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Proving a 2009 conjecture of Itai Benjamini, we show:

Theorem. For any C there is an ε > 0 such that for any simple graph G on
V of size n, and X0, . . . an ordinary random walk on G,

P({X0, . . . ,XCn}= V )< e−εn.

A first ingredient in the proof of this is a similar statement for Markov chains
in which all transition probabilities are sufficiently small relative to C.

1. Introduction. We are motivated by a surprisingly basic question that we first heard
from Ori Gurel–Gurevich in 2010: is it true that for any fixed C and n-vertex simple graph
G, the probability that a random walk on G covers V (G) in Cn steps is exponentially small
in n? (Here and throughout we use Cn for what should really be dCne; some usage notes
are included at the end of this section.)

A positive answer was conjectured by Itai Benjamini in 2009 ([3]; see also [4]), and given
some support by a quite amazing argument of Benjamini, Gurel-Gurevich, and Morris [4],
showing that the answer is yes if we assume any fixed bound ∆ on the maximum degree of
G (with the constant in the exponent then depending on ∆ as well as C). That the answer is
yes for trees was shown by Yehudayoff [13], who also observed that when G is an expander,
a positive answer follows easily from the (less easy) large deviation bound of Gillman [8].

Here we answer the question:

THEOREM 1.1. For any C there is an ε > 0 such that for any simple graph G on V of
size n, and X0, . . . an ordinary random walk on G (with any rule for X0),

P({X0, . . . ,XCn}= V )< e−εn.

The machine underlying the proof of Theorem 1.1 is the following statement for general
Markov chains, which seems of independent interest. Here and in the corollary that follows,
(Xt) is a Markov chain on V (of size n) with transition probabilities ϕ(·, ·), and XI is the set
{Xt : t ∈ I} (for a set of indices I).

THEOREM 1.2. For each C and β > 0 there is a δ = δ(C,β) > 0 such that if W ⊆ V ,
|W |> βn, M ≤C|W |, and

(1) max{ϕ(v,w) : v ∈ V, v 6=w ∈W}< δ,

then

P(X[M ] ⊇W ) = exp[−ΩC,β |W |].

(For whatever it’s worth, the δ we use is specified in (15).) In particular (roughly) the con-
clusion of Theorem 1.1 holds for any Markov chain in which the transition probabilities are
small enough relative to C . This includes Theorem 1.1 itself when the minimum degree of G
is sufficiently large:
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COROLLARY 1.3. For each C there are ε > 0 and d such that for any RW (Xt) on a
graph of minimum degree at least d,

P(X[Cn] = V )< e−εn.

This again seems interesting in its own right; e.g., we don’t know another way to prove
Theorem 1.1 even for the Hamming Cube ({0,1}m with the natural adjacencies), the scene
of some of our early skirmishes with the present problem.

One might hope that Theorem 1.1 could now be handled by some combination of Corol-
lary 1.3 and the ideas of [4], but this seems to be a dead end. (We did at least manage to
“borrow” [4]’s title. The only antecedent we know of for what follows is [1, Lemma 2],
whose sibling, the present Lemma 3.1, was our starting point. In particular, beautiful work of
[7, 6, 14], showing (see [14, Theorem 1.1]) that cover time is “exponentially concentrated”
in a different sense, seems unconnected to what we do here.)

The actual proof of Theorem 1.1 is based especially on the following easy consequence of
Theorem 1.2, which again applies to general Markov chains (and in which ϕW refers to the
“induced” chain on W ; see “Usage” below).

COROLLARY 1.4. With |V | = n, suppose the partition V 0 ∪ ∪ki=1Vi of V , and Ui ⊆ Vi
(i ∈ [k]), satisfy |Vi|> ϑn; |V 0|< (1− γ1)n; |Ui|> γ2|Vi|; and, with δ = δ(C/(γ1γ2), γ2)
(from Theorem 1.2),

(2) max{ϕ
Vi

(v,w) : v ∈ Vi, v 6=w ∈ Ui}< δ.

Then

(3) (P(X[Cn] = V )≤) P(X[Cn] ⊇∪Vi) = exp[−Ω(n)],

where the implied constant depends on the constants C,γ1, γ2 and ϑ.

PROOF. Since | ∪ Vi| > γ1n, if X[Cn] ⊇ ∪Vi then there is an i for which the first
(C/γ1)|Vi| steps of the induced chain on Vi cover Ui, a set of size at least γ2|Vi|. So Theo-
rem 1.2 bounds the l.h.s. of (3) by ke−Ω(n) = e−Ω(n).

In what follows γ1 and γ2 will be “true” constants, meaning one not depending on C ,
and ϑ will be a function of C; thus the implied constant in (3) depends only on C and we
have Theorem 1.1 whenever we can show the existence of the desired partition. Of course
not every Markov chain admits such a partition (or we would have the nonsensical claim that
Theorem 1.1 holds for general chains), but it seems possible that RW (again, on a simple G)
does.

We will find it convenient to set (for the rest of the paper)

γ1 = γ2 = 0.1 =: γ,

but stress that any slightly small “true” constant would do as well.

QUESTION 1.5. Is it true that for each C there is a ϑ for which, for any G, RW on G
admits a partition as in Corollary 1.4?
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(Of course for Theorem 1.1 it would be enough to have a positive answer with γ also a
function of C .)

In the event, we are only able to produce (more accurately, show existence of) such a parti-
tion under a pair of restrictions on G, but can also show that if either of these is violated then
Theorem 1.1 holds for other reasons. Failure of the first restriction, which forbids too many
large degrees, is handled by the next lemma, which may be thought of (not quite accurately
because of the difference in the degree bounds) as a substantial extension of Corollary 1.3.

LEMMA 1.6. For each D there is a ∆ such that if

(4) |{v : dG(v)>∆}|> γn,

then P(X[Dn] = V ) = exp[−Ω(n)].

We postpone specifying the second restriction, which will be easier to do in the context of
Section 5 (see Lemma 5.4 and (55)).

REMARK. Lemma 1.6 is the only place where we use simplicity ofG, the rest of what we
do being valid for general reversible chains. In that setting, Theorem 1.1 does not hold with-
out some restriction, but e.g., the argument of Section 5 goes through essentially unchanged
to show (with π denoting stationary distribution):

THEOREM 1.7. Let (Xt) be a reversible Markov chain on V , and suppose there exists
W ⊆ V with |W | ≥ αn and πv ≤Kπw ∀v,w ∈W . Then

P(X[Dn] = V ) = exp[−Ω(n)],

where the implied constant depends on (the constants) α, K , and D.

Before closing this discussion we mention an obvious challenge:

QUESTION 1.8. Can one say anything reasonable about the value of ε in Theorem 1.1?

Whatever value can be extracted from our argument will be quite bad (We suspect it’s not as
bad as what could be gotten from [4], but are not volunteering to make this comparison.) As
far as we know, it could be that, for slightly large C , complete graphs—for which P(cover)
is roughly exp[−e−Cn]—are more or less the worst case; but note that for C = 1 (e.g.), the
probability is larger for a path. At any rate, given how far we are from a decent value, there’s
clearly no point in trying to optimize anything, and we instead do what we can to keep things
reasonably simple.

OUTLINE. Following brief preliminaries in Section 2, Theorem 1.2 and Lemma 1.6 are
proved in Sections 3 and 4 (respectively), and the derivation of Theorem 1.1 via Corollary 1.4
is given in Section 5. To give some sense of Corollary 1.4, two “bonus” sections at the end of
the paper return to known cases of Theorem 1.1 for which our machinery operates relatively
simply: Section 6 treats expanders, and might be read as an interlude following Observa-
tion 5.1. Section 7, which reproves Yehudayoff’s result for trees, can be read at any point (in-
cluding this point). Finally, we have added an appendix treating a martingale concentration
statement related to Section 3 (see following (10)), which is not needed for present purposes
but might be of independent interest.
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USAGE. We consider Markov chains (Xt)t≥0 on default state space V of size n, as usual
using π for stationary distribution (which will always be unique). We use Pv and Ev for
probability and expectation given X0 = v. For B ⊆ V , the hitting time of B is TB = min{t :
Xt ∈ B} (with, of course, Tv = T{v}), and the positive hitting time is T+

B := min{t > 0 :
Xt ∈B} (= TB if X0 6∈B).

We use ϕ for transition probabilities (and, as usual, ϕt for t-step transition probabilities)
and ϕ

W
for transition probabilities in the induced chain on W ⊆ V ; that is, ϕW (u, v) =

Pu(XT+
W

= v). (This usage is not universal; e.g. [2] uses “chain watched on W ” here and
“induced chain” differently.)

Throughout G= (V,E) is a (finite, connected) simple graph, with (again) |V |= n. Usage
here is pretty standard: Nv for the neighborhood of (i.e. vertices adjacent to) v; dv—or, if
necessary, dG(v)—for |Nv| (the degree of v); and, for X ⊆ V , N(X) = ∪x∈XNx. We use
random walk (RW) on G for a Markov chain on V with ϕ(v,w) = 1{v∼w}/dv (with any
choice of X0), recalling that then πv = dv/(2|E|).

We use [n] for {1,2, . . . , n} and always assume n is large enough to support our arguments.
To avoid needless clutter, we allow a few irrelevant abuses such as (usually) pretending large
numbers are integers.

2. Preliminaries. We collect here only a few items that will be needed below (and that
most readers might profitably skip). For general background on both Markov chains and
martingales, see e.g. [10].

Recall that a Markov chain (with stationary distribution π) is reversible if, for any u, v ∈ V ,

πuϕ(u, v) = πvϕ(v,u);

equivalently: for any v0, . . . , vk ∈ V ,

(5) πv0ϕ(v0, v1)ϕ(v1, v2) · · ·ϕ(vk−1, vk) = πvkϕ(vk, vk−1)ϕ(vk−1, vk−2) · · ·ϕ(v1, v0).

(A reversible Markov chain is the same thing as RW on a weighted graph—-that is, with
weights w(·, ·) on edges and ϕ(v,w)∝ w(v,w)—but we won’t need this.)

The next two inequalities are for use in Section 5. The first bounds transition probabilities
in terms of return probabilities. The second—monotonicity of return probabilities—will be
used to deal with a tiny technical annoyance,

LEMMA 2.1. [2, Lemma 3.20] For any two states v and w of a reversible Markov chain
(and any s,t),

ϕt+s(v,w)

πw
≤
[
ϕ2t(v, v)

πv

ϕ2s(w,w)

πw

]1/2

.

LEMMA 2.2. [10, Proposition 10.25] For any state v of a reversible Markov chain (and
any t),

ϕ2t+2(v, v)≤ ϕ2t(v, v).

The following basic martingale facts will be used in the proof of Theorem 1.2 (in Sec-
tion 3). The first is a weak form of the Martingale Convergence Theorem; see e.g. [12, The-
orem 5.1] and [10, Proposition A.11(i)] (and e.g. [12] for definitions).

THEOREM 2.3. If Xs is a supermartingale with (for some L) |Xs| ≤ L for all s≥ 0, then
there is a random variable X such that Xs converges to X with probability one, and

(6) EXs ≤ EX ∀s.
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All limits in Section 3 are easily seen to exist everywhere, so for us the important part of
Theorem 2.3 is (6).

Lastly, we recall (a special case of) the “Hoeffding-Azuma” Inequality:

THEOREM 2.4. [10, Theorem A.10] If Xs is a martingale with |Xs+1 −Xs| ≤ L for all
s≥ 0, then

P(Xk −EXk > η)≤ e−η2/(2kL2).

3. Proof of Theorem 1.2. As mentioned above, our initial inspiration was Aldous’ paper
[1]. Our notation here is more or less his, and Lemma 3.1 was suggested by his Lemma 2.

The proof of Theorem 1.2, given at the end of this section, is a simple application of the
material we are about to develop. Until then we keep the discussion slightly more general—
if not as general as it might have been—to support a second application in the proof of
Lemma 1.6 in Section 4.

We consider some W ⊆ V and hope to show, under suitable assumptions, that

(7) P(X[M ] ⊇W )< e−Ω(n),

where the implied constant depends on C and β < |W |/n.
We will work with a parameter K , a (slightly large) function of C and β; but as the value

of K plays no role in the first half (or so) of this discussion, we leave it unspecified until—in
Lemma 3.2—it becomes relevant.

Given W ⊆ V , let m= |W | and

(8) λ= 1−max{ϕ(v,w) : v ∈ V, v 6=w ∈W}.

(Though we’ve kept track of λ here, in our applications it will be at least 1/2 and its precise
value will be unimportant.)

Let L= eK and define random variables

Hv(t) =

t∏
i=0

[1−ϕ(Xi, v)]

(so Hv(−1) = 1) and

rv = min{t :Hv(t)< λ/L}.

Write a∧ b for min(a, b) and parse a∧ b− 1 = (a∧ b)− 1. Define martingales

ξvs = 1{Tv>s∧rv}/Hv(s∧ rv − 1)

and

ξs = ξWs =
∑
w∈W

ξws .

We omit the (standard, easy) proof that they are martingales (see e.g. the proof of [1, Lemma
1] for essentially the same argument, or the proof in Lemma 3.1 that SIk is a supermartingale
for something more general).). We assume X0 6∈W (as we may since removing it changes
essentially nothing), so

EξM = ξ0 =m,

and observe that

(9) |ξs − ξs−1| ≤ L/λ2.
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[Because: with sums over v’s with Tv, rv > s − 1 (i.e. those that can contribute here), we
have

|ξs − ξs−1| = |
∑

(ξvs − ξvs−1)| ≤ max{L/λ,
∑
ξvs−1/(1−ϕ(Xs−1, v))− ξvs−1}

= max{L/λ,
∑ ϕ(Xs−1,v)ξvs−1

1−ϕ(Xs−1,v) } ≤ max{L/λ, (1/λ)
∑
ϕ(Xs−1, v)ξvs−1}

≤ max{L/λ, (L/λ2)
∑
ϕ(Xs−1, v)} ≤ L/λ2.

Here the second part of the max is an upper bound on
∑

(ξvs − ξvs−1) and the first bounds
ξvs−1 − ξvs when there is some (necessarily unique) v for which Tv = s.]

The Hoeffding-Azuma Inequality, Theorem 2.4, thus gives

(10) P(ξM <m/2) = e−Ω(m).

REMARK. Perhaps surprisingly, even ξ∞ and the remaining ξs’s are similarly concen-
trated. Since this seems interesting enough to record but isn’t needed for the rest of what we
do (and takes a little while to explain), we’ve added its proof as an appendix.

Let ξv∞ = lims→∞ ξ
v
s . Define events

(11) Qv = {ξv∞ > 0} (= {Tv > rv}) , Rv = {rv ≤M}, and Q∗v =Qv ∩Rv .

Set p= 1/L (= e−K ).
If we cover W in M steps, then ξM ≤ (L/λ)|{v ∈W :Q∗v holds}|; so if also ξM ≥m/2,

then

(12) |{v ∈W :Q∗v holds}| ≥ λmp/2.

So for (7) it is enough to show

(13) P((12)) = e−Ω(m).

For the situations we have in mind, this will follow easily from the next two lemmas.

LEMMA 3.1. For any I ⊆W ,

(P(∩v∈IQ∗v)≤) P(∩v∈IQv)≤ p|I|.

PROOF. Let Fk be the σ-field generated by (X0, . . . ,Xk) and consider the process

SIk = 1∩v∈I{Tv>k∧rv}
∏
v∈I

Hv(k ∧ rv − 1)−1.

We will show that SIk is a supermartingale. The Martingale Convergence Theorem (Theo-
rem 2.3) then says SIk → SI∞ (a.s.) and

(14) ESI∞ ≤ ESI0 = 1,

which, since

SI∞ = 1∩v∈IQv

∏
v∈I

Hv(rv − 1)−1,

gives the desired

P(∩v∈IQv) = E
[
SI∞

∏
v∈I

Hv(rv − 1)
]
≤ E[SI∞]

(
max
v∈I

Hv(rv − 1)
)|I|
≤ p|I|,
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where the second inequality follows from (14) and the definitions of Hv , rv , λ and p, accord-
ing to which Hv(rv − 1)≤ λ−1Hv(rv)≤ 1/L= p.

To see that SIk is a supermartingale (here just extending the proof of [1, Lemma 2]), it is
enough to show

E[SIk+1|Fk]≤ SIk on {Tv > k ∧ rv ∀v ∈ I}

(since outside this conditioning set, Sk+1 = Sk = 0). But here, with J = {v ∈ I : k < rv}, we
have

E(SIk+1|Fk) = P(∩v∈J{Tv > k+ 1}|Fk)
∏
v∈J

Hv(k)−1
∏
v∈I\J

Hv(rv − 1)−1

= (1−
∑
v∈J

ϕ(Xk, v))
∏
v∈J

Hv(k)−1
∏
v∈I\J

Hv(rv − 1)−1

≤
∏
v∈J

(1−ϕ(Xk, v))
∏
v∈J

Hv(k)−1
∏
v∈I\J

Hv(rv − 1)−1

=
∏
v∈J

Hv(k− 1)−1
∏
v∈I\J

Hv(rv − 1)−1 = SIk .

Recalling that p= e−K , we now set

(15) K = max{[20e(64 +C)]2, log(1/β)}, ε= λp/5, and δ = ε/K

The reasons for these choices will appear below (see (25)), and for now we just mention that
(i) the more important constraint in the definition of K is the first, and (ii) the main thing
to keep in mind here is that there is nothing preventing us from taking K as large, and δ as
small, as needed to make things work (cf. “Perspective” following (25)); in particular, the
only reason for the fussy specification of K is to make the role of this choice a little clearer
below.

REMARK. While we won’t do so here, we note that with a little more care we could
take K linear in C , e.g. replacing the first part of the max in (15) by 105C (and thinking of
C as possibly depending on n). We mention two reasons to be interested in this. First, our
eventual bound for Theorem 1.2 (see (27)) is roughly exp[−e−Kn], which if K = O(C) is
something like the truth, in that the value for G=Kn is about exp[−e−Cn]. Second, taking
K =O(C)—and now for simplicity sticking to Theorem 1.1—it is not hard to show that for
small enough transition probabilities, even covering in time much less than n logn is (very)
unlikely; precisely: for small enough ε > 0 there is c > 0 so that if all transition probabilities
are less than n−ε then P(X[cn logn] = V )< exp[−n−Ω(1)].

Define ϕδ(y, z) = 1{ϕ(y,z)≤δ}ϕ(y, z) and, for a multisubset Y of V ,

ϕδ(Y, z) =
∑
y∈Y

ϕδ(y, z).

(For Theorem 1.2 we could skip ϕδ and work with ϕ(Y, z), defined in the natural way, but
the present version will be needed in Section 4.)

For the next lemma we take Z to be the set of those Z ⊆W of size at least 2εm for which

(16) there is a multisubset Y of V of size at most M with ϕδ(Y, z)>K/4 ∀z ∈ Z.
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LEMMA 3.2. There is an I ⊆
(
W
εm

)
with

(17) |I|< (15ε)−εm

such that

(18) each Z ∈Z contains some I ∈ I .

REMARK. Our eventual bound on the probability in (13) will be (using Lemma 3.1 for
the inequality) ∑

I∈I
P(∩v∈IQ∗v)≤ |I|pεm,

so we want the r.h.s. of (17) to be small relative to p−εm, which will be true with the present
bound since we will have λ≥ 1/2 (recall ε= λp/5).

PROOF OF LEMMA 3.2. Fix Z ∈Z , let Y be as in (16), and set

W0 = {z ∈W : ϕδ(Y, z)>
√
K},

noting that

(19) |W0|<M/
√
K.

Consider the random submultiset Y ′ of Y gotten by including members of Y independently,
each with probability 32δ/K , and set

Nδ(Y
′) = {z ∈W : ϕδ(Y

′, z)≥ δ}.

We assert that with positive probability,

(20) |Y ′|< 33δM/K =: t,

(21) |Nδ(Y
′) \W0|< 64m/

√
K,

and

(22) |Nδ(Y
′)∩Z|> εm.

PROOF. Since |Y ′| is binomial with parameters M ′ ≤M and 32δ/K , the probability of
violating (20) is small.

For z ∈W \W0, we have Eϕδ(Y ′, z) ≤ 32δ/
√
K , and (by Markov’s Inequality) P(z ∈

Nδ(Y
′)) ≤ 32/

√
K; so E|Nδ(Y

′) \W0| ≤ 32m/
√
K , and a second application of Markov

gives P((21) fails)≤ 1/2.
Finally, set, for z ∈ Z and y ∈ Y , ψz = ϕδ(Y

′, z) and ζy = 1{y∈Y ′}. Then ψz =∑
{ζyϕ(y, z) : ϕ(y, z) ≤ δ}, Eψz > 8δ, and Var(ψz) < δEψz , implying (e.g. by the second

moment method; this is reason for the 32) ϑ := maxz∈Z P(ψz < δ)< 1/6. On the other hand,
Markov gives P(|Z \Nδ(Y

′)| > 3ϑ|Z|) < 1/3, so |Nδ(Y
′) ∩ Z| > (1− 3ϑ)|Z| > εm with

probability at least 2/3, and the assertion follows.

It follows (by the “probabilistic method”) that there is some multiset Y ′ satisfying (20),
(22), and (from (19) and (21); recall M ≤Cm)

|Nδ(Y
′)|< (64 +C)m/

√
K.

Thus with

(23) Y = {Y ′ a multisubset of V : |Y ′| ≤ t, |Nδ(Y
′)| ≤ (64 +C)m/

√
K},
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we find that

I :=
⋃
Y ′∈Y

(
Nδ(Y

′)

εm

)
satisfies (18). But it also satisfies (17):

Noting that

|Y| ≤
(
n+ t

t

)
<

(
2m/β

33Cδm/K

)
(using the value of t from (20) and the hypotheses m := |W | > βn and M ≤ Cm), and
recalling (15) and the bound on |Nδ(Y

′)| in (23), we have

|I|<
(

2m/β

33Cδm/K

)(
(64 +C)m/

√
K

εm

)
(24)

<

(
2eK

33Cβδ

)(33CK−2)εm(e(64 +C)

ε
√
K

)εm
< (15ε)−εm(25)

where we use
(
n
k

)
≤ (en/k)k, and for the final inequality: β > e−K bounds the first term

in (25) by (say) e(70C/K)εm, while the definition of K (see (15)) bounds the second by
(20ε)−εm.

PERSPECTIVE. There is less here than meets the eye: the main point is the 1/
√
K of

(21), which, since we choose K , can be used to make the second factor on the r.h.s. of (24)
much smaller than ε−εm; though we’ve taken δ only (roughly) as small as necessary to make
the first factor irrelevant, there was nothing to stop us from making it smaller, so this factor
was not really an issue; the remaining terms (including the canceling m’s) may safely be
ignored.

PROOF OF THEOREM 1.2. We prove this with δ(C,β) the δ of (15), noting that (1) then
gives ϕδ(v,w) = ϕ(v,w) for relevant v,w, whence λ≈ 1. As observed above, we just need
(13); namely, with Z = {w ∈W :Q∗w holds},

(26) P(|Z| ≥ λmp/2)< e−Ω(m).

If Q∗w holds (in particular M ≥ rw), then λ/L ≥
∏
t≤M (1 − ϕ(Xt,w)), implying (with

some room since the ϕ(v,w)’s are small)
∑

t≤M ϕ(Xt,w)>K/2; thus Z satisfies (16) (with
Y = {X1, . . . ,XM}). So if the event in (26) holds, thenZ ∈Z and we have ∩v∈IQ∗w for some
I ∈ I , which according to Lemma 3.1 (and (17)) occurs with probability at most

(27) |I|pεm = e−Ω(m).

(So here the K/4 in (16) could have been K/2, but we will need slightly more room in
Section 4.)

4. Proof of Lemma 1.6. Our main new point here is Claim 4.1, given which Lemma 1.6
will be another simple application of the material of Section 3. We begin by setting param-
eters, in particular the ∆ of the lemma, noting again that these fairly careful specifications
are meant to make the arithmetic below easier to track (if one cares to track it), but that there
is nothing delicate in these choices, since there are no constraints on ∆ (beyond its being a
function of D and γ= 0.1). With this advisory, we take β = γ/2, C = D/β and M = Dn
(= βCn); K , ε, δ as in (15) (again, with p= e−K );

d= 1/δ and %= γKp/(160);
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and, finally,

(28) ∆ = 16Dd2/(γ%)

(so ∆ is roughly e3K ).
Set

B = {v : dv >∆} and S = {v : dv ≤ d}.

CLAIM 4.1. There is a W ⊆B of size at least |B|/2 such that, with S∗ =N(W )∩ S,

(29) P(|{t ∈ [M ] :Xt ∈ S∗}|> %n)< e−Ω(n).

PROOF. We first observe that for all t,

(30)
∑
v∈B

ϕt(v,S)≤ (d/∆)|S|.

PROOF. Using reversibility (which implies π(v)ϕt(v,w) = π(w)ϕt(w,v); see (5)), we
have ∑

v∈B
ϕt(v,S) =

∑
v∈B

∑
w∈S

ϕt(v,w) =
∑
w∈S

∑
v∈B

ϕt(w,v)dw/dv

≤ (d/∆)
∑
w∈S

ϕt(w,B)≤ (d/∆)|S|.

It follows that for all T (now just using |S| ≤ n),

|B|−1
∑
v∈B

Pv(X[T ] ∩ S 6= ∅)≤ Td/(γ∆)

and

|{v ∈B : Pv(X[T ] ∩ S 6= ∅)≥ 2Td/(γ∆)}| ≤ |B|/2;

so if we set T = γ∆/(4d) and take

W = {v ∈B : Pv(X[T ] ∩ S 6= ∅)< 2Td/(γ∆) (= 1/2)},

then

|W | ≥ |B|/2

and we just have to show

(31) W satisfies (29).

To see this, let ξi be the time between the (i− 1)st and ith visits to S∗. Then (independent
of history up to the (i− 1)st visit),

(32) P(ξi > T )> 1/(2d).

(Starting from v ∈ S∗, we’re in W at the first step with probability at least 1/d and then
with probability at least 1/2 the time to return to S∗ is at least T .) With ψi = 1{ξi>T} and
ψ =

∑%n
i=1ψi, visiting S∗ more than %n times (the event in (29)) requires

ψ <M/T = %n/(4d).

But ψ stochastically dominates ψ′ ∼ Bin(%n,1/(2d)) (by (32)), and P(ψ′ < %n/(4d)) <
e−Ω(n).

This completes the proofs of (31) and Claim 4.1.
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PROOF OF LEMMA 1.6. We use the machinery of Section 3 with W as in Claim 4.1 (and
|W |=m) and other parameters as in the first paragraph of this section.

[One picky adjustment: If v is pendant (i.e. of degree one) with unique neighbor w, then
ϕ(v,w) = 1 and the λ of (8) can be zero. But, except when X0 = v, transitions from pendant
vertices have no effect on anything in Section 3, since the mandatory next vertex has already
been seen and is no longer contributing to the martingale. So for the present application
we may without penalty modify (8) to require dG(v)≥ 2 (and—getting sillier—exclude the
unique neighbor of X0 from W if X0 happens to be pendant); thus we assume for this little
discussion that λ≥ 1/2.]

Define events

E = {|{v ∈W :Q∗v holds}|> λpm/2}

and

F = {|{t ∈ [M ] :Xt ∈ S∗}| ≤ %n}

(S∗ as in Claim 4.1). As earlier, we just need to show (13) (namely, P(E)< e−Ω(n)), which
in view of (29) will follow from

P(E∩F )< e−Ω(n).

To see this, note first that, with

Z0 =
{
v :
∑
{ϕ(Xt, v) : t ∈ [M ],Xt ∈ S∗}>K/4

}
,

F implies |Z0|< 4%n/K .
As in the proof of Theorem 1.2, if Q∗v holds, then λ/L≥

∏
t≤M (1− ϕ(Xt, v)), which in

the present situation (i.e. where λ≥ 1/2) implies∑
t≤M

ϕ(Xt, v)≥ (2 log 2)−1 log(L/λ)>K/2;

so if also v ∈W \Z0, then (since d= 1/δ),∑
t≤M

ϕδ(Xt, v)>K/4.

So if E ∧ F holds, then

Z := {v ∈W :Q∗v holds} \Z0

satisfies (16) with

Y = {Xt : t ∈ [M ],Xt 6∈ S∗},

and (with minor arithmetic, again using λ≥ 1/2)

|Z|> λpm/2− 4%n/K > 2εm;

that is, Z ∈Z . We thus have ∩v∈IQ∗v for some I ∈ I , and, by Lemma 3.1,

P(E ∧ F )≤ |I|pεm = e−Ω(m).
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5. Partitions. Here we prove Theorem 1.1. As mentioned earlier, this will be based on
Corollary 1.4 provided we exclude two possibilities—(4) and (52)—that imply the conclusion
of the theorem for other reasons (as shown earlier in Lemma 1.6 and soon in Lemma 5.4).

We fix C and consider a walk of length Cn on the (n-vertex) graph G. Let δ =
(2/3)δ(C/γ2, γ) (see Theorem 1.2 for δ(·, ·), Corollary 1.4 for our intended use, and (41)
for the silly reason for the 2/3), and let ∆ be as in Lemma 1.6 with C in place of D, and

θ = δ2.

(This extra parameter could be skipped, but is included as it will appear pretty often.)
Set (for any v and R)

Bv(R) = {w 6= v : Pv(w ∈X[R])> δ/2}
and

B′v(R) = {w 6= v : Pv(Tw ≤min{R,T+
v })> δ/2}.

(We don’t actually need the superset Bv(R) of B′v(R), but keep it to point out that the upper
bound shown in Lemma 5.3 doesn’t use the extra constraint in B′v(R).)

PREVIEW. For any specification of Vi’s we will take

(33) Ui = {w ∈ Vi : max
w 6=v∈Vi

ϕi(v,w)< δ},

Thinking of v’s that cause exclusions from these Ui’s, we say v ∈W ⊆ V is good for W (or
just good if the identity of W is clear) if

(34) max
v 6=w∈W

ϕW (v,w)< δ.

We are hoping for Vi’s in which few vertices are bad (not good), in which case we can use
the trivial

(35) |Vi \Ui| ≤ |{v ∈ Vi : v is bad for Vi}|/δ.
Perhaps surprisingly—and luckily, since other options seem difficult—much of our pro-

duction of such Vi’s (all but what’s covered by Lemma 5.2) can be based on the following
easy point.

OBSERVATION 5.1. For any R, sufficient conditions for v to be good for W are

(36) W ∩B′v(R) = ∅
and

(37) Pv(X[R] ∩W = ∅)< δ/2.

(These are enough since then for w ∈W \ {v},
ϕW (v,w)≤ Pv(Tw ≤min{R,T+

v }) + Pv(X[R] ∩W = ∅)< δ.)

Note. As mentioned earlier, a reader interested in a warm-up for what we’re about to do might
find this a good time to take a look at Section 6.

Before turning to our main line of argument we dispose of an easy case. Say v is (δ,R)-
recurrent if

(38) Pv(T+
v ≤R)> 1− δ

and (δ,R)-transient otherwise.
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LEMMA 5.2. If, for some R,

(39) |{v : v is (δ,R)-recurrent}|> 2γn,

then G admits a partition as in Corollary 1.4 with ϑ= δγ/(2R).

PROOF. Let S be the set in (39). Notice that, for any v,w,

(40) if dG(w)≥ dG(v) and v ∈B′w(R), then w ∈B′v(R)

(since Pv(Tw ≤min{R,T+
v }) = (dG(w)/dG(v))Pw(Tv ≤min{R,T+

w }); see (5)).
Let Γ be the graph on S with v ∼ w if w ∈ B′v(R) or vice versa. Order V by some “≺”

with v ≺w⇒ dG(v)≤ dG(w) and notice that (40) implies (the first inequality in)

d+(v)≤ |B′v(R)|< 2R/δ ∀v ∈ S

(where d+(v) = |{w : v ≺w ∼ v}|), whence the chromatic number ofG is at most 2R/δ (just
color the vertices greedily, from last to first w.r.t. “≺”). We now take {Wj} to be a (proper)
(2R/δ)-coloring of Γ, and notice that, for any j and distinct v,w ∈Wj ,

(41) ϕ
Wj

(v,w)≤ Pv(Tw ≤min{R,T+
v }) + Pv(T+

v >R)< 3δ/2.

(as in (2)). We also have (with ϑ as in Lemma 5.2)∑
{|Wj | : |Wj | ≤ ϑn} ≤ (2R/δ)ϑn= γn;

so we satisfy the demands of Corollary 1.4 by taking {Vi}= {Wj : |Wj |> ϑn} and Ui = Vi
∀i (and V 0 = V \ ∪Vi).

(For clarity we just note that the bound we actually need in (41) is δ(C/γ,1)> 3δ/2.)

We now turn to the main argument. Fix k with

δk−3 < (16
√

∆)−1

(k = 5 will do since ∆ is roughly δ−3), and let N be minimum with

(42) (1− δ)N < δk.

Let R0 = 1 and, for i≥ 1,

Ri = 4CNδ−10Ri−1.

Choose i < 10δ−k for which at least .9n vertices v satisfy

(43) Pv(T+
v ∈ (Ri−1,Ri])< δk.

Parameters we will use (collected here to have them in one place, though it will take us a
little while to get to the Qi’s) are then:

R′ =NRi−1, Q= (4/δ)R′, R=Ri,

Q1 =Qδ−3, and Q2 =Q1δ
−2θ−1 =Q1δ

−4

(so R=CQ2/θ). We also abbreviate

(R′,R] = I,

since this interval will appear frequently. (The ratios between parameters are generous but
convenient, in particular supporting occasional use of inequalities of the form e−1/δ < δO(1),
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which hold since δ is small.) For minor reasons at (50) we want—and, to avoid very silly
distractions, will just assume—

(44) R′ + 1 is even.

In view of Lemmas 1.6 and 5.2, we may assume

(45) at least .6n vertices v are (δ,R)-transient, have dG(v)<∆, and satisfy (43).

Let T be the set of such v’s.

LEMMA 5.3. For any v ∈ T , |Bv(R)∩ T | ≤Q.

PROOF. We first observe that

Pv(v ∈XI)< 2δk−1.

[Because: If {t≥ 0 :Xt = v}= {t0 < t1 < t2 < · · · }, then v ∈XI implies that either

(46) tu − tu−1 ≤R′/N ∀u ∈ [N ]

or, for some j ≤N ,

(47) tu − tu−1 ≤R′/N for u ∈ [j − 1] and tj−1 +R′/N < tj ≤R.

But by (42) and (43) the probabilities of (46) and (47) are less than (respectively) δk and

δk
∑
j∈[N ]

(1− δ)j−1 < δk−1.]

Set `v(I) = |{t ∈ I :Xt = v}| and notice that, for any v ∈ T ,

(48) Ev`v(I)< 2δk−2

(since Ev`v(I) =
∑

u≥1 Pv(`v(I)≥ u)≤ 2δk−1
∑

u≥1(1− δ)u−1 = 2δk−2).

It follows that for distinct v,w ∈ T ,

(Pv(w ∈XI)≤) Ev`w(I) =
∑
t∈I

ϕt(v,w)

≤
√

∆

[∑
t∈I

ϕ2bt/2c(v, v)
∑
t∈I

ϕ2dt/2e(w,w)

]1/2

(49)

≤
√

∆

[
2
∑
t∈I

ϕt(v, v)2
∑
t∈I

ϕt(w,w)

]1/2

(50)

< 4
√

∆ · δk−2 < δ/4,(51)

where (49) is Lemma 2.1 and Cauchy-Schwarz, (50) uses Lemma 2.2 and (44), and (51) is
given by (48).

Thus, finally,

Bv(R)∩ T ⊆ {w ∈ T \ {v} : Pv(w ∈X[R′])> δ/4},

a set of size at most (4/δ)R′ =Q.
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MORE PREVIEW. In what follows, aiming for Corollary 1.4, we will discard V \ T (that
is, include it in V 0) and consider a random partition of T , hoping to use Observation 5.1
(and the discussion preceding it) to say that (with good probability) much of T lies in blocks
that behave as the corollary requires. Roughly speaking, what we get from Lemma 5.3 is
likelihood of (36): if the number of blocks in our random partition is much larger than Q,
then the block containing v is unlikely to meet B′v(R).

For (37) a natural intuition is that “transience” (failure of (38)) implies that, for the walk
started from v, X[R] is likely to be large, which, suitably quantified, does imply that (37) is
likely (for v and its random block W ). This intuition turns out to be not quite correct, but, as
shown in Lemma 5.4, if it is wrong too often then the conclusion of Theorem 1.1 holds for
other (simpler) reasons.

Set

D = {v ∈ T : Pv(|X[R] ∩ T |<Q1)> θδ}.

LEMMA 5.4. If

(52) |D| ≥ 2θn,

then P(X[Cn] ⊇ V ) = e−Ω(n).

PROOF. We first claim that

(53) for any v ∈ V , Pv(|X[R] ∩D|>Q2)< exp[−1/δ].

PROOF. With (Xt) started from v, let t0 = min{t :Xt ∈D} and, for i≥ 1,

ti = min{t :Xt ∈D, |X(ti−1,t] ∩ T | ≥Q1}.

(That is, ti is the first time that the walk is in D, having seen at least Q1 distinct vertices of
T since ti−1.)

For the event in (53) we must have (very generously)

ti − ti−1 ≤R ∀i ∈ [Q2/Q1],

which, since each Xti−1
is in D, occurs with probably less than (1− θδ)Q2/Q1 < e−1/δ.

We can now show

(54) P(|X[Cn] ∩D| ≥ 2CQ2n/R)< e−Ω(n),

which gives the lemma since CQ2/R= θ.

PROOF OF (54). For i ∈ [Cn/R] let ξi be the indicator of

{|X((i−1)R,iR] ∩D|>Q2}.

Then

|X[Cn] ∩D| ≤R
∑

ξi +CQ2n/R,

so the event in (54) requires ξ :=
∑
ξi > CQ2n/R

2. But ξ is stochastically dominated by
ξ′ ∼ Bin(Cn/R,e−1/δ) (by (53)), and P(ξ′ >CQ2n/R

2)< e−Ω(n).
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So we may assume

(55) |D|< 2θn.

For the partition of Corollary 1.4, we include V \ T in V 0 and will mainly be interested
in T \ D. Setting

ζ = θ/Q,

we randomly (uniformly) partition T into ζ−1 blocks, usually called W , and want to say that
each v ∈ T \D is likely to be good (meaning, of course, good in its block).

LEMMA 5.5. If v ∈ T \D then P(v bad)< 4θ.

PROOF. We want to say that, at least for v ∈ T \D, (36) and (37) are likely for v and the
block W containing it. For (36) this is just

(56) P(W ∩B′v(R) 6= ∅)< ζ|B′v(R)∩ T |< ζQ= θ

(this just requires v ∈ T ; see Lemma 5.3).
For (37) (now using v 6∈ D), with unsubscripted P referring to the choice of the block W

containing v and the walk from v, we have

EW [Pv(X[R] ∩W = ∅)] = P(X[R] ∩W = ∅)(57)

< Pv(|X[R] ∩ T |<Q1) + e−ζQ1 < θδ + e−1/δ =: q;

so by Markov’s inequality,

(58) PW [Pv(X[R] ∩W = ∅)≥ δ/2]< 2q/δ < 3θ.

Combining (58) and (56) now completes the proof of Lemma 5.5.

Again considering our random partition, and using (55) and Lemma 5.5, we find that there
exists a partition {Wi : i ∈ [ζ−1]} of T with (say)

(59) |Wi|> ζn/2 ∀i

and

|{v : v bad}|< 5θ|T \ D|+ |D|< 7θn

(where, again, “v bad” means bad in its Wi).
Say Wi is nice if

|{v ∈Wi : v bad}|< δ|Wi|/2,

noting that this implies

|Ui|> |Wi|/2

(recalling that Ui was defined in (33) and using (35)).
On the other hand,∑

{|Wi| :Wi not nice} ≤ (2/δ)|{v : v bad}|< 14θn/δ,

whence
∑
{|Wi| : Wi nice} > |T | − 14θn/δ > .5n (see (45)); so, with ϑ = ζ/2 (see (59)),

the collection {Vj} of nice Wi’s, with V 0 = V \ ∪Vj , is the desired partition.
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6. Expanders. As promised near the end of Section 1, this and the next section give
separate treatment to two previously known cases of Theorem 1.1, as relatively simple illus-
trations of the use of Corollary 1.4. Here we provide (a little sketchily) a simpler substitute
for much of Section 5 in the case of expanders (for which, as said earlier, Theorem 1.1 was
observed in [13] to follow easily from [8]). Note we are still using the defaults G = (V,E)
and |V |= n.

Suppose the transition matrix, P , of RW on G has eigenvalues 1 = λ1 ≥ · · · ≥ λn ≥ −1
(as guaranteed by Perron-Frobenius). We call G an ε-expander if max{|λ2|, |λn|} < 1− ε.
We should show:

THEOREM 6.1. For RW (Xt) on an ε-expander G,

P(X[Cn] = V ) = exp[−Ωε,C |V |].

(Note δ, ∆ are still as in the second paragraph of Section 5.) In view of Lemma 1.6, we
may assume at least (1− γ)n vertices of G have degree at most ∆. Let T be the set of such
vertices. Application of Observation 5.1 here will be based on the next two assertions.

PROPOSITION 6.2. [11, Theorem 5.1] For an ε-expander G and S ⊆ V ,

|ϕt(v,S)− πS | ≤
√
πS/πv (1− ε)t.

PROPOSITION 6.3. For RW on an ε-expander G and S ⊆ V ,

P(TS > t)< (1− πS/2)εt/(2 logn) .

[We include the trivial proof: Set s = 2 logn/ε. Proposition 6.2 gives (say) P(Xr+s ∈
S|Xr = v)> πS/2 for any r and v, so

P(TS > t)≤ P(Xks 6∈ S ∀k ∈ [t/s])< (1− πS/2)εt/(2 logn) .]

Now thinking of (36), we observe that there is a fixed Q such that for any R= o(n) and v,

(60) (|B′v(R)∩ T | ≤) |Bv(R)∩ T |<Q.

[Because: By Proposition 6.2, there is a fixed T (depending on ε, δ,∆) so that, for any w ∈ T ,

Pv(w ∈X(T,R])<
√

∆ε−1(1− ε)T +Rπw < δ/4;

so Bv(R)∩ T ⊆ {w : Pv(w ∈X[T ])> δ/4}, a set of size less than 4T/δ =:Q.]
On the other hand, Proposition 6.3 guarantees (37) whenever R = ω(logn) and |W | =

Ω(n).
Now set R=

√
n (we need logn�R� n) and ζ = θ/Q (recall θ = δ2), and consider a

random (uniform) partition, {Wi}, of T into ζ−1 blocks. By Observation 5.1 and the discus-
sion above, the probability that v ∈ T is bad in its block W is less than

P(W ∩Bv(R)) = ∅) + P(|W |< ζn/2)< ζQ+ o(1) = θ+ o(1).

The rest of this is essentially the same as the end of Section 5 (following the proof of
Lemma 5.5 and omitting D); so we won’t duplicate, but briefly: The preceding discussion
shows existence of a partition {Wi} of T with (say) |Wi| > ζn/2 =: ϑn ∀i, and only 2θn
bad v’s. We then discard (add to V \ T to form V 0) any Wi’s that are “not nice,” meaning
|{v ∈Wi : v bad}|> δ|Wi|/2, and take {Vj}= {nice Wi’s}.

(The definition of “nice” is chosen so that Wi nice implies |Ui|> |Wi|/2 (see (33) for Ui),
and the bound on the number of bad v’s, with θ� δ, implies that the number of discarded
vertices is small.)

REMARK. This could also have been handled deterministically, as in the proof of
Lemma 5.2, but the intention here was to parallel the main argument of Section 5.
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7. Trees. Here we give the promised alternate proof of Theorem 1.1 for trees. This is
again based on Corollary 1.4, but now without Observation 5.1. The proof is constructive
(unlike that of Section 5) and gives more than the corollary requires:

THEOREM 7.1. For RW on a tree T, δ > 0 and t = 1/δ, there is a partition V = W1 ∪
· · · ∪Wk with k ≤ (t+ 1)tt+1 and (for all i)

max{ϕWi
(v,w) : v,w ∈Wi, v 6=w} ≤ δ.

(To get a partition as in Corollary 1.4 from this, set ϑ = (2k)−1, and take {Vj} = {Wi :
|Wi| ≥ ϑn}, Ui = Vi, and V 0 = V \ ∪Vi, noting that |V 0| ≤ n/2.)

Our construction is based especially on the following easy property of trees (see e.g. [11,
Prop. 2.3]), in which d(·, ·) is distance.

PROPOSITION 7.2. For distinct vertices v, w of T, Pv(Tw < T+
v )≤ 1/d(v,w).

USAGE. We regard trees as rooted. As usual, v is an ancestor of w (and w a descendant
of v) if v lies on the path joining w to the root. We use Dv for the set of descendants of v,
v ∧w for the most recent common ancestor of v, w (the one furthest from the root), and Li
for the set of vertices at distance i from the root.

We will find it convenient to treat partitions as colorings (of V ). We say W ⊆ V is safe if

max{ϕW (v,w) : v,w ∈W,v 6=w} ≤ δ,

and a coloring σ is safe if σ−1(c) is safe for every c. Since (trivially) ϕW (v,w)≤ ϕW ′(v,w)
whenever v,w ∈W ⊆W ′, Proposition 7.2 implies

(61) if W1, . . . are safe and d(Wi,Wj)≥ 1/δ ∀i 6= j, then ∪Wi is safe.

For the partition of Theorem 7.1 the main thing we have to show is:

CLAIM 7.3. For any T , there is a safe coloring of Lt with at most (t+ 1)tt colors.

PROOF OF THEOREM 7.1 GIVEN CLAIM 7.3. Let Dq , q ∈ [t], be disjoint sets of colors,
each of size (t + 1)tt. By (61) it is enough to find, for each q and i ≡ q (mod t), a safe
coloring of Li using colors from Dq . For i≥ t this is accomplished by applying Claim 7.3 to
Dv ∩Li for each v ∈ Li−t (and again using (61)); for smaller i, we can apply the claim to the
tree gotten from T by adding a new root and a path of length t− i joining it to the root of T .
(Or check that the proof of the claim also applies here.)

PROOF OF CLAIM 7.3. Let CB,C1, . . . ,Ct be disjoint sets of colors of size tt. We color
Lt in stages. For a given stage, we use U for the set of uncolored vertices at the beginning of
the stage, and, for v ∈ L0 ∪ . . . ∪ Lt−1, Uv =Dv ∩ U . The process continues until |U | ≤ tt,
at which point we complete the coloring by assigning distinct colors from CB to the vertices
of U .

If |U |> tt, we choose v ∈ Li with |Uv|> tt−i and i as large as possible (so |Uw| ≤ tt−j
for each j and w ∈ Dv ∩ Lj). Call S ⊆ Uv primitive (w.r.t. v) if w ∧ z = v for all distinct
w,z ∈ S. For j = 1, . . . , let Sj be a maximal primitive subset of Uv \ (S1 ∪ . . . ∪ Sj−1),
ending, say at S`, as soon as the largest surviving primitive set has size less than t. Thus each
of |S1|, . . . , |S`| is at least t and, by our choice of i,

` (≤max{|Uw| : w a child of v}) ≤ tt−i−1;
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so we may assign S1, . . . , S` distinct colors from Ci (and could have taken |Ci| = tt−i−1).
This completes the stage and leaves v with fewer than tt−i uncolored descendants (since
fewer than t of its children now have any uncolored descendants. Since each v is “processed”
at most once, we eventually have |U | ≤ tt and (as above) finish the coloring using CB .

It remains to show that the coloring, σ, is safe. Suppose instead that σw = σz = c (for some
w 6= z and c). Since |σ−1(c)| ≤ 1 for c ∈ CB , we have c ∈ Ci for some i. But then (e.g.) w was
colored as part of a primitive set S = {w1, . . . ,ws}, with s≥ t and common ancestor v ∈ Li;
so, since the path from z to w includes v, we have ϕc(z,wj)≥ ϕc(z,w) ∀j (with equality if
z 6=wj), where ϕc = ϕW with W = σ−1(c). Thus ϕc(z,w)≤ 1/s≤ δ.

APPENDIX: CONCENTRATION

Usage here is as in Section 3, and v will always be a vertex of W . As promised following
(10), we show that each ξs (= ξWs ) is exponentially concentrated about its mean.

THEOREM A.4. For any ϑ > 0,

P(|ξs −m|> ϑm)≤ 2e−ϑ
2λ4m/(8L)2 .

Since Qv = {ξv∞ > 0}, this gives exponential tail bounds for |{v : Qv}|. (This isn’t quite
concentration about the mean since we only know |{v :Qv}|L≤ ξ∞ ≤ (L/λ)|{v :Qv}|.)

Theorem A.4 is proved using a better martingale analysis, based on an idea from [9]. We
set Zi = ξi − ξi−1 and Z =

∑s
i=1Zi (= ξs − ξ0), and as usual want to bound E[eζZ ] (with

ζ > 0 to be specified). The main point here, an instance of [9, Lemma 3.4], is that we can
replace the usual product of worst case bounds in

E[eζZ ]≤
s∏
i=1

max
Hi−1

E[eζZi |Hi−1]

by a worst case product:

LEMMA A.5. With each Hi ranging over events {X0 = x0,X1 = x1, . . . ,Xi = xi},

(62) E[eζZ ]≤max{
s∏
i=1

E[eζZi |Hi−1] :H0 ⊇H1 ⊇ · · · ⊇Hs−1}.

The next observation will be used to bound the factors in (62).

PROPOSITION A.6. [9, Proposition 3.8] Suppose the <-valued random variable Y with
E[Y ] = 0 satisfies

|Y | ≤ c
and

E[|Y |]≤M.

Then for |ζ|c≤ 1,

E[eζY ]≤ e8ζ2Mc.

LetHi = {X0 = x0,X1 = x1, . . . ,Xi = xi} (as in Lemma A.5). Applying Proposition A.6
to each Zi |Hi−1, with c= L/λ2 (see (9)) and M =Mi := E[|Zi |Hi−1|], gives

(63)
s∏
i=1

E[eζZi |Hi−1]≤ e8ζ2(L/λ2)
∑
Mi for |ζ|c≤ 1.
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CLAIM A.7.
∑s

i=1Mi ≤ 2Lm/λ2.

We need the following easy observation. For p= (pi)
s
i=1 with pi ∈ [0,1), let

f(p) =

s∑
i=1

pi
∏
j<i

(1− pi)−1, g(p) =

s∏
j=1

(1− pi)−1.

PROPOSITION A.8. f(p)≤ g(p)− 1.

PROOF. We prove the equivalent
s∏
i=1

(1− pi) +

s∑
i=1

pi
∏
j≥i

(1− pi)≤ 1

by induction on s≥ 1. The base case is obvious, and for the induction step we just observe
that the left hand side is

(1− p1)2
s∏
i=2

(1− pi) +

s∑
i=2

pi
∏
j≥i

(1− pi)≤
s∏
i=2

(1− pi) +

s∑
i=2

pi
∏
j≥i

(1− pi)≤ 1.

PROOF OF CLAIM A.7. With sums over v’s (in W ) with Tv, rv > i−1 (cf. the discussion
following (9)), we have

(64) Mi = E|
∑

(ξvi − ξvi−1)| ≤
∑

E|ξvi − ξvi−1|=
∑

2ϕ(xi−1, v)ξvi−1.

Thus, using Proposition A.8 for (65), we have
s∑
i=1

Mi ≤ 2

s∑
i=1

∑
v

ϕ(xi−1, v)ξvi−1

= 2
∑
v

∑
{ϕ(xi−1, v)ξvi−1 : i− 1< Tv ∧ rv}

≤ 2
∑
v

(Hv(Tv ∧ rv)−1 − 1)(65)

≤ 2mL/λ2.

PROOF OF THEOREM A.4. Lemma A.5, with (63) and Claim A.7, gives

E[eζZ ]≤ e16L2mζ2/λ4

whenever |ζ| ≤ λ2/L. So for any ζ ∈ (0, λ2/L],

P(Z > ϑm) = P(eζZ > eζϑm)≤ exp[16L2mζ2/λ4 − ζϑm].

Since ξs < (L/λ)m, we may assume ϑ ≤ L/λ (or the theorem is trivial). Setting ζ =
ϑλ4/(32L2) to minimize the exponent, we have

P(Z > ϑm)≤ exp[−ϑ2λ4m/(8L)2].

Similarly

P(Z <−ϑm)≤ exp[−ϑ2λ4m/(8L)2],

completing the proof.
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