
Causal Relationships and Programming Outcomes:
A Transcranial Magnetic Stimulation Experiment

Hammad Ahmad
hammada@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Madeline Endres
endremad@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Kaia Newman
kaian@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Priscila Santiesteban
pasanti@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Emma Shedden
emshedde@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Westley Weimer
weimerw@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

ABSTRACT

Understanding the relationship between cognition and program-

ming outcomes is important: it can inform interventions that help

novices become experts faster. Neuroimaging techniques can mea-

sure brain activity, but prior studies of programming report only

correlations. We present the �rst causal neurological investigation

of the cognition of programming by using Transcranial Magnetic

Stimulation (TMS). TMS permits temporary and noninvasive dis-

ruption of speci�c brain regions. By disrupting brain regions and

then measuring programming outcomes, we discover whether a

true causal relationship exists. To the best of our knowledge, this is

the �rst use of TMS to study software engineering.

Where multiple previous studies reported correlations, we �nd

no direct causal relationships between implicated brain regions and

programming. Using a protocol that follows TMS best practices and

mitigates for biases, we replicate psychology �ndings that TMS af-

fects spatial tasks. We then �nd that neurostimulation can a�ect

programming outcomes. Multi-level regression analysis shows

that TMS stimulation of di�erent regions signi�cantly accounts

for 2.2% of the variance in task completion time. Our results have

implications for interventions in education and training as well as

research into causal cognitive relationships.
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Figure 1: High-level experimental architecture: “Does im-

pairing a brain region in�uence programming outcomes?”

1 INTRODUCTION

Recently, neuroimaging studies, which noninvasively measure brain

activity, have been used by software engineering researchers to

pinpoint the brain regions most correlated with common program-

ming activities such as comprehension [35, 70, 86, 87], code reading

and writing [39], debugging [13, 29], and data structure manipula-

tion [48, 56]. These studies, and subsequent work, identi�ed key

cognitive processes correlated with software engineering tasks.

For example, data structures are often described spatially (e.g.,

“balanced”, “length”, “height”, etc.), suggesting a potential relation-

ship between how humans reason spatially and how they reason

about data structures. Spatial reasoning (or spatial visualization)

refers to the ability to mentally manipulate three dimensional ob-

jects. Huang et al. con�rmed a correlative relationship between

spatial visualization and data structure manipulation [48]. Neu-

roimaging results have the potential to improve our understanding

of expertise, to inform pedagogy, and to guide tool development

and retraining (see Floyd et al. [39, Sec. II-D] for a summary).

The Problem. Despite these potential bene�ts and despite re-

searcher interest, to the best of our knowledge, no prior neuroimag-

ing study in software engineering has con�rmed a causal relation-

ship between patterns of neural activation and software engineering

activities. Speci�c causal relationships from one variable to another

cannot usually be assessed from an observed association between

them [1, 47] (cf. “correlation is not causation”, confounds, etc.).
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Proposed Solution. To scienti�cally investigate the plausible

existence of a causal connection between spatial visualization and

programming tasks, we require an approach that limits the ef-

fects of any confounding variables: manipulating and in�uencing

brain regions directly. The desired approach should: (1) admit high-

con�dence causal inference, (2) comprise a noninvasive process,

and (3) apply to indicative software engineering tasks.

We propose the �rst investigation of a causal relationship be-

tween spatial reasoning and programming tasks. We use Tran-

scranial Magnetic Stimulation (TMS) to noninvasively and directly

impede or facilitate visualization-associated regions [88, Sec. 5] of

the brain and then analyze the e�ects on programmer performance.

Unlike medical imaging, TMS induces a current within a region of

the brain itself, temporarily changing transmembrane potentials

and causing neurons to be more or less excitable. Stimulation that

interferes with task performance indicates that the a�ected brain

region is necessary for the task (i.e., establishes causality).

Unlike neuroimaging methods, such as functional magnetic reso-

nance imaging (fMRI), that indicate correlations between brain and

behavior, TMS can be used to demonstrate causal brain-behavior

relations [69, Sec. 3][82, pp. 595–596].

Our Study. We applied TMS to 16 participants, disrupting three

regions of their brains to probe causal relationships between soft-

ware engineering and neural activity. The regions were stimulated

on di�erent days via an established TMS protocol (Section 3.3) and

state-of-the-art per-subject brain region localization (Section 3.3.1).

To the best of our knowledge, this is also the �rst such study in soft-

ware engineering to feature multiple treatments and visits, more

naturally admitting both within-one-subject and between-multiple-

subjects analyses (cf. previous SE neuroimaging replications using

di�erent subjects each time [86]). After TMS, subjects completed a

randomized set of 180 tasks: code comprehension, data structure

manipulation, and mental rotation. Di�erences in outcomes (e.g.,

time) give con�dence in a causal relationship (see Figure 1).

Experimental Rigor. Care is necessary to avoid bias as we

probe causal relationships (cf. “absence of evidence is not evidence

of absence”). We pre-register hypotheses (mitigating some threats

from researcher bias), correct for multiple comparisons (mitigating

some threats of false discovery), use special active controls (miti-

gating some threats of participant response bias [25]), and conduct

some analyses with condition labels anonymized (mitigating some

threats from researcher bias). In addition, with over 1,600 minutes

of neurostimulated performance, our study involves comparable

observation to correlative studies (e.g., 1,300 [39], 600 [86], etc.).

Findings and Contributions.Analyzing standard performance

measures (e.g., time taken), not medical scans, we �nd:

• “Interpreting computing cognition is not simple.” We �nd

no evidence of causal relationships for multiple previously-

published correlations (e.g., for code understanding [86, Sec. 5.1],

data structures [48, Sec. V.B], code complexity [70, Sec. III.B],

or code writing [56, Sec. 5.2]). That is, disrupting a single

region does not uniformly impair performance.

• “Neurostimulation can a�ect spatial ability.” We replicate

prior �ndings that stimulation of supplementary motor area

degrades mental rotation task completion time. This is impor-

tant both as a replication and also because it gives con�dence

that we are applying TMS correctly.

• “Neurostimulation can a�ect computing outcomes.” We �nd

that TMS treatment condition contributes to time outcome

dispersion in experimental observations (participants com-

pleting task stimuli). Via multi-level regression analysis, we

�nd that TMS accounts for 2.2% of the variance in task com-

pletion times after accounting for learning e�ect. This is a

particularly exciting result, since neurostimulation has

been used to improve performance in other domains.

• We make our materials (recruiting, stimuli, analysis scripts,

and de-identi�ed data) available for replication. We discuss

experiences conducting a TMS study for future researchers.

2 BACKGROUND

In this section, we discuss causal inference in software engineering,

provide relevant background on transcranial magnetic stimulation

as a neurostimualtion technique, and summarize spatial ability.

2.1 Causation in Software Engineering

Understanding causation is important for many reasons, including

the potential of misdirected software engineering research if corre-

lation and causation are confused. For example, some early work

on the program repair tool GenProg [99] assumed that correlated

components (e.g., �tness functions) were important for success and

worth improving [37] — only for subsequent work causally testing

that supposition by removing those components [75, 98] to �nd just

as much success without them. Similarly, in deep learning, overlap

between training and testing datasets can increase perceived per-

formance. However, some early work assumed that correlated com-

ponents (e.g., model techniques) were primary drivers of success

— only for subsequent work to causally test that supposition (e.g.,

by renaming variables or otherwise avoiding “contamination” [52,

Sec. VIII]). Within the intersection of software engineering and neu-

roscience, a longitudinal study by Endres et al. [33] demonstrated

the bene�ts of medical imaging for pedagogy, evaluating a training

method based on prior neuroimaging results [34]. However, the

training based on spatial visualization actually produced worse

results than technical reading [33, Sec. 7.1], a result not in line with

prior correlative studies (e.g., [48]). While other �elds place a more

direct emphasis on reproducing or replicating �ndings and follow-

ing correlative analyses with causal ones (cf. some aspects of the

replication crisis in psychology [27]), with some notable exceptions

(e.g., [85]), software engineering does not yet have a comparable

tradition of accepting negative results or replications.

2.2 Transcranial Magnetic Stimulation (TMS)

Transcranial Magnetic Stimulation (TMS) is a safe and noninva-

sive technique that is well-established for a variety of clinical and

scienti�c use cases. When administered, TMS produces magnetic

�elds which stimulate (or disrupt) activity in a region of the brain

by inducing an electric current in the neurons of this region [10].

Clinically, TMS is used as a treatment for major depressive disor-

der, smoking cessation, and obsessive-compulsive disorder, among

others (see Section 2.3). It is also a well-established research tool:
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in the past 10 years, the National Library of Medicine has recorded

over 1000 academic papers published each year which investigate

the use of TMS. By using this neurostimulation technique to dis-

rupt brain activity and subsequently measuring task outcomes on

programming tasks, we can examine potential causal relationships.

Compared to other methods, TMS is a time-e�cient way to in-

vestigate the causal link between neural activity and programming

ability. Other medical approaches that a�ect the brain in speci�c ar-

eas tend to be quite invasive, requiring implanted electrodes, drug

treatments, or neurological surgeries. By contrast, non-medical

approaches, such as transfer training or pedagogy, are typically

studied over a longer period of time (see Section 8). In such longi-

tudinal A/B studies, the participant dropout rate may reach 70%,

primarily due to the e�ort and time required [45]. Our protocol only

required about �ve hours per participant to establish the control

and treatment e�ects, mitigating participant dropout.

Short applications also eliminate variance and potential con-

founds in long-term studies. In longitudinal studies, it is important

to control environmental factors, such as what a participant is

learning elsewhere and variance in intra-individual factors (such as

mood, energy, etc.). For example, longitudinal studies on CS student

retention span weeks or years that can lead to uncontrolled factors,

such as the recent pandemic [33, 83]. By contrast, the direct and im-

mediate e�ects of TMS can be observed in a controlled environment

for a speci�c trial of programming-related questions.

TMS is well-suited to elevate a correlative neural relationship to

one that can be suspected to be causal: (1) it is time-e�cient and

noninvasive, and (2) minimizes confounding variables.

2.3 Current TMS Applications and Successes

This is the �rst time TMS has been applied to software engineer-

ing, but it has been used successfully in a variety of contexts. We

highlight advances in aspects such as creativity, memory, language

and mathematics that are relevant for software engineering.

Creativity and Memory. Hertenstein et al. clari�ed the neural

basis of creativity (broadly construed as the “use of original ideas

to accomplish something innovative”), as well as ways to modu-

late that creativity, based on TMS stimulation of the prefrontal

cortex [46]. They found that deactivating the left prefrontal cortex

and activating the right prefrontal cortex with transcranial stim-

ulation is associated with increased creativity, whereas doing the

opposite (activating the left, deactivating the right) is signi�cantly

associated with decreased creativity. Other activities that fall under

this de�nition of creativity, such as the sudden insight gained when

solving anagrams, “aesthetic experience”, and “divergent think-

ing”, have been e�ectively studied for their neural correlates via

TMS [17, 73, 81]. Moreover, participants in a TMS study on working

memory were tasked to remember various numbers and do addition

on them: neurostimulation resulted in a 30% accuracy increase [43].

Language.TMS has been applied to explore language processing.

Willems et al. observed that stimulating the premotor cortex re-

sulted in increased verb processing speed for manual actions [100].

This is particularly interesting because it not only demonstrates

that two seemingly disparate activities can be connected by similar

activity in the brain, but also shows that stimulation of one area

can improve processing in another (cf. transfer training [19, 33]).

Mathematics. TMS has been employed for brain region causal

inference for various mathematical tasks. In one study, TMS signif-

icantly improved calculation accuracy for mental arithmetic done

on three-digit numbers [96]. In another study, TMS was used to

investigate neural models of mathematical cognition via the task

of mentally considering the prices of items [54].

Health. In the medical domain, TMS is used to treat several

neurological conditions. For example, TMS has been applied to

word-�nding di�culty (anomia), a common problem in early stages

of Alzheimer’s disease [21]. TMS is also widely used to counter-

act the e�ects and recurrence of depression. TMS applied to 301

previously-untreated participants with depression showed a signif-

icant reduction in depressive symptoms and twice the likelihood of

remission after 6 weeks [68]. TMS has also diminished the e�ects of

PTSD, OCD, Tourette’s, and other mental health conditions [61, 63].

Software engineering may involve stress, novel demands, or tox-

icity [76], high rates of burnout and depression [102], and lower

rates of treatment for such mental health issues [59]. Software-

speci�c challenges can impair the productivity of employees (e.g.,

the “happy-productive thesis” [22]). Mental health may thus be as

relevant to programming as language, creativity, or math.

TMS Summary. TMS has successfully in�uenced tasks requir-

ing complex interactions in many di�erent areas of the brain, in-

cluding programming-relevant aspects such as creativity, memory,

language, and mathematics. Although TMS has not previously been

used for software engineering, we propose its use to investigate

the relationship between neural activity and programming.

2.4 Spatial Reasoning and Programming

Spatial reasoning is the capacity to understand, remember, and ma-

nipulate the orientation of objects in space, including both physical

and abstract objects [62]. The particular task of mental rotation

involves visualizing 2D or 3D objects in the mind and imagining

pivoting them [71]. Mental rotation has been shown to be a signi�-

cant predictor for ability with many di�erent STEM-related disci-

plines [16]. While spatial reasoning has been studied for decades

[11], it has only been recently linked to programming.

Huang et al. observed similar patterns of neural activation be-

tween spatial reasoning tasks and programming with tree-based

data structures [48]. Endres et al. found even greater similarity be-

tween neural activation for spatial visualization and programming

ability in novices [33]. Given that spatial ability could be a predic-

tor for aptitude with a variety of data structures or programming

tasks, it is important to establish a causal, rather than correlative,

relationship between it and programming ability.

3 EXPERIMENTAL SETUP AND METHODS

We present our study design for investigating the causal link be-

tween neural activity and computation via Transcranial Magnetic

Stimulation (TMS). Each individual underwent a localizing (fMRI)

scan and two to four subsequent TMS sessions, each on a di�erent

day. At each TMS session, an experimental condition was applied:

stimulation of one of two spatial reasoning-associated regions or

stimulation of an active control (leg-associated) region. After treat-

ment, participants were tested on a set of stimuli. This design allows
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for a controlled investigation of a potential causal link between

spatial reasoning and program comprehension for programmers.

3.1 Participant Recruitment

We recruited 16 participants via a combination of email, course

forums, posters, and in-class presentations. Eligible subjects were

required to be 18 years or older, right-handed, native English speak-

ers, have normal to corrected vision, and had at least 1.5 years of

programming experience. Due to TMS safety policies, participants

were also required to pass a medical screening form. Participants

whosemedical history indicated any neurological risk factors, drugs

active in the central nervous system (e.g., antipsychotics, antide-

pressants, or recreational stimulants), or poor levels of sleep were

excluded from the study [79, 97]. We note that the risks associated

with TMS are minimal, with only one known case of a seizure [79].

Because individual humans vary slightly in brain anatomy [3],

we scanned each individual to produce a personalized localization.

We collected 23 brain scans, of which 16 are part of our �nal analysis

(others dropped out or failed later safety screenings). Additionally,

data from one participant was removed from the �nal analyses due

to inconsistencies and outlier data points (i.e., response times more

than 2 standard deviations away from the mean). Overall, our �nal

analysis considered 16 participants: 8 male and 8 female.

Background and demographic information were collected from

14 out of 16 participants. 6 of our participants reported being un-

dergraduate students, 4 as graduate computer science students, 2 as

software engineers, 1 as a non-computing student, and 1 as a non-

computing-related professional. All subjects were also screened for

basic programming knowledge of C++. Participants who completed

the study in full, which consisted of a localizing anatomical scan

and three subsequent TMS sessions, received $125.

3.2 Stimuli and Tasks

After each TMS treatment, participants were shown a varied set

of 61 stimuli from three tasks: Code Comprehension, Data Struc-

ture Manipulation, and Mental Rotation. In total, participants were

presented 183 stimuli over three treatment sessions. We selected

stimuli that were short and concise to �t well within the 60-minute

e�ect window of the TMS treatment (see Section 3.3.1). Data struc-

ture and mental rotation stimuli were acquired from previously-

published studies that examined spatial visualization and program-

ming [33, 48] and thus relate to our research questions. Code com-

prehension stimuli were taken from previous quizzes and exams

administered in a data structures and algorithms course at a large

public university in the US. Responses to each stimulus were given

by selecting one of two answer choices via the ‘�’ or ‘�’ keys on a

standard laptop keyboard. Stimuli were administered via the pop-

ular PyschoPy (version 2022.2.5) package. Individual tasks took

15–60s to complete, with 35 minutes to complete all 61 stimuli. We

now describe the stimuli in further detail.

3.2.1 Data Structure Manipulation Task. We obtained a total of

89 validated data structure task stimuli from a prior publication

reporting a neural correlation with software engineering tasks [48].

Stimuli cover arrays, linked lists, and trees. Each stimulus included

a starting data structure, an operation to perform, and two answer

choices (Figure 2a). Answers were either numerical values to de-

scribe the outcome of an operation or candidate data structures

resulting from an operation. The tree tasks include binary search

tree (BST) rotation, insertion, and traversal operations.

3.2.2 Mental Rotation Task. We use both the Huang et al. [48]

and Endres et al. [33] spatial skills stimuli. These include Men-

tal Rotation Stimulus Library questions established by Peters and

Battista [71] with varying rotational angle di�culty as well as

the Revised Purdue Spatial Visualization Test (PSVT:R II) [105].

PSVT:R II is a standard assessment of di�erent facets of spatial

ability. Mental rotation tasks asked participants to compare two 3D

objects rotated about an axis (Figure 2b). Participants selected the

object that matched the starter object, accounting for rotation. Our

stimuli include 56 distinct mental rotation tasks.

3.2.3 Code Comprehension Task. Code comprehension tasks were

acquired from exams and quizzes for a data structures and algo-

rithms course at the University of Michigan, a large public univer-

sity. All tasks have previously been used to assess thousands of

undergraduate students on their knowledge of data structures. For

each stimulus, participants were asked to trace through snippets of

C++ code and select one of two answer choices (Figure 2c). Tasks

included deducing the values printed or returned by a function, and

analyzing the time and memory complexity of the code. A total of

38 distinct code comprehension stimuli were included in our study.

3.3 TMS Treatment

We summarize our experimental design decisions at a high level.

We claim no novelty in the mechanics of TMS application — indeed,

we intentionally use a high-quality but “o�-the-shelf” TMS protocol

(see Figure 3) for this application in software engineering. In brief:

(1) “How do we apply TMS at all?” We use a best-practice proto-

col and o�-the-shelf hardware and software (Section 3.3.1).

(2) “How much TMS do we apply?” Following best practices, we

�nd a per-participant stimulation thresholds (Section 3.3.2).

(3) “Where do we apply TMS?” Following best practices, we

measure each participant’s individual brain anatomy and tar-

get brain regions implicated in previous correlative studies

(Sections 3.3.3 and 3.3.4).

(4) “How do we minimize bias?” We use a best-practice active

control in which an unrelated brain region is stimulated

(in a process that still feels like other TMS treatment, Sec-

tion 3.3.3). We randomize treatment conditions and stimuli

and blind conditions when possible (Section 3.3.5).

Knowledge of TMS details (e.g., “theta-burst stimulation”) is not

necessary to understand our results or their import. TMS can be

viewed as an e�ective“black box” that temporarily impairs brain

regions (see Section 2); the remainder of this section provides details

relevant for replication and justi�cation of best-practice decisions.

3.3.1 Stimulation Protocol. We applied a continuous theta-burst

stimulation (cTBS) protocol consisting of 3 pulses of stimulation

at 50 Hz, repeated every 200 ms, for a total of 600 pulses in 40

seconds. The method is an accepted form of stimulation in various

psychology and medicine research papers studying TMS e�ects [49,

93]. This method is e�ective in providing long-lasting e�ects of

approximately 60 minutes [49]. This is essential for our experiment,
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(a) Data structure manipulation stimulus (b) Mental rotation stimulus (c) Code comprehension stimulus

Figure 2: Example stimuli. Data structures also include linked lists and trees, code also include Big-O complexity.

Figure 3: Transcranial magnetic stimulation treatment setup.

The researcher (standing right) uses the per-participant localization

(top screen) and hand-held magnetic coil (center right) on the scalp

of the participant (seated center) to induce current in a brain region.

since e�ects should last long enough to complete the 35-minute

task block presented after TMS treatment, but short enough to limit

e�ects post-study to mitigate safety concerns. The time to complete

this protocol is drastically smaller than that of other stimulation

protocols (cf. “repetitive TMS” [12]), facilitating recruitment.

We used a well-established stimulation procedure to maximize

accuracy and time [49]. cTBS was delivered over the scalp through

a MagPro X100 magnetic stimulator and a 90 mm �gure-8 coil (MC-

B70, MagVenture Inc.). The cTBS protocol was tolerated well by all

subjects with no negative side e�ects reported.

3.3.2 Thresholding. Because each human is slightly di�erent, we

use a well-established protocol to determine an appropriate stimu-

lation intensity for each participant. We �rst �nd the participant’s

individualized active motor threshold (AMT) for the �rst dorsal

interosseous muscle (FDI) of the right hand as they contract the FDI

[74, 80]. This common method involves stimulating the primary

motor cortex on the left hemisphere at various levels with the aim

of eliciting a motor evoked potential (MEP) of g 50 `V peak-to-peak

on �ve out of ten trials while the participant is subjectively contract-

ing the FDI muscle at 20% of maximum. A stimulation threshold that

meets such requirements is known as the AMT and allows us to ef-

fectively stimulate each participant safely [74, 80]. In most subjects,

the lowest stimulation threshold can be found in this manner [80].

To ensure accurate recording of MEPs and AMT, the participant

is adjusted with disposable self-adhesive electromyograph (EMG)

on their right hand. EMG activity was ampli�ed (G1000) with a

BioAmp (AD Instruments, USA) using a Powerlab 4/35 system and

digitized (10 kHz) and recorded using “Brainsight TMS” neuronavi-

gation software (Rogue Research, Montréal, Canada). Physiological

responses were visually monitored because twitches near or around

the FDI of the right hand can indicate if stimulation is occurring

at the correct positioning [79]. Once AMT was determined for the

participant, cTBS stimulations were applied at 80% AMT to comply

with commonly-accepted safety standards [79, 97].

3.3.3 Treatment and Control Conditions. Participants were stim-

ulated in multiple brain regions to assess the causal relationship

between neural activity and programming. In particular, we stim-

ulated the primary motor cortex (M1) (reported as correlated with

code understanding [86, Sec. 5.1], data structures [48, Sec. V.B], and

code complexity [70, Sec. III.B]) and the supplementary motor cortex

(SMA) (reported as correlated with code writing [56, Sec. 5.2]). The

left primary motor cortex was chosen as the motor sub-area for

stimulation since all participants were required to be right-handed.

To ensure that any changes observed in the participant are

caused by the stimulation, as opposed to some other general fac-

tor (e.g., arousal, attention, altering response to the TMS sounds),

we apply an active control condition in which the cranial vertex (a

leg-associated brain region) is stimulated. The vertex region is a

commonly-used control in TMS studies with cTBS protocols [28, 60].

Introducing an active control is shown to provide the same sen-

sation of TMS stimulation without a�ecting the brain areas of

interest [51, 65, 78, 89]. An active control thus further mitigates

participant response bias [25, 51]. In total, participants were stimu-

lated in three di�erent brain regions, one on each of three di�erent

TMS sessions in randomized order.

3.3.4 Stimulation Localization. Every brain is slightly di�erent [3],

so we collected individual 3D brain scans to accurately target stim-

ulation on each participant. While some studies report localizing

brain anatomy by sight or by feel, we used an fMRI to collect high-

resolution imaging following best TMS localization practices [51].
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All imaging procedures were conducted on a 3T General Electric

MR750 with a 32-channel head coil at the University of Michi-

gan Functional MRI Laboratory. Participants attended a single

45-minute scanning session for brain region localization. High-

resolution anatomical images were acquired with a )1-weighted

spoiled gradient recall (SPGR) sequence ()' = 2300.80 ms, )� = 24

ms,) � = 975ms, �� = 8◦: 208 slices, 1 mm thickness). We obtained

estimates of the static magnetic �eld using spin-echo �eldmap se-

quences ()' = 7400 ms, )� = 80 ms; 2.4 mm slice thickness).

Subjects’ heads were reconstructed in 3D using the Brainsight

TMS neuronavigation software from their )1 anatomical scans and

the locations of the left primary motor cortex (M1), SMA, and

cranial vertex were determined for stimulation. The M1 region was

identi�ed using axial scans by locating the “hand knob” and hook

in MRI images [9, 23, 97]. The SMA region was located by selecting

the voxel in individual anatomical scans best corresponding to

the Brodmann area de�nition for pre-SMA and SMA (Talairach

coordinates G = −28, ~ = 0, I = 48) [57, 58] (cf. [67]). The cranial

vertex control region was located by selecting the intersection of an

abscissa between the nasion and the inion, and an abscissa between

the left and right tragus on individual structural brain scans [51, 72].

Localization methods used were overseen by two independent TMS

experts (not authors on this work), adding con�dence.

Localized regions were marked for stimulation as targets via

Brainsight’s frameless stereotaxy system which uses an infrared

camera for monitoring head locations of the participant by tracking

re�exive markers attached to the head of the participant [91, Sec. 2].

Head locations are then related to the structural MRI brain data of

the participant, guiding precise positioning of the magnetic coil.

3.3.5 Minimizing Bias. In addition to our use of an active control

(see Section 3.3.3), we took additional steps to reduce bias. First,

participants were not informed of which brain region was being

stimulated at the time of the session. Second, participants were not

given information on the expected e�ects [25]. This was single-

blind, not double-blind, since the researcher manually targets the

TMS coil at the brain region and thus knows the treatment con-

dition. Third, however, after each TMS stimulation was applied,

participants were presented with randomized task stimuli on an

automated, online platform which required no interaction with

the researchers. A �nal post-test survey was administered on a

printed page. We believe that these (non-)interaction procedures

help minimize threats associated with participant response bias.

4 ANALYSIS METHODOLOGY

We analyze our results via statistical assessments and modeling.

Critically, unlike fMRI-based software engineering papers (which

must use nuanced methods to account for large numbers of noisy

voxels, etc., when analyzing brain scans, e.g., [39, Sec. IV]), our

primary analyses are of the broad form “did the participants in the

treatment condition answer the test questions better (or faster) than

those in the control condition?”. While some modeling sophistica-

tion is required (e.g., to account for heterogeneity, see Section 4.2),

we never analyze brain scan data.

However, to form robust experimental conclusions, especially

involving potential “negative” results, we must minimize the poten-

tial for bias, including researcher bias during analysis. In addition to

approaches taken in our experimental protocol (e.g., randomization,

single-blind, etc., see Section 3) we also follow two practices in our

analysis: pre-registering our hypotheses and partial blind analysis.

4.1 Pre-Registration and Bias

Pre-registration is a scienti�c process in which the “research ra-

tionale, hypotheses, design and analytic strategy” are submitted

before beginning the study [44]. This helps mitigate biases associ-

ated with researchers choosing which results to present post hoc:

“pre-registration can prevent or suppress HARKing, p-hacking, and

cherry picking since hypotheses and analytical methods have al-

ready been declared before experiments are performed” [104]. Sim-

ilarly, following a discipline of pre-registration may mean that “re-

searchers will not be motivated to engage in practices that increase

the likelihood of making a type I error” [44]. While not as common

in software engineering (but see the “Registered Reports” track of

Mining Software Repositories [85], for example), pre-registration

is increasingly adopted by journals and researchers, especially in

�elds such as psychology and social science (e.g., [90]).

Our hypotheses, such as “TMS stimulation in the SMA or motor

cortex will signi�cantly disrupt accuracy and or reaction times

on both mental rotation and programming tasks compared to an

active control condition (TMS stimulation in the vertex)”, were pre-

registered with the Open Science Framework (https://osf.io/m4p6e)

along with our data collection strategy and statistical analysis meth-

ods. This includes our criteria for excluding data and inferring

signi�cant correlations.

In addition, our �nal analysis was conducted blind: labels rep-

resenting the treatments (vertex, SMA and M1) were randomly

coded as A, B, and C, before the analysis strategy was set. This helps

mitigate researcher bias in the choice of analysis tools or methods.

Finally, the Benjamini-Hochberg (BH) adjustment was used to

correct for multiple comparisons when necessary in evaluating ?-

values [7]. Prior work has shown the choice of statistical software

is important [31]: our analysis primarily used the R package lme4

and the Python package scikit-learn.

4.2 Multi-level Regression Analysis

Our experimental design produces item-level assessment data, where

each response to a question contributes an observation to the

dataset. We broadly follow the framework of Item Response Theory

(IRT), a branch of psychometrics which is concerned with the anal-

ysis of this type of data [4, 103]. Speci�cally, we employ multi-level

regression models to examine relationships between a response

variable, stimulated brain region, and control variables. We lin-

early model response time and self-reported perceived di�culty,

and logistically model accuracy. This is collectively referred to as

multi-level regression analysis, or mixed-e�ects modeling.

We claim no novelty in statistics, and focus our discussion on

why this analysis appropriately incorporates important aspects of

our data and research hypotheses. For general information about

our methods, we refer the reader to [5] and [36, Ch. 8].

4.2.1 Suitability of Multi-level Regression. Multi-level regression

analysis is well-suited to handling heterogeneity between groups of

observations, such as arise from repeated measures [42]. In our ex-

periment, each participant response (to 150–183 stimuli) is a distinct
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data item; these may be correlated due to an underlying person-

dependent “skill”.We also have repeatedmeasures for each stimulus,

as multiple participants answer every question; such observations

may be correlated due to variation in question di�culty. We can

also posit heterogeneity between content domains (e.g., code com-

prehension vs. data structures). Such considerations are common in

the analysis of item-level assessment data [38, 64]. Multi-level mod-

els also perform well with unbalanced group sizes. Our experiment

has modest imbalance (e.g., 843 observations of SMA stimulation

vs. 939 of M1). Moreover, not all questions have responses from all

participants (e.g., from drop-out).

Multi-level regression analysis allows us to test hypotheses about

both systematic and heterogeneous TMS e�ects, as discussed below.

4.2.2 Systematic and Heterogeneous E�ects. Amixed-e�ects model

can include independent variables whose e�ects are systematic

(�xed e�ects), heterogeneous (random e�ects), or both. Interactions

of �xed e�ects further permit modeling e�ects that are systematic

within speci�c groups of observations. This is relevant because

we hypothesize a systematic TMS treatment e�ect within each

programming task (e.g., data structures vs. code comprehension).

Random e�ects can pertain to multiple levels of grouping in

the data. For example, they can model heterogeneity between peo-

ple, between person-domains, or both. This is relevant because

we hypothesize a heterogeneous TMS treatment e�ect that varies

between people, as has been found in TMS studies of other disci-

plines [10, 17, 46, 54, 73, 74, 80, 81, 95]. That is, some people may

improve performance under TMS while others reduce performance.

We are interested in the TMS e�ect distribution over the popu-

lation represented by our study subjects. This is mirrored in our

experiment design, which features person-speci�c localization (Sec-

tion 3.3.4) and person-speci�c TMS intensity thresholding (Sec-

tion 3.3.2). Mixed-e�ects models can express our hypothesized

person-dependent TMS e�ect using a random e�ect that describes

interactions (combinations) of TMS conditions and participants.

4.2.3 Model Specification, Parameter Estimation, and Inference. The

dependent variables we consider are per-question accuracy, per-

question response time, and perceived di�culty. We �rst consider

plausible e�ect structures for the available independent variables,

based on existing literature and our experimental design [64]. Ex-

amples are given in Section 4.2.2 (see replication package for full

list). We apply logarithmic transformation to response times to

address skew (discussed in Sections 5.1 and 5.3). All models are �t

by maximum likelihood estimation (MLE) to the programming and

mental rotation data separately. To �nd the best-�tting candidate

model for each dependent variable, we optimize Akaike Information

Criterion (AIC), a widely-used model selection metric [2, 14].

We are interested in the TMS treatment condition (i.e., which

brain region was stimulated), which may exhibit a �xed or a random

e�ect. If the best-�tting model has a �xed (systematic) TMS e�ect,

we explicitly verify statistical signi�cance via a likelihood ratio “om-

nibus” test relative to a model without the TMS e�ect [36, Appendix

A.2]. We then pinpoint the source using post-hoc pairwise contrasts,

with Benjamini-Hochberg adjustment for the 3 comparisons. Al-

ternatively, if the best-�tting model has a random (heterogeneous)

TMS e�ect, we explicitly verify statistical signi�cance using pro�le

likelihood analysis [5] and parametric bootstrap methods [24] to

�nd the 95% con�dence bounds of the statistic.

4.3 Replication

Our replication package contains raw data for de-identi�ed partic-

ipants as well as relevant analysis information, including scripts,

data management, and statistical assumption checking, and is pub-

licly available at https://github.com/hammad-a/ICSE24_TMS.

5 RESULTS

With behavioral and survey data, we ask:

RQ1: Can we replicate prior �ndings that neurostimulation of

the SMA reduces mental rotation completion times?

RQ2: Is there a direct causal relationship between activity in the

SMA (or M1) brain region alone and performance?

RQ3: Does neurostimulation of the SMA or M1 brain regions

a�ect objective computing performance outcomes?

RQ4: Does neurostimulation in the SMA or M1 brain region

a�ect self-perceived problem di�culty?

5.1 RQ1: TMS and Mental Rotation

Prior psychology studies using TMS found a causal link between

the SMA and mental rotation, but no such link for the M1 [18].

To gain con�dence in the accuracy of our results regarding the

SMA, M1, and computing, we attempt to replicate this causal link

between the SMA and mental rotation.

We �nd that TMS stimulation of the SMA impairs response time

for spatial reasoning stimuli, compared to TMS of the vertex region

(our active control condition). With ? f 0.02, TMS stimulation of

the SMA results in an increase of 0.143 log-seconds in expected

per-question log-transformed response time1 (a 15.3% increase in

raw response time, or 1.5 s slower on our median response time of

9.82 s) relative to stimulation of the vertex region.

5.2 RQ2: SMA, M1 and Computing

The supplementary motor area (SMA, Broadmann area #6) is a part

of the motor cortex that coordinates complex and internally-guided

motor actions for extremities. The primary motor cortex (M1, Broad-

mann area #4) is in the anterior bank of the precentral sulcus and is

involved in the execution of voluntary, external body movements

(such as contracting skeletal muscles).

Overall, we �nd no evidence of a causal relationship between ac-

tivity in the supplementary motor area and computing outcomes. In

particular, we �nd no question type (data structure, mental rotation,

or code comprehension) for which accuracy in the SMA treatment

condition and accuracy in the control condition are statistically

di�erent (? g 0.81). Similarly, there is no question type for which

response times for the SMA treatment condition and time taken in

the control condition are statistically di�erent (? g 0.22).

We also �nd no evidence of a causal relationship between activ-

ity in the primary motor area and computing outcomes for any

question type (? g 0.50 for accuracy, ? g 0.73 for time taken).

Quite surprisingly, our results do not agree with multiple

previously-established correlations. For instance, for the SMA

1We log-transform the dependent variable to address right skew in raw response times
(skewness 3.18 → 0.35) and residuals of the optimal-AIC �tted model (2.93 → 0.59).
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region, Siegmund et al. found a correlation between brain activity

and code understanding [86, Sec. 5.1], Huang et al. found a correla-

tion between activity and data structure manipulation [48, Sec. V.B],

and, most recently, Peitek et al. found a correlation between neural

activity and comprehension of code with higher complexity met-

rics [70, Sec. III.B]. Likewise, for the M1 region, Krueger et al. found

a correlation between it and code writing (as opposed to prose

writing) [56, Sec. 5.2]. The lack of evidence of a causal relationship

between single-region brain activity and computing outcomes calls

into question the research community’s understanding of cognition

for software engineering tasks. Simply disrupting activity in one

region does not uniformly result in lower outcomes. Our results

suggest that interpreting cognition for CS is complex: multi-

ple brain regions could be causally responsible for outcomes for

programming tasks (cf. [53]).

Our null results further argue for nuance in pedagogical

interventions based on cognition. Indeed, a recent investiga-

tion by Endres et al. [33] concluded that student training based on

spatial visualization produced worse results than technical reading,

a result not in line with prior correlative studies (e.g., [48]). The

lack of a causal relationship between brain regions associated with

spatial reasoning and computing outcomes helps further explain

these recent results, and cautions against misdirected software engi-

neering research and pedagogical interventions that may otherwise

be undertaken if correlation and causation are confused.

We �t amulti-level linearmodel tomental rotation responses (see

Section 4.2, details in replication package). Critically, our optimal-

AIC model contains the TMS condition as a �xed e�ect. We cal-

culate post-hoc pairwise contrasts between TMS conditions (with

Benjamini-Hochberg adjustment), to obtain the signi�cance result

(? f 0.02). This result generalizes over both types of mental rota-

tion stimuli from prior work: we �nd no signi�cant di�erence in

the impact by stimulus source (see Section 3.2.2).

Of note, we also �nd no signi�cant di�erence in response times

between TMS stimulation of the M1 and control (? = 0.18). Our

results thus replicate prior �ndings that TMS of the SMA impacts

mental rotation response times, but that TMS of the M1 does not

have a signi�cant e�ect [18]. Our replication results give con�-

dence that we have applied TMS correctly.

5.3 RQ3: TMS and Computing Outcomes

While our analyses for RQ2 �nd no evidence of a monotonic causal

relationship (e.g., “stimulating the SMA alone always reduces per-

formance on data structure questions”), multi-level regression anal-

ysis �nds that TMS stimulation does have a statistically signi�cant

non-systematic person-dependent e�ect on response time. Per Section

4.2, we produce a best-�t model of response times.2 Table 1 shows

point estimates and 95% con�dence intervals.

The con�dence interval for the standard deviation of the “Par-

ticipant by Brain Region Stimulated” random e�ect excludes zero,

indicating a signi�cant e�ect. The estimated proportion of variance

explained (PVE, equal to the variance of estimate interest divided

2As with RQ1, we log-transform to reduce right skew in raw times (skewness 2.21 →
0.17) and model residuals (2.26 → 0.11).

Table 1: Mixed-e�ects model parameter estimates predicting

log-transformed response times. The “C.I.” columns give the

con�dence interval for the standard deviation estimate of the corre-

sponding random e�ect. Critically, the “Participant by Brain Region”

interval (bolded) excludes 0, indicating a statistically signi�cant

person-speci�c e�ect involving TMS neurostimulation.

Std. 2.5% 97.5%

Random E�ect Vari. Dev. C.I. C.I.

Stimulus .204 .452 .398 .517

Participant by Question Type .019 .137 .100 .190

Participant by Brain Region .010 .099 .066 .143

Participant .037 .193 .118 .308

Residual .175 .418 .404 .433

by the sum of all variances) of this e�ect is 2.2%. The 95% con�-

dence interval for that �gure is (0.7%, 4.0%), as calculated using the

methods in Section 4.2 (see replication package for derivation).

This is evidence for a person-dependent TMS e�ect that is highly

heterogeneous (see Section 4.2). Any non-zero e�ect is important

for a new intervention, and we place our result in context in Sec-

tion 6. This result is particularly exciting, since while TMS has

successfully been used to improve performance in other domains

(see Section 2.3), ours is the �rst study providing evidence that

TMS can alter outcomes for programming tasks. Our results

argue for further exploration of using TMS (e.g., with protocol that

strictly excites brain activity) to improve computing outcomes.

We also note that there is no evidence for a systematic e�ect

from certain TMS conditions that improves or impairs programming

ability relative to other TMS conditions. That is, while the e�ects

of SMA and M1 stimulation on programming question response

times are di�erent (? = 0.028, see replication package for details),

one is not overall better or worse at improving outcomes. This is

expected from our protocol (which focused on demonstrating the

possibility of any e�ect, not on positive-only e�ects).

We can interpret our result using a “di�erence-in-di�erences”

approach from generalization theory [77]. Consider an arbitrary

member of the population placed in two scenarios. In each scenario,

they are presented with the same set of questions from our stimuli.

We consider the subject’s average response time in each scenario,

with the set of questions large enough that residual variance is neg-

ligible. If the subject undergoes TMS stimulation to the same brain

region in both scenarios, then the di�erence in average response

times is zero (with probability 1). By contrast, if the brain regions

stimulated di�er, the “di�erence in di�erences” of log-transformed

response times is 0.099, equivalent to a ratio of 1.10× between the

two di�erences in raw response times.

5.4 RQ4: TMS and Self Perception

Following each TMS treatment, participants reported their subjec-

tive perception of the task di�culty, both in isolation and relative

to the last session (if applicable), on a Likert scale. Overall, we �nd

no statistically signi�cant evidence of di�erentiation in the subjec-

tive perception of participants across all treatments and all question

types (? g 0.21).
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While we observed no di�erences in participants’ subjective

perception of task di�culty following treatments, we note that par-

ticipants self-reports are generally not reliable [25], and TMS may

still be in�uencing task di�culty without participant conscious per-

ception. Conversely, the lack of perceived di�erences may remove

a potential barrier to participant retention in future investigations

of TMS-based treatments for software engineering (e.g., if TMS

were to make tasks seem more di�cult or frustrating, participants

drop-out might be impacted, cf. [19, 33], etc.).

6 DISCUSSION

TMS has been shown to signi�cantly improve or impair results in

many other �elds (see Section 2.3), and our results extend this to

software engineering. Although the e�ect size noted in Section 5.3

shows that the treatment condition (i.e., the region of the brain that

is stimulated by TMS) accounts for 2.2% of the variance we see in

response times this is a more substantial report than it may �rst ap-

pear. Many papers on CS interventions do not include e�ect size in

their results at all, or omit comparisons to a non-intervention base-

line: in a 2018 review of 129 papers on pedagogical interventions

in computer science, none included an e�ect size [94].

Some published results of interventions in computer science

that do include such information may report similar variance in

outcomes to our results. For example, one longitudinal study by

Cooper et al. [19] considered a two-week, full-day workshop com-

pleted by high school students, of which 7.5 hours were devoted

to spatial skills for a treatment group. They report that “the treat-

ment group improved by an average score of 1.06 [out of 16 APCS

questions], and that this was signi�cant at the ? = 0.07 level” [19,

Sec. 4.2]. Although our approach uses a very di�erent methodology

and the results are not directly comparable, we note that that initial

study provided the basis for subsequent studies of hundreds of

students [8] and is associated with a 1-credit spatial skills course

at a large university [92] where it improved retention in the major

and grade outcomes for other classes. A small e�ect in an initial

study may lead to a useful intervention later.

Additionally, since our main goal was to determine if neurostim-

ulation could impact computing outcomes, we selected a protocol

that may help or hinder ability. However, other TMS protocols exist

that solely excite regions of the brain and/or otherwise observe

predominantly positive results (e.g., [43, 46, 96], see Section 2.3). As

a concrete example, an intermittent protocol (rather than the con-

tinuous protocol used for this experiment) involving applying theta

burst TMS for 2s every 10s or a repetitive TMS (rTMS) treatment

may result in heightened neural signal transmission [55]. Future

work should investigate whether such heightened transmission

translates to improved outcomes on computing tasks.

In addition to varying the protocol, future studies would bene�t

from varying the target brain area. While this paper investigated

spatial skills, other studies implicate that brain regions associated

with working memory (e.g., the dorsolateral prefrontal cortex) or

language skills (e.g., Wernicke’s or Broca’s areas) may be correlated

with other programming activities [33, 34]. Having demonstrated

the applicability of TMS neurostimulation to computing outcomes,

we encourage investigating positive impacts on other tasks.

7 THREATS TO VALIDITY

Since our presentation considers threats to validity throughout

(e.g., from experimental design and execution to analysis), in this

section we brie�y summarize internal (e.g., did we apply TMS cor-

rectly?) and external (e.g., do our participants generalize to other

populations?) threats, referencing earlier mitigation details.

Stimulation procedures.We adopt a well-established TMS pro-

tocol, supervised and approved by an outside TMS expert (Section

3.3.1). We individualized the treatment intensity (Section 3.3.2).

Brain region localization.Weuse fMRI brain scans for accurate

brain region localization (Section 3.3.4).

Participant bias. We use an active stimulation control and did

not convey expected e�ects (Section 3.3.3).

Tasks. We use stimuli validated in prior work and covering

multiple distinct domains (Section 3.2). We acknowledge that the

tasks considered may not generalize to other activities (e.g., pair

programming) and defer such exploration to future research.

Population. Our participants (largely students) may not gener-

alize to other populations (e.g., professional developers). We par-

tially mitigate this by observing each subject longer, strengthening

within-one-subject analyses (Section 3.3.1).

Training. We observe a statistically signi�cant (? < 0.01) ques-

tion type-dependent training/learning e�ect, which we account for

in our data analysis (Section 4.2.3).

Subject variability.We use multi-level regression analysis, a

well-established method to e�ectively account for between-subject

heterogeneity (Section 4.2).

Researcher bias. We pre-registered hypotheses and methodol-

ogy, conducted our preliminary analysis with anonymized labels,

and corrected for multiple comparisons (Section 4.1).

Replication. Finally, our explicit replication of a previously-

published [18] non-computing TMS result (the impact of SMA

stimulation on mental rotation, Section 5.1) gives strong con�dence

in aspects of interval validity (i.e., applying TMS correctly).

8 RELATEDWORK

In this section, we discuss other interventions impacting program-

ming outcomes, contrasting them with TMS.

Neurostimulation represents a di�erent, possibly orthogonal,

mechanism for improving software developer abilities compared to

standard approaches such as pedagogical structures (e.g., transfer

training, tools, gami�ed or �ipped classrooms), environmental fac-

tors and development methodologies at software jobs (e.g., work

from home, Agile/Scrum), and the use of substances in software

workplaces (e.g., Adderall, cannabis).

Pedagogy. Dozens of studies have investigated the bene�ts of

the �ipped classroom model (in which instruction/learning is com-

pleted externally and discussion is done during traditional lecture

time to enforce concepts) in computer science pedagogy [41]. Simi-

larly, gami�ed learning (in which elements of games, such as leader-

boards or points, are used in class) has been studied to see how

extrinsic rewards can motivate engagement of students [50].

There has been preliminary success with pedagogical interven-

tions involving spatial reasoning and STEM outcomes [8, 20, 92].

Despite positive outcomes, pure spatial reasoning training in en-

gineering or computer science educations has not been widely
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adopted. We believe that a more rigorous understanding of why

spatial reasoning cross-training improves behavioral outcomes, and

its costs and bene�ts, would make it easier for institutions to adopt.

Work Structure. The structure of o�ces and work hierarchies

has been an ongoing and evolving topic broadly in the �eld of

computer science for many decades, especially with the express

goal of improving company or individual programmer productiv-

ity [30]. For example, since the COVID-19 pandemic, working from

home has become more relevant, and a survey of 3,634 software

developers and managers from Microsoft found that 68% perceived

they were just as, or more, productive working from home [40].

Similarly, pair programming, a key component associated with Ag-

ile development and some pedagogical methodologies, has been

linked to higher satisfaction and learning outcomes, fewer bugs,

and better communication between software engineers [6, 84, 101].

Medication. Many individuals program with the aid of psy-

choactive substances, citing enhanced abilities or the alleviation of

symptoms. For example, recent surveys and interviews of 801 and

26 professional programmers (respectively) in software workplaces

who use such substances found that many who use cannabis while

programming do so for enjoyment, but also to enhance creativity

or brainstorming, while many who use stimulant medications do so

for perceived enhancements for focus and speci�c focus-intensive

software tasks such as debugging [32, 66]. Although many sub-

stances may improve the abilities or health, administering them

at a company level may have serious legal or health impacts (e.g.,

Adderall usage among people not diagnosed with ADHD has been

linked to stress or the pressure to make tight deadlines [26]).

Intervention Summary. In contrast to such traditional inter-

ventions, TMS does not require the use of language, e�ort on the

part of either a teacher or a student, or much time to use. If TMS

is found to be e�ective in some capacity for computer science out-

comes, it could be used as a non-pedagogical intervention in tandem

with other instructional, structural, or medical interventions.

9 COSTS AND SUBJECTIVE EXPERIENCE

In this section, we outline the unique costs and considerations we

encountered during our TMS study, emphasizing the di�erences

from correlative studies that solely employ fMRI or fNIRS.

Recruiting. Unlike fMRI or fNIRS, TMS protocols may preclude

subjects with a history of seizures or anxiety-related disorders, as

well as those reporting a lack of sleep the prior night. However,

TMS does not su�er from fNIRS data quality issues from hair types

(cf. [48]). TMS causal studies require participants to attend multiple

sessions (treatment and control) on di�erent days. Subjectively, we

found the multi-session constraint to be challenging for recruiting.

Time. For both TMS (e.g., applied quickly in advance, lasting

up to an hour) and fMRI/fNIRS (e.g., typically measured over an

hour-long session) the e�ective interaction duration per session is

similar. Critically, however, TMS is not limited to 60-second stimuli

(unlike fMRI or fNIRS, which use the BOLD signal and are thus

limited by the hemodynamic response function [15]). We used short

stimuli here for comparison to previous work, but future studies

could use more complex programming tasks.

Cost. TMS and fNIRS o�er cost advantages over fMRI in terms

of both initial costs and operating costs. An institution with an

fMRI lab often charges per scan (e.g., $500 per hour [39]); a TMS or

fNIRS machine can typically be used for free if present.

Our base experiment cost was $2,200 ($125 per participant for

reimbursement, $200 for electrodes); we elected to use high-quality

fMRI localization (30 scan-minutes per participant, an additional

$4,000). Future work may investigate the necessity of fMRI-quality

localization for programming-related TMS treatments.

Training. Each research team member completed over 20 hours

of training before being authorized to operate the TMS machine.

IRB. An Institutional Review Board or Ethics Board handles

human study research at our institution. Depending on the review

board’s experience with neuroimaging or stimulation techniques,

getting approval for a study with fMRI or TMS can require a sub-

stantial amount of time and e�ort. For reference, this TMS study

involved a 24-page IRB application plus a 14-page consent form.

Using fMRI to localize brain regions required an additional 4-page

data protection and privacy plan (in the United States, brain scans

are HIPAA-protected). From our �rst submission to approval, the

IRB process took four months.

Lessons Learned. Subjectively, the most di�cult aspects of the

experiment were training and participant scheduling. Conducting

thresholding sessions under time constraints and manually tar-

geting the hand-held TMS magnetic coil required practice. Our

multi-visit protocol ampli�ed scheduling intersection challenges

between researcher, TMS equipment and subject availability.

10 CONCLUSION

To the best of our knowledge, this paper is the �rst exploration of

the causal relationship between software engineering and neural

activity via TranscranialMagnetic Stimulation (TMS), a noninvasive

technique well-established in the literature. Previous correlative

�ndings have revealed intriguing connections between speci�c

neural regions and programming tasks. These �ndings laid the

foundation for enhanced understandings of expertise, pedagogy,

and retraining. However, the absence of studies con�rming the

causal nature of these relationships has constrained their practical

applications and interpretations in the real world.

We address causality by applying TMS treatment to 16 partici-

pants, directly targeting two indicative brain regions (M1 and SMA)

known to exhibit correlative connections to programming tasks. We

compare stimulation e�ects to participant performance on comput-

ing tasks, including data structure manipulation, mental rotation,

and coding comprehension. We followed established, state-of-the-

art TMS practices that were overseen by independent TMS experts.

To mitigate bias, we used a special active control, pre-registered

our hypothesis, conducted aspects of the experiment and analysis

blinded, and correct for multiple comparisons.

We replicate prior psychology results that TMS impacts

mental rotation (Section 5.1, ? f 0.02) — supporting replication in

science and giving con�dence that we are applying TMS correctly.

We �nd no evidence of a simple causal relationship: disrupting

activity in M1 or SMA does not uniformly reduce outcomes on

computing tasks (Section 5.2, ? g 0.22) — results that do not agree

with multiple previously-established correlations [48, 56, 70, 86]

and suggest that interpreting cognition for CS is complex (cf. [53]).
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Most critically, we �nd that TMS has an e�ect on response

time for data structure and code comprehension tasks. TMS

accounts for 2.2% of the variance in observed outcomes, a statistically-

signi�cant e�ect (Section 5.3). This provides evidence that TMS

(neurostimulation) can alter outcomes for programming tasks.

Neurostimulation is a distinct approach from traditional pedagogy

(e.g., it does not require a shared language, or indeed any commu-

nication at all) and has produced positive outcomes in computing-

related areas (e.g., creativity, mathematics, etc., Section 2.3). Now

that TMS has been demonstrated to impact programming outcomes,

we look forward to future work investigating, and making real, the

potential bene�ts of neurostimulation for software engineering.
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