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ABSTRACT

Electromigration (EM) induced aging and degradation in intercon-
nect wires is inherently a stochastic process, with lifetime typically
measured in terms of mean time to failure at both wire and circuit
levels. However, existing approaches still incur high computing costs,
as computing both means and variances is generally expensive. In
this work, we propose a novel fast variational analysis framework to
tackle the challenges of stochastic estimation of EM stress evolution
in multi-segment interconnect wires. We utilize Bayesian networks
in conjunction with the recently introduced hierarchical (two-step)
physics-informed neural networks (PINN). The resulting method,
termed BPINN-EM, enables rapid variational stress analysis of metal
wires by leveraging the robust uncertainty quantification capability
of Bayesian networks with expedited training over small dataset.
Moreover, we devise BPINN-EM to incorporate Bayesian networks
only in the first stage of the hierarchical PINN, thereby circum-
venting the need for sampling across the entire PINN level during
training and significantly reducing training costs. Our results on
several general multi-segment interconnect structure demonstrate
that the proposed BPINN-EM approach is much more efficient than
conventional baselines and state-of-the-art algorithms. Compared
to a Monte Carlo simulator implemented in COMSOL, BPINN-EM
offers a 240X speedup. Moreover, compared to the recently proposed
EMSpice simulated by the Monte Carlo method, the new method
provides more than an 85X speedup with almost no loss of accuracy.
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1 INTRODUCTION

Electromigration (EM) is the phenomenon introduced due to the
migration of metal atoms inside the metal interconnects when they
interact with high current carrying electrons. This migration of
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metal atoms increase compressive stress at the anode and tensile
stress at the cathode. If the stress exceeds critical stress, a void is
formed near the cathode or a hillock may get formed near the anode.
The formation of void or hillock results in circuit failure. EM lifetime
of interconnect wires typically is characterized by mean time to
failure (MTTF) due to its inherently variational nature [1].

Traditionally the MTTF or mortality of an interconnect wire is
related to the current density of the wire via the well-known Black
and Blech-based EM models [2, 3]. But such single wire segment
EM models however face growing criticism for being overly con-
servative as it consider one wire segment in isolation. Recent study
shows that the stress evolution of wire segments in one EM tree
(confined by the metal atom liner and barriers of interconnect wire)
are highly correlated and needs to be considered together [4, 5]. As a
result, many physics based analytical and numerical solutions have
been proposed as alternative to the Black’s model [6-20]. The crux
of these methods is to solve physics based Korhonen’s partial differ-
ential equation for the EM stress evolution [21]. However, solving
Korhonen’s equation and other PDEs using traditional numerical
methods remains a challenge due to their inherent limitations. On
top of this, stochastic physics-based EM analysis using Monte Carlo
method becomes even more prohibitively expensive.

Recently, a machine learning based approach known as physics-
informed neural networks (PINN) has emerged to address the learn-
ing and encoding of physics laws expressed by nonlinear partial
differential equations (PDE) in complex physical, biological, or engi-
neering systems [22, 23]. PINN based approach has been applied to
solve Korhonen’s equation recently [24-26]. In PINN, the physics
laws, boundary conditions, and initial conditions of the PDEs are
explicitly enforced via loss functions in neural networks, demonstrat-
ing promising results for small-scale PDE problems with a limited
number of variables.

Recently, the Physics-Informed Neural Network (PINN) approach
has been employed to solve Korhonen’s equation, demonstrating
promising results [24-27]. Additionally, a hierarchical PINN scheme
has been proposed for fast EM analysis [25, 27]. In these approaches,
the stress evolution in multi-segment interconnects is addressed in
two stages. Firstly, parameterized surrogate models of stress evolu-
tion in single wire segments are obtained either using neural net-
works or analytical solutions. Subsequently, in the second stage, the
PINN scheme is applied to ensure that stress continuity and atomic
flux conservation physics are satisfied for all segments in a multi-
segment interconnect wire. This approach significantly reduces the
number of variables in the second PINN training, leading to training
efficiency. However, none of these PINN-based approaches have
addressed the variability of EM effects.

On the other hand, Bayesian Neural Networks (BNNs) becomes an
important deep neural networks due to their powerful uncertainty
quantification capability, handling scarce dateset and preventing
overfitting [28]. In this paper we leverage variance quantification
capability of the BNN for fast estimation of the variance in EM stress
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distribution on multi-segment interconnect structure. Our novel
contributions in this work are:

e We propose a new PINN architecture, which combine recently
proposed hierarchical PINN and Bayesian network for vari-
ational analysis. To the best of the authors’ knowledge, this
is the first study incorporating Bayesian Physics Informed
Neural Network to varational EM stress analysis.

e Moreover, we devise BPINN-EM to incorporate Bayesian net-
works only in the first stage of the hierarchical PINN, thereby
circumventing the need for sampling across the entire PINN
level during training and significantly reducing training costs,
which can be very cost-efficient for training. In the first stage,
the BNN is trained to estimate the variance in EM stress for a
single segment by taking time varying current as input along
with other physical properties.
In the second stage, we utilize a PINN to enforce the stress
continuity and atomic flux conservation to obtain the variance
stress predictions for any multi-segment structures. In this
way, we only need to do one training (sample) for the PINN
network for the whole variational analysis and modeling,
which is very cost-efficient.

BPINN-EM demonstrates superior simulation efficient over

traditional Monte Carlo method. Once the models have been

built, it can deliver more than 240X speedup Monte Carlo with
marginal errors. Moreover, compared to the recently proposed

EMspice [18] simulated by the Monte Carlo method, the new

method provides more than an 85X speedup with almost no

loss of accuracy.

The paper is organized as follows: Section 2 reviews existing
works on physics-based EM model and its analysis techniques and
recently proposed stochastic EM analysis methods. The theoretical
concepts used in our method are explained in Section 3. Section 4
proposes the BPINN-EM with detailed description of two levels inside
the framework. Experimental results are presented in Section 5.
Finally, section 6 concludes this paper.

2 REVIEW OF RELEVANT WORK

2.1 Numerical solutions based on deep neural
networks

Many numerical solutions to solve the PDE of Korhonen’s equa-
tions in the past such as finite difference methods [18, 29, 30], finite
element method (FEM) [15] and some analysis or semi-analysis
solutions [17, 19, 31], which typically come with some assump-
tions/restriction about the topology of the interconnect trees.

On the other hand, machine learning based approaches have been
proposed to address the challenges of fast EM analysis. Recently,
EM analysis based on generative adversarial networks (GANs) was
introduced for fast transient hydrostatic stress analysis [32]. It out-
performed analytic-based EM solvers in speed while maintaining
accuracy, but its applicability is limited to a fixed region due to
producing fixed-size images. This restriction hinders its practical
use in real chip scenarios and doesn’t represent multisegment in-
terconnects well. To overcome these limitations, Jin et al. proposed
an enhanced graph neural network (GNN)-based EM solver [33].
GNNSs capture more natural relationships among design objectives,
making the knowledge transferable across designs. However, both
methods rely on supervised learning, requiring extensive training
from numerical solvers or empirical data.

To overcome this limitation, recent advancements in unsupervised
learning have introduced frameworks known as physics-informed
neural networks (PINN) or physics-constrained neural networks [34-
36]. These frameworks reframe the process of solving partial differ-
ential equations (PDEs) as a nonlinear optimization task handled
by deep neural networks (DNNs). These networks are equipped
with loss functions designed to enforce the principles of physics
as represented by the PDE and its boundary conditions. However,
while some progress has been made in applying these frameworks
to relatively simple PDE problems [37-39], their effectiveness has
been limited, with only modest advancements in addressing more
complex aerodynamics simulations [40].

Several PINN-based EM solvers have been proposed recently. In
[24], PINN was used directly to solve for the stress evolution in
confined metal for simple straight interconnects. Recently, Hou et
al. further proposed the incorporation of analytic formulae into
the final loss functions of the PINN method [26]. Jin et al. recently
developed a hierarchical PINN method in which two training stages
are used to address training and convergence issues encountered
with plain PINN [25]. In this method, the first stage DNN model
for a single wire was built using a supervised learning method.
Lamichhane further extended the two-stage PINN to solve the EM
stress evolution in post-voiding phase [27]. However, all of those
methods did not explicitly consider the stochastic or variational
natures of EM damages, which will be addressed in this work.

2.2 Existing work for stochastic EM Analysis
and assessment

Variational or stochastic EM impacts on wire lifetime have been
studied in the past. Study in [41] shows that as technology scales,
both mean time to failure and failure time distributions degrades,
which remains challenging for advanced interconnects. Work in [1]
proposed earlier work to consider variability in the EM analysis.
This method still consider one wire segment in isolation with both
analytic and numerical solutions to calculate time to failure. It con-
siders two types of variations: circuit-level where resistance of wires
are random variable (RV) and wire geometry-level where non ideal
wire geometries (like bump and necking) are RV due to lithography
variations. Work in [42] considers both global/local process varia-
tions for power grid and Hermite polynomial chaos based method is
applied for both variational EM analysis and final lifetime analysis
using on Black’s EM model. In [43], the whole power grid are ana-
lyzed to consider the inherent redundancy of the grids by solving
the Korhonen’s PDE using finite difference methods. EM diffusiv-
ity is considered as RV and Monte Carlo based method is applied
for variational analysis with some ad-hoc acceleration techniques.
Method in [44] mainly focuses on the variability in the input cur-
rents where stochastic current models are used to consider current
models in functional blocks and variance or covariance are explicitly
computed via matrix solving of whole power grids, which is still
very expensive.

Recently Yang et al. proposed a Bayesian PINN framework in
order to quantify noise in the observations and avoid the overfitting
problem inherent in regular PINN [45]. They illustrate the efficiency
of their method on common and relatively simple problems. Their
method however applies Bayesian based sampling for the whole
PINN for the training, which can be very time expensive for large
domains like multi-segment interconnect structures.



In this work, we also mainly consider the variational impacts
from the currents. But our method is orthogonal to any variaitonal
sources as the Bayesian networks are trained through Monte Carlo
like sampling and it will be as general and flexible as Monte Carlo
method.

3 PRELIMINARIES
3.1 EM stress modeling

Electromigration (EM) involves the movement of metal atoms from
the cathode to the anode within confined metal interconnect wires.
This migration occurs due to the exchange of momentum between
conducting electrons and metal atoms [2]. As EM progresses, the
hydrostatic stress gradually builds up. Once the stress surpasses
a critical threshold, void formation begins at the cathode, while
hillocks emerge at the anode of the interconnects. Ultimately, these
phenomena can result in open circuits or short circuits, posing a
reliability issue induced by EM in modern VLSI circuits.

Black’s formula predicts the time-to-failure (TTF) caused by elec-
tromigration (EM) based on empirical or statistical data fitting, but
it’s only applicable to a specific single wire [2]. Blech’s limit, another
method used to check for immortality, fails to estimate transient
hydrostatic stress and has faced criticism for leading to unneces-
sary overdesign [3]. To address this issue, the Korhonen equations,
a physics-based EM model, are utilized to depict the evolution of
hydrostatic stress in general multi-segment interconnects [46].

The general multi-segment interconnect comprises n nodes, with
p interior junction nodes denoted as x, € xr1,%r2,- -+ ,Xrp and q
block terminals denoted as xj, € xp1, Xpp, "+ , Xpg, along with sev-
eral branches. Korhonen’s physics-based partial differential equation
(PDE) for this general structure during the nucleation phase is ex-
pressed as follows [17, 31]:

o ox ox
BC: Oijy (x5, t) = Tij, (xi,1),t >0
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Here, BC and IC denote boundary and initial conditions, respec-
tively. ij represents a branch connected to nodes i and j, while n,
indicates the unit inward normal direction of the interior junction

node r on branch ij. o(x, t) denotes the hydrostatic stress, G = %

signifies the electromigration driving force, and k = Dk‘;BTQ repre-
sents the diffusivity of stress. In these equations, E stands for the
electric field, g+ represents the effective charge, D, = Dg exp (;TE;)

denotes the effective atomic diffusion coefficient, where Dy is the
pre-exponential factor, B is the effective bulk elasticity modulus,
Q represents the atomic lattice volume, kp signifies Boltzmann’s
constant, T is the absolute temperature, and E, indicates the activa-
tion energy for electromigration. or stands for the initial thermal-
induced residual stress. For this work, we assume the initial stress
to be zero.

3.2 Variations in EM stress

Conventionally, we solve Eq (1) to get the transient stress distribution
on the general multisegment interconnects. We then compare the
obtained solution with the critical stress and then estimate the failure
time using the void nucleation time #y;,c. This type of deterministic
analysis using DC average of the input current fails to consider
the variations in EM stress due to input current variations, process
variations, temperature variations, diffusivity variations etc. Hence
failure time estimation using the deterministic approach using DC
average current models gives us very optimistic and less realistic
lifetime [44].

If we define x as the vector representing electrical and physical
parameters involved in EM stress evolution, and v as the errors due
to variations. Due to the uncertainty on the parameters and the
noise values, they can be considered as random variables in the
corresponding spaces i.e. x € X and v € V. We assume that the
solutions of EM stress are independently Gaussian distributed and
centered at hidden real values:

c=F (x)+v 2)

here, & is the EM stress solutions computed using parameters x plus
the noise v due to variations. (.) can be any solver used to solve
Eq (1) e.g. FEM based method COMSOL [47], FDM based method
EMSpice [18]. The random variation noise is usually considered
independent following standard Gaussian distributions, with zero
mean and variance of Vargs. A conventional method to quantify the
mean and variance in EM stress calculation represented by Eq (2) is
to use direct Monte Carlo simulation. However, Monte Carlo simula-
tions require Eq (1) to be simulated for multi-segment interconnects
repeatedly. This can be very expensive especially as the number of
segments in the interconnect structure increases.

3.3 Bayesian networks for variational analysis
Using Bayesian framework, EM stress o is represented with a surro-
gate model 6(x; w):

o=~ o(x;0) (3)
here w is the vector of parameters of surrogate Bayesian model with
a prior distribution P(w). The dataset D, used to train the surrogate
model can be represented as:

D= {(X(i)ﬁ(i))}l{\il
(6NN = {¢(x<i>) +u<i>}

here N is the training data size, v is the noise in simulation which
can be assumed to be random samples from a independent Gaussian
distribution with zero mean and variance Var,. Given the dataset
D, and the prior knowledge P(w), likelihood of the observation can
be calculated as:

N 4

i=1

N

P(D]w) = El[ m
bl o)

2Varc(,i)

X exp |—

the posterior likelihood can be obtained using Bayes’s theorem:
P(D|w)P(w)

P(w|D) = P(D)

o P(Dl]w)P(w) (6)



here, o« symbol means ’equality up to a constant’ is the probability
of dataset P(D) is not easily solvable analytically. Hence in practice
we only get an un-normalized expression P(«w|D). Therefore, to get
a posterior EM stress o for given parameter vector x, we get samples
{w(i) }?;I | from P(©]D) and get the variational stress statistics (mean
and variance) from samples {6 (x; w(i))}?;ll.

Bayesian model in this work uses fully connected neural network
with L > 1 hidden layers as surrogate model. For a fully connected
Bayesian network (interchangebly addressed as BNN throughout
this paper), the model parameters w are the concatenation of the
weights and biases matrices of all the layers used in the network.
It is a common practice in BNN to use an independent Gaussian
distribution with a zero mean as a prior for w so that the fully con-
nected layers with L number of layers, the weights w; and biases b;
for each layer [ = 0, 1, ..., L have the variances Var,, ; and Vary, ; [48].
From this it can be inferred that the output of the neural network
using these layers is actually a Gaussian process as the width of the
layers goes to infinity [48]. The optimal values of w are the values
that maximize the posterior likelihood P(w|D) and usually denoted
as @*. The likelihood can be maximized by numerically optimizing
the logarithm of Eq (6). The optimal samples of posterior can be
obtained to get samples of &(x, w*) using Monte Carlo methods. The
mean and variance of these samples are then used to approximate
the variations in EM stress o.

4 PROPOSED BPINN-EM FOR FAST
STOCHASTIC EM STRESS ANALYSIS

The proposed BPINN-EM utilizes the hierarchical two stage approach
to estimate the variations in stochastic EM stress on general multi-
segment structure. Fig. 1 shows the overall algorithm flow of the
proposed BPINN-EM framework.

To prepare our framework to perform variational stress analysis
on multisegment interconnect structure, first we get posteriors of
BNN model using sampling technique for a single wire segment.
BNN model is then used to approximate the stochastic EM stress at
boundary nodes of all the segments in second stage. In the second-
stage, a PINN is trained using these boundary stress values to enforce
the atomic flux conservation and stress continuity on the entire mul-
tisegment interconnect structure. Once trained, the combination of
BNN and PINN can then be used to estimate the variations in stochas-
tic stress on the multisegment interconnect structure. We initially
sample the posterior samples of Bayesian network using Hamilton-
ian Monte Carlo (HMC) method with the dataset generated from
simulations. Additionally, to train our PINN, we utilize Bayesian
network to approximate EM stress at boundary nodes of the seg-
ments only and not on the entire interconnect structure. This results
in very time efficient training of the PINN. Furthermore, after the
training of PINN is completed, it can be used to quantify variations
in variational stress across the whole multisegment interconncet
structure, eliminating the need for retraining.

4.1 Estimation of variations in EM stress using
Bayesian network and Hamiltonian Monte
Carlo sampling

In this section we further explain the proposed BPINN-EM in detail.
BPINN-EM utilizes the variance quantification property of
Bayesian Neural Networks (BNN) to obtain the stochastic stress

distribution on multi-segment interconnect structures. The poste-
riors of the BNN surrogate model are sampled using variational
EM stress simulation data generated with COMSOL [47]. In our
approach, the BNN model is employed to infer variational EM stress
on each segment of the multi-segment structure separately [25, 27].
In the second phase, PINN is responsible for ensuring that the gener-
ated stress at each segment satisfies stress continuity and atomic flux
conservation at each inter-segment junction of the multi-segment
interconnect structure.

To generate the training dataset O for Bayesian Neural Networks
(BNN), we conduct direct Monte Carlo simulations in COMSOL. To
account for variations in input current, each Monte Carlo simula-
tion involves sampling branch currents for interconnect structures
from a Gaussian distribution such that J € N(yj, Var;), where J
represents the current density distribution, y; is the mean, and Var
is the variance of the distribution. We note that the Monte Carlo
simulation can capture other potential variations in electromigration
(EM) stress [44]. Using samples from the Monte Carlo simulations,
we obtain variations in the distribution of stress, characterized by
the stress mean i and stress variance Var,. The time-varying sto-
chastic EM stress targets 6 for BNN training are then sampled from
the distribution N (s, Varg).

As depicted in Fig. 1, the physical and electrical parameters of
each segment within a general multi-segment interconnect structure
are considered to prepare input parameters for the Bayesian Neural
Network (BNN) surrogate model. The BNN network takes inputs
x={X,T,L,W, J(t), F1(t), Fo(t)}. Here, X is the position vector, T
is the time vector, L is the length of the wire under consideration,
and W is the width of the wire. J(t) represents the branch current
density, which varies over time according to J ~ N'(y;, Var;). Fy(t)
and F,(t) denote the atomic flux at the left node for horizontal wires
and the bottom node for vertical wires, respectively, in the multi-
segment interconnect structure. Similarly, F2(¢) is the atomic flux at
the right node for horizontal wires and the upper node for vertical
wires. For single wires with stopping boundaries, F; = F» = 0.
However, their values are not zero for single wires extracted from
multi-segment interconnect structures. The values of F; and Fp will
be determined in the second stage PINN by enforcing the necessary
electromigration (EM) physics conditions.

BPINN-EM uses Hamiltonian Monte Carlo(HMC) approach to
explore the parameter space of our BNN model. HMC is a gradient
based Markov Chain Monte Carlo(MCMC) approach that uses Hamil-
tonian dynamics to explore the parameter space. HMC approach we
use first simulates the Hamiltonian dynamics using numerical inte-
gration method and then corrected by using Metropolis-Hastings
acceptance step. Given a dataset D, we assume target posterior
distribution for w as:

P(0|D) = exp(=U(w)) ™)

where U(w) = —log(P(D|w)) — log(P(w)) In order to sample from
posterior, HMC uses an auxiliary momentum variable r to construct
a Hamiltonian system:

H(w,r) =U(w) + %rTM_lr ®)

here, M is a mass matrix usually set to be identity matrix, I. HMC
then generates samples from joint distribution of (w,r) as:

w(@,1) ~ exp(-U(@) - 5™ ) ©)
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Figure 1: Framework of proposed BPINN-EM variational EM simulator and surrogate model

Algorithm 1 Sampling variational EM stress using BNN and Hamil-
tonian Monte Carlo Sampler

Require: initial states for ® and time step size &t
for k =1to N do
Sample r'*-1 from N (0, M),
(wo,0) = (w1, rfk-1)
fori=0to (L—-1)do
Vi < 1j— %VU((,«),’)
wiy1 — ;i +OtM~r;
rist — ri — L VU (wis1)
end for
Metropolis-Hastings step:
Sample p from Uniform[0, 1]
a «— min{1, exp(H(wr, r) — H(w'*-1,rt-1))}
if p > a then
w'* — wp
else
ok« li-1
end if
end for
Calculate {5 (x, a)“"”ﬂ')}ﬁ.\’fz1 as samples of o(x)

here, the w samples have marginal distribution as we eliminate the r
samples. The samples are generated from the following Hamiltonian
dynamics

do =M™ rdt,

(10)

dr = -VU(w)dt
Eq (10) is discretized using leapfrog method and Metropolis-Hastings
step is used to reduce the discretization error. Algorithm 1 illus-
trates the details of HMC to get variational EM stress samples

{6(x0M)IM [45].

In our framework, we initially sample the posteriors of the
Bayesian network, which are subsequently used for inference. Em-
ploying a BNN surrogate model for estimating stochastic electromi-
gration (EM) stress offers several advantages. BNNs have demon-
strated efficiency in quantifying errors and handling sparse datasets
by mitigating overfitting [28]. This implies that BNNs can be trained
or sampled using relatively smaller datasets compared to Deep Neu-
ral Networks (DNNs). Consequently, this reduces the simulation time
required for data generation, enhancing practicality and scalability.
Furthermore, utilizing smaller datasets results in shorter training
times. For example, in our experiment, we observed a training time
of approximately 6.5 hours with 40,000 data points for variational
analysis. In contrast, a similar approach [25] for estimating deter-
ministic EM stress using fully connected DNNs required more than
20 hours for 80,000 data points.

4.2 Enforcing stress continuity and atomic flux
conservation using PINN

The BNN surrogate model used in the first stage of BPINN-EM accu-
rately provides samples of variational EM stress for each segment
within multi-segment interconnect structures when provided with
the correct input set x = {X, T, L, W, J(¢), F1(t), F2(t) } for that wire.
For single segments with blocking boundary nodes, the BNN alone
is sufficient to estimate the stochastic EM for these wires, as the
atomic fluxes at their terminals are F; = F» = 0. However, in reality,
interconnects are often multi-segment wires or trees. Therefore, for
the single wires within these interconnects, two conditions must
be addressed: stress continuity and atomic flux conservation at the
junctions of the segments, as depicted in Eq (1). To satisfy these
conditions and obtain F; and F;, we employ PINN, which enforces
stress continuity and atomic flux conservation at the segment junc-
tions 25, 27].



As depicted in Fig 1, our atom flux estimation framework employs
a Multilayer Perceptron (MLP). This MLP is fed with time-varying
current densities from the segments connected to each inter-segment
junction of a multi-segment interconnect structure. For each inter-
segment junction, since there can be a maximum of four segments
connected to it, the MLP receives Ji (t), Jy(t), Jr(t), and Jp(t),
representing the current densities at segments on the left, up, right,
and down, respectively. It’s important to note that these current
densities vary over time for each segment and are modeled as random
samples from Gaussian distributions, denoted as Js ~ N (yjs, Varjs)
for s € L,U, R, D. Additionally, the time vector T is included as an
input to the MLP since both its inputs and outputs vary with time.
As illustrated in Fig 1, the MLP outputs time-varying atomic fluxes
through the nodes of segments connected to each inter-segment
junction in three directions, such as up, right, and down, denoted by
Fy (t), Fr(t), and Fp(t), respectively. The atomic flux at the segment
node connected to the left, i.e., F (), is then computed by conserving
the total atomic flux, as suggested by Eq (1). Consequently, we obtain
the atomic fluxes (F; (t), F2(t)) through both ends of all segments in
the multi-segment interconnects.

Another crucial consideration for the predicted atomic fluxes
(F1(t), F2(t)) in forecasting the stochastic EM stress distribution
across multi-segment interconnect structures is ensuring stress con-
tinuity at the inter-segment junctions. To enforce stress continuity
at these junctions, it’s imperative to align the variational EM stress
at the nodes of all segments connected to the inter-segment junc-
tions, ensuring their overlap. This alignment is achieved through
the utilization of the loss function given by Eq (11). The role of
this loss function is to minimize the discrepancy between the varia-
tional EM stress at the boundary nodes of all segments connected to
the inter-segment junctions within the multi-segment interconnect
structure.

1 Ni K;
L=5 2 2, (6k(1) = (G (1)? (1)
==

Here, 6 () represents the variational EM stress at the boundary
of the k*h segment connected at the inter-segment junction i. K;
denotes the number of segments connected to the inter-segment
junction i, and N7 signifies the total number of inter-segment junc-
tions in the general multi-segment structure.

The loss function, defined in Eq (11), serves to optimize the pa-
rameters of the atomic flux predictor MLP. As this loss converges,
the MLP becomes adept at predicting the optimal atomic fluxes at
the nodes of the segments connected to each inter-segment junc-
tion within a multi-segment interconnect structure. These predicted
atomic fluxes are termed ‘optimal’ as they adhere to the conditions
of atomic flux conservation and stress continuity. Consequently,
optimal atomic fluxes (F; (t) and F;(t)) are predicted for both ends
of all segments within the multi-segment interconnect structure.
Upon the completion of PINN training, the combined framework of
PINN and Bayesian networks can be effectively employed to esti-
mate variations in EM stress across the entire interconnect structure,
utilizing EM stress samples.

5 EXPERIMENTAL RESULTS AND DISCUSSION
All modules utilized in BPINN-EM are developed using Python 3.9.18
with PyTorch 2.2.1. The training and testing procedures are con-

ducted on a Linux server equipped with two Intel 22-core E5-2699
CPUs, 320 GB of memory, and an Nvidia TITAN RTX GPU. In the

subsequent section, we present the experimental results pertaining
to data preparation and variational stress estimation.

5.1 Data generation and preparation

To prepare the dataset for the BNN model, we leverage the Finite
Element Method (FEM) using COMSOL. For both training and test-
ing, we generated a total of 50,000 single wires. Among these, 40,000
wires are allocated for training the BNN model, while 10,000 are
reserved for testing its accuracy and performance. These wires orig-
inate from multi-segment interconnects with the number of seg-
ments ranging from 5 to 250. The lengths of segments within these
multi-segment interconnects vary from 10 pgm to 50 gm. To maintain
simplicity, we standardize the width of all wires to 1 ym. EM stress
calculations are conducted over a time period from 0 to 1 x 102 sec-
onds. To introduce variations in the input current, branch currents
are sampled from a random normal distribution in each iteration of
the Monte Carlo process. We employ four different \/% ratios: 0.10,

0.15, 0.20, and 0.25, to diversify the input current Varzii;tions. Addi-
tionally, to account for other sources of variation, we conduct Monte
Carlo simulations in COMSOL and generate our dataset. Specifically,
we utilize 30 iterations of Monte Carlo simulations to construct the
training dataset for this study.

5.2 Accuracy and performance of Bayesian
network

Our BNN is implemented using the Hamiltorch package [49], em-
ploying the algorithm described in Section 4.1. PyTorch tensors are
utilized for handling inputs, model parameters, and outputs. Hamil-
torch overcomes the large data handling limitations of traditional
Hamiltonian Monte Carlo methods by splitting datasets. Our BNN
model consists of three hidden layers, each with 128 units. We uti-
lize 100 Hamiltonian Monte Carlo (HMC) samples for training the
BNN model. With a training dataset size of 40,000, the runtime for
Hamiltorch is approximately 6.5 hours.

HMC is utilized to obtain posterior samples from the BNN, which
are then employed to derive samples of variational EM stress for
calculating mean and standard deviation of the variations. To ensure
a fair performance comparison with Monte Carlo simulations, we
infer 30 samples of variational EM stress from the BNN model for
our illustrations. Mean (us) and variance (Varg) are computed from
these samples for comparison with targets.

For the accuracy and performance analysis of the surrogate BNN
model, we tested 10,000 single wires extracted from multi-segment
interconnect structures, ensuring they have non-zero atomic fluxes
at their boundaries. We employed COMSOL and EMSpice for ac-
curacy and performance evaluation, with COMSOL chosen for its
status as a standard commercial tool and EMSpice, as verified in
[18], demonstrating accuracy and performance analysis against stan-
dard tools with openly available implementation details. While the
related method in [44] demonstrates satisfactory performance in
variance calculation, it falls short in comparison with standard tools
and also lacks comprehensive implementation details. Therefore, we
obtained variational EM stress for the test wires using COMSOL and
EMSpice for comparison with our proposed BPINN-EM.

Monte Carlo simulations were conducted for 30 iterations to
estimate variations in EM stress for both COMSOL and EMSpice.
Similarly, 30 posterior samples from HMC were used in BPINN-EM to
infer variational EM stress samples, thus approximating variations.



Fig 2a shows an example of variational current density used to
derive variational EM stress, as illustrated in Fig 2b. The figure
demonstrates a close agreement between the mean and standard
deviations of variational EM stress at a terminal node of a single wire
with those obtained from COMSOL and EMSpice. When tested with
the 10,000 wires, the stress range spans from -3.2 x10° Pa to 4.5 x10°
Pa. We employ root mean square error (RMSE) to gauge accuracy,
computed collectively as RMSE = (RMSEean + RMSEg;4) /2. Here,
RMSE pean represents the error in means and RMSEg,; represents
the error in standard deviation. The average RMSE for the test wires
against COMSOL (also our targets) is 2.72 x10° Pa, translating to a
relative error of approximately 0.036%. Against EMSpice, the average
RMSE is 1.1 x10° Pa, resulting in a relative error of about 0.014%.

COMSOL, being a FEM-based method, is relatively slow in sim-
ulation. The average runtime for the test wires using COMSOL is
approximately 86 seconds, whereas with EMSpice, it is about 12
seconds. The average inference time for the BNN is approximately
0.015 seconds. These observations indicate that for a single wire, the
BNN can provide a speedup of more than 5700x over COMSOL with
the correct parameters. Compared to EMSpice, the BNN surrogate
model can lead to an 800X speedup.

The BNN surrogate model itself proves to be fast and accurate
in estimating variations in stochastic EM stress for single wires.
Moreover, this surrogate model requires training or sampling only
once with a relatively smaller dataset, facilitating a relatively short
training/sampling time.

5.3 Overall accuracy and performance analysis

The PINN utilized in the second phase of BPINN-EM is also imple-
mented using PyTorch. The MLP in the PINN employs layer sizes of
[5,100,100,100,100,3]. We employ the Adam Optimizer [50] with a
learning rate of 0.001 for optimization through backpropagation.

To evaluate the performance and accuracy of BPINN-EM on multi-
segment interconnect structures, we utilize 1000 such structures
with segment numbers ranging from 50 to 250. These structures are
analyzed to obtain variational EM stress using COMSOL, EMSpice,
and BPINN-EM. In all three approaches, 30 samples are used to esti-
mate variations in stochastic EM stress. Table 1 presents accuracy
and performance results for multi-segment interconnect structures
with various segment numbers. For these structures, the range of EM
stress spans from -3.51x10° to 4.54x10°. We employ RMSE for accu-
racy comparison, calculated as RMSE = (RMSEpmean + RMSE;4) /2.
For the 1000 multi-segment interconnect structures, the average
RMSE against COMSOL is 2.51x107, corresponding to approximately
0.31% error. Compared to EMSpice, an average RMSE of 1.9x10° is
observed, which translates to around 0.024% error.

Fig 3 illustrates the variations in EM stress represented by mean
and standard deviation (std.) for a five-segment interconnect struc-
ture with physical and electrical properties as depicted in Fig 3a. In
this figure, EM stress variations at inter-segment junctions of this
interconnect structure are depicted in figures 3b, 3c, 3d, and 3e. Here,
we observe that BPINN-EM accurately estimates the variations in
EM stress, showing good agreement with COMSOL and EMSpice.

The variances in stochastic EM stress for multi-segment inter-
connect structures are approximated using Monte Carlo simulation
for 30 iterations in the case of COMSOL and EMSpice. The average
runtime for this process in COMSOL is approximately 2900 seconds,
while for EMSpice, it is around 1025 seconds. In BPINN-EM, varia-
tions in stochastic EM stress are approximated using samples from
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(b) Comparison of variation estimation between the proposed method,
COMSOL, and EMSpice for a single segment.

Figure 2: Illustration of time-varying current samples used in
simulation and the corresponding stress variations obtained
by employing currents from the same distribution. The de-
picted result showcases the time-varying stress at a node of a
single segment with non-zero atomic flux, extracted from a
multisegment interconnect.
the BNN, sampled using HMC. However, the BNN surrogate model
must first obtain the optimal atomic flux at the ends of each seg-
ment within the multi-segment interconnect structures from PINN.
Therefore, the training time of PINN is also considered along with
the inference time of BNN for runtime comparison. For the multi-
segment interconnects under study, the average runtime for our
method, BPINN-EM, is observed to be around 20 seconds. Hence, on
average, our method can provide estimates of variational EM stress
145x faster than COMSOL and around 52 faster than EMSpice.
These findings affirm the viability of the proposed method, BPINN-
EM, for expediting the estimation of variance in stochastic EM stress
resulting from variations in EM parameters. Leveraging Bayesian
networks in the initial stage also bolsters the scalability of our ap-
proach, as Bayesian models can be trained with relatively small
datasets, mitigating the need for costly simulations to generate ex-
tensive datasets. Furthermore, the PINN can be swiftly trained, as it
doesn’t entail posterior sampling during training and solely requires
EM stress data at boundary nodes. Once the PINN is trained, vari-
ations in stochastic EM stress at any node within a multi-segment
interconnect structure can be approximated in terms of mean and
variance using samples of EM stress obtained from the Bayesian
network.

6 CONCLUSION

In this paper, we proposed a learning-based approach that lever-
ages the powerful uncertainty quantification capability of Bayesian
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(b) Comparison of variations estimation between the proposed
method, COMSOL, and EMSpice at inter-segment junction 1 of the
depicted five-segment interconnect.
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(d) Comparison of variations estimation between the proposed
method, COMSOL, and EMSpice at inter-segment junction 3 of the
depicted five-segment interconnect.
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(c) Comparison of variations estimation between the proposed
method, COMSOL, and EMSpice at inter-segment junction 2 of the
depicted five-segment interconnect.
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(e) Comparison of variations estimation between the proposed
method, COMSOL, and EMSpice at inter-segment junction 4 of the
depicted five-segment interconnect.

Figure 3: Illustration of stress variations at internal junctions of a multi-segment interconnect.

Table 1: Performance and accuracy comparisons with existing methods

# of wires | COMSOL | EMspice BPINN-EM
Runtime | Runtime | Error(%) Error(%) Inference | Training Speedup Speedup
(s) (s) vs. Comsol | vs. EMSpice time(s) time(s) | vs. COMSOL | vs. EMSpice
50 1298 456 0.081 0.021 0.25 5.1 243x 86x
100 2239 764 0.092 0.028 0.43 9.6 223x 77x
150 2973 1032 0.12 0.031 0.39 16.0 181x 63x
200 3617 1334 0.31 0.036 0.61 28.4 124x 46x
250 4128 1521 0.98 0.044 0.80 41.5 98x 36x

Neural Networks (BNNs) and the unsupervised learning capability
of Physics-Informed Neural Networks (PINNs) to learn from the
variational effects of EM aging processes. The resulting method,
termed BPINN-EM, can build the variational surrogate EM model
with small number of dateset, which enables rapid variational stress
analysis of multi-segment metal wires. Experimental results on gen-
eral multi-segment interconnect structures demonstrate that our
proposed method, BPINN-EM, is over 240 times faster than Monte

Carlo simulations in FEM-based COMSOL and more than 85 times
faster in FDM-based EMSpice, with negligible loss in accuracy
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