following network, which we denote by N ′:

D 0 A 2C

2D C B

The deficiencies are δ(N ) = 5− 2− 3 = 0 and δ(N ′) = 7− 1− 4 = 2.

Example 2.17 (E3). The following shows a network N and a network N ′ obtained after an E3
operation, in which a new species D is added to two of the reactions:

It is straightforward to check that both networks have rank 3. The deficiencies and cyclomatic
numbers are as follows: δ(N ) = δ(N ′) = 4− 1− 3 = 0 and cyc(N ) = cyc(N ′) = 6− 4 + 1 = 3.

Example 2.18 (E4). Consider the network N = {A ⇆ B}, which has deficiency δ(N ) = 2−1−1 =
0 and cyclomatic number cyc(N ) = 2 − 2 + 1 = 1. We apply the E4 operation in which the
species C is added to the reaction A → B to obtain A → B + C. The resulting network is
N ′ = {A → B + C, B → A, 0 ⇆ C}. The deficiency of N ′ is δ(N ′) = 5 − 2 − 2 = 1, while the
cyclomatic number is cyc(N ′) = 4− 5 + 2 = 1.

Example 2.19 (E5). Consider the network N = {A → B, 2B → 2A}. After applying an E5
operation in which two pairs of reversible reactions are added, we obtain the following network:
N ′ = {A→ B ⇆ C +D, 2B → 2A ⇆ D + E}. A version of the stoichiometric matrix of N ′ is as
follows (where only one reaction for each pair is included, as in Remark 2.13):

ΓN ′ =



−1 2 0 −2

1 −2 −1 0

0 0 1 0

0 0 1 1

0 0 0 1


.

The last three rows (corresponding to the new species C,D,E) form a rank-2 submatrix (as required
by E5). The deficiencies of the networks are δ(N ) = 4− 2− 1 = 1 and δ(N ′) = 6− 2− 3 = 1.
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Example 2.20 (E6). Consider the network N = {2A → A + B ← 2B}. We apply operation E6
in which both reactions are split and new complexes involving new species C and D are added:

N ′ = {2A → A+ C → A+B ← 2C +D ← 2B} .

The stoichiometric matrices of these networks are as follows:

ΓN =

−1 1

1 −1

 and ΓN ′ =


−1 0 1 0

0 1 1 −2

1 −1 −2 2

0 0 −1 1

 .

As required for an E6 operation, the last two rows of ΓN ′ (corresponding to C,D) form a rank-2
submatrix. Notice also that rk(N ) = 1, rk(N ′) = 3, δ(N ) = 3−1−1 = 1, and δ(N ′) = 5−1−3 = 1.

2.3 A more general rank condition

The operation E5 requires the rank-m condition, that is, the rows of ΓN ′ corresponding to the new
species must have rank m. It is natural to consider the generalization of this condition in which we
ask that the columns corresponding to new reactions (rather than the rows corresponding to new
species) have rank m. (The fact that this condition generalizes the original condition arises from
the block triangular structure of ΓN ′ , in (2).)

This new condition defines a generalization of the operation E5, which we denote by E5′. If
a network N ′ is obtained from a network N by performing an E5′ operation, then δ(N ′) ≥ δ(N )
(this follows from Lemma 3.2 in the next section). In this way, E5′ is similar to (what we prove in
the next section about) E1–E6.

However, unlike E1–E6 [2], the operation E5′ has not been proven to preserve nondegenerate
multistationarity or periodic orbits. In fact, E5 does not, in general, preserve nondegenerate
multistationarity. The following example illustrates this fact.

Example 2.21. The networkN = {A→ B, 2A+B → 3A} exhibits nondegenerate multistationarity [17],
but the network N ′ = {A→ B, 2A+B → 3A, C ⇆ A+ C}, which is obtained from N by an E5′

operation, does not (this is a straightforward computation).

As for (nondegenerate) periodic orbits, we conjecture that E5′ similarly does not, in general,
preserve such behavior.

3 Results

This section contains our results for the operations E1–E6. We make use of the following notation.

Notation 3.1 (Change in a parameter). For networks N and M, and parameter θ of networks,
define

∆θ(N ,M) := θ(M)− θ(N ).

The relevant parameters defined so far are sN , cN , rN , ℓN , rk(N ), cyc(N ), and δ(N ).
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Using Notation 3.1, the following formulas for the changes in deficiency and cyclomatic number
are immediate from Definition 2.7:

∆δ(N ,M) = ∆c(N ,M)−∆ℓ(N ,M)−∆rk(N ,M) , and

∆cyc(N ,M) = ∆r(N ,M)−∆c(N ,M) + ∆ℓ(N ,M) .

We use the above equalities frequently in our proofs below.

3.1 Three useful lemmas

The following result pertains to operations that add reactions.

Lemma 3.2 (Adding reactions). Let C and D be complexes. Consider a network N ′ that is
obtained from a network N by adding the reaction C → D (where C → D is not a reaction of N )
or the pair of reversible reactions C ⇆ D (where neither C → D nor C ← D is a reaction of N ).
Then:

1. ∆δ(N ,N ′) = 0 or ∆δ(N ,N ′) = 1, and

2. If no linkage class of N contains both C and D (for instance, if at least one of C and D is
not a complex of N ), then ∆c(N ,N ′)−∆ℓ(N ,N ′) = 1.

Proof. As one reaction or one reversible pair is added, the rank either is unchanged or increases by
1 (that is, ∆ rk(N ,N ′) ∈ {0, 1}). We consider the following cases:

Case 1: C and D are both new complexes (C,D /∈ CN ). In this case, ∆c(N ,N ′) = 2, and
the reaction C → D (or C ⇆ D) creates a new linkage class (so, ∆ℓ(N ,N ′) = 1). Hence,
∆c(N ,N ′)−∆ℓ(N ,N ′) = 2−1 = 1. Finally, ∆δ(N ,N ′) = ∆c(N ,N ′)−∆ℓ(N ,N ′)−∆rk(N ,N ′) =
2− 1−∆rk(N ,N ′) and so ∆δ(N ,N ′) equals 0 or 1.

Case 2: C is a new complex and D is not (C /∈ CN , D ∈ CN ), or vice-versa. In this case,
∆c(N ,N ′) = 1, and adding the reaction C → D (or C ⇆ D) simply enlarges one linkage class (and
no linkage classes are joined or created). Hence, ∆ℓ(N ,N ′) = 0 and so ∆c(N ,N ′)−∆ℓ(N ,N ′) =
1− 0 = 1. Finally, ∆δ(N ,N ′) = 1− 0−∆rk(N ,N ′) and so ∆δ(N ,N ′) equals 0 or 1.

Case 3: C,D ∈ CN , but C and D are in distinct linkage classes of N . In this case, ∆c(N ,N ′) =
0. Also, adding the reaction C → D (or C ⇆ D) joins two linkage classes, so ∆ℓ(N ,N ′) = −1.
Hence, ∆c(N ,N ′) − ∆ℓ(N ,N ′) = 0 − (−1) = 1. Finally, we have ∆δ(N ,N ′) = 0 − (−1) −
∆rk(N ,N ′) and so ∆δ(N ,N ′) equals 0 or 1.

Case 4: C,D ∈ CN , and C and D are in the same linkage class of N . We have ∆c(N ,N ′) = 0
and ∆ℓ(N ,N ′) = 0. Next, ∆ rk(N ,N ′) = 0 by Lemma 2.6. Hence, ∆δ(N ,N ′) = ∆c(N ,N ′) −
∆ℓ(N ,N ′)−∆rk(N ,N ′) = 0− 0− 0 = 0.

Remark 3.3. Lemma 3.2 implies that operations that consist of adding reactions (e.g., E1, E2, and
E5) never decrease the deficiency. Another instance of such an operation is when some (but possibly
not all) inflow reactions 0 → Xi and outflow reactions Xi → 0 are added. Results on which such
operations preserve nondegenerate multistationarity were proven recently by Cappelletti, Feliu, and
Wiuf [7, Theorem 8]. However, it is unknown whether their operations preserve (nondegenerate)
periodic orbits. We conjecture that they do.

The following example motivates Lemma 3.5.

Example 3.4 (E3). Consider the following network N :
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C

A B

The following network N ′ is obtained from N by applying an E3 operation (adding species D to
three reactions without changing the rank):

A B

C

A+D B +D

C +D

Notice that the single linkage class of N “breaks” into two linkage classes in N ′. This idea appears
in the proof of the next lemma.

Lemma 3.5 (E3 and E4). Consider a network N .

1. If N ′ is a network obtained from N by applying an E3 operation, then ∆ℓ(N ,N ′) ≤
∆c(N ,N ′).

2. If N ′ is a network obtained from N by applying an E4 operation, then ∆ℓ(N ,N ′) + 1 ≤
∆c(N ,N ′).

Proof. We begin by proving part 1. Consider the map π : CN ′ → CN that restricts a complex to
only the “old” species, that is, π is defined by (a1X1 + a2X2 + · · · + asNXsN + aY Y ) 7→ (a1X1 +
a2X2+ · · ·+asNXsN ). By definition of E3, π is surjective and gives rise to another map, a bijection
π̃ : RN ′ → RN defined by (C → D) 7→ (π(C) → π(D)). In words, π̃ sends a reaction to the
reaction it was before E3 added the species Y to some complexes.

It is now straightforward to see that each linkage class L of N corresponds to one or more
linkage classes L1, L2, . . . , Lk+1 of N ′ (see Example 3.4). Thus, we can analyze one linkage class of
N at a time. Accordingly, assume that L is a linkage class of N that corresponds to linkage classes
L1, L2, . . . , Lk+1 of N ′ (where k ≥ 0). It suffices to show that the number of “new” complexes (i.e.,
those not in CN ) in the linkage classes L1, L2, . . . , Lk+1 is at least k.

To this end, define a graph G, as follows: the vertices are the linkage classes L1, L2, . . . , Lk+1,
and the (undirected) edge (Li, Lj) exists when there exist complexes C ∈ Li and D ∈ Lj such that
π(C) = π(D). It is straightforward to see that the graph G is connected; this uses the fact that the
linkage classes L1, L2, . . . , Lk+1 of N ′ correspond to a single linkage class (namely, L) of N . Hence,
G has a spanning tree T with k edges.

Next, we use the tree T to define the edges of a graph H with vertex set CN ′ . The (undirected)
edges of H arise as follows: for each of the k edges of T , which we denote by some (Li, Lj), pick
complexes C ∈ Li and D ∈ Lj such that π(C) = π(D), and then define (C,D) to be an edge of H
(note that C ̸= D, as C and D are in distinct linkage classes Li and Lj , respectively). It follows
that H (like T ) has no cycles, and so is a forest with k edges. Also, all vertices C in a fixed (but
arbitrary) connected component of H correspond to the same “old” complex (that is, π(C) is the
same for all such vertices). Hence, each connected component of H contains at most one “old”
complex. So, a component of H with ℓ ≤ k edges — and hence ℓ+ 1 vertices since the component
is a tree — will involve at least ℓ “new” complexes. Therefore, the vertices incident to the k edges
of H include at least k “new” complexes, which completes the proof of part 1.

Next, we prove part 2. By definition, every E4 operation is obtained by a generalized E3
operation – in which the rank condition rk(N ) = rk(N ′) need not be satisfied – followed by adding
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the reactions 0 ⇆ Y . Notice that the proof of part 1 does not use this rank condition. As a result,
the proof of part 1 also applies to the generalized E3 operation. Let Ñ denote the network after
this generalized E3 operation (i.e., before adding 0 ⇆ Y ). We consider two cases:

Case 1: There exists a linkage class of Ñ containing 0 and Y as complexes. In this case,

∆ℓ(N ,N ′) = ∆ℓ(N , Ñ ). Next, we define H̃ to be the graph obtained by adding the edge (0, Y ) to
the graph H (which we constructed in the proof we gave above for part 1), where H comes from the
linkage class of N that contains 0. As 0 and Y are in the same linkage class of Ñ (and hence in the
same linkage class of N ′), the edge (0, Y ) was not an edge of H (by construction) and additionally
is not part of a cycle in H̃. Moreover, π(0) = π(Y ) = 0. So, the edge (0, Y ) (more precisely, the
vertices incident to that edge) generates one more “new” complex than what was found in part 1.
This fact yields the inequality here:

∆c(N ,N ′) ≥ 1 + ∆ℓ(N , Ñ ) = 1 +∆ℓ(N ,N ′) ,

and the equality here was proven above.
Case 2: No linkage class of Ñ contains both 0 and Y . In this case, Lemma 3.2 implies that

∆c(Ñ ,N ′)−∆ℓ(Ñ ,N ′) = 1. This equality and part 1 (applied to the pair (N , Ñ )) together imply
the desired inequality, as follows:

∆ℓ(N ,N ′) = ∆ℓ(N , Ñ ) + ∆ℓ(Ñ ,N ′)

≤ ∆c(N , Ñ ) + ∆c(Ñ ,N ′)− 1

= ∆c(N ,N ′)− 1 .

Remark 3.6. In the proof of part 1 of Lemma 3.5, the rank condition of operation E3 is not used.
Hence, that part of the lemma allows for versions of E3 without the rank condition.

Our final lemma pertains to block triangular matrices, which we later apply to stoichiometric
matrices that satisfy the rank-m condition.

Lemma 3.7. Consider a block upper-triangular matrix of size (p+ q)× (u+ v) with entries in R:

M =

 A B

0 C

 ,

where 0 represents a (q × u) zero matrix, and A, B, and C have size (p× u), (p× v), and (q × v),
respectively. If rk(C) = v, then rk(M) = rk(A) + rk(C).

Proof. Since rk(C) = v, we perform row operations on M so that the entries of submatrix B
become zeros. The resulting matrix is a block diagonal matrix in which one block is A and the
other is a q × v submatrix of rank v. Hence, as operations do not affect the rank, we obtain
rk(M) = rk(A) + rk(C).

3.2 E1

Recall that the operation E1 adds a new reaction without changing the rank of the network
(Definition 2.12). We also saw an example in which an E1 operation increases a network’s deficiency
by 1 (Example 2.15). The following result states that such an increase always occurs, except in the
situation when the new reaction joins two complexes that already were in the same linkage class.
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Theorem 3.8 (Deficiency after E1). Let N ′ be a network obtained from a network N by applying
an E1 operation. Let C → D denote the reaction added in this operation. If there exists a linkage
class of N that contains both C and D (in particular, the operation adds no new complexes), then

∆δ(N ,N ′) = 0.

Otherwise, ∆δ(N ,N ′) = 1.

Proof. By definition, the rank is unchanged by E1: ∆ rk(N ,N ′) = 0. We consider two cases.
First, assume that there exists a linkage class of N that contains both C and D. In this case,
∆c(N ,N ′) = 0 and ∆ℓ(N ,N ′) = 0, so ∆δ(N ,N ′) = ∆c(N ,N ′) − ∆ℓ(N ,N ′) − ∆rk(N ,N ′) =
0− 0− 0 = 0. In the remaining case, Lemma 3.2 implies that ∆c(N ,N ′)−∆ℓ(N ,N ′) = 1 and so
∆δ(N ,N ′) = (∆c(N ,N ′)−∆ℓ(N ,N ′))−∆rk(N ,N ′) = 1− 0 = 1.

Example 3.9. Theorem 3.8 implies that when an E1 operation makes a non-reversible reaction
reversible, the deficiency is preserved. For instance, the network N = {A + B → 2A} transforms
under such an E1 operation to N ′ = {A+B ⇆ 2A}, and both networks have deficiency 0.

3.3 E2

Recall that the operation E2 adds inflow-outflow reactions for all species (Definition 2.12). To state
our result on E2, we must give a name to the types of complexes added by E2, as follows.

Definition 3.10. A complex is at-most-unimolecular (for short, unimolecular) if it is 0 or Xi, for
some i.

Notation 3.11 (mN and ℓ̃N ). Let N be a network.

1. Let mN be the number of unimolecular complexes that are “missing” from N (more precisely,
the number of complexes of the form 0 or Xi, with i ∈ [sN ], that are not in CN ).

2. Let ℓ̃N denote the number of linkage classes of N that contain at least one unimolecular
complex.

Example 3.12 (Example 2.16, continued). The network N = {A → 2C, 2D ← C → B} has
mN = 2 “missing” unimolecular complexes (namely, 0 and D), and both linkage classes contain
unimolecular complexes (so, ℓ̃N = 2).

Our main result concerning E2 is as follows.

Theorem 3.13 (Deficiency after E2). If N ′ is a network obtained from a network N by applying
the E2 operation, then ∆δ(N ,N ′) ≥ 0 and

∆δ(N ,N ′) = rk(N )− sN +mN + ℓ̃N − 1 ,

where the notation is as in Table 2 and Notation 3.11.

Proof. First, ∆δ(N ,N ′) ≥ 0 follows from repeated application of Lemma 3.2. Next, ∆c(N ,N ′) =
mN , because the complexes that E2 adds are precisely the mN “missing” complexes. Also, rk(N ′) =
sN , as N ′ contains all inflow-outflows; hence, ∆ rk(N ,N ′) = sN − rk(N ).

Now we claim that ∆ℓ(N ,N ′) = 1 − ℓ̃N . To prove this claim, we consider two cases. First, if
ℓ̃N = 0, then E2 adds exactly one new linkage class (consisting of all unimolecular complexes), so
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∆ℓ(N ,N ′) = 1 = 1 − ℓ̃N . On the other hand, if ℓ̃N ≥ 1, then E2 connects the ℓ̃N linkage classes
containing unimolecular complexes into one linkage class, and so ∆ℓ(N ,N ′) = −ℓ̃N + 1.

We now can compute ∆δ(N ,N ′):

∆δ(N ,N ′) = ∆c(N ,N ′)−∆ℓ(N ,N ′)−∆rk(N ,N ′)

= mN − (1− ℓ̃N )− (sN − rk(N )) . (3)

Finally, rearranging the terms in (3) yields exactly the desired expression for ∆δ(N ,N ′).

Example 3.14 (Example 3.12, continued). Recall that for the network N = {A → 2C, 2D ←
C → B} and the network N ′ obtained from the E2 operation, we have ∆δ(N ,N ′) = 2. This is
consistent with Theorem 3.13, as rk(N )− sN +mN + ℓ̃N − 1 = 3− 4 + 2 + 2− 1 = 2.

3.4 E3

Recall that operation E3 adds a new species without changing the network’s rank (Definition 2.12).
Also, we presented an example in which an E3 operation leaves unchanged both the deficiency and
the cyclomatic number of a network (Example 2.17). The following result shows that when the
deficiency does change, it must increase and, moreover, its change is exactly opposite the change
in the cyclomatic number.

Theorem 3.15 (Deficiency after E3). If N ′ is a network obtained from a network N by applying
an E3 operation, then ∆δ(N ,N ′) ≥ 0 and

∆δ(N ,N ′) = −∆cyc(N ,N ′) .

Proof. By definition, E3 preserves the rank of the network (∆ rk(N ,N ′) = 0) and adds species to
reactions, but does not change the number of reactions (∆r(N ,N ′) = 0). We compute the change
in deficiency:

∆δ(N ,N ′) = ∆c(N ,N ′)−∆ℓ(N ,N ′)−∆rk(N ,N ′)

= ∆c(N ,N ′)−∆ℓ(N ,N ′) (4)

= −
(
∆r(N ,N ′)−∆c(N ,N ′) + ∆ℓ(N ,N ′)

)
= −∆cyc(N ,N ′).

Finally, the inequality ∆δ(N ,N ′) ≥ 0 follows from equation (4) and Lemma 3.5 (part 1).

Example 3.16 (Example 3.4 continued). We revisit the networks in Example 3.4, where N ′ is
obtained from N by an E3 operation. The deficiencies are δ(N ) = 3 − 1 − 2 = 0 and δ(N ′) =
6−2−2 = 2, and the cyclomatic numbers are cyc(N ) = 6−3+1 = 4 and cyc(N ′) = 6−6+2 = 2.
Consistent with Theorem 3.15, we have ∆δ(N ,N ′) = 2 = −∆cyc(N ,N ′).

3.5 E4

Recall that the operation E4 adds a new species Y into some reactions and also adds the reactions
0 ⇆ Y (Definition 2.12). Also, in Example 2.18, we saw an instance of an E4 operation that
increases the deficiency by 1 (that is, ∆δ(N ,N ′) = 1) but does not change the cyclomatic number
(∆ cyc(N ,N ′) = 0). The main result of this subsection states that, in general, the operation E4
yields the equality ∆δ(N ,N ′) + ∆cyc(N ,N ′) = 1 (Theorem 3.18). We need the following lemma.
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Lemma 3.17. If N ′ is a network obtained from a network N by applying an E4 operation, then
∆r(N ,N ′) = 2 and ∆ rk(N ,N ′) = 1.

Proof. The operation E4 adds a new species Y (into existing reactions) and additionally adds the
pair of reversible reactions 0 ⇆ Y (so, the change in the number of reactions is ∆r(N ,N ′) = 2).
The stoichiometric matrix of N ′ therefore has the following block lower-triangular form:

ΓN ′ =



0 0

ΓN
...

...

0 0

∗ . . . ∗ 1 −1


, (5)

where the last row corresponds to species Y and the last two columns correspond to the reactions
0 → Y and 0 ← Y , respectively. By construction, the first sN rows of ΓN ′ , in (5), span a
rk(N )-dimensional subspace, which we denote by S. Next, the last row of ΓN ′ is readily seen to
not be in S. Hence, rk(N ′) = rk(N ) + 1, that is, ∆ rk(N ,N ′) = 1.

Theorem 3.18 (Deficiency after E4). If N ′ is a network obtained from a network N by applying
an E4 operation, then ∆δ(N ,N ′) ≥ 0 and

∆δ(N ,N ′) = −∆cyc(N ,N ′) + 1.

Proof. Using Lemma 3.17 and the definition of cyclomatic number, we compute as follows:

∆δ(N ,N ′) = ∆c(N ,N ′)−∆ℓ(N ,N ′)−∆rk(N ,N ′)

= ∆c(N ,N ′)−∆ℓ(N ,N ′)− 1 (6)

= −∆cyc(N ,N ′) + ∆r(N ,N ′)− 1

= −∆cyc(N ,N ′) + 1.

Finally, ∆δ(N ,N ′) ≥ 0 follows from equation (6) and Lemma 3.5 (part 2).

Example 3.19. In the following networks, which we denote by N and N ′, respectively, the network
N ′ is obtained from N by performing an E4 operation:

The deficiencies are δ(N ) = 5− 1− 4 = 0 and δ(N ′) = 8− 1− 5 = 2, while the cyclomatic numbers
are cyc(N ) = 11−5+1 = 7 and cyc(N ′) = 13−8+1 = 6. Observe that ∆δ(N ,N ′)+∆cyc(N ′,N ) =
2 + (−1) = 1, which is consistent with Theorem 3.18.
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3.6 E5

Recall that the operation E5 adds m new reversible reactions and at least m new species to those
reactions, such that the rank-m condition holds (Definition 2.12). Also, an instance of this operation
was seen to preserve the deficiency (Example 2.19). We now prove that this holds in general.

Theorem 3.20. If N ′ is a network obtained from a network N by applying an E5 operation, then
∆δ(N ,N ′) = 0.

Proof. Denote the m new reactions (involving m+ i new species) of the E5 operation as follows:

C(1) ⇆ D(1) , . . . , C(m) ⇆ D(m) . (7)

The stoichiometric matrix for N ′ (where only one reaction vector is included for each added
reversible reaction, as in Remark 2.13) is as follows:

ΓN ′ =



(D(1)− C(1))1 . . . (D(m)− C(m))1

ΓN
...

...

0 . . . 0
...

. . .
...

...
...

0 . . . 0 (D(1)− C(1))sN+m+i . . . (D(m)− C(m))sN+m+i


. (8)

The rank-m condition for E5, plus the block structure of ΓN ′ in (8), together satisfy the hypotheses
of Lemma 3.7, and so we conclude the following:

∆ rk(N ,N ′) = m . (9)

Our next aim is to compute ∆c(N ,N ′)−∆ℓ(N ,N ′) using Lemma 3.2. To this end, for j ∈ [m],
let N (j) denote the network obtained from N by adding to N the first j reactions of (7) (so,
N (m) = N ′). For convenience, let N (0) := N .

Fix j ∈ [m]. We claim that no linkage class of N (j−1) contains both complexes C(j) and D(j).
Indeed, if they were in the same linkage class of N (j − 1), then the column vector D(j) − C(j),
in ΓN ′ as shown in (8), would be in the column space of the submatrix to the left of that vector
(by Lemma 2.6), and it is straightforward to show that this would violate (9).

We conclude that Lemma 3.2 applies and so ∆c(N (j),N (j − 1)) − ∆ℓ(N (j),N (j − 1)) = 1.
This equality yields:

∆c(N ,N ′)−∆ℓ(N ,N ′) =
m∑
j=1

(∆c(N (j),N (j − 1))−∆ℓ(N (j),N (j − 1))) =
m∑
j=1

1 = m .

(10)

Hence, by (9) and (10), ∆δ(N ,N ′) =
(
∆c(N ,N ′)−∆ℓ(N ,N ′)

)
−∆rk(N ,N ′) = m−m = 0.

3.7 E6

Recall that the operation E6 splits m reactions, and inserts at least m species in the new complexes
(Definition 2.12). We saw an example in which this operation preserves the deficiency (Example 2.20),
and now we show that this holds in general.
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Theorem 3.21. If N ′ is a network obtained from a network N by applying an E6 operation, then

∆δ(N ,N ′) = 0 .

Proof. Let m denote the number of split reactions, and let m+ i denote the number of new species
(as in Definition 2.12). Recall that ∆δ(N ,N ′) = ∆c(N ,N ′)−∆ℓ(N ,N ′)−∆rk(N ,N ′). It therefore
suffices to prove the following: (1) ∆c(N ,N ′) = m, (2) ∆ℓ(N ,N ′) = 0, and (3) ∆ rk(N ,N ′) = m.

We begin by proving (3). We first prove the following claim:
Claim 1: The following (sN +m + i) × (rN + rN ′) matrix has the same column space as ΓN ′

(the stoichiometric matrix of N ′):

M =



ΓN

ΓN ′

0 . . . 0
...

. . .

0 . . . 0


. (11)

To verify this claim, first observe that the matrix M , in (11), is obtained from ΓN ′ by adjoining
(on the left) the reaction vectors D−C (viewed in RsN+m+i rather than in RsN ) for each reaction
C → D of N . For each such reaction, there are two possibilities. First, if C → D is not split by the
E6 operation, then D−C is also a column of ΓN ′ and so is in the column space of ΓN ′ . On the other
hand, if C → D is split and becomes C → Z → D, where Z is a new complex, then the reaction
vectors Z −C and D − Z are columns of ΓN ′ and hence their sum (Z −C) + (D − Z) = D −C is
in the column space of ΓN ′ . We conclude that Claim 1 is true.

Next, Claim 1 and the block structure of the matrix M , in (11), together satisfy the hypotheses
of Lemma 3.7. We conclude that rk(N ′) is the sum of rk(N ) and the rank of the lower-right
submatrix of M . This submatrix, by definition of E6, has rank m. Thus, ∆ rk(N ,N ′) = m, and
so part (3) holds.

Next, to prove (1), it suffices to show the following claim:
Claim 2: The complexes added in the m split reactions are distinct, and each such complex

involves at least 1 new species.
To prove Claim 2, we begin by denoting the m reactions – after they are split by E6 – as follows:

C(1)→ Z(1)→ D(1) , . . . , C(m)→ Z(m)→ D(m) .

We must show that each complex Z(j) is distinct and involves new species.
Let π : NsN+m+i

0 → Nm+i
0 denote the projection onto the coordinates for the m+ i new species.

With this notation, we see that in the submatrix formed by the rows of ΓN ′ corresponding to the
new species – we denote this submatrix by Λ – the columns are π(vj), where vj is the reaction
vector of the j-th reaction of N ′. If such a reaction is not split by E6, then π(vi) = 0 (the reaction
does not involve new species). On the other hand, for reactions that are split, the corresponding
columns come in pairs, namely, π(Z(j) − C(j)) = π(Z(j)) (as C(j) is a complex of N and hence
does not involve new species) and π(D(j)− Z(j)) = −π(Z(j)).

Thus, the set B = {π(Z(j)) | j ∈ [m]} spans the column space of Λ, which, by definition of
E6 (and the fact that column rank equals row rank), has dimension m. Hence, B is a basis of the
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column space and so the π(Z(j)), for j ∈ [m], are nonzero and distinct. Therefore, the complexes
Z(j) must involve new species and also be distinct, which completes the proof of Claim 2.

Only part (2) remains to be proven. Claim 2 implies that when reactions are split in the E6
operation, linkage classes are enlarged, but not joined or created. Hence, ∆ℓ(N ,N ′) = 0.

4 Discussion

In this work, we established a connection between two research streams pertaining to chemical
reaction networks, namely, deficiency theory and the theory of “lifting” results. Specifically, we
proved that the deficiency never decreases when any of the six network operations E1–E6 are
performed, and, moreover, we characterized the numerical difference in deficiency after performing
each of these operations (Theorem 1.1). This means that chemical reaction networks may be
arbitrarily enlarged using any of these operations, and the resulting networks preserve important
dynamical properties – nondegenerate multistationarity and periodic orbits [2] and bifurcations [4]
– with predictable changes in deficiency. In particular, only E5 and E6 always leave the deficiency
unchanged.

Additionally, we posed two conjectures. First, we conjectured that the operation E5′, which
generalizes E5, does not preserve nondegenerate periodic orbits (Section 2.3). On the other hand,
we conjectured that a network operation that generalizes E2, which was introduced recently by
Cappelletti, Feliu, and Wiuf, does preserve nondegenerate periodic orbits (Remark 3.3).

Going forward, the theory of “lifting” results is an active research area. We therefore anticipate
wanting to prove results pertaining to deficiency that are analogous to the results in this work, as
new “lifting” results are proven. Our proofs for the operations E1–E6 lay the groundwork for such
future investigations.
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