
Poster: Understanding Interactions betweenOverload
Control and Core Allocation in Low-Latency Network Stacks

Eric Stuhr
Georgia Tech

Ahmed Saeed
Georgia Tech

ABSTRACT
Modern data center applications require servers to respond to re-
quests from thousands of clients while maintaining micro-second-
scale SLOs. E!cient operation of the data center infrastructure re-
quires assigning the exact amount of resourcesneededby the applica-
tion, nomoreandno less.Aburst of incoming tra!c that exceeds allo-
cated capacity can cause long queues, requiring e!cient and respon-
sive overload control schemes. A sudden drop in demand requires re-
allocationof resources tootherapplications.Withina singlehost, sev-
eral mechanisms have been proposed for overload control [1, 3, 8, 9]
and dynamic core allocation [2, 4, 6, 7]. The state of the art in both
control loops is designed to react to microsecond-level changes in
load.Wepresent a simulation-based studyof the interaction between
OverloadControllers andCoreAllocators atmicrosecond timescales,
examining their macroscopic implications at larger timescales.

Core Allocators and Overload Controllers strive for the same del-
icate balance between high utilization and low latency, employing
complementary approaches. In particular, CoreAllocators adjust the
provisioned capacity to an application, assuming a "xed load. Over-
load Controllers adjust the admitted load, assuming "xed capacity.
Moreover, both control loops typically make their decision based on
the amount of queueing in the system, adding more resources or ad-
mitting less loadasqueueingdelay increases, targetingaspeci"c level
of queueing delay. The potential for interference between the two
control loops arises because the quantity that one controller assumes
to be "xed is changed by the other controller (i.e., load and capacity).
Further, both controllers use the same signal to make their decision.

CCS CONCEPTS
• Networks → Data center networks; Network control algo-
rithms;Network resources allocation;

ACMReference Format:
Eric Stuhr and Ahmed Saeed. 2023. Poster: Understanding Interactions
between Overload Control and Core Allocation in Low-Latency Network
Stacks. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Septem-
ber 10, 2023, New York, NY, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3603269.3610844

KEYWORDS
Low-Latency Network Stacks; Overload Control; Dynamic Core
Allocation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3610844

1 STUDYOVERVIEW
We study the interference between overload controllers and core
allocators by examining the interaction between two exemplar con-
trollers: Shenango [6] for core allocation and Breakwater [1] for
overload control.

Shenango[6] is a library operating system that allows applications
tomaintainhighutilizationand low latencybydynamically reallocat-
ing cores at high frequency – every 5𝐿s. The core allocation decision
is based on the amount of queueing in the system, observing thread
queues and packet queues. An application is allocated an additional
core if its queueing exceeds a precon"gured threshold. Shenango
employs work stealing to balance load between cores. Upon failing
to "ndwork, a core parks (i.e., gets deallocated from the application).

Breakwater[1] is a credit based overload controller, only allowing
clients to issue requests when they have credits. It adjusts a credit
pool size using an additive increase multiplicative decrease (AIMD)
rule every round trip time (RTT) by observing the maximum queue-
ing delay in the system, including thread queues and packet queues.
Breakwater overcommits the number of credits it issues to ensure
high utilization, relying on active queuemanagement (AQM) to drop
requests if the delay in the system exceeds a precon"gured threshold.

Our study is simulation-based, allowing us to examine a wide
range of parameters, sidestepping limitations posed by implementa-
tion speci"cs (e.g., core allocation latency) or the environment (e.g.,
RTT). We leverage a simulator developed to study the behavior of
core allocation schemes, including Shenango [5]. We augment it by
adding support for overload control algorithms and an implementa-
tion of Breakwater. Our simulator is open source.1 We acknowledge
that further research in this area requires examining the behavior of
the real implementation, but simulations provide a sanitized view of
the behavior, allowing us to develop an intuition of what to expect
of the full implementation as well as the conditions that are likely
to produce problematic behavior.

Unless stated otherwise, the results were produced using a load
that has an average service time of 1𝐿s with a bimodal distribution,
and Shenango and Breakwater have target delays of 10 µs. Break-
water’s AIMD algorithm has an 𝑀 of 1 and a 𝑁 of 0.08. The network
RTT is 30𝐿s. A server has 32 cores that Shenango can dynamically
allocate to the application. There is a single application running.
Load is normalized by the ideal throughput of the system with 32
cores fully utilized (i.e., a load of 1 refers to the ideal 32 million 1 𝐿s
tasks per second). The delay for allocating a core is 5𝐿s.

2 PROBLEMATIC INTERACTIONS
Slow reaction to load changes. Consider a scenario where load
sharply increases, from 0.2, requiring only 7 cores, to 1.2 requiring
all 32 cores. At low load, the core allocator parks underutilized cores.

1https://github.com/estuhr1206/scheduling-policies-sim

1159

https://doi.org/10.1145/3603269.3610844
https://doi.org/10.1145/3603269.3610844
https://doi.org/10.1145/3603269.3610844
https://github.com/estuhr1206/scheduling-policies-sim
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3610844&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Eric Stuhr and Ahmed Saeed

Figure 1:Topplot: slowrampup in credit pool size, leading to a
slowgrowth in throughput in thebaseline.Bottomisa closeup
at the 25000 𝐿s load shift (red line), with tasks in system (cu-
mulative length of all queues) and number of allocated cores.
Load shifts every 25,000 𝐿s (0.2->1.2->0.5->1.2).
Thus, the system can still have high latency because the available
capacity is reduced to satisfy the o#ered load.2 For example, even
though the system has 32 cores, only 7 are active. An incoming re-
quest that "nds all 7 cores busy will have to wait for one of the cores
to "nish its work or for a new core to get allocated. Two problems
occur due to this situation.

First, such occasional queueing delay can actually cause the over-
load controller to reduce its credit pool size to a level corresponding
to the allocated capacity, not the total available capacity (i.e., the 7
cores not the 32 cores). Overload controllers are typically designed
assuming "xed capacity. Assuming that in the steady state the credit
pool size is near its ideal size, only small adjustments to the credit
pool size areneededwhenhighdelays areobserved,makingoverload
controllers slow to react. Dynamic core allocation breaks the"xed ca-
pacity assumption. The slow reaction of the overload controller can
lead to a very slow ramp up, leading to low utilization. The top "gure
in Figure 1 shows the issue as the credit pool takes time to reach the
level needed to achieve high throughput after the change in load.

Second, when the load sharply increases, incoming requests face
long queueing delay as they wait for more cores to get allocated. It’s
important to note that the core allocator needs to observe high la-
tency in order to allocate more cores to an application. Further, once
the allocation decision is made, core allocation is not instantaneous
and can take a fewmicroseconds. Thus, most of the burst ends up
facing long queueing delay, triggering the AQM algorithm, leading
to the dropping of a signi"cant portion of the burst. It takes at least
an RTT for clients to get noti"ed of the dropped requests and issue
more requests. During that RTT, the system utilization can be fairly
low where cores don’t "nd work and park, reducing capacity when
load increases! The bottom "gure in Figure 1 shows this problem
where load increases from 0.2 to 1.2, creating a burst. Much of the
burst gets dropped, leading cores to park.
2The excess capacity can be allocated to some background batch job that gets preempted
if the application needs the capacity.

Figure 2: An example of throughput collapse at load of 1. A
credit pool size of 40 and an RTT of 30𝐿s leave the system
idle that only a single core remains active. Incoming bursts
always observe high latency, preventing the credit pool size
from growing.
Throughput Collapse. This problem occurs when the credit pool
size drops to a very low level (e.g., 40 in our example, where the
minimum pool size allowed by Breakwater is 32). Such a small pool
size can happen due to severe congestion or poor con"guration. A
small credit pool size leads to low load, as very little work is admitted
to the server, leading the core allocator to park most cores.

Consider an incast scenario occurring under these conditions (i.e.,
a small credit pool size and most cores parked). Each client has a
single credit and a backlog of requests. Incoming requests arrive
in a burst and face long delays, awaiting cores to be allocated. The
long delays prevent the overload controller from increasing its credit
pool size. All requests are processed and responses are sent out. If
the network RTT is large enough compared to request service time,
the system is left idle for long enough that most cores to park. Thus,
when a new burst of requests arrive, the same behavior repeats. The
system gets stuck in this cycle. In our simulations, a network RTT
of 25𝐿s is enough for this problem to manifest. Figure 2 shows this
cyclic behavior, where 1.0 load should use all 32 cores.

3 PROPOSED SOLUTION
We propose modifying overload controllers to take into account
decisions made by the core allocator. We use an increase in the num-
ber of allocated cores as a signal for increased capacity, triggering
the admission of more load. In particular, we modify Breakwater to
increase its credit pool size when new cores are allocated. The credit
pool (𝑂𝐿𝑀𝐿𝑁𝑂) increases proportional to the added capacity.

𝑂𝐿𝑀𝐿𝑁𝑂 →𝑂𝐿𝑀𝐿𝑁𝑂 +𝑃𝑁 ·
𝑂𝐿𝑀𝐿𝑁𝑂
𝑃𝐿

where 𝑃𝑁 is the number of newly allocated cores and 𝑃𝐿 is the
total number of allocated cores. Further, to avoid the throughput
collapse problem, we set a minimum credit pool size that depends
on the maximum number of available cores and the RTT, unlike
in Breakwater where it depends only on the number of available
cores. Figure 1 shows the behavior after employing the mitiga-
tion technique. The solution yields a 7% improvement in overall
throughput while maintaining similar latency levels to the base-
line.

1160

Poster: Understanding Interactions between Overload Control and Core... ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

REFERENCES
[1] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and

Adam Belay. 2020. Overload Control for µs-scale RPCs with Breakwater. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 299–314.

[2] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan:
Mitigating Interference at Microsecond Timescales. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). 281–297.

[3] Gautam Kumar, Nandita Dukkipati, Keon Jang, HassanWassel, XianWu, Behnam
Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Mike Ryan,
David J. Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple and E#ective
for Congestion Control in the Datacenter. In Proceedings of the ACM SIGCOMM
2020 Conference.

[4] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: AMicrokernel Approach

to Host Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). 399–413.

[5] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. 2022. E!-
cient Scheduling Policies for Microsecond-Scale Tasks. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). Renton, WA, 1–18.

[6] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari
Balakrishnan. 2019. Shenango: Achieving high CPU e!ciency for latency-sensitive
datacenter workloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 361–378.

[7] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware Thread Management. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 145–160.

[8] Matt Welsh and David Culler. 2002. Overload Management as a Fundamental
Service Design Primitive. In SIGOPS EuropeanWorkshop.

[9] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu, ,
Beng Chin Ooi, and Junfeng Yang. 2018. Scalable Overload Control for Large-scale
Microservice Architecture. In SoCC.

1161

	Abstract
	1 Study Overview
	2 Problematic interactions
	3 Proposed Solution
	References

